人教版初一数学下册实际问题与二元一次方程组 和差倍分

合集下载

人教版七年级下册数学二元一次方程组应用题(和差倍分问题)

人教版七年级下册数学二元一次方程组应用题(和差倍分问题)

人教版七年级下册数学二元一次方程组应用题(和差倍分问题)1.第一小组的同学分铅笔若干支,若每人各取5支,则还剩4支;若有1人只取2支,则其余每人恰好6支.问第一小组同学有多少人?铅笔有多少只?2.甲仓库存粮比乙仓库存粮少5吨,现从甲仓库运出存粮30吨,从乙仓库运出存粮的40%,这时乙仓库所余粮食是甲仓库所余粮食的2倍,问甲、乙两仓库原各存粮多少吨?3.用一根绳子环绕一棵大树.若环绕大树3周,则绳子还多4尺;若环绕大树4周,则绳子又少了3尺.这根绳子有多长?环绕大树一周需要多少尺?4.某中学为了丰富学生的课外体育活动,准备购买一批新的篮球和足球总共160个.已知购买篮球的数量比足球的数量的2倍还多10个,求购买的篮球和足球的数量分别是多少个5.高台县为加快新农村建设,建设美丽乡村,对A、B两类村庄进行了全面改建.根据预算,建设一个A类美丽村庄和一个B类美丽村庄共需资金300万元;巷道镇建设了2个A类村庄和5个B类村庄共投入资金1140万元.(1)建设一个A类美丽村庄和一个B类美丽村庄所需的资金分别是多少万元?(2)骆驼城镇改建3个A类美丽村庄和6个B类美丽村庄共需资金多少万元?6.学校开展了以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品.若买甲种笔记本20个,乙种笔记本10个,共用110元;且买甲种笔记本30个比买乙种笔记本20个少花10元.求甲、乙两种笔记本的单价各是多少元?7.学校准备购进一批甲、乙两种办公桌若干张,并且每买1张办公桌必须买2把椅子,椅子每把100元,若学校购进20张甲种办公桌和15张乙种办公桌共花费24000元;购买10张甲种办公桌比购买5张乙种办公桌多花费2000元.求甲、乙两种办公桌每张各多少元?8.新冠肺炎疫情期间,佩戴口罩是做好个人防护的重要举措。

小明家先后两次在同一电商平台以相同的单价邮购买了A、B两种型号的口罩,第一次购买20个A型口罩,30个B型日单,共花费190元;第二次购买30个A型口罩,20个B型口罩,共花费160元,求A、B两种型号口罩的单价.9.李欣同学昨天在文具店买了2本笔记本和4支水笔,共花了14元;王凯以同样的价格买了1本笔记本和3支水笔,共花了9元;问笔记本和水笔的单价各是多少元?10.某停车场的收费标准如下:小型汽车10元/辆,中型汽车15元/辆,现停车场共有50辆中、小型汽车,共缴纳停车费560元,中、小型汽车各有多少辆?11.列一元一次方程解应用题:某仓库装粮食,第一个仓库是第二个仓库存粮的3倍,如果从第一个仓库中取出20吨放入第二个仓库中,第二个仓库中的粮食是第一个仓库中的57,问每个仓库各有多少吨粮食?12.养牛场原有的大牛和小牛一天约用饮料475kg;一周后购进一批大牛和小牛后,这时大牛数量增加为原来的3倍,小牛数量增加为原来的2倍,一天约用饮料1350kg,已知大牛一天的饮料需20kg,小牛一天的饮料需5kg,则养牛场原有大牛和小牛数量各是多少?13.我校去年有学生3100名,今年比去年增加4.4%,其中寄宿学生增加了6%,走读学生减少了2%.问该校去年有寄宿学生与走读学生各多少名?14.《一千零一夜》中有这样一段文字:有一群鸽子,其中一部分在树上欢歌,另一部分在地上觅食,树上的一只鸽子对地上觅食的鸽子说:“若从树上飞下去一只,则树上、树下的鸽子就一样多了.”地上的鸽子对树上的鸽子说:“若从地上飞到树上一支鸽子,则树上鸽子是地上的3倍.”你知道树上,树下各有多少只鸽子吗?15.古代有这样一个寓言故事:驴子和骡子一同走,它们驮着不同袋数的货物,每袋货物都是一样重的.驴子抱怨负担太重,骡子说:你抱怨干吗?如果你给我一袋,那我所负担的就是你的两倍.如果我给你一袋,我们才恰好驮的一样多!”求驴子和骡子原来所驮货物分别为多少袋?16.体育文化用品商店购进篮球和排球共20个,进价和售价如表,全部销售完后共获利润260元,求商店购进篮球,排球各多少个?17.被誉为“最美高铁”的长春至珲春城际铁路途经许多隧道和桥梁,其中隧道累计长度与桥梁累计长度之和为342km,隧道累计长度的2倍比桥梁累计长度多36km.求隧道累计长度与桥梁累计长度.18.在某超市小明买了1千克甲种糖果和2千克乙种糖果,共付38元;小强买了2千克甲种糖果和0.5千克乙种糖果,共付27元.(1)求该超市甲、乙两种糖果每千克各需多少元?(2)某顾客到该超市购买甲、乙两种糖果共20千克混合,欲使总价不超过240元,问该顾客混合的糖果中甲种糖果最少多少千克?19.南充某制衣厂现有22名制作服装的工人,每天都制作某种品牌的衬衫和裤子,每人每天可制作这种衬衫3件或裤子5条.(1)若该厂要求每天制作的衬衫和裤子配套,一件衬衫配两条裤子,则应各安排多少人分别制作衬衫和裤子?(2)已知制作一件衬衫可获得利润30元,制作一条裤子可获得利润16元,在(1)的条件下,求该厂每天制作衬衫和裤子所获得的利润?20.某农户原有15头大牛和5头小牛,每天约用饲料325kg;两周后,由于经济效益好,该农户决定扩大养牛规模,又购进了10头大牛和5头小牛,这时每天约用饲料550kg.问每头大牛和每头小牛1天各需多少饲料?。

人教版七年级数学下《实际问题与二元一次方程组》知识全解

人教版七年级数学下《实际问题与二元一次方程组》知识全解

《实际问题与二元一次方程组》知识全解课标要求1.能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程组.2.学会开放性的寻求设计方案,培养学生分析问题、解决问题的能力,体会二元一次方程组的应用价值.3.在探究学习中培养独立思考、自主探究的精神和良好的学习习惯. 知识结构检验转化问题答案实际问题 设求知数、列方程组数学问题 (二元一次方程组)解方程组(消元)内容解析知识点一:列方程组解应用题的基本思想列方程组解应用题是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的相等关系..一般来说,有几个未知数就列出几个方程,所列方程必须满足:(1)方程两边表示的是同类量;(2)同类量的单位要统一;(3)方程两边的数值要相等.知识点二:列方程组解应用题中常用的基本等量关系1.行程问题:(1)追击问题:追击问题是行程问题中很重要的一种,它的特点是同向而行.这类问题比较直观,画线段,用图便于理解与分析.其等量关系式是:两者的行程差=开始时两者相距的路程;路程=速度×时间;;(2)相遇问题:相遇问题也是行程问题中很重要的一种,它的特点是相向而行.这类问题也比较直观,因而也画线段图帮助理解与分析.这类问题的等量关系是:双方所走的路程之和=总路程.(3)航行问题:①船在静水中的速度+水速=船的顺水速度;②船在静水中的速度-水速=船的逆水速度;③顺水速度-逆水速度=2×水速.注意:飞机航行问题同样会出现顺风航行和逆风航行,解题方法与船顺水航行、逆水航行问题类似.2.工程问题:工作效率×工作时间=工作量.3.商品销售利润问题:(1)利润=售价-成本(进价);(2)-=100%售价进价利润率进价;(3)利润=成本(进价)×利润率;(4)标价=成本(进价)×(1+利润率);(5)实际售价=标价×打折率;注意:“商品利润=售价-成本”中的右边为正时,是盈利;为负时,就是亏损.打几折就是按标价的十分之几或百分之几十销售.(例如八折就是按标价的十分之八即五分之四或者百分之八十)4.储蓄问题:(1)基本概念①本金:顾客存入银行的钱叫做本金.②利息:银行付给顾客的酬金叫做利息.③本息和:本金与利息的和叫做本息和.④期数:存入银行的时间叫做期数.⑤利率:每个期数内的利息与本金的比叫做利率.⑥利息税:利息的税款叫做利息税.(2)基本关系式①利息=本金×利率×期数②本息和=本金+利息=本金+本金×利率×期数=本金×(1+利率×期数)③利息税=利息×利息税率=本金×利率×期数×利息税率.④税后利息=利息×(1-利息税率) ⑤年利率=月利率×12⑥.注意:免税利息=利息5.配套问题:解这类问题的基本等量关系是:总量各部分之间的比例=每一套各部分之间的比例.6.增长率问题:解这类问题的基本等量关系式是:原量×(1+增长率)=增长后的量;原量×(1-减少率)=减少后的量7.和差倍分问题:解这类问题的基本等量关系是:较大量=较小量+多余量,总量=倍数×倍量8.数字问题:解决这类问题,首先要正确掌握自然数、奇数、偶数等有关概念、特征及其表示.如当n为整数时,奇数可表示为2n+1(或2n-1),偶数可表示为2n等,有关两位数的基本等量关系式为:两位数=十位数字10+个位数字9.浓度问题:溶液质量×浓度=溶质质量.10.几何问题:解决这类问题的基本关系式有关几何图形的性质、周长、面积等计算公式11.年龄问题:解决这类问题的关键是抓住两人年龄的增长数是相等,两人的年龄差是永远不会变的12.优化方案问题:在解决问题时,常常需合理安排.需要从几种方案中,选择最佳方案,如网络的使用、到不同旅行社购票等,一般都要运用方程解答,得出最佳方案.注意:方案选择题的题目较长,有时方案不止一种,阅读时应抓住重点,比较几种方案得出最佳方案.知识点三:列二元一次方程组解应用题的一般步骤利用二元一次方程组探究实际问题时,一般可分为以下六个步骤:1.审题:弄清题意及题目中的数量关系;2.设未知数:可直接设元,也可间接设元;3.找出题目中的等量关系;4.列出方程组:根据题目中能表示全部含义的等量关系列出方程,并组成方程组;5.解所列的方程组,并检验解的正确性;6.写出答案.注意事项:(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去;(2)“设”、“答”两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组解答步骤简记为:问题方程组解答(4)列方程组解应用题应注意的问题①弄清各种题型中基本量之间的关系;②审题时,注意从文字,图表中获得有关信息;③注意用方程组解应用题的过程中单位的书写,设未知数和写答案都要带单位,列方程组与解方程组时,不要带单位;④正确书写速度单位,避免与路程单位混淆;⑤在寻找等量关系时,应注意挖掘隐含的条件;⑥列方程组解应用题一定要注意检验.重点难点本节的重点是:经历由具体问题抽象出一元二次方程的过程,理解一元二次方程相关概念、各项系数的辨别、一般形式及判定一个数是否是方程的根.教学重点的解决方法:由浅入深,循序渐进,逐步深入,适当点拨和学生充分讨论交流形成共识,利用对一元一次方程的已有认识,设置由浅入深一些练习题,加深对概念的理解与把握.通过题组的学习和训练,归纳出用一元二次方程定义解题的一般步骤.进一步体会方程是刻画现实世界数量关系的一个有效的数学模型.本节的难点是:由实际问题列出的一元二次方程,并判断方程根是否符合实际问题.教学难点的解决方法:要运用一元二次方程解决生活中的实际问题,首先必须了解一元二次方程的概念,而概念的教学又要从大量的实例出发.通过问题情境,建立一元二次方程的数学模型,再由一元一次方程的相关概念迁移到一元二次方程的相关概念.(1)注意师生互动,提高学生的思维效率.(2)针对学生的盲区,出相应的练习巩固.教法导引给出适当的复习内容为后面的问题探究做铺垫,创设问题这不引导学生解决问日的合理思路,维持学生学习积极性.学法建议从易到难逐步解决问题,对问题先进行估算,独立探究问题中的数量关系,再小组合作交流,找出等量关系列出方程组,通过精算验证估算值;画出图形分析问题,从图形的不同分割,可以从不同角度考虑问题,得到问题的不同解决方法,分析问题的数量关系,找出基本等量关系和列出方程组的两个等量关系.认真分析问题中的数量关系,把问题中的数量关系图表化,从图表中获取等量关系的信息,从而列出方程组.。

人教版七年级下册8.3 实际问题与二元一次方程组第1课时 实际问题与二元一次方程组(1)课件

人教版七年级下册8.3 实际问题与二元一次方程组第1课时  实际问题与二元一次方程组(1)课件


解:整理,得:
x-3y=-2

①+②×3,得11x=11.解得x=1.
把x=1代入②,得1-3y=-2.解得y=1.
x=1 ∴这个方程组的解为:
y=1
3.一支部队第一天行军4h,第二天行军5h,两 天共行军98km,且第一天比第二天少走2km,第一 天和第二天行军的平均速度各是多少?
解:设第一天行军的平均速度为xkm/h,第二天行
种树 3 棵,女生每人种树 2 棵.设男生有 x 人,女生有 y 人,
根据题意,下列方程组正确的是( D )
x+y=52, A.3x+2y=20
B.x2+x+y=3y=52,20
x+y=20, C.2x+3y=52
D.x3+x+y=2y=205,2
2.根据如图提供的信息,可知一个热水瓶的价格是( C )
二、填空题(每小题 7 分,共 28 分) 7.一艘轮船顺水航行的速度是 20 海里/时,逆水航行的速度 是 16 海里/时,则水流的速度是 2 海里/时. 8.一个两位数,它的个位数字是十位数字的 2 倍,且十位数 字与个位数字和的 4 倍等于 36,则这个两位数是 36 . 1 9.a 的相反数是 2b+1,b 的相反数是 3a+1,则 a2+b2= 5 .
练习
某校七年级学生在会议室开会,每排坐12 人,则有11人无座位;每排坐14人,则最后一 排只有1人独坐.这间会议室共有座位多少排? 该校七年级有多少学生?
解:设这间会议室共有座位x排,该校七年级有 y名学生,根据题意,得
12x+11=y 14x-13=y
解得:
x=12 y=155
答:这间会议室共有座位12排,该校七年级有 155名学生.
亲爱的读者: 春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一 样阳光,心情像桃花一样美丽,感谢你的阅读。

人教版七年级数学下册《实际问题与二元一次方程组—和差倍分问题》课件

人教版七年级数学下册《实际问题与二元一次方程组—和差倍分问题》课件

1. 《孙子算经》是中国古代重要的数学巨作,其中有一
段文字的大意是:甲、乙两人各有若干钱,如果甲得到
乙所有钱的一半,那么甲共有 48 文;如果乙得到甲所 有钱的 2 ,那么乙也共有钱 48 文,甲、乙原来各有多 少钱? 3
解:设甲原有 x 文,乙原有 y 文钱.
x
1 2
y
48,
2
3
x
y
48.
y=
5
.
这就是说,每头大牛1天约需饲料 20
kg,每头小牛
1天约需饲料 5 kg.因此,饲养员李大叔对大牛的食量估 计 正确 ,对小牛的食量估计 错误 .
剧情发展:随着养牛场规模逐渐扩大,李大叔需聘请 饲养员协助管理现有的42头大牛和20头小牛,已知甲 种饲养员每人可负责8头大牛和4头小牛,乙种饲养员 每人可负责5头大牛和2头小牛,请问李大叔应聘请甲 乙两种饲养员各多少人?
解:设甲数是 x ,乙数是 y.

3x 5x
2y 6y
47, 1.
解得
x y
10, 8.5.
答:甲数为 10,乙数为 8.5.
3.工程问题 工作总量=工作效率×工作时间
一批机器零件共840个,若甲先做4天,乙加入合作,那么再 做8天才能完成;若乙先独做4天,甲加入合作,那么再做9 天才能完成。问两人每天各做多少个机器零件?
解:设李大叔应聘请甲种饲养员x人,乙种饲养员
y人,则:
8x + 5y = 42, 4x + 2y = 20.
解得:
x =4 y=2
答:李大叔应聘请甲种饲养员4人, 乙种饲养员2人.
总结
列二元一次方程组解决实际问题的步骤:

人教版七年级下册数学课件列二元一次方程组解和、差、倍、分问题

人教版七年级下册数学课件列二元一次方程组解和、差、倍、分问题
4.等量关系:各部分数量之和不变. 人出七,不足三,问人数、羊价各几何?”题意是:若干人共同出资买羊,每人出5元,则差45元;
(1)审题:弄清题意和题目中的____________________; (1)求该店有客房多少间,房客多少人. 4.等量关系:各部分数量之和不变. 6.(中考·泰安)夏季来临,某超市试销A,B两种型号的风扇,两周内共销售30台,销售收入5 300元,A型风扇每台200元,B型风扇每 台150元,问A,B两种型号的风扇分别销售了多少台?若设A型风扇销售了x台,B型风扇销售了y台,则根据题意列出方程组为( ) (2)设元:用字母表示题目中的未知数,可________设未知数,也可________设未知数; (1)求该店有客房多少间,房客多少人. 较大量=较小量+多余量.
上海
2
9
北京
3
22
求a,b的值.
解:依题意,得
aa++(3+2-(13)-b1=)9(,b+4)=22,解得ab==72, . 答:a 的值为 7,b 的值为 2.
课后训练
14.(中考•连云港)某数学兴趣小组研究我国古代《算法统宗》 里这样一首诗:我问开店李三公,众客都来到店中,一 房七客多七客,一房九客一房空.诗中后两句的意思是: 如果每1间客房住7人,那么有7人无房可住;如果每1间 客房住9人,那么就空出1间客房.
1.用方程组解应用题的一般步骤: 寄件超过1千克的部分按千克计费.小丽分别寄快递到上海和北京,收费标准及实际收费如下表:
(5)检验作答:检验所求的解是否符合题目的实际意义,然后作答. (1)设小明20分的邮票买了x枚,则50分的邮票买了___________枚,由题意可得一元一次方程_____________________.

人教版七年级下册数学8 实际问题与二元一次方程(和差倍分问题)训练(含简单答案)

人教版七年级下册数学8 实际问题与二元一次方程(和差倍分问题)训练(含简单答案)

人教版七年级下册数学8.3 实际问题与二元一次方程(和差倍分问题)训练一、单选题1.中国古代数学著作《九章算术》第七章主要内容是“盈不足术”,其中有这样一道盈亏类问题:“今有共买羊,人出五,不足九十;人出五十,适足,问人数、羊价各几何?”题目大意是:“有几个人共同购买一只羊,若每人出五元,还差九十元;若每人出五十元,刚好够,问有几个人,羊的价格是多少?”设有x人,羊的价格为y元,可列方程有x人,女孩有y人,则下列方程组正确的是()A.12x yx y-=⎧⎨=⎩B.2(2)x yx y=⎧⎨=-⎩C.12(1)x yx y-=⎧⎨=-⎩D.12(1)x yx y+=⎧⎨=-⎩5.某校七年级共有学生412人,已知女生人数比男生人数的2倍少62人,设男生,女生的人数分别为x,y人,有题意的方程组()A.412262x yy x+=⎧=-⎨⎩B.412262x yx y+=⎧=-⎨⎩C.412262x yx y+=⎧=+⎨⎩D.412262x yy x+=⎧=+⎨⎩6.小林买了7本数学书和2本语文书共花了100元;小敏买了4本语文书和2本数学书共花了80元,则买2本数学书和1本语文书要花()A.25元B.30元C.35元D.45元7.已知两数x,y之和是10,x比y的3倍大2,则下面所列方程组正确的是A.x y10{y3x2+==+B.x y10{y3x2+==-C.x y10{x3y2+==+D.x y10{x3y2+==-8.为响应“科教兴国”的战略号召,某学校计划成立创客实验室,现需购买航拍无人机和编程机器人.已知购买2架航拍无人机和3个编程机器人所需费用相同,购买4个航拍无人机和7个编程机器人共需34800元,设购买1架航拍无人机需x元,购买1个编程机器人需y元,则可列方程组为()A.234734800x yx y=⎧⎨+=⎩B.324734800x yx y=⎧⎨+=⎩C.237434800x yx y=⎧⎨+=⎩D.327434800x yx y=⎧⎨+=⎩二、填空题9.某班有52名学生,其中男生人数是女生人数的2倍少17人,则女生有_________名.10.有两个有理数,其和为1,其差为5,则其积为__________.11.我国明代数学读本《算法统宗》一书中有这样一道题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子短一托.如果1托为5尺,那么竿子长为________尺.12.七(2)班全体同学准备分成几个小组比赛,若每组7人就多出3人,若每组8人就少5人,若设七(2)班共有x名同学,共分为y小组,则可列方程组___________________.13.某校购新书320本,共付4490元,其中科技书每本12.50元,文艺书每本16元,则科技书买了_____本,文艺书买了______本.14.为了节省空间,家里的饭碗一般是摞起来存放的,如果5只饭碗摞起来的高度为13cm,9只饭碗摞起来的高度为20cm,李老师家碗橱每格的高度为30cm,则李老师一摞碗最多只能放___________只.15.某班同学参加运土劳动,女同学抬土,每两人抬一筐;男同学挑土,每一人挑两筐.已知全班共用箩筐56只,扁担36根.设男生x人,女生y人,则可得方程组______.16.《九章算术》中记载“今有共买羊,人出五,不足四十五;人出七,不足三,问人数、羊价各几何?”其大意是:今有人合伙买羊,若每人出5钱,还差45钱;若每人出7钱,还差3钱,问合伙人数、羊价各是多少?此问题中羊价为_______ 钱三、解答题17.学校为实现垃圾分类投放,准备在校园内摆放大、小两种垃圾桶.购买2个大垃圾桶和4个小垃圾桶共需600元;购买6个大垃圾桶和8个小垃圾桶共需1560元.求大、小两种垃圾桶的单价.18.在某工程建设中,有A、B两种卡车搬运沙土.据了解,3辆A种卡车与2辆B种卡车一次共可搬运沙土38立方米,2辆A种卡车与3辆B种卡车一次共可搬运沙土42立方米,求每辆A种卡车和每辆B种卡车分别可搬运沙土多少立方米?19.“中国人的饭碗必须牢牢掌握在咱们自己手中”,为扩大粮食生产规模,某粮食生产基地计划投入一笔资金购进甲、乙两种农机具,已知购进2件甲种农机具和1件乙种农机具共需3.5万元,购进1件甲种农机具和3件乙种农机具共需3万元.求购进1件甲种农机具和1件乙种农机具各需多少万元?20.某校准备组织七年级学生参加夏令营,已知用3辆小客车和1辆大客车每次可运送学生105人,用一辆小客车和2辆大客车每次可运送学生110人;现有学生400人,计划租用小客车a辆,大客车b辆,一次送完,且恰好每辆车都坐满.(1)1辆小客车和1辆大客车都坐满后一次可运送多少学生?(2)请你帮学校设计出所有的租车方案.参考答案:20.(1)1辆小客车和1辆大客车都坐满后一次可送65名学生;(2)租车方案有3种,①小客车20辆,大客车0辆;①小客车11辆,大客车4辆:①小客车2辆,大客车8辆。

最新人教版数学七年级下册--二元一次方程组--8.3-实际问题与二元一次方程组--和差倍分--专题练习题-含答案

最新人教版数学七年级下册--二元一次方程组--8.3-实际问题与二元一次方程组--和差倍分--专题练习题-含答案

人教版数学七年级下册 第八章 二元一次方程组 8.3 实际问题与二元一次方程组和差倍分问题 专题练习题1. 已知∠1与∠2互补,并且∠1比∠2的3倍还大20°,若设∠1=x °,∠2=y °,则x ,y 满足的方程组为( )A .⎩⎨⎧x +y =90x =3y +20B .⎩⎨⎧x +y =90y =3x +20C .⎩⎨⎧x +y =180x =3y +20D .⎩⎨⎧x +y =180y =3x +20 2.一种饮料有两种包装,5大盒、4小盒共装148瓶,2大盒、5小盒共装100瓶,大盒与小盒每盒各装多少瓶?设大盒装x 瓶,小盒装y 瓶,则可列方程组( )A .⎩⎨⎧5x +4y =1482x +5y =100B .⎩⎨⎧4x +5y =1482x +5y =100C .⎩⎨⎧5x +4y =1485x +2y =100D .⎩⎨⎧4x +5y =1485x +2y =1003.一篮水果分给一群小孩,若每人分8个,则差3个水果;若每人分7个,则多4个水果,在这个问题中,有小孩____人,水果____个.4.甲种电影票每张20元,乙种电影票每张15元.若购买甲、乙两种电影票共40张,恰好用去700元,则甲种电影票买了____张.5.一个两位数的十位数字与个位数字的和是8,把这个两位数加上18,结果恰好成为数字对调后组成的两位数,求这个两位数.设个位数字为x ,十位数字为y ,下面所列方程组正确的是( )A .⎩⎨⎧x +y =8xy +18=yxB .⎩⎨⎧x +y =810(x +y )+18=yx C .⎩⎨⎧x +y =810x +y +18=yx D .⎩⎨⎧x +y =8x +10y +18=10x +y6.一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.7.某车间有60名工人生产太阳镜,1名工人每天可生产镜片200片或镜架50个.应如何分配工人生产镜片和镜架,才能使产品配套?设安排x 名工人生产镜片,y 名工人生产镜架,则可列方程组( )A .⎩⎨⎧x +y =602×200x =50yB .⎩⎨⎧x +y =60200x =50yC .⎩⎨⎧x +y =60200x =2×50yD .⎩⎨⎧x +y =5050x =200y8.家具厂生产方桌,按设计1立方米木材可制作50个桌面或300个桌腿,现有10立方米木材,怎样分配木材才能使生产的桌面和桌腿恰好配套,并指出共可生产多少张方桌?(一张方桌按1个桌面4条桌腿配置)9.有大小两种船,1艘大船与4艘小船一次可以载乘客46人,2艘大船与3艘小船一次可以载乘客57人,则1艘大船和1艘小船一次可以载乘客的人数分别是( )A .18人,7人B .17人,8人C .15人,7人D .16人,8人10.某校举行安全知识竞赛,其评分规则如下:答对一题得5分,答错一题得-5分,不作答得0分.已知试题共20道,满分100分,凡优秀(得分80分或以上)者才有资格参加决赛.小明同学在这次竞赛中有2道题未答,但刚好获得决赛资格,则小明答对____道题,答错____道题.11.某芒果种植基地去年结余为500万元,估计今年能结余960万元,并且今年的收入比去年高15%,支出比去年低10%,则去年的收入是____________万元,支出是____________万元.12.学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40千克,了解到这些蔬菜的种植成本共42元,还了解到如下信息:(1)请问采摘的黄瓜和茄子各为多少千克?(2)这些采摘的黄瓜和茄子可赚多少元?13.请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”求诗句中谈到的鸦的只数,树的棵数.14.一名学生问老师:“您今年多大?”老师风趣地说:“我像你这样大时你才1岁,你到我这么大时,我已经37岁了.”请问老师、学生今年分别多大了?15.陈老师为学校购买运动会的奖品后,回学校向后勤处王老师交账说:“我买了两种书共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元.”王老师算了一下,说:“你肯定搞错了.”(1)王老师为什么说他搞错了?试用方程的知识给予解释;(2)陈老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于5元的整数,笔记本的单价可能为多少元?方法技能:1.审题时要弄清题意和题目中的数量关系,找出问题中的所有相等关系.2.设未知数可直接设,也可间接设,力求简洁.3.检验所得的解是否符合题意和实际意义,不符合的解要舍去.4.设未知数及作答时要注意单位名称统一.易错提示:注意配套问题中的数量关系.答案:1. C2. A3. 7 534. 205. D6. 解:设这个两位数十位上的数为x ,个位上的数为y ,则有⎩⎨⎧10x +y =x +y +9,10y +x =10x +y +27,解得⎩⎨⎧x =1,y =4,∴这个两位数为147. C8. 解:设分配x 立方米木材生产桌面,y 立方米木材生产桌腿,根据题意得⎩⎨⎧x +y =10,50x ×4=300y ,解得⎩⎨⎧x =6,y =4,则共可生产方桌为50x =300张9. A10. 17 111. 2040 154012. 解:(1)设采摘黄瓜x 千克,茄子y 千克,根据题意得⎩⎨⎧x +y =40,x +1.2y =42,解得⎩⎨⎧x =30,y =10,则采摘的黄瓜和茄子分别为30千克、10千克(2)30×(1.5-1)+10×(2-1.2)=23(元),则这些采摘的黄瓜和茄子可赚23元13. 解:设有x 只鸦,y 棵树,则有⎩⎨⎧3y =x -5,5(y -1)=x ,解得⎩⎨⎧x =20,y =5,则鸦的只数为20,树的棵数为514. 解:设老师今年x 岁,学生今年y 岁,则有⎩⎨⎧x -y =y -1,37-x =x -y ,解得⎩⎨⎧x =25,y =13,则老师今年25岁,学生今年13岁15. 解:(1)设单价为8元的书买了x 本,单价为12元的书买了y 本,根据题意得⎩⎨⎧x +y =105,8x +12y =1500-418,解得⎩⎨⎧x =44.5,y =60.5,显然书的本数应为整数,不能为小数,不合题意,故一定是搞错了 (2)设笔记本的单价为a 元,根据题意得⎩⎨⎧x +y =105,8x +12y +a =1500-418,可得y =242-a 4,要使y 为整数,则a 首先必须为偶数,又是小于5元的整数,故a 只能为2,4.当a=2时,y=60;当a=4时,y=59.5(不合题意舍去).综上所述,笔记本的单价可能为2元。

新人教版七年级下册数学8.3.1列二元一次方程组解和、差、倍、分问题优质课件

新人教版七年级下册数学8.3.1列二元一次方程组解和、差、倍、分问题优质课件
,也可________设未知间数接;
第二页,共二十四页。
(3)列方程组:挖掘题中的所有条件,找出两个与未知数相关的 ________等__量,关并系依此列出__________方;程组
(4)解方程组:利用_____代_入__消__元__法__或______加__减__消__元解法所列方程
组,求出未知数的值;
(5)检验作答:检验所求的解是否符合题目的实际意义,然 后作答.
返回
第三页,共二十四页。
2.小明买了50分和20分的邮票共16枚,花了5元9角钱,20 分和50分的邮票各买了多少枚?根据题意完成下列各题:
(1)设小明买了20分的邮票x枚,则50分的邮票买了 _____________枚,由题意可得一元一次方程: _______(_1_6_-__x_)_________. 20x+(16-x)×50=590
钱,可列方程组是
x+ 1 y=48
2
2 x+y=48
___3______________.
返回
第十二页,共二十四页。
9.如图①,在第一个天平上,物体A的质量等于物体B加上物 体C的质量;如图②,在第二个天平上,物体A加上物体 B的质量等于3个物体C的质量.请你判断:1个物体A与 ________个物体C2的质量相等.
购买了黑白两种颜色的文化衫共140件,进行手绘设计后出售 ,所获利润全部捐给山区困难孩子,每件文化衫的批发价和 零售价如下表:
假设文化衫全部售出,共获利1 860元,求黑白两种文化衫各有多
少件.
第十九页,共二十四页。
解:
设黑色文化衫有x件,白色文化衫有y件.
返回
第五页,共二十四页。
知识点 2
3.基本数ห้องสมุดไป่ตู้关系:各部分数量之和=全部数量; 较大量=较小量+多余量.

新人教版初一教案下册数学实际问题及二元一次方程组经典例题

新人教版初一教案下册数学实际问题及二元一次方程组经典例题

适用标准文档新人教版初一下册数学实质问题与二元一次方程组经典例题经典例题透析种类一:列二元一次方程组解决——行程问题1.甲、乙两地相距160千米,一辆汽车和一辆拖沓机同时由甲、乙两地相向而行,1小时20分相遇.相遇后,拖沓机持续行进,汽车在相遇处逗留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖沓机.这时,汽车、拖沓机各自行驶了多少千米?总结升华:依据题意画出表示图,再依据行程、时间和速度的关系找出等量关系,是行程问题的常用的解决议略。

【变式1】甲、乙两人相距36千米,相向而行,假如甲比乙先走2小时,那么他们在乙出发小时后相遇;假如乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?【变式2】两地相距280千米,一艘船在此间航行,顺水用14小时,逆流用20小时,求船在静水中的速度和水流速度。

剖析:船顺水速度=静水中的速度+水速文案大全适用标准文档船逆流速度=静水中的速度-水速种类二:列二元一次方程组解决——工程问题2.一家商铺要进行装饰,若请甲、乙两个装饰组同时施工,8天能够达成,需付两组花费共3520元;若先请甲组独自做6天,再请乙组独自做12天可达成,需付两组花费共3480元,问:(1)甲、乙两组工作一天,商铺应各付多少元?(2)已知甲组独自做需12天完成,乙组独自做需24天达成,独自请哪组,商铺所付花费最少?思路点拨:本题有两层含义,各自隐含两个等式,第一层含义:若请甲、乙两个装饰组同时施工,8天能够达成,需付两组花费共3520元;第二层含义:若先请甲组独自做6天,再请乙组独自做12天可达成,需付两组花费共3480元。

设甲组独自做一天商铺对付x元,乙组单独做一天商铺对付y元,由第一层含义可得方程8(x+y)=3520,由第二层含义可得方程6x+12y=3480.贯通融会:【变式】小明家准备装饰一套新住宅,若甲、乙两个装饰公司合作6周达成需工钱万元;若甲公司独自做4周后,剩下的由乙公司来做,还需9周达成,需工钱万元.若只选一个公司独自达成,从节俭开销的角度考虑,小明家应选甲公司仍是乙公司?请你说明原因.文案大全适用标准文档种类三:列二元一次方程组解决——商品销售收益问题3.有甲、乙两件商品,甲商品的收益率为5%,乙商品的收益率为4%,共可赢利46元。

人教版七年级下册数学第八章二元一次方程组实际问题之数字与和差倍分问题强化练习(附答案)

人教版七年级下册数学第八章二元一次方程组实际问题之数字与和差倍分问题强化练习(附答案)

七年级下册数学第八章二元一次方程组实际问题之数字与和差倍分问题强化练习(附答案)一、选择题1.春节前夕,某旅游景区的成人票和学生票均对折,李凯同学一家(2个成人和1个学生)去了该景区,门票共花费200元,王玲同学一家(3个成人和2个学生)去了该景区,门票共花费320元,则赵芸同学和妈妈去该景区游玩时,门票需要花费()A. 120元B. 130元C. 140元D. 150元2.学校组织春游,每人车费4元.一班班长与二班班长的对话如下:一班班长:我们两班共93人.二班班长:我们二班比你们一班多交了12元的车费.由上述对话可知,一班和二班的人数分别是()A. 45,42B. 45,48C. 48,51D. 51,423.甲对乙说:“当我的岁数是你现在的岁数时,你才4岁.”乙对甲说:“当我的岁数是你现在的岁数时,你将61岁了.”则甲现在的岁数是()A. 24岁B. 36岁C. 42岁D.无法确定4.同学们喜欢足球吗足球一般是用黑白两种颜色的皮块缝制而成,如图所示,黑色皮块是正五边形,白色皮块是正六边形.若一个球上共有黑白皮块32块,请你计算一下,黑色皮块和白色皮块的块数依次为()A. 16块,16块B. 8块,24块C. 20块,12块D. 12块,20块5.为改善办学条件,北海中学计划购买部分A品牌电脑和B品牌课桌.第一次,用9万元购买了A 品牌电脑10台和B品牌课桌200张.第二次,用9万元购买了A品牌电脑12台和B品牌课桌120张.每台A品牌电脑与每张B品牌课桌的价格各是()A. 5 000元,200元B. 4 500元,250元C. 6 000元,150元D. 12 000元,100元6.一个两位数,十位上数字比个位上数字大2,且十位上数字与个位上数字之和为12,则这个两位数为()A. 46B. 64C. 57D. 757.小明骑摩托车在公路上匀速行驶,12∶00时看到里程碑上的数是一个两位数,它的数字之和是7;13∶00时看里程碑上的两位数与12∶00时看到的个位数和十位数颠倒了;14∶00时看到里程碑上的数比12∶00时看到的两位数中间多了个零,小明在12∶00时看到里程碑上的数字是()A. 25B. 16C. 34D. 43二、填空题8.丹东市教育局为了改善中、小学办学条件,计划集中采购一批电子白板和投影机.已知购买2块电子白板比购买3台投影机多4 000元,购买4块电子白板和3台投影机共需44 000元.问购买一块电子白板需____________元.9.李大叔去年承包了10亩地种植甲、乙两种蔬菜,共获利18 000元,其中甲种蔬菜每亩获利2 000元,乙种蔬菜每亩获利1 500元,李大叔去年甲、乙两种蔬菜各种植了______亩.10.牧场上一片青草,每天牧草都匀速生长.这片牧草可供10头牛吃20天,或者可供15头牛吃10天.那么可供25头牛吃__________天.11.一个两位数,它的个位数字是十位数字的2倍,且十位数字与个位数字和的4倍,等于这个两位数,这个两位数是______________.12.已知甲、乙两个两位数,如果甲数放在乙数的左边,组成的四位数是乙数的201倍;若把乙数放在甲数的左边,组成的四位数比上面的四位数小1 188,那么甲、乙两数分别__________.三、解答题13.某单位组织职工春游,原计划租用45座汽车若干辆,但有15人没有座位,若租用同样数量的60座汽车,则在其他车满座后,有一辆车空出15个座位,还多出一辆车无人坐.已知45座客车每日租金每辆220元,60座客车每日租金为每辆300元.(1)求该单位共有职工人数是多少?原计划租用45座汽车多少辆?(2)若租用同一种车,要使每个人都有座位,怎样租用更合算?14.某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同.安全检查中,对4道门进行了测试:当同时开启一扇正门和两扇侧门,1分钟内可以通过280名学生;当同时开启一扇正门和一扇侧门时,4分钟内可通过800名学生.(1)求平均每分钟一道正门的一道侧门各可以通过通过多少名学生?(2)检查中发现,紧急情况时因学生拥挤,出门的效率降低20%.安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离.假设这栋教学大楼每间教室最多有45名学生,则建造的这4道门是否符合安全规定?请你说明理由.15.有一个两位数,除以它的各位数字之和,商为7,余数是6,如果把十位数字与个位数字对调,所得到的新数除以其各位数字之和,商为3,余数是5,求这个两位数.答案解析1.【答案】A【解析】设成人票是x 元/张,学生票是y 元/张,依题意,得{2x +y =200,3x +2y =320,解得{x =80,y =40,则x +y =120. 即赵芸同学和妈妈去该景区游玩时,门票需要花费120元.故选A.2.【答案】B【解析】设一班x 人,二班y 人,则根据两班共93人及二班比一班多交了12元的车费可分别列出方程,解出即可.设一班x 人,二班y 人,则{x +y =93,4y −4x =12,解得{x =45,y =48,即一班45人,二班48人.故选B.3.【答案】C【解析】设甲现在年龄x 岁,乙现在年龄y 岁,由题意,得{x +(x −y )=61,y −(x −y )=4,解得{x =42,y =23.即甲现在42岁,乙现在23岁.故选C. 4.【答案】D【解析】根据题意可知,本题中的等量关系是“黑白皮块32块”和因为每块白皮有3条边与黑边连在一起,所以黑皮只有3y 块,而黑皮共有边数为5x 块,依此列方程组求解即可.设黑色皮块和白色皮块的块数依次为x ,y .则{x +y =32,5x =3y,解得{x =12,y =20, 即黑色皮块和白色皮块的块数依次为12块,20块.故选D.5.【答案】C【解析】设每台A 品牌电脑与每张B 品牌课桌的价格各是x 元,y 元.根据①用9万元购买了A 品牌电脑10台和B 品牌课桌200张;②用9万元购买了A 品牌电脑12台和B 品牌课桌120张,列方程组求解.设每台A 品牌电脑与每张B 品牌课桌的价格各是x 元,y 元.根据题意,得{10x +200y =90000,12x +120y =90000,解得{x =6000,y =150.故选C. 6.【答案】D【解析】设个位上的数字是x ,十位上的数字是y ,依题意,得{y −x =2,x +y =12,解得{x =5,y =7.则这个两位数是75. 故选D.7.【答案】B【解析】设小明在12∶00时看到里程碑上的数是两位数字的十位数字为x ,个位数字为y ,则两位数为10x +y ,本题中的2个等量关系为:十位数字+个位数字=7;由于匀速行驶,12∶00-13∶00所走的路程=13∶00-14∶00所走的路程.列方程组求解即可.设小明在12∶00时看到里程碑上的数是两位数字的十位数字为x ,个位数字为y ,则两位数为10x +y ,由题意得:{x +y =7,(10y +x )−(10x +y )=(100x +y )−(10y +x ),解得{x =1,y =6, 所以小明在12:00时看到程碑上的两位数字是16.故选B.8.【答案】8 000【解析】设买1块电子白板需要x 元,1台投影机需要y 元,根据购买2块电子白板比购买3台投影机多4 000元,购买4块电子白板和3台投影机共需44 000元,列出方程组解答即可.设买1块电子白板需要x 元,1台投影机需要y 元,由题意得{2x −3y =4000,4x +3y =44000,解得{x =8000,y =4000,答:购买一块电子白板需8 000元.故答案为8 000.9.【答案】6,4【解析】设甲、乙两种蔬菜各种植了x 、y 亩,由题意得出两个相等关系为:甲、乙两种蔬菜共10亩和共获利18 000元,依次列方程组求解.设甲、乙两种蔬菜各种植了x 、y 亩,依题意,得{x +y =10,2000x +1500y =18000,解得{x =6,y =4, 即李大叔去年甲、乙两种蔬菜各种植了6亩、4亩.故答案为6,4.10.【答案】5【解析】设一天牛每天吃牧草x 千克,牧场的牧草每天生长y 千克,根据“这片牧草可供10头牛吃20天,或者可供15头牛吃10天”即可得出关于x 、y 的二元一次方程,整理后可得出y =5x ,将其代入10×20x -20y 中即可求出牧场原有牧草,再根据天数=牧草总重量÷(25头牛每天吃的牧草重量-每天生长的重量)即可求出结论.设一天牛每天吃牧草x 千克,牧场的牧草每天生长y 千克,根据题意,得10×20x -20y =15×10x -10y ,∴y =5x , ∴牧场原有牧草10×20x -20y =100x .100x ÷(25x -y )=100x ÷(25x -5x )=5.故答案为5.11.【答案】12,24,36,48【解析】设个位数字为x ,十位数字为y ,由题意,得{x =2y,4(x +y )=10y +x,当x =2时,y =1,当x =4时,y =2,当x =6时,y =3,当x =8时,y =4,故答案为12,24,36,48.12.【答案】24,12【解析】首先设甲数为x ,乙数为y ,由题意得等量关系:①甲数×100+乙数=乙数的201倍;②乙数×100+甲数=乙数的201倍-1188,根据等量关系列出方程组,再解即可. 设甲数为x ,乙数为y ,由题意,得{100x +y =201y,100y +x =201y −1188,解得{x =24,y =12,故答案为24,12. 13.【答案】解 (1)设春游职工共x 人,原计划租45座客车y 辆,由题意,得{45y +15=x,60(y −1)=x,解得{x =240,y =5, 答:春游职工共240人,原计划租45座客车5辆;(2)租45座的客车的租金应为220×(5+1)=1 320(元),租60座的客车的租金应为300×(5-1)=1 200(元), 所以租用60座的客车更合算,租4辆.【解析】(1)设春游职工共x 人,原计划租45座客车y 辆,本题中的等量关系为45×45座客车辆数+15=职工总数,60×(45座客车辆数-1)=职工总数,据此可列方程组求解; (2)需要分别计算45座客车和60座客车各自的租金,比较后再取舍.14.【答案】解 (1)设一个正门平均每分钟通过x 名学生,一个侧门平均每分钟通过y 名学生,由题意,得{x +2y =280,4(x +y )=800,解得{x =120,y =80. 答:一个正门平均每分钟通过120名学生,一个侧门平均每分钟通过80名学生.(2)共有学生:45×8×4=1 440,在拥挤的状态下5分钟通过:(120+80)×80%×2×5=1 600, ∵1 600>1 440.建造的这4道门是符合安全规定.【解析】(1)设平均每分钟一道正门可以通过x 名学生,一道侧门可以通过y 名学生,根据当同时开启一道正门和两道侧门时,每分钟可以通过280名学生;当同时开启一道正门和一道侧门时,每分钟可以通过200名学生.两个关系列方程组求解.(2)根据(1)的数据,可以求出拥挤时5分钟四道门可通过的学生人数,与这栋楼学生数比较得出答案.15.【答案】解 设两位数的十位数为x ,个位数为y ,则由题意,得{10x +y =7(x +y )+6,x +10y =3(x +y )+5,解得{x =8,y =3,所以这个两位数是83. 答:这个两位数是83.【解析】设两位数的十位数为x ,个位数为y . 一个两位数,除以它的各位数字之和,商为7,余数是6,可得10x +y =7(x +y )+6;把十位数字与个位数字对调,那么所得到的新数除以其各位数字之和,商为3,余数是5,可得:x +10y =3(x +y )+5,联立方程组并解答.。

人教版数学七年级下册知识重点与单元测-第八章8-4实际问题与二元一次方程(组)Ⅱ

人教版数学七年级下册知识重点与单元测-第八章8-4实际问题与二元一次方程(组)Ⅱ

第八章 二元一次方程(组)8.4 实际问题与二元一次方程(组)Ⅱ【要点梳理】知识点一、常见的一些等量关系(一) 1.和差倍分问题:增长量=原有量×增长率 较大量=较小量+多余量,总量=倍数×倍量. 2.产品配套问题:解这类问题的基本等量关系是:加工总量成比例.3.工程问题:工作量=工作效率×工作时间,各部分劳动量之和=总量.4.利润问题:商品利润=商品售价-商品进价,=100% 利润利润率进价. 要点二、实际问题与二元一次方程组 1.列方程组解应用题的基本思想列方程组解应用题,是把“未知”转换成“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的等量关系.一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量:②同类量的单位要统一;③方程两边的数要相等.2.列二元一次方程组解应用题的一般步骤: 设:用两个字母表示问题中的两个未知数;列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组); 解:解方程组,求出未知数的值;验:检验求得的值是否正确和符合实际情形; 答:写出答案. 要点诠释:(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去;(2)“设”、“答”两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组. 【典型例题】类型一、和差倍分问题例1.在一次数学测验中,甲、乙两校各有100名同学参加测试.测试结果显示,甲校男生的优分率为60%,女生的优分率为40%,全校的优分率为49.6%;乙校男生的优分率为57%,女生的优分率为37%.(男(女)生优分率=()100%()⨯男女生优分人数男女生测试人数,全校优分率=100%⨯全校优分人数全校测试人数)(1)求甲校参加测试的男、女生人数各是多少?(2)从已知数据中不难发现甲校男、女生的优分率都相应高于乙校男、女生的优分率,但最终的统计结果却显示甲校的全校优分率比乙校的全校的优分率低,请举例说明原因.【思路点拨】 (1)求甲校参加测试的男、女生人数需设两个未知数,故可建立二元一次方程组求解.(2)由于甲校男、女生的优分率相应高于乙校的男、女生的优分率,要使乙校的全校优分率比甲校的全校优分率高,此时,只有乙校的男生较多时,才能提高全校的优分率.【答案与解析】解:(1)设甲校参加测试的男生人数是x 人,女生人数是y 人. 由题意可列方程组:10060%40%49.6%100x y x y +=⎧⎨+=⨯⎩ 解之得:4852x y =⎧⎨=⎩.答:甲校参加测试的男生有48人,女生有52人.(2)如:乙校男生有70人,女生有30人,则乙校的全校优分率为7057%3037%100%51%100⨯+⨯⨯=.51%>49.6%(说明:只要所举例子中男生人数多于63人,且女生优分率合适,即可得全分.) 【总结升华】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.本题的第(2)问也可以用不等式求出甲乙两校男生人数满足什么关系时,才满足甲校的全校优分率比乙校的全校的优分率低.举一反三:【变式】为了拉动内需,全国各地汽车购置税补贴活动在2009年正式开始.某经销商在政策出台前一个月共售出某品牌汽车的手动型和自动型共960台,政策出台后的第一个月售出这两种型号的汽车共1228台,其中手动型和自动型汽车的销售量分别比政策出台前一个月增长30%和25%.(1)在政策出台前一个月,销售的手动型和自动型汽车分别为多少台?(2)若手动型汽车每台价格为8万元,自动型汽车每台价格为9万元.根据汽车补贴政策,政府按每台汽车价格的5%给购买汽车的用户补贴,问政策出台后的第一个月,政府对这1228台汽车用户共补贴了多少万元?【答案】解:(1)设政策出台前一个月销售的手动型汽车为x 辆,自动型汽车为y 辆, 由题意可得:960(130%)(125%)1228x y x y +=⎧⎨+++=⎩解之得:560400x y =⎧⎨=⎩.答:政策出台前一个月销售的手动型汽车为560辆,自动型汽车为400辆. (2)[560×(1+30%)×8+400×(1+25%)×9]×5%=516.2(万元)答:政策出台后的第一个月,政府对这1228台汽车用户共补贴了516.2万元. 类型二、配套问题例2. 某班学生到农村劳动,一名男生因病不能参加,另有三名男生体质较弱,教师安排他们与女生一起抬土,两人抬一筐土,其余男生全部挑土(一根扁担,两只筐),这样安排劳动时恰需筐68 个,扁担40 根,问这个班的男女生各有多少人?【答案与解析】解:设女生x 人,男生y 人,由题意得:3440232(4)682x y x y +⎧+-=⎪⎪⎨+⎪+-=⎪⎩ 解得:2132x y =⎧⎨=⎩答:这个班的男生有32人,女生有21人.【总结升华】两人抬土需要一根扁担,一只筐;一人挑土需要一根扁担,两只筐.题中的等量关系是:参加劳动的同学一共用去箩筐68个和40根扁担,从而列出方程组,解出即可.举一反三:【变式】某工厂有工人60人,生产某种由一个螺栓和两个螺母的配套产品,每人每天生产螺栓14个或螺母20个,应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套?【答案】解:设分配x 人生产螺栓,y 人生产螺母,则根据题意可得:答:应分配25人生产螺栓,35人生产螺母. 类型三、工程问题例3. 一家商店进行装修,若请甲、乙两个装修组同时施工,8天可以完成,需付两组费用共3520元,若先请甲组单独做6天,再请乙组单独做12天可以完成,需付费用3480元,问:(1)甲、乙两组工作一天,商店各应付多少钱?(2)已知甲单独完成需12天,乙单独完成需24天,单独请哪个组,商店所需费用最少?(3)若装修完后,商店每天可赢利200元,你认为如何安排施工更有利于商店?请你帮助商店决策.(可用(1)(2)问的条件及结论)【思路点拨】(1)本题的等量关系是:甲做8天需要的费用+乙作8天需要的费用=3520元.甲组6天需付的费用+乙做12天需付的费用=3480元,由此可得出方程组求出解.(2)根据(1)得出的甲乙每工作一天,商店需付的费用,然后分别计算出甲单独做12天需要的费用,乙单独做24天需要的费用,让两者进行比较即可.(3)本题可将每种施工方法的施工费加上施工期间商店损失的费用,然后将不同方案6020142x y y x +=⎧⎪⎨=⎪⎩2535x y =⎧∴⎨=⎩计算出的结果进行比较,损失最少的方案就是最有利商店的方案.【答案与解析】解:(1)设:甲组工作一天商店应付x元,乙组工作一天商店付y元.由题意得解得答:甲、乙两组工作一天,商店各应付300元和140元.(2)单独请甲组需要的费用:300×12=3600元.单独请乙组需要的费用:24×140=3360元.答:单独请乙组需要的费用少.(3)请两组同时装修,理由:甲单独做,需费用3600元,少赢利200×12=2400元,相当于损失6000元;乙单独做,需费用3360元,少赢利200×24=4800元,相当于损失8160元;甲乙合作,需费用3520元,少赢利200×8=1600元,相当于损失5120元;因为5120<6000<8160,所以甲乙合作损失费用最少.答:甲乙合作施工更有利于商店.【总结升华】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系:甲做8天需要的费用+乙作8天需要的费用=3520元.列出方程组,再求解.类型四、利润问题例4.甲、乙两件服装的成本共500元,商店老板为获取利润,将甲服装按50%的利润定价,乙服装按40%的利润定价.在实际出售时,应顾客要求,两件服装均按定价的9折出售,这样商店共获利157元.求甲、乙两件服装的成本各是多少元?【思路点拨】设甲服装的成本是x元,则乙服装的成本是y元,根据“甲、乙两件服装共获利157元、将甲服装按50%的利润定价,乙服装按40%的利润定价,两件服装均按定价的9折出售,这样商店共获利157元”,列方程组解决问题.【答案与解析】解:设甲服装的成本是x元,则乙服装的成本是y元,依题意有解得:答:甲服装的成本为300元,乙服装的成本为200元.【总结升华】考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程组,再求解.举一反三:【变式】为处理甲、乙两种积压服装,商场决定打折销售,已知甲、乙两种服装的原单价共位880元,现将甲服装打八折,乙服装打七五折,结果两种服装的单价共为684元,则甲、乙两种服装的原单价分别是多少?【答案】解:设甲、乙两种服装的原单价分别是x元、y元.根据题意,得:,解得:,即:甲、乙两种服装的原单价分别是480元、400元.【巩固练习】一、选择题1.某鞋店有甲、乙两款鞋各30双,甲鞋一双200元,乙鞋一双50元.该店促销的方式:买一双甲鞋,送一双乙鞋;只买乙鞋没有任何优惠.若打烊后得知,此两款鞋共卖得1800元,还剩甲鞋x双、乙鞋y双,则依题意可列出下列哪一个方程式? ( ) .A.200(30-x)+50(30-y) = 1800 B.200(30-x)十50(30-x-y)=1800C.200(30-x)+50(60-x-y)=1800 D.200(30-x)十50[30-(30-x)-y]=18002.现有大、小两种船,1艘大船与4艘小船一次最多可以载客46名,2艘大船与3艘小船一次最多可以载客57名,某旅游点的船有3艘大船与6艘小船,一次最多可以载客的人数为()A.129 B.120 C.108 D.963.欣平超市推出如下优惠方案:(1)一次性购物不超过100元不享受优惠;(2)一次性购物超过100元但不超过300元一律九折;(3)一次性购物超过300元一律八折.王波两次购物分别付款80元、252元,如果王波一次性购买与上两次相同的商品,则应付款( ).A.288元 B.322 元 C.288元或316元 D.332元或363元4.某次知识竞赛共出了25道试题.评分标准如下:答对一道题加4分;答错1道题扣1分;不答记0分,已知李刚不答的题比答错的题多2道,他的总分为74分,则他答对了( ).A.18道 B.19道 C.20道 D.21道5.某班学生参加运土劳动,一部分学生抬土,另一部分学生挑土,已知全班共用箩筐59个,扁担36根,若设抬土的学生x人,挑土的学生y人,则有 ( ).A.2592362yxxy⎧⎛⎫+=⎪⎪⎪⎝⎭⎨⎪+=⎪⎩B.2592362xyxy⎧+=⎪⎪⎨⎪+=⎪⎩C.2592236xyx y⎧+=⎪⎨⎪+=⎩D.259236x yx y+=⎧⎨+=⎩6.在早餐店里,王伯伯买5颗馒头,3颗包子,老板少拿2元,只要50元.李太太买了11颗馒头,5颗包子,老板以售价的九折优待,只要90元.若馒头每颗x元,包子每颗y元,则下列哪一个二元一次联立方程式可表示题目中的数量关系?()A. B.C. D.二、填空题7.李师傅加工1个甲种零件和1个乙种零件的时间分别是固定的,现知道李师傅加工3个甲种零件和5个乙种零件共需55分钟;加工4个甲种零件和9个乙种零件共需85分钟,则李师傅加工2个甲种零件和4个乙种零件共需分钟.8.如图所示,两根铁棒直立于桶底水平的木桶中,在桶中加入水后,一根露出水面的长度是它的13,另一根露出水面的长度是它的15,两根铁棒长度之和为55cm,则木桶中水的深度是 cm.9.一个水池有两个进水管,单独开甲管注满水池需2小时,单独开乙管注满水池需3小时,两个同时开注满水池的时间是_________小时.10.某商场出售茶壶和茶杯,茶壶每只15元,茶杯每只3元,商店规定买一只茶壶赠一只茶杯,某人共付款171元得茶壶、茶杯共36只(含赠品在内),其中茶壶________只,茶杯________只.11.已知甲、乙两种商品的进价和为100元,为促销而打折销售,若甲商品打8折,乙商品打6折,则可赚50元;若甲商品打6折,乙商品打8折,则可赚30元,则甲、乙两种商品的定价分别是________.12. 如图①,在第一个天平上,砝码A的质量等于砝码B加上砝码C的质量;如图②,在第二个天平上,砝码A加上砝码B的质量等于3个砝码C的质量.请你判断:1个砝码A 与________个砝码C的质量相等.三、解答题13.某商场第1次用39万元购进A、B两种商品,销售完后获得利润6万元,它们的进价和售价如下表:商品价格 A B进价(元/件)1200 1000售价(元/件)1350 1200(总利润=单件利润×销售量)(1)该商场第1次购进A、B两种商品各多少件?(2)商场第2次以原价购进A、B两种商品,购进B商品的件数不变,而购进A商品的件数是第1次的2倍,A商品按原价销售,而B商品打折销售,若两种商品销售完毕,要使得第2次经营活动获得利润不少于75000元,则B种商品最低售价为每件多少元?14.某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出大楼共有4道门,其中2道正门大小相同,2道侧门大小也相同,安全检查中,对4道门进行了测试:当同时开启1道正门和2道侧门时,2分钟内可通过560名学生;当同时开启1道正门和1道侧门时,4分钟内可通过800名学生,求平均每分钟1道正门和1道侧门各可通过多少名学生?15.某水果基地计划装运甲、乙、丙三种水果到外地销售(每辆汽车规定满载,并且只装一种水果).如表为装运甲、乙、丙三种水果的重量及利润.甲乙丙每辆汽车能装的数量(吨) 4 2 3每吨水果可获利润(千元) 5 7 4(1)用8辆汽车装运乙、丙两种水果共22吨到A地销售,问装运乙、丙两种水果的汽车各多少辆?(2)水果基地计划用20辆汽车装运甲、乙、丙三种水果共72吨到B地销售(每种水果不少于一车),假设装运甲水果的汽车为m辆,则装运乙、丙两种水果的汽车各多少辆?(结果用m表示)(3)在(2)问的基础上,如何安排装运可使水果基地获得最大利润?最大利润是多少?【答案与解析】一、选择题1. 【答案】D;【解析】由已知,卖出甲鞋(30-x)双,则送出乙鞋也是(30-x)双,那么乙卖出[30-(30-x)-y]双,卖出甲鞋的钱数加上卖出乙鞋的钱数就等于1800元,由此得出答案.2.【答案】D.【解析】设1艘大船的载客量为x人,一艘小船的载客量为y人.由题意可得:, 解得, ∴3x+6y=96.∴3艘大船与6艘小船,一次可以载游客的人数为96人.3. 【答案】C ;【解析】解:一次性购物超过100元,但不超过300元一律9折,则在这个范围内最低付款90元,因而第一次付款80元,没有优惠;当第二次购物是第二种优惠,可得出原价是 252÷0.9=280(元)(符合超过100不高于300).则两次共付款:80+280=360元,超过300元,则一次性购买应付款:360×0.8=288元;当第二次付款是超过300元时:可得出原价是 252÷0.8=315(符合超过300元), 则两次共应付款:80+315=395元,则一次性购买应付款:395×0.8=316元.故一次性购买应付款:288元或316元.4. 【答案】B ;【解析】设李刚答错的题为x 道,答对的题y 道,则他不答的题2x +道,且有 225474x y y x y +++=⎧⎨-=⎩, 解得192x y =⎧⎨=⎩.5. 【答案】B ;【解析】注意了解生活常识:抬土即两个人需要一根扁担和一个箩筐;挑土即一个人需要一根扁担和两个箩筐.6. 【答案】B ;【解析】设馒头每颗x 元,包子每颗y 元,根据题意王伯伯买5颗馒头,3颗包子,老板少拿2元,只要50元,可列式为5x+3y=52,李太太买了11颗馒头,5颗包子,老板以售价的九折优待,只要90元,可列式为0.9(11x+5y )=90,联立方程即可得到所求方程组.二、填空题7. 【答案】40;【解析】解:设李师傅加工1个甲种零件需要x 分钟,加工1个乙种零件需要y 分钟, 依题意得:,由①+②,得7x+14y=140,所以x+2y=20,则2x+4y=40,所以李师傅加工2个甲种零件和4个乙种零件共需40分钟.故答案是:40.8.【答案】20; 【解析】设两根铁棒的长度分别是a ,b(a >b),则有24,3555a b a b ⎧=⎪⎨⎪+=⎩ 解得30,25.a b =⎧⎨=⎩ 所以4205b =,∴ 木桶中水的深度为20cm 9.【答案】.【解析】设两个同时开注满水池的时间是x 小时,由题意得(+)x=1,解得:x=.答:两个同时开注满水池的时间是小时.10.【答案】7, 29;【解析】设买茶壶x 只,那么赠x 只茶杯,所以要买(36-2x )茶杯,然后根据共付款171元即可列出方程,解方程就可以解决问题.11.【答案】150元,50元;【解析】设甲、乙两种商品的定价分别为x 元,y 元,则:0.80.6100500.60.810030x y x y +-=⎧⎨+-=⎩, 解得15050x y =⎧⎨=⎩. 12. 【答案】2.【解析】此题可以分别设砝码A 、B 、C 的质量是x ,y ,z .然后根据两个天平列方程组,消去y ,得到x 和z 之间的关系即可.三、解答题13.【答案】解:(1)设购进A种商品x件,B种商品y件,根据题意得化简得,解之得.答:该商场购进A、B两种商品分别为200件和150件;(2)由于A商品购进400件,获利为(1350﹣1200)×400=60000(元),从而B商品售完获利应不少于75000﹣60000=15000(元),设B商品每件售价为x元,则150(x﹣1000)≥15000,解之得x≥1100.所以B种商品最低售价为每件1100元.14.【解析】解:设平均每分钟1道正门可通过x名学生,1道侧门可通过y名学生.由题意,得2(2)560 4()800x yx y+=⎧⎨+=⎩,解得12080xy=⎧⎨=⎩.答:平均每分钟1道正门可通过120名学生,l道侧门可通过80名学生.15.【解析】解:(1)设装运乙、丙水果的车分别为x辆,y辆,得:,解得:.答:装运乙种水果的车有2辆、丙种水果的汽车有6辆.(2)设装运乙、丙水果的车分别为a辆,b辆,得:,解得.答:装运乙种水果的汽车是(m﹣12)辆,丙种水果的汽车是(32﹣2m)辆.(3)总利润:5×4m+7×2(m﹣12)+4×3(32﹣2m)=10m+216.∵,∴13≤m≤15.5,∵m为正整数,∴m=13,14,15,∴当m=15时,总利润最大:10×15+216=366(千元),答:当运甲水果的车15辆,运乙水果的车3辆,运丙水果的车2辆,利润最大,最大利润为366千元.。

【人教版】初中数学讲义之:实际问题与二元一次方程组(1)-学生版

【人教版】初中数学讲义之:实际问题与二元一次方程组(1)-学生版

实际问题与二元一次方程组(1)1.以含有多个未知数的实际问题为背景,经历“分析数量关系,设未知数,列方程组,解方程组和检验结果”的过程,体会方程组是刻画现实世界中含有多个未知数问题的数学模型;2. 熟练掌握用方程组解决和差倍分,配套,工程等实际问题.要点一、常见的一些等量关系(一)1.和差倍分问题:年龄差不变2.产品配套问题:解这类问题的基本等量关系是:加工总量成比例.3.和差倍分问题:增长量=原有量×增长率较大量=较小量+多余量,总量=倍数×倍量.要点二、实际问题与二元一次方程组1.列方程组解应用题的基本思想列方程组解应用题,是把“未知”转换成“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的等量关系.一般来说,有几个未知量就必须列出几个方程,所列方程必须满足:①方程两边表示的是同类量:②同类量的单位要统一;③方程两边的数要相等.2.列二元一次方程组解应用题的一般步骤:设:用两个字母表示问题中的两个未知数;列:列出方程组(分析题意,找出两个等量关系,根据等量关系列出方程组);解:解方程组,求出未知数的值;验:检验求得的值是否正确和符合实际情形;答:写出答案.特别说明:(1)解实际应用问题必须写“答”,而且在写答案前要根据应用题的实际意义,检查求得的结果是否合理,不符合题意的解应该舍去;(2)“设”、“答”两步,都要写清单位名称;(3)一般来说,设几个未知数就应该列出几个方程并组成方程组.【典型例题】类型一、年龄问题1.甲是乙现在的年龄时,乙10岁,乙是甲现在的年龄时,甲25岁,那么()A.甲比乙大5岁 B.甲比乙大10岁C.乙比甲大10岁 D.乙比甲大5岁举一反三:【变式1】一天,小民去问爷爷的年龄,爷爷说:“我若是你现在这么大,你还要40年才出生呢,你若是我现在这么大,我已经是老寿星了,125岁了,哈哈!”请你写出小民爷爷到底是___岁.【变式2】7月4日,2020长白山地下森林徒步活动鸣枪开始,一名34岁的男子带着他的两个孩子一同参加了比赛.下面是两个孩子与记者的部分对话:妹妹:我和哥哥的年龄和是16岁.哥哥:两年后,妹妹年龄的3倍与我的年龄相加恰好等于爸爸的年龄.根据对话内容,请你用方程的知识帮记者求出现在哥哥和妹妹的年龄各是多少岁?..2.《九章算术》中有一道阐述“盈不足术”的问题,原文如下:今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?译文为:现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?请解答上述问题.举一反三:【变式1】某工厂有工人60人,生产某种由一个螺栓套两个螺母的配套产品,每人每天生产螺栓14个或螺母20个,应分配多少人生产螺栓,多少人生产螺母,才能使生产出的螺栓和螺母刚好配套?【变式2】食品安全是关乎民生的重要问题,在食品中添加过量的添加剂对人体健康有害,但适量的添加剂对人体无害而且有利于食品的储存和运输.为提高质量,做进一步研究,某饮料加工厂需生产A、B两种饮料共100瓶,需加入同种添加剂270克,其中A饮料每瓶需加该添加剂2克,B饮料每瓶需加该添加剂3克,饮料加工厂生产了A、B两种饮料各多少瓶?3.我国古代数学著作《九章算术》中有这样一题,原文是:“今有大器五小器一容三斛,大器一小器五容二斛,问大小器各容几何.”意思是:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,是古代的一种容量单位),1个大桶加上5个小桶可以盛酒2斛.1个大桶、1个小桶分别可以盛酒多少斛?请解答.举一反三:【变式1】2020年2月,“新冠”疫情日趋严重,“雷神山”医院急需新型救护车,某企业为了向医院捐献救护车,派人到汽车销售公司了解到,新型救护车共有A、B两种型号,2辆A救护车、3辆B型救护车的进价共计80万元;3辆A型救护车、2辆B型救护车的进价共计95万元.(1)求A、B两种型号的救护车每辆进价分别为多少万元?(2)若该企业计划正好用200万元购进以上两种型号的新型救护车(两种型号的救护车均购买),该企业共有哪几种购买方案.(3)若该救护车销售公司销售1辆A型汽车可获利8000元,销售1辆B型救护车可获利5000元,在(2)中的购买方案中,该汽车销售公司全部售出这些新型救护车,哪种方案获利最大?【变式2】2020年新型冠状病毒肺炎在全球蔓延,口罩成了人们生活中的必备物资.某口罩厂现安排A、B两组工人共150人加工口罩,A组工人每人每小时可加工口罩70个,B组工人每人每小时可加工口罩50个,A、B两组工人每小时一共可加工口罩9300个.试问:A、B两组工人各多少人?4.《九章算术》是中国古代数学专著,在数学上有其独到的成就,不仅最早提到了分数问题,也首先记录了“盈不足”等问题.如有一道阐述“盈不足”的问题,原文如下:今有共买鸡,人出九,盈十一;人出六,不足十六.问人数、鸡价各几何?译文为:现有若干人合伙出钱买鸡,如果每人出9文钱,就会多11文钱;如果每人出6文钱,又会缺16文钱.问买鸡的人数、鸡的价格各是多少.请解答上述问题.举一反三:【变式1】《一千零一夜》中:有这样一段文字:有一群鸽子,其中一部分在树上欢歌,另一部分在地上;若从觅食.树上的一只鸽子对地上觅食的鸽子说:“若从你们中飞来一只,则树下的鸽子就是整个鸽群的13树上飞下去一只,则树上、树下的鸽子就一样多了.”你知道树上、树下各有多少只鸽子吗?【变式2】《九章算术》中有这样一道题,原文如下:“今有人共买鸡,人出九,盈十一,人出六,不是十六,问人数、鸡价各几何”意思为:有几个人共同出钱买鸡,每人出九钱,则多了十一钱;每人出六钱,则少了十六钱,那么有几个人共同买鸡?鸡的价钱是多少?请解答上述问题.。

人教版七年级数学下册精品课件 第八章 二元一次方程组 实际问题与二元一次方程组第1课时 和差倍分问题

人教版七年级数学下册精品课件 第八章 二元一次方程组 实际问题与二元一次方程组第1课时 和差倍分问题
A.14 B.13 C.12 D.15
10.(2021·湖北)我国明代数学读本《算法统宗》一书中有这样一道 题:一支竿子一条索,索比竿子长一托,对折索子来量竿,却比竿子 短一托.如果一托为5尺,那么索长为 __2_0_尺.其大意为:现有一根 竿和一条绳索,如果用绳索去量竿,绳索比竿长5尺;如果将绳索对 折后再去量竿,就比竿短5尺,则绳索长几尺.
的年龄是 10 岁
12.(2021·嵩县期末)某村为了尽早摆脱贫穷落后的现状,积极响应国家号召, 15位村民集资8万元,承包了一些土地种植有机蔬菜和水果,种这两种作物每公 顷需要人数和投入资金如表:
在现有条件下,这15位村民应承包多少公顷土地,怎样安排能使每人都有事可 做,并且资金正好够用?
解:设种植有机蔬菜 x 公顷,种植水果 y 公顷,依题意,得42xx+ +53yy= =185,, 解得
数学 七年级下册 人教版
第八章 二元一次方程组
8.3 实际问题与二元一次方程组 第1课时 和差倍分问题
知识点 1:和差倍分问题
1.(原创题)已知∠1 与∠2 互补,并且∠1 比∠2 的 3 倍还大 20°,若设∠1
=x°,∠2=y°,则 x,y 满足的方程组为( C )
A.xx+ =y3=y+9020
B.yx=+3yx=+9200
C.xx+ =y3=y+18200
D.xy=+3y= x+18200
2.(2021·成都)《九章算术》卷八方程第十题原文为:“今有甲、乙二人持钱不知其 数.甲得乙半而钱五十,乙得甲太半而亦钱五十.问:甲、乙持钱各几何?”题目大意 是:甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱 50;如果乙
解:(1)设 1 辆 A 型车和 1 辆 B 型车都载满货物一次分别可以运货 x 吨,y 吨,根 据题意,得32xx+ +23yy= =1291, , 解得xy==53,, 答:1 辆 A 型车一次可以运货 3 吨,1 辆 B 型 车一次可以运货 5 吨

人教版初中数学七年级 专题8.3 实际问题与二元一次方程组--七年级数学人教版(下册)

人教版初中数学七年级 专题8.3 实际问题与二元一次方程组--七年级数学人教版(下册)

第八章二元一次方程组8.3 实际问题与二元一次方程组1.列二元一次方程组解应用题的一般步骤①审:审题,分析题中已知什么,求什么,明确各数量之间的关系;②设:设未知数(一般求什么,就设什么);③找:找出应用题中的相等关系;④列:根据相等关系列出两个方程,组成方程组;⑤解:解所列的方程组,求出未知数的值;⑥答:检验所求未知数的值是否符合题意,写出答案(包括单位名称).【温馨提示】①列方程组解应用题的关键是准确地找出题中的几个相等关系,正确地列出方程组.②设未知数时可直接设未知数,也可间接设未知数.③一般来说,设几个未知数,就应列出几个方程并组成方程组.④“审”和“找”两步可在草稿纸上进行,书面上主要写“设”“列”“解”和“答”四个步骤.⑤要根据应用题的实际意义检查求得的结果是否合理,不符合题意的解应该舍去.⑥“设”“答”两步都要写清单位名称.⑦在列方程组时,要注意等号左、右两边单位的统一.2.列二元一次方程组应用题的常见类型的基本关系式(1)和差倍分问题较大量=较小量+多余量,总量=倍数×一份的量.(2)产品配套问题加工总量成比例.(3)速度问题路程=速度×时间(4)航速问题①顺流(风)速度=静水(无风)中的速度+水(风)速;②逆流(风)速度=静水(无风)中的速度-水(风)速.(5)工程问题工作量=工作效率×工作时间.(6)增长率问题原量×(1+增长率)=增长后的量,原量×(1-减少率)=减少后的量.(7)浓度问题溶液质量×浓度=溶质质量.(8)银行利率问题免税利息=本金×利率×期数,税后利息=本金×利率×期数-本金×利率×期数×税率.(9)利润问题利润=售价-进价,利润率=售价-进价进价×100%.(10)盈亏问题解这类问题关键是从盈(过剩)、亏(不足)两个角度来把握事物的总量.(11)数字问题解这类问题,要正确掌握自然数、奇数、偶数等有关的概念、特征及表示.(12)几何问题解这类问题要准确掌握有关几何图形的性质和周长、面积等计算公式.(13)年龄问题解这类问题的关键是抓住两人年龄的增长数相等这一特征.K—重点根据题意找出等量关系,并能根据题意列二元一次方程组K—难点正确找出问题中的等量关系K—易错找错等量关系一、行程问题1.相遇问题:甲走的路程+乙走的路程=两地距离.2.追及问题:同地不同时出发:前者走的路程=追者走的路程;同时不同地出发:前者走的路程+两地距离=追者走的路程.【例1】某地地震后,全国各地都有不少人士参与抗震救灾,家住成都的王伟也参加了,他要在规定时间内由成都赶到雅安.如果他以50千米/小时的速度行驶,就会迟到24分钟;如果以75千米/小时的高速行驶,则可提前24分钟到达.若设成都至雅安的路程为S,由成都到雅安的规定时间是t,则可得到方程组是A.24 50()6024 75()60s ts t⎧=-⎪⎪⎨⎪=+⎪⎩B.2450(+)602475()60s ts t⎧=⎪⎪⎨⎪=+⎪⎩C.2450()602475()60s ts t⎧=+⎪⎪⎨⎪=-⎪⎩D.2450()602475()60s ts t⎧=-⎪⎪⎨⎪=-⎪⎩【答案】C二、配套问题产品配套问题是指某件产品是由几个部件配套加工而成的,而部件的数量并不完全相同,在生产过程中,为了使每个部件生产的数量恰好符合组装所需,而不产生积压.各部件的数量不一定相等,但存在一定数量关系:=甲部件的总量乙部件的总量每件产品含甲的个数每件产品含乙的个数【例2】用白铁皮做罐头盒,每张铁皮可制盒身25个,或制盒底40个,一个盒身与两个盒底配成一套罐头盒,现有36张白铁皮,设用x张制盒身,y张制盒底,恰好配套制成罐头盒,则下列方程组中符合题意的是A.362x yy x+==⎧⎨⎩B.3625240x yx y+==⨯⎧⎨⎩C.3640 252x yyx+==⎧⎪⎨⎪⎩D.3622540x yx y+==⎧⎪⎨⎪⎩【答案】D【解析】设用x张制作盒身,y张制作盒底,根据题意得:3640252x yyx+==⎧⎪⎨⎪⎩,故选C.三、几何图形问题对于图形问题的求解,要会通过对图形的观察比较、分析,发现隐含在图形中的数量关系,这是解决有关图形问题的关键.图形中隐含的数量关系有边长之间的关系、面积之间的关系,等等.【例3】如图,用10块相同的矩形墙砖并成一个矩形,设矩形墙砖的长和宽分别为x厘米和y厘米,依题意列方程组正确的是A.2753x yy x+=⎧⎨=⎩B.2753x yy x+=⎧⎨=⎩C.2753x yx y-=⎧⎨=⎩D.2753x yx y+=⎧⎨=⎩【答案】B【解析】根据图示可得2753x yx y+=⎧⎨=⎩,故选B.四、方案问题优化方案问题先要列举出所有可能的方案,再按题目要求分别求出每种方案的具体结果,进行比较,从中选择最优.【例4】已知用2辆A型车和1辆B型车装满货物一次可运货10吨;用1辆A型车和2辆B型车装满货物一次可运货11吨.某物流公司现有31吨货物,计划同时租用A型车a辆,B型车b辆,一次运完,且恰好每辆车都装满货物.学-科网根据以上信息,解答下列问题:(1)1辆A型车和1辆B型车都装满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案(即A、B两种型号的车各租几辆,有几种租车方案).【解析】(1)设1辆A型车和1辆B型车都装满货物一次可分别运货x吨,y吨,根据题意得:210211x yx y+=⎧⎨+=⎩,解得:34xy=⎧⎨=⎩.答:1辆A型车和1辆B型车都装满货物一次可分别运货3吨,4吨.(2)由题意可得:3a+4b=31,∴b=3134a-.∵a,b均为整数,∴有17ab=⎧⎨=⎩、54ab=⎧⎨=⎩和91ab=⎧⎨=⎩三种情况.故共有三种租车方案,分别为:①A型车1辆,B型车7辆;②A型车5辆,B型车4辆;③A型车9辆,B型车1辆.1.一副三角尺按如图所示的方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A.50180x yx y=-⎧⎨+=⎩B.50180x yx y=+⎧⎨+=⎩C.5090x yx y=-⎧⎨+=⎩D.5090x yx y=+⎧⎨+=⎩2.某次知识竞赛共有20道题,规定:每答对一道题得+5分,每答错一道题得-2分,不答的题得0分.已知圆圆这次竞赛得了60分,设圆圆答对了x道题,答错了y道题,则A.x-y=20 B.x+y=20C.5x-2y=60 D.5x+2y=603.已知12x b+5y3a和-3x2a y2-4b是同类项,那么a,b的值是A.12ab=-⎧⎨=⎩B.7ab=⎧⎨=⎩C.35ab=⎧⎪⎨=-⎪⎩D.21ab=⎧⎨=-⎩4.现有190张铁皮做盒子,每张铁皮可做8个盒身或22个盒底,一个盒身与两个盒底配成一个完整的盒子,设用x张铁皮做盒身,y张铁皮做盒底,则可列方程组为A.1902822x yx y+=⎧⎨⨯=⎩B.1902228x yy x+=⎧⎨⨯=⎩C.2190822y xx y+=⎧⎨=⎩D.21902822x yx y+=⎧⎨⨯=⎩5.已知甲、乙两数之和是42,甲数的3倍等于乙数的4倍,求甲、乙两数.若设甲数为x,乙数为y,由题意得方程组A.4243x yx y+=⎧⎨=⎩B.4234x yx y+=⎧⎨=⎩C.421134x yx y-=⎧⎪⎨=⎪⎩D.4243y xx y+=⎧⎨=⎩6.甲、乙两人练习跑步,若乙先跑10米,则甲跑5秒就可以追上乙;如果乙先跑2秒,甲跑4秒就可以追上乙.设甲的速度为x米/秒,乙的速度为y米/秒,根据题意,下列选项中所列方程组正确的是A.5510424x yx y y-=⎧⎨=+⎩B.5510424x yx y-=⎧⎨-=⎩C.5510424x yx x y-=⎧⎨-=⎩D.5105424x yx y+=⎧⎨-=⎩7.某公司向银行申请了甲、乙两种贷款共计68万元,每年需付出8.42万元利息,已知甲种贷款每年的利率为12%,乙种贷款每年的利率为13%,则该公司甲、乙两种贷款的数额分别为A.26万元,42万元B.40万元,28万元C.28万元,40万元D.42万元,26万元8.某校体操队和篮球队的人数之比是5:6,篮球队的人数与体操队的人数的3倍的和等于42人,若设体操队的人数是x人,篮球队的人数为y人,则可列方程组为A.56342x yx y=⎧⎨+=⎩B.653()42x yx y=⎧⎨+=⎩C.5642x yx y=⎧⎨+=⎩D.65342x yx y=⎧⎨+=⎩9.一种饮料大小包装有3种,1个中瓶比2小瓶便宜2角,1个大瓶比1个中瓶加1个小瓶贵4角,大、中、小各买1瓶,需9元6角,若设小瓶单价为x角,大瓶为y角,可列方程为A.39832x yy x+=⎧⎨-=⎩B.39832x yy x+=⎧⎨+=⎩C.29834x yy x+=⎧⎨-=⎩D.39824x yx y-=⎧⎨+=⎩10.甲、乙两人从同一地点出发,同向而行,甲乘车,乙步行.如果乙先走20千米,那么甲用1小时能追上乙;如果乙先走1小时,那么甲只用15分钟就能追上乙,则甲的速度为__________千米/时.11.如果长方形的周长是20 cm,长比宽多2 cm.若设长方形的长为x cm,宽为y cm,则所列方程组为__________.12.一个宾馆有二人间、三人间、四人间三种客房供游客租住.某旅行团20人准备同时租用这三种客房共7间,如果每个房间都住满,那么租房方案有几种?把每种方案都写出来.13.已知甲、乙两种商品的原价和为200元。

人教版七年级数学下册课件8.3 实际问题与二元一次方程组 第1课时 和差倍分问题

人教版七年级数学下册课件8.3 实际问题与二元一次方程组  第1课时 和差倍分问题
四清导航
物理 七年级(下)配人教 八年级(下)沪科版 第八章 二元一次方程组 8.3 实际问题与二元一次方程组 第1课时 和差倍分问题
四清导航
四清导航
用方程组解应用题的一般步骤是:(1)审题:弄清题意和题目中的数___量__关__系_;(2)设元:用 __字__母____表示题目中的未知数,可__直__接____设未知数,也可___间__接___设未知数;(3)列方程组: 挖掘题中的所有条件,找出两个与未知数相关的等___量__关__系_,并依此列出_方__程___组__;(4)解方程 组:利用代__入___消__元_法或加___减__消__元_法解所列方程组,求出未知数的值;(5)检验作答:检验所求
11%,这样全校在校生将增加 10%,则这所学校一年后将有初中在校生__1__5_1_2__名,高中在 校生__3_1__0_8__名.
四清导航
7.(6 分)某服装加工厂接受生产学生校服的任务,已知每 3 米长的布料可做上衣 2 件或
裤子 3 条,1 件上衣和 1 条裤子配为一套.计划用 750 米的布料生产校服,应用__4__5_0___米 布料生产上衣,用___3_0__0__米布料做裤子才能恰好配套,共能生产__3_0__0___套.
解:设 A 饮料生产了 x 瓶,则 B 饮料生产了 y 瓶,由题意得, x2+x+y=3y1=002,70,解得:x=30,y=70, 答:A 饮料生产了 30 瓶,则 B 饮料生产了 70 瓶
四清导航
一、选择题(每小题 6 分,共 12 分) 9.小亮问老师有多少岁了,老师说:“我像你这么大时,你才 4 岁,你到我这么大时,
解:设梅花鹿的高度是 x m,长颈鹿的高度是 y m, 根据题意得:x3+x+4= 1=yy,,解得:xy==15..55,. 答:梅花鹿的高度是 1.5 m,长颈鹿的高度是 5.5 m

七年级数学 第八章 二元一次方程组 8.3 实际问题与二元一次方程组 第1课时 和、差、倍分问题

七年级数学 第八章 二元一次方程组 8.3 实际问题与二元一次方程组 第1课时 和、差、倍分问题
第二页,共二十一页。
学习指南
[教用专有(zhuān yǒu)]
教学目标
1.能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列
出方程组.
2.学会比较估算与精确计算以及检验方程组的解是否符合题意并正确作
答.
第三页,共二十一页。
情景问题引入 养牛场原有 30 只大牛和 15 只小牛,1 天约需要饲料 675 kg;一周后又购进 12 只大牛和 5 只小牛,这时 1 天约需要饲料 940 kg.饲养员李大叔估计平均每只 大牛 1 天约需要饲料 18~20 kg,每只小牛 1 天约需要饲料 7~8 kg.请你通过计 算检验李大叔的估计是否正确.
第十九页,共二十一页。
解:(1)设平均每分钟一道正门可通过 x 名学生,一道侧门可通过 y 名学生. 由题意,得24( (xx+ +2y)y)==805060,,解得xy= =1802,0, 即平均每分钟一道正门可以通过学生 120 名,一道侧门可以通过学生 80 名. (2)这栋大楼最多有学生 4×8×45=1 440(名),拥挤时 5 分钟 4 道门能通过 5×2×(120+80)×(1-20%)=1 600(名).因为 1 600>1 440,所以建造的这 4 道门符合安全规定.
y=2x-20,
x=40,
根据题意,得28x+24y=2 560,解得y=60,
答:A 型粽子 40 千克,B 型粽子 60 千克.
第十六页,共二十一页。
5.[2018·永州]在永州市青少年禁毒教育活动中,某班男生小明与班上同学 一起到禁毒教育基地参观,以下是小明和妈妈的对话,请根据对话内容,求小 明班上参观禁毒教育基地的男生和女生的人数.
写出答案:写出符合实际问题的答案. 注 意:(1)解实际问题必须写“答”,而且在写答案前要根据应用题的 实际意义,检查求得的结果是否合理,不合题意的解要舍去. (2)“设”“答”两步都要写清单位名称. (3)一般来说,设几个未知数,就应列出几个方程并组成方程组.

人教版数学七年级下册第八章二元一次方程组与实际问题解决小结

人教版数学七年级下册第八章二元一次方程组与实际问题解决小结

解:设每件文化衫x元,每本相册y元.
由题意,得 x-y=9, 2x+5y=200.
x=35, 解得 y=26. 答:每件文化衫35元,每本相册26元.
7. 为响应建设“美丽乡村”,大桥村在河岸上种植了 柳树和香樟树,已知种植柳树的棵数比香樟树的棵数多 22棵,种植香樟树的棵树比总数的三分之一少2棵. 问 这两种树各种了多少棵?
解:(1)由题意,得5 000-92×40=1 320(元).即 两所学校联合起来购买服装比各自购买服装共可以节省 1 320元.
(2)设甲、乙两所学校各有x名,y名学生准备参加演出.
由题意,得 x+y=92,
解得 x=52,
50x+60y=5 000.
y=40.
答:甲、乙两校各有52名、40名学生准备参加演出.
基础训练
第1关 2. 某校为住校生分宿舍,若每间7人,则余下3人;若 每间8人,则有5个空床位,设该校有住校生x人,宿舍y
x=7y+3, 间,则可列出方程组为___x_=_8_y_-_5__.
3. 现有几个学生合买一本书,每人出9元,会多出11 元;每人出6元,又差16元. 问:有几个学生,买这本 书需要多少元?设有x个学生,买这本书需要y元,那么
变式训练
1. 某商场计划拨款9万元从厂家购进50台电视机,已 知厂家生产三种不同型号的电视机,出厂价分别为: 甲种每台1 500元,乙种每台2 100元,丙种每台2 500 元. (1)若商场同时购进其中两种不同型号的电视机50台 , 用去9万元,请你研究一下商场的进货方案; (2)若商场销售一台甲、乙、丙电视机分别可获利 150元、200元、250元,在以上的方案中,为使获利最
③设购乙种电视机y台,丙种电视机z台.

部编人教版数学七年级下册《实际问题与二元一次方程组(和差倍分问题)》市优质课一等奖获奖课件

部编人教版数学七年级下册《实际问题与二元一次方程组(和差倍分问题)》市优质课一等奖获奖课件
实际问题与二元一次方程组 ——和差倍分问题
课前学习任务单
目标
任务一:明确本课时学习目标
1. 利用二元一次方程组解决和差倍分问题.
2. 感受方程思想.
承前
任务二:复习回顾 1. 用一元一次方程解决实际问题有哪些步骤? 略.
2. A型号计算器的单价比B型号计算器的单价多12元, 5台A计算器与7台B计算器的价钱相同,求A,B计算器 的单价. 解:设A计算器的单价为__________ 元. x 列方程,得_______________. 5x=7(x-12)
解: y=3.
2x-y=-5,
4x+3y=5.
当堂高效测
1.(25分)某广场计划种植A,B两种花木共660棵,若A花木
数量是B花木数量的2倍少60棵.A,B两种花木的数量分别是 多少棵?
解:设A,B两种花木的数量分别是x棵、y棵. x+y=660, 由题意,得 x=2y-60. x=420, 解得 y=240. 答:A,B两种花木的数量分别是420棵、240棵.
启后
任务三:学习教材第99页,理解解题格式并填空
1. 用二元一次方程组解决实际问题的步骤:
(1)审:理解题意,设__________ 两个 未知数;
(2)找:找出__________ 两个 等量关系;
(3)列:正确列出__________ 方程组 ;
(4)解:求出__________ 未知数的值; 两个
2.(25分)某人购买甲、乙两种商品共11 kg,用去120 元.若甲种商品每千克12元,乙种商品每千克10元,则
两种商品各购买了多少千克?
解:设甲种商品购买了x kg,乙种商品购买了y kg. x+y=11, 由题意,得 12x+10y=120. x=5, 解得 y=6. 答:甲种商品购买了5 kg,乙种商品购买了6 kg.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

8.3 实际问题与二元一次方程组
和差倍分问题 专题练习题
1. 已知∠1与∠2互补,并且∠1比∠2的3倍还大20°,若设∠1=x °,∠2=y °,则x ,y 满足的方程组为( )
A .⎩⎨⎧x +y =90x =3y +20
B .⎩⎨⎧x +y =90y =3x +20
C .⎩⎨⎧x +y =180x =3y +20
D .⎩
⎨⎧x +y =180y =3x +20 2.一种饮料有两种包装,5大盒、4小盒共装148瓶,2大盒、5小盒共装100瓶,大盒与小盒每盒各装多少瓶?设大盒装x 瓶,小盒装y 瓶,则可列方程组( )
A .⎩⎨⎧5x +4y =1482x +5y =100
B .⎩⎨⎧4x +5y =1482x +5y =100
C .⎩⎨⎧5x +4y =1485x +2y =100
D .⎩⎨⎧4x +5y =1485x +2y =100
3.一篮水果分给一群小孩,若每人分8个,则差3个水果;若每人分7个,则多4个水果,在这个问题中,有小孩____人,水果____个.
4.甲种电影票每张20元,乙种电影票每张15元.若购买甲、乙两种电影票共40张,恰好用去700元,则甲种电影票买了____张.
5.一个两位数的十位数字与个位数字的和是8,把这个两位数加上18,结果恰好成为数字对调后组成的两位数,求这个两位数.设个位数字为x ,十位数字为y ,下面所列方程组正确的是( )
A .⎩⎨⎧x +y =8xy +18=yx
B .⎩
⎨⎧x +y =810(x +y )+18=yx C .⎩⎨⎧x +y =810x +y +18=yx D .⎩⎨⎧x +y =8x +10y +18=10x +y
6.一个两位数,比它十位上的数与个位上的数的和大9;如果交换十位上的数与个位上的数,所得两位数比原两位数大27,求这个两位数.
7.某车间有60名工人生产太阳镜,1名工人每天可生产镜片200片或镜架50个.应如何分配工人生产镜片和镜架,才能使产品配套?设安排x 名工人生产镜片,y 名工人生产镜架,则可列方程组( )
A .⎩⎨⎧x +y =602×200x =50y
B .⎩⎨⎧x +y =60200x =50y
C .⎩⎨⎧x +y =60200x =2×50y
D .⎩⎨⎧x +y =5050x =200y
8.家具厂生产方桌,按设计1立方米木材可制作50个桌面或300个桌腿,现有10立方米木材,怎样分配木材才能使生产的桌面和桌腿恰好配套,并指出共可生产多少张方桌?(一张方桌按1个桌面4条桌腿配置)
9.有大小两种船,1艘大船与4艘小船一次可以载乘客46人,2艘大船与3艘小船一次可以载乘客57人,则1艘大船和1艘小船一次可以载乘客的人数分别是( )
A .18人,7人
B .17人,8人
C .15人,7人
D .16人,8人
10.某校举行安全知识竞赛,其评分规则如下:答对一题得5分,答错一题得-5分,不作答得0分.已知试题共20道,满分100分,凡优秀(得分80分或以上)者才有资格参加决赛.小明同学在这次竞赛中有2道题未答,但刚好获得决赛资格,则小明答对____道题,答错____道题.
11.某芒果种植基地去年结余为500万元,估计今年能结余960万元,并且今年的收入比去年高15%,支出比去年低10%,则去年的收入是____________万元,支出是____________万元.
12.学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40千克,了解到这些蔬菜的种植成本共42元,还了解到如下信息:
(1)请问采摘的黄瓜和茄子各为多少千克?
(2)这些采摘的黄瓜和茄子可赚多少元?
13.请你阅读下面的诗句:“栖树一群鸦,鸦树不知数,三只栖一树,五只没去处,五只栖一树,闲了一棵树,请你仔细数,鸦树各几何?”求诗句中谈到的鸦的只数,树的棵数.14.一名学生问老师:“您今年多大?”老师风趣地说:“我像你这样大时你才1岁,你到我这么大时,我已经37岁了.”请问老师、学生今年分别多大了?
15.陈老师为学校购买运动会的奖品后,回学校向后勤处王老师交账说:“我买了两种书共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元.”王老师算了一下,说:“你肯定搞错了.”
(1)王老师为什么说他搞错了?试用方程的知识给予解释;
(2)陈老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于5元的整数,笔记本的单价可能为多少元?
方法技能:
1.审题时要弄清题意和题目中的数量关系,找出问题中的所有相等关系.
2.设未知数可直接设,也可间接设,力求简洁.
3.检验所得的解是否符合题意和实际意义,不符合的解要舍去.
4.设未知数及作答时要注意单位名称统一.
易错提示:
注意配套问题中的数量关系.
答案:
1. C
2. A
3. 7 53
4. 20
5. D
6. 解:设这个两位数十位上的数为x ,个位上的数为y ,则有⎩⎨⎧10x +y =x +y +9,10y +x =10x +y +27,
解得⎩
⎨⎧x =1,y =4,∴这个两位数为14 7. C
8. 解:设分配x 立方米木材生产桌面,y 立方米木材生产桌腿,根据题意得⎩⎨⎧x +y =10,50x ×4=300y ,
解得⎩⎨⎧x =6,y =4,
则共可生产方桌为50x =300张 9. A
10. 17 1
11. 2040 1540
12. 解:(1)设采摘黄瓜x 千克,茄子y 千克,根据题意得⎩⎨⎧x +y =40,x +1.2y =42,解得⎩
⎨⎧x =30,y =10,则采摘的黄瓜和茄子分别为30千克、10千克
(2)30×(1.5-1)+10×(2-1.2)=23(元),则这些采摘的黄瓜和茄子可赚23元
13. 解:设有x 只鸦,y 棵树,则有⎩⎨⎧3y =x -5,5(y -1)=x ,解得⎩⎨⎧x =20,y =5,
则鸦的只数为20,树的棵数为5
14. 解:设老师今年x 岁,学生今年y 岁,则有⎩⎨⎧x -y =y -1,37-x =x -y ,解得⎩
⎨⎧x =25,y =13,则老师今年25岁,学生今年13岁
15. 解:(1)设单价为8元的书买了x 本,单价为12元的书买了y 本,根据题意得⎩⎨⎧x +y =105,8x +12y =1500-418,解得⎩
⎨⎧x =44.5,y =60.5,显然书的本数应为整数,不能为小数,不合题意,故一定是搞错了 (2)设笔记本的单价为a 元,根据题意得⎩
⎨⎧x +y =105,8x +12y +a =1500-418,可得y =242-a 4,要使y 为整数,则a 首先必须为偶数,又是小于5元的整数,故a 只能为2,4.当a =2时,y =60;当a =4时,y =59.5(不合题意舍去).综上所述,笔记本的单价可能为2元。

相关文档
最新文档