余弦定理ppt课件

合集下载

高中数学必修五北师大版 余弦定理课件(30张)

高中数学必修五北师大版 余弦定理课件(30张)

a c 方法一 由正弦定理sin A=sin C得: 3 5× 2 csin A 5 3 sin C= a = 7 = 14 . 5 3 ∴最大角 A 为 120° ,sin C= . 14 a2+b2-c2 72+32-52 11 解法二 ∵cos C= = = , 2ab 2×7×3 14 ∴C 为锐角,∴sin C= 1-cos C=
[ 分析 ] 可先由大边对大角,确定出最大的角,再由正、余弦定 理求出最大角及sin C.
[解析] ∵a>c>b,∴A 为最大角.
由余弦定理变形得: b2+c2-a2 32+52-72 1 cos A= 2bc = =-2. 2×3×5 又∵0° <A<180° ,∴A=120° . 3 ∴sin A=sin 120° =2.
)
2a2 = 2a =a=2.
答案:C
2.在△ABC中,如果sin A∶sin B∶sin C=2∶3∶4,那么cos C等
于________.
解析:由条件可设 a=2t,b=3t,c=4t a2+b2-c2 4t2+9t2-16t2 1 cos C= 2ab = =-4. 2×2×3t2
1 答案:-4
1.2 余弦定理
第1课时 余弦定理
பைடு நூலகம்
1.能证明余弦定理,了解并可以从向量方 法、解析方法和三角方法等多种途径证 明余弦定理; 重点:余弦定理的理 解和简单应用.
2.能够应用余弦定理及其推论解三角形; 难点:余弦定理的推 3.了解余弦定理与勾股定理之间的联系, 导及解决简单的三角 知道解三角形问题的几种情形及其基本 解法. 形度量问题.
1 3 3 解法二 由 b<c,B=30° ,b>csin 30° =3 3×2= 2 知本题有两解. 1 3 3×2 csin B 3 由正弦定理 sin C= = = , b 3 2 ∴C=60° 或 120° , 当 C=60° 时,A=90° , 由勾股定理 a= b2+c2= 32+3 32=6,

正弦定理和余弦定理课件PPT

正弦定理和余弦定理课件PPT
直角三角形的一个锐角的对边与斜边的比叫做这个 角的正弦.
【即时练习】
在△ABC 中,AB= 3,A=45°,C=75°,则 BC
等于( A )
A.3- 3
B. 2
C.2
D.3+ 3
[解析] 由sAinBC=sBinCA得,BC=3- 3.
探究点3 解三角形
1.一般地,把三角形的三个角A,B,C和它们的对 边a,b,c叫做三角形的元素. 2.已知三角形的几个元素,求其他元素的过程叫做 解三角形.
A. 3
B.2
C. 5
D. 7
【解析】选D.因为a2=b2+c2-2bccosA=22+32-2×2×3×
cos 60°=7,所以a=
7.
3.在△ABC中,a=3,b=4,c= ,则此三角形的最大角为
37
.
【解析】由c>b>a知C最大,
因为cosC=
a2
所以C=120°.
b2 c2 2ab
32 42 37 234
【拓展延伸】利用平面图形的几何性质和 勾股定理证明余弦定理 ①当△ABC为锐角三角形时,如图, 作CD⊥AB,D为垂足,则CD=bsinA, DB=c-bcosA,则a2=DB2+CD2=(c-bcosA)2+(bsinA)2 =b2+c2-2bccosA,其余两个式子同理可证;
b
b 2R, a 2R. 即得 :
A
sin B
sin A
C′
a b c 2R. R为三角形外接圆的半径
sin A sin B sin C
A
C
c
b aO
B
C
B`
Ob a B A` A c

9.1.2-余弦定理课件(共48张PPT)高一下学期数学人教B版(2019)必修第四册第九章解三角形

9.1.2-余弦定理课件(共48张PPT)高一下学期数学人教B版(2019)必修第四册第九章解三角形
已知两边和这两边的夹角,或已知三边则这个三角形就确定了,故
(3)(4)正确.
-6-
课前篇自主预习
激趣诱思
知识点拨
微练习1
在△ABC中,已知AB=2,AC=3,A=60°,则BC=(
A.9
课堂篇探究学习
B.19
C.√7
)
D.√19
答案:C
解析:由余弦定理,可得 BC2=AB2+AC2-2AB×ACcos
-8-
课前篇自主预习
激趣诱思
课堂篇探究学习
知识点拨
知识点二:用余弦定理解三角形的问题
1.已知两边及夹角解三角形;
2.已知三边解三角形.
-9-
课前篇自主预习
激趣诱思
课堂篇探究学习
知识点拨
名师点析 1.已知三边求三角的基本方法
方法一:直接根据余弦定理的三个变式求出三角.
方法二:首先由余弦定理的变式求出最大边所对的角,再由正弦定
所以利用正弦定理可得
sin2Bsin2C+sin2Csin2B=2sin Bsin Ccos Bcos C,
因为sin Bsin C≠0,所以sin Bsin C=cos Bcos C,
所以cos(B+C)=0,所以cos A=0,因为0<A<π,所以A=
为直角三角形.
π
2
,所以△ABC
-24-
课前篇自主预习
1
A=4+9-2×2×3×2=7,所以 BC=√7.故选 C.
-7-
课前篇自主预习
激趣诱思
课堂篇探究学习
知识点拨
微练习2
(2020安徽定远县民族学校高一月考)在△ABC中,AB=5,

高中数学必修二课件:余弦定理

高中数学必修二课件:余弦定理

要点2 适宜用余弦定理解决的两类基本的解三角形问题 (1)已知两边及其夹角,解三角形; (2)已知三边,解三角形. 要点3 推论 在△ABC中(1)c2=a2+b2⇔C为__直_角___; (2)c2>a2+b2⇔C为___钝_角___; (3)c2<a2+b2⇔C为__锐__角___.
1.判断下列命题是否正确. (1)勾股定理是余弦定理的特例. (2)余弦定理每个公式中均涉及三角形的四个元素. (3)在△ABC中,已知两边及夹角时,△ABC不一定唯一.
课后巩固
1.一个三角形的两边长分别为5和3,它们夹角的余弦值是-
3 5
,则三角形
的第三边长为( B )
A.52
B.2 13
C.16
D.4
解析 设第三边长为x,则x2=52+32-2×5×3×-35=52,∴x=2 13.
2.在△ABC中,a=3,b= 7,c=2,那么B等于( C )
A.30°ቤተ መጻሕፍቲ ባይዱ
解析 ∵c2=a2+b2-2abcos C, ∴( 3)2=a2+12-2a×1×cos 2π 3 , ∴a2+a-2=0,即(a+2)(a-1)=0. ∴a=1或a=-2(舍去).∴a=1.
5.在△ABC中,a2+abb2c+c2(coas A+cobs B+cocs C)=____12____.
a2+c2-b2
a2+b2-c2
(2)推论:cos A=____2_b_c____,cos B=____2_a_c____, cos C=____2_a_b____.
(3)余弦定理的另一种常见变形:b2+c2-a2=2bccos A,a2+c2-b2=2accos
B,a2+b2-c2=2abcos C.

余弦定理PPT优秀课件

余弦定理PPT优秀课件

∴ cosA= AB AC = (8)(2)3(4) 2 ,∴ A≈84°.
AB AC
732 5
365
四、课堂练习:
1.在△ABC中,bCosA=acosB,则三角形为( C )
A.直角三角形 B.
C.
D.等边三角形
解法一:利用余弦定理将角化为边.
∵bcosA=acosB ,∴b·b2c2a2aa2c2b2
解:∵ coAs b2 c2 a2 =0.725, ∴ A≈44° 2bc
∵coCs a2 b2 c2=0.8071, 2ab
∴ B=180°-(A+C)≈100.
∴ C≈36°,
(∵sinC=
c
sin a
A
≈0.5954,∴
C ≈ 36°或144°(舍).)
例2在Δ ABC中,已知a=2.730,b=3.696,C=82°28′,解这个
∵0<A,B<π ,∴-π <A-B<π ,∴A-B=0 即A=B
故此三角形是等腰三角形.
2.在△ABC中,若a2>b2+c2,则△ABC为 钝角三角形;若a2=b2+c2,
则△ABC为
直角三;角若形a2<b2+c2且b2<a2+c2且c2<a2+b2,
则△ABC为
锐角Байду номын сангаас三角形
3.在△ABC中,sinA=2cosBsinC,则三角形为 等腰三角形 。
解法一:
B
8
7
∵ |AB| = [6(2)2 ](58)2 73
6
5
A
|BC| = (24)2(81)2 85
4 3
|AC| = (64)2(51)225

余弦定理(55张PPT)

余弦定理(55张PPT)

人教A版· 数学· 必修5
进入导航
第一章 1.1 1.1.2
系列丛书
须知余弦定理是勾股定理的推广,勾股定理是余弦定 a2>b2+c2 理的特例.角A为钝角⇔_____________,角A为直角⇔ a2=b2+c2 a2<b2+c2 ____________,角A为锐角⇔____________.
(2)已知两边和它们的夹角,求第三边和其他两个角 __________________.
人教A版· 数学1.1.2
系列丛书
类型一 [例1]
利用余弦定理解三角形 在△ABC中,已知b=3,c=2 3,A=30° ,求
边a、角C和角B.
人教A版· 数学· 必修5
进入导航
系列丛书
正弦定理和余弦定理
第一章
解三角形
进入导航
系列丛书
新知初探
1.余弦定理 三角形中任何一边的平方等于其他两边的平方的和减 去这两边与它们的夹角的余弦的积的两倍.即
人教A版· 数学· 必修5
进入导航
第一章 1.1 1.1.2
系列丛书
若a,b,c分别是△ABC的顶点A,B,C所对的边 长,则 a2=__________________ b2+c2-2bccosA ,
a2+c2-b2 2ac cosB=_____________ , a2+b2-c2 2ab cosC=_____________.
人教A版· 数学· 必修5
进入导航
第一章 1.1 1.1.2
系列丛书
3.怎样用余弦定理判断三角形的形状?
cosA=
b2+c2-a2 2bc
提示:(1)在△ABC中,若a2<b2+c2,则0° <A<90° ;反 之,若0° <A<90° ,则a2<b2+c2. (2)在△ABC中,若a2=b2+c2,则A=90° ;反之,若A =90° ,则a2=b2+c2. (3)在△ABC中,若a2>b2+c2,则90° <A<180° ;反之, 若90° <A<180° ,则a2>b2+c2.

正弦定理和余弦定理-PPT课件

正弦定理和余弦定理-PPT课件

22
类型一
正弦定理和余弦定理的应用
解题准备:
1.正弦定理和余弦定理揭示的都是三角形的边角关系,根据题 目的实际情况,我们可以选择其中一种使用,也可以综合起 来运用.
2.在求角时,能用余弦定理的尽量用余弦定理,因为用正弦定 理虽然运算量较小,但容易产生增解或漏解.
23
3.综合运用正、余弦定理解三角形问题时,要注意以下关系式
32
∵0<A<π,0<B<π,∴sin2A=sin2B
∴2A=2B或2A=π-2B,即A=B或A+B= .
2
∴△ABC是等腰三角形或直角三角形.
33
解法二:同解法一可得2a2cosAsinB=2b2cosBsinA,
由正、余弦定理得
a2b•
b2
c2
a
2
=b2a•
a2 c2 b2
2bc
2ac
1 2 3 2 1 3.
2
2
(2)当|BC|=4时,S△=
1 2
|AB|·|BC|·sinB
1 2 3 4 1 2 3.
2
2
∴△ABC的面积为 2 3 或 3.
27
[反思感悟]本题主要考查正弦定理、三角形面积公式及分类 讨论的数学思想,同时也考查了三角函数的运算能力及推 理能力.
28
40
设云高CM x m,则CE x h,
DE x h, AE x h .
tan
又AE x h , x h x h
tan tan tan
解得x tan tan gh hgsin( ) m.
tan tan
sin( )
41
[反思感悟]在测量高度时,要理解仰角、俯角的概念.仰角和俯 角都是在同一铅垂面内,视线与水平线的夹角,当视线在水 平线之上时,称为仰角;当视线在水平线之下时,称为俯角.

6.4.3 第1课时 余弦定理PPT课件(人教版)

6.4.3 第1课时 余弦定理PPT课件(人教版)

课前篇自主预习


3.做一做
(1)在△ABC 中,角 A,B,C 所对的边分别为 a,b,c,若 a=1,b= 7,c= 3,
则 B=
.

答案: 6
解析:由已知 a=1,b= 7,c= 3,根据余弦定理,得 cos
1+3-7
3
=- .
2
2 3

∵0<B<π,∴B= 6 .
2
2 +2 -
B= 2
=
课前篇自主预习


(2)判断下列说法是否正确,正确的在后面的括号内画“√”,错误
的画“×”.
①在△ABC中,若a2+b2<c2,则△ABC是钝角三角形.(
)
②在△ABC中,若△ABC是钝角三角形,则必有a2+b2<c2.(
)
③在△ABC中,若△ABC是锐角三角形,则必有a2+b2>c2.(
)
答案:①√ ②× ③√
B,BD=acos B,AD=AB-BD=c-acos B,b2=CD2+AD2=(asin B)2+(cacos B)2=a2+c2-2acos B;
同理可证:c2=a2+b2-2abcos C,a2=b2+c2-2bccos A.
图(2)
课堂篇探究学习
探究一
探究二
探究三
思维辨析
随堂演练
(3)在钝角△ABC中,如图(3),作CD⊥AB,交AB的延长线于点D,则
形.
课堂篇探究学习
探究一
探究二
探究三
思维辨析
随堂演练
反思感悟 1.利用三角形的边角关系判断三角形的形状时,需要从

第六章6.46.4.3第一课时 余弦定理PPT课件(人教版)

第六章6.46.4.3第一课时 余弦定理PPT课件(人教版)

必修第二册·人教数学A版
sin (A-B)=0. ∵A、B 为△ABC 的内角, ∴A=B. 又∵C=π3, ∴△ABC 为等边三角形.
返回导航 上页 下页
必修第二册·人教数学A版
返回导航 上页 下页
1.利用三角形的边角关系判断三角形的形状时,需要从“统一”入手,即使用转化思 想解决问题.一般有两条思考路线:(1)化边为角,再进行三角恒等变换,求出三角 之间的数量关系.(2)化角为边,再进行代数恒等变换,求出三边之间的数量关系. 2.判断三角形的形状时,经常用到以下结论: (1)△ABC 为直角三角形⇔a2=b2+c2 或 c2=a2+b2 或 b2=a2+c2. (2)△ABC 为锐角三角形⇔a2+b2>c2 且 b2+c2>a2 且 c2+a2>b2. (3)△ABC 为钝角三角形⇔a2+b2<c2 或 b2+c2<a2 或 c2+a2<b2. (4)若 sin 2A=sin 2B,则 A=B 或 A+B=π2.
cos B=a2+2ca2c-b2=42+×2×3+ 13+2-16=12,
∴B=60°.
∴C=180°-A-B=180°-45°-60°=75°.
必修第二册·人教数学A版
返回导航 上页 下页
已知三边解三角形的步骤 (1)分别用余弦定理的推论求出两个角; (2)用三角形内角和定理求出第三个角.
必修第二册·人教数学A版
必修第二册·人教数学A版
返回导航 上页 下页
二、余弦定理与基本不等式在解三角形中的综合应用 ►逻辑推理、数学运算 在求周长或面积范围时常用余弦定理转化为边的关系,再利用基本不等式求解. [典例 2] 已知△ABC 的三内角 A,B,C 所对的边分别是 a,b,c,向量 m=(sin B,1 -cos B)与向量 n=(2,0)的夹角 θ 的余弦值为12. (1)求角 B 的大小; (2)若 b= 3,求 a+c 的取值范围.

第五章第六节正弦定理和余弦定理课件共58张PPT

第五章第六节正弦定理和余弦定理课件共58张PPT

A,bsin
C=csin
B,
cos
C=a2+2ba2b-c2
2.三角形中常用的面积公式
(1)S=12 ah(h 表示边 a 上的高);
(2)S=12
1
1
bcsin A=___2__a_c_s_in_B____=__2__a_b_si_n_C___;
(3)S=12 r(a+b+c)(r 为三角形的内切圆半径).
解析: 在△ABC 中, 由余弦定理及 a=2 2 ,b=5,c= 13 ,有 cos
C=a2+2ba2b-c2

2 2
π .又因为 C∈(0,π),所以 C= 4
.
π 在△ABC 中,由正弦定理及 C= 4 ,a=2 2 ,c= 13 ,可得 sin A=
a sin C c
=2 1313
.
答案:
π 4
变形
(1)a=2R sin A,b=_2_R_s_in_B___,c= __2_R_s_in_C___;
cos A=b2+2cb2c-a2

(2)a∶b∶c=_si_n_A_∶__s_i_n_B_∶__s_in_C___; cos B=c2+2aa2c-b2 ;
(3)asin B=bsin asin C=csin A
考点·分类突破
⊲学生用书 P84
利用正弦、余弦定理解三角形
(1)(2020·全国卷Ⅲ)在△ABC 中,cos C=23 ,AC=4,BC=3,则
tan B=( )
A. 5
B.2 5
C.4 5
D.8 5
(2)(2020·广东省七校联考)若△ABC 的内角 A,B,C 所对的边分别为 a,
b,c,已知 2b sin 2A=3a sin B,且 c=2b,则ab 等于( )

第六章6.4.3余弦定理、正弦定理PPT课件(人教版)

第六章6.4.3余弦定理、正弦定理PPT课件(人教版)

训练题
1.[2019·江西九江一中高一检测]若三角形的三边长之比是1∶ 3 ∶2,
则其所对角之比是( A ) A.1∶2∶3 B.1∶ 3 ∶2 C.1∶ 2 ∶ 3 D. 2 ∶ 3 ∶2
2. [2019·江西赣州五校高一联考]已知△ABC中,a∶b∶c=2∶ 6 ∶
( 3 +1),求△ABC中各角的度数.
训练题
1. 2019·江西九江一中高一检测]设△ABC的内角A,B,C的对边分别为
a,b,c,且cos A= 3 ,cos B= 5 ,b=3,则c=
5
13
14 5
.
2. [2019·北京东城区高三二模]在△ABC中,A= ,a2+b2-c2=ab, 4
c=3,则C=
3 ,a=
6.
3.已知两边及一边的对角解三角形 例5在△ABC中,a= 3 ,b= 2 ,B=45°,求A,C,c.
【解】 ∵ A=45°,C=30°,∴ B=180°-(A+C)=105°.
由 a = c 得a= csinA =10 sin45 =10 2 .
sinA sinC
sinC
sin30
由 b = c 得b= csinB =10 sin105 =20sin 75°.
sinB sinC
sinC
sin30
∵ sin 75°=sin (30°+45°)=sin 30°cos 45°+cos 30°sin 45°=
【解】 由正弦定理及已知条件,有 3 = 2 ,得sin A= 3 .
sinA sin45
2
∵ a>b,∴ A>B=45°.∴ A=60°或120°.
当A=60°时,C=180°-45°-60°=75°,

《正弦定理余弦定理》课件

《正弦定理余弦定理》课件

THANKS
感谢观看
REPORTING
基础习题2
基础习题3
已知三角形ABC中,角A、B、C所对 的边分别为a、b、c,若$a = 8, b = 10, C = 45^{circ}$,求边c。
在三角形ABC中,已知A=60°,a=3, b=4, 求角B的大小。
进阶习题
进阶习题1
在三角形ABC中,已知A=45°, a=5, b=5sqrt{2}, 求边c。
详细描述
正弦定理是指在一个三角形中,任意一边与其对应角的正弦值的比等于其他两边的平方和与该边的平方的差的平 方根。余弦定理则是指在一个三角形中,任意一边的平方等于其他两边的平方和减去两倍的另一边与其对应角的 余弦值的乘积。
定理的推导过程
总结词
正弦定理和余弦定理的推导过程涉及到三角函数的定义、性质以及一些基本的 代数运算。
进阶习题2
已知三角形ABC中,角A、B、C所 对的边分别为a、b、c,若$a = 10, b = 8, C = 120^{circ}$,求 边c。
进阶习题3
已知三角形ABC中,角A、B、C所 对的边分别为a、b、c,若$a = 6, b = 8, C = 60^{circ}$,求边c。
综合习题
综合习题1
面积求解
总结词
余弦定理还可以用于计算三角形的面积,通过已知的两边及其夹角,使用面积公式进行计算。
详细描述
已知边a、边b和夹角C,可以使用余弦定理结合面积公式计算三角形ABC的面积,公式为:S = 1/2 ab sin(C)。
PART 04
正弦定理与余弦定理的对 比与联系
REPORTING
定理的异同点
详细描述
首先,利用三角函数的定义和性质,我们可以得到一些基本的等式。然后,通 过一系列的代数运算,将这些等式转化为正弦定理和余弦定理的形式。

正弦定理和余弦定理课件PPT

正弦定理和余弦定理课件PPT

在钝角三角形 ABC 中,a=1,b=2,c=t,且 C 是最大角,则 t 的取值范围是________.
[错解] ∵△ABC 是钝角三角形且 C 是最大角,∴C>90°, ∴cosC<0,∴cosC=a2+2ba2b-c2<0, ∴a2+b2-c2<0,即 1+4-t2<0. ∴t2>5.又 t>0,∴t> 5, 即 t 的取值范围为( 5,+∞).
sin A
3
y 4sin x 4sin( 2 x) 2 3 3
4 3 sin(x ) 2 3, 6
A ,0 B x 2 .
3
3
故 x ( , 5),sin(x ) (1 ,1],
6 66
62
∴y的取值范围为 (4 3,6 3].
正、余弦定理的综合应用 【名师指津】正、余弦定理的综合应用
(2)由于 a:b:c=1: 3:2, 可设 a=x,b= 3x,c=2x. 由余弦定理的推论,得 cosA=b2+2cb2c-a2 =32x×2+43xx2×-2xx2= 23,故 A=30°. 同理可求得 cosB=12,cosC=0,所以 B=60°,C=90°.
已知三角形的三边长分别为 x2+x+1,x2-1 和 2x+ 1(x>1),求这个三角形的最大角.
∵∠ADC=45°,DC=2x, ∴在△ADC 中,根据余弦定理,得 AC2=AD2+DC2-2AD×DC×cos45°, AC2=4x2-4x+2, 又 AC= 2AB, ∴AC2=2AB2, 即 x2-4x-1=0,解得 x=2± 5. ∵x>0,∴x=2+ 5,即 BD=2+ 5.
名师辨误做答
第一章
解三角形
第一章
1.1 正弦定理和余弦定理

人教版高中数学必修2《余弦定理》PPT课件

人教版高中数学必修2《余弦定理》PPT课件

[微思考] 勾股定理和余弦定理有什么关系? 提示:余弦定理是勾股定理的推广,勾股定理是余弦定理的特例. 2.解三角形的定义:
一般地,三角形的三个角A,B,C和它们的对边a,b,c叫做三角形 的_元__素__.已知三角形的几个元素求其他元素的过程叫做_解__三__角__形__.
(二)基本知能小试
1.判断正误:
2×( 6+ 2)×2 3×cos 45°=8,
所以 b=2 2. 由 cos A=b2+2cb2c-a2,
得 cos A=2
22+ 6+ 2×2 2×
22-2 6+ 2
32=12.
因为 0°<A<180°,所以 A=60°.
(2)由余弦定理,得 a2=b2+c2-2bccos A =(b+c)2-2bc(1+cos A), 所以 49=64-2bc1-12,即 bc=15. 由bbc+=c1=58, 解得bc==53, 或cb==35.,
二、应用性——强调学以致用 2. 在古希腊数学家海伦的著作《测地术》中记载了著名的海伦公式,利用
三角形的三边长求三角形的面积.若三角形的三边长分别为 a,b,c, 则其面积 S= pp-ap-bp-c,这里 p=a+2b+c.已知在△ABC 中, BC=6,AB=2AC,求当△ABC 的面积最大时,sin A 的值. [析题建模] 由海伦公式,结合基本不等式,求出△ABC 的面积最大时 边 AB 及 AC 的长.再由余弦定理求出 cos A,进而求出 sin A.
6.4.3 余弦定理、正弦定理
明确目标
发展素养
1.借助向量的运算,探索三角 1.通过对余弦定理、正弦定理的学习及运
形边长与角度的关系,掌握 用,提升直观想象、数学抽象和逻辑推
余弦定理、正弦定理.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章
解三角形
1
1.1 正弦定理和余弦定理
2
1.1.2 余弦定理
课前自主预习
பைடு நூலகம்
课堂互动探究
随堂知能训练
课时作业
3
目标了然于胸,让讲台见证您的高瞻远瞩
1.了解余弦定理的推导过程,掌握余弦定理及其推论. 2.能利用余弦定理解三角形,并判断三角形的形状.
4
课前 自 主 预 习
课 前 预 习 ········································· 明 确 目 标
21
类型二 判断三角形的形状 [例2] 在△ABC中,已知(a+b+c)(b+c-a)=3bc且 sinA=2sinBcosC,试确定△ABC的形状. [分析] 首先根据条件(a+b+c)(b+c-a)=3bc,利 用余弦定理求出一个角,再利用另一个条件,得到另外两 个角的关系,即可判断.
22
[解] ∵(a+b+c)(b+c-a)=3bc, ∴a2=b2+c2-bc. 又∵a2=b2+c2-2bccosA,则2cosA=1,∴A=60°. 又∵sinA=sin(B+C)=sinBcosC+cosBsinC= 2sinBcosC,∴sin(B-C)=0,∴B=C. 又∵B+C=120°,∴△ABC是等边三角形.
13
2.在解三角形的过程中,求某一个角有时既可以用余 弦定理,也可以用正弦定理,两种方案有什么利弊呢?
提示:用余弦定理求角时,运算量较大,但角与余弦 值是一一对应的,无须讨论;而用正弦定理求角时,运算 量较小,但由于在区间(0,π)上角与正弦值不是一一对应 的,一般情况下一个正弦值可对应两个角,往往要依据角 的范围讨论解的情况.
18
[点评] 1.解三角形时,应先分析题设条件,如本题属 于“SAS”型,先用余弦定理求a,在此基础上,可以利用余 弦定理计算角B或C的余弦值,也可以利用正弦定理计算角 B或C的正弦值.
2.常用余弦定理解答两类题目“SAS”型及“SSS”型.
19
变式训练1 已知在△ABC中,a:b:c=2: 6:( 3+1), 求△ABC的各角度数.
23
[点评] 判断三角形形状的方法 (1)利用正、余弦定理化角成边,利用代数运算求出三 边的关系; (2)由正、余弦定理化边为角,通过恒等变形及内角和 定理得到内角关系,从而判定形状.
24
变式训练2
在△ABC中,已知cos2
A 2

b+c 2c
(a,b,c分
别为角A,B,C的对边),判断△ABC的形状.
10
思考感悟
1.已知三角形任意两边与一角,借助于正、余弦定理 是否能求出其他元素?
11
提示:能.已知三角形两边与一角有如图所示的两种 情况:
12
图①中已知角A和边a,b,可先由正弦定理先求角B和 角C,继而可求边c.
图②中已知角A和边b,c,可先由余弦定理求边a,继 而可由正弦定理求角B和角C.
14
3.怎样用余弦定理判断三角形的形状? 提示:(1)在△ABC中,若a2<b2+c2,则0°<A<90°;反 之,若0°<A<90°,则a2<b2+c2. (2)在△ABC中,若a2=b2+c2,则A=90°;反之,若A =90°,则a2=b2+c2. (3)在△ABC中,若a2>b2+c2,则90°<A<180°;反之, 若90°<A<180°,则a2>b2+c2.
15
课堂 互 动 探 究
例 练 结 合 ········································· 素 能 提 升
16
典例导悟 类型一 利用余弦定理解三角形 [例1] 在△ABC中,已知b=3,c=2 3,A=30°,求 边a、角C和角B.
17
[解] 直接应用余弦定理: a2=b2+c2-2bccosA =32+(2 3)2-2×3×2 3×cos30°=3,∴a= 3. ∴cosB=a2+2ca2c-b2= 32×2+32×322-3 32=12. ∴B=60°,∴C=180°-A-B=180°-30°-60°=90°.
25
解:在△ABC中,由已知cos2A2=b+2cc得 1+2cosA=b2+cc,∴cosA=bc. 根据余弦定理得b2+2cb2c-a2=bc, ∴b2+c2-a2=2b2,即a2+b2=c2. ∴△ABC是直角三角形.
5
新知初探 1.余弦定理 三角形中任何一边的平方等于其他两边的平方的和减 去这两边与它们的夹角的余弦的积的两倍.即
6
若a,b,c分别是△ABC的顶点A,B,C所对的边 长,则
a2=__b_2_+__c_2_-__2_b_c_c_o_s_A__, b2=__a_2_+__c_2_-__2_a_c_c_o_s_B__, c2=__a_2_+__b_2_-__2_a_b_c_o_s_C__.
7
2.余弦定理的推论 余弦定理揭示了三角形中两边及其夹角与对边之间的 关系,它的另b一2+种c2表-达a2形式是 cosA=_____2_b_c______,
a2+c2-b2 cosB=_____2_a_c______,
a2+b2-c2 cosC=_____2_a_b______.
8
须知余弦定理是勾股定理的推广,勾股定理是余弦定 理的特例.角A为钝角⇔__a_2_>_b_2_+__c_2___,角A为直角⇔ __a_2_=__b_2_+__c_2_,角A为锐角⇔___a_2_<_b_2+___c2__.
20
解:∵a:b:c=2: 6:( 3+1), 令a=2k,b= 6k,c=( 3+1)k(k>0). 由余弦定理的推论得 cosA=b2+2cb2c-a2=26×+ 6×3+ 132+-14= 22,∴A=45°. cosB=a2+2ca2c-b2=42+×2×3+ 13+2-16 =12,∴B=60°. ∴C=180°-A-B=180°-45°-60°=75°.
9
3.利用余弦定理可解决的两类问题 余弦定理的每一个等式中都包含四个不同的量,它们 分别是三角形的三边和一个角,知道其中的三个量,代入 等式,便可求出第四个量来. 利用余弦定理可以解决以下两类解斜三角形的问题: (1)已知三边,求_各__角__; (2)已知两边和它们的夹角,求第__三__边__和__其__他__两___个__角_.
相关文档
最新文档