高中数学解题模型化及应用
高中数学通用模型解题方法及技巧
高中数学通用模型解题方法及技巧有许多的高中生是特别的想知道,高中数学通用模型的解题方法和技巧有哪些的,我整理了相关信息,盼望会对大家有所关心!高中数学通用模型解题有什么高考数学经典解题技巧一、选择题解答模型策略近几年来,陕西高考数学试题中选择题为10道,分值50分,占总分的33.3%。
注意多个学问点的小型综合,渗逶各种数学思想和方法,体现基础学问求深度的考基础考力量的导向,使作为中低档题的选择题成为具备较佳区分度的基本题型。
精确是解答选择题的先决条件。
选择题不设中间分,一步失误,造成错选,全题无分。
所以应认真审题、深化分析、正确推演、谨防疏漏;初选后仔细检验,确保精确。
快速是赢得时间,猎取高分的秘诀。
高考中考生“超时失分”是造成低分的一大因素。
对于选择题的答题时间,应当掌握在30分钟左右,速度越快越好,高考要求每道选择题在1~3分钟内解完。
一般地,选择题解答的策略是:①娴熟把握各种基本题型的一般解法。
②结合高考单项选择题的结构(由“四选一”的指令、题干和选择项所构成)和不要求书写解题过程的特点,敏捷运用特例法、筛选法、图解法等选择题的常用解法与技巧。
③挖掘题目“共性”,寻求简便解法,充分利用选择支的示意作用,快速地作出正确的选择。
二、填空题解答模型策略填空题是一种传统的题型,也是高考试卷中又一常见题型。
陕西高考中共5个小题,每题5分,共25分,占全卷总分的16.7%。
依据填空时所填写的内容形式,可以将填空题分成两种类型:一是定量型,要求同学填写数值、数集或数量关系,如:方程的解、不等式的解集、函数的定义域、值域、最大值或最小值、线段长度、角度大小等等。
由于填空题和选择题相比,缺少选择支的信息,所以高考题中多数是以定量型问题消失。
二是定性型,要求填写的是具有某种性质的对象或者填写给定的数学对象的某种性质,如:给定二次曲线的准线方程、焦点坐标、离心率等等。
在解答填空题时,基本要求就是:正确、快速、合理、简捷。
高中数学抛物线的一个重要模型(模型解题法)
DO yAFBClx【模型解题法】高中数学抛物线焦点弦模型【模型思考】过抛物线焦点的直线,交抛物线于A B 、两点,则称线段AB 为抛物线的焦点弦。
过抛物线)0(22>=p px y 的焦点弦AB 的端点,A B 分别抛物线准线l 的垂线,交l 于D C 、,构成直角梯形ABCD (图1).这个图形是抛物线 问题中极为重要的一个模型,围绕它可以生出许 多重要的问题,抓住并用好这个模型,可以帮助 我们学好抛物线的基本知识与基本方法,同时, 它又体现了解析几何的重要思想方法。
在图1中, 有哪些重要的几何量可以算出来?又可以获得哪 些重要结论呢?【模型示例】设直线AB 的倾角为θ,当=90AB x θ⊥轴()时,称弦AB 为通径。
例1. 求通径长. 例2. 求焦点弦AB 长. 例3. 求AOB ∆的面积.例4. 连,(2)CF DF CF DF ⊥,求证图.例5. 设准线l 与x 轴交于点E ,求证:FE 是CE 与DE 的比例中项,即 2FE CE DE =⋅.例6. 如图3,直线AO 交准线于C ,求证:直线 x BC //轴. (多种课本中的题目) 例7.设抛物线)0(22>=p px y 的焦点为F ,经过点F 的直线交抛物线于B A ,两点.点C在抛物线的准线上,且x BC //轴. 证明直线AC 经过原点. 例8. 证明:梯形中位线MN 长为2sin pθ. 例9. 连,AN BN AN BN ⊥、图(5),证明:. 例10. 求证:以线段AB 为直径的圆与准线相切. 例11. 连NF ,证明:NF ⊥AB ,且2NFAF BF =⋅.例12. 已知抛物线y x 42=的焦点为F ,AB 是抛物线的焦点弦,过A 、B 两点分别作抛物线的切线,设其交点为M.(I )证明:点M 在抛物线的准线上; (Ⅱ)求证:FM →·AB →为定值; FBAy图1【模型解析】设直线AB 的倾角为θ,当=90AB x θ⊥轴()时,称弦AB 为通径。
高中数学教学中数学建模思想的应用研究
高中数学教学中数学建模思想的应用研究数学建模思想是一种重要的数学思想方法,它在高中数学教学中有着广泛的应用。
通过建立数学模型,学生可以更好地理解数学知识,提高解决实际问题的能力。
本文将从以下几个方面探讨高中数学教学中数学建模思想的应用。
一、数学建模思想的概念和重要性数学建模思想是指通过对抽象数学模式的建立,使学生在灵活驾驭各类数学思想与数学方法的基础上解决实际问题的思维模式与思维过程。
它是高中数学中应着力培养的重要数学思想方法,更是引领学生深层次把握数学内涵的关键所在。
二、高中数学教学中数学建模思想的应用1. 教学内容的改革在高中数学教学中,教师应将数学建模思想充分融入到整个数学教学过程中。
教学内容应该基于实例,通过引入新的数学知识点,并最终回归到数学应用中。
例如,在教授函数知识时,教师可以引入一些实际问题,如人口增长、股票价格波动等,让学生通过建立数学模型来解决问题。
2. 教学过程的改革在教学过程中,教师应注重培养学生的数学建模能力。
首先,要引导学生发现问题,通过提出假设和猜想,建立数学模型。
其次,要让学生学会如何求解模型,包括使用适当的数学工具和方法。
最后,要让学生学会如何评估和验证模型的有效性和准确性。
3. 教学方法的改革教学方法是实现教学目标的重要手段。
在高中数学教学中,教师应采用多种教学方法,如案例教学、探究式教学、合作学习等。
这些方法可以帮助学生更好地理解数学知识,提高解决实际问题的能力。
例如,在教授线性规划时,教师可以采用案例教学的方法,让学生通过建立数学模型解决实际问题。
三、结论高中数学教学中数学建模思想的应用是提高学生解决实际问题能力的重要途径。
通过将数学建模思想融入到整个数学教学过程中,教师可以帮助学生更好地理解数学知识,提高解决实际问题的能力。
同时,这也为高中数学课堂注入了新的活力和生机。
因此,高中数学教师应注重培养学生的数学建模能力,为学生的未来发展奠定坚实的基础。
四、教学建议1. 增强教师的数学建模意识教师是实施数学建模思想的关键。
例谈波利亚解题模型在高中数学解题教学中的应用
谈学论教波利亚解题模型是一种经典的解题模型,在概率论、函数论等专业的研究中都有显著的作用.按照波利亚解题模型解题大体可以分为四个步骤,即理解问题—制定计划—实施计划—回顾与思考.“理解问题”是指理解题目的意思,弄清已知条件是什么,所求的目标是什么.这是解题的前提,学生只有读懂题意,才能快速找到解题的思路.“制定计划”是指联系已知条件和所求目标,寻找解题的思路.这是解题的关键,教师可引导学生由题目中的关联知识点进行联系或者对问题进行转化,进而确定解题的思路.“实施计划”是根据前面制订的解题思路,利用已学的知识和方法解决问题.在这一步中,教师要注意引导学生结合已学的知识和方法合理进行推理、运算,确保得出正确的结论.“回顾与思考”是指对整个解题过程进行回顾、反思、总结.很多学生经常会忽略这一步,教师要让学生明确这一步骤的重要性,提醒他们在解题完成后注意对题目进行回顾与思考.教师将波利亚解题模型应用到解题教学中,引导学生按照这四个步骤去解题,可以帮助他们养成良好的解题习惯.例题:已知正项等比数列{a n }的前n 项和为S n ,a 1=2,2S 2=a 2+a 3.(1)求数列{a n }的通项公式;(2)设b n =2n -1a n,求数列{b n }的前n 项和.教师可引导学生运用波利亚解题模型来解题.第一步,教师可让学生先尝试自己读题,理解题目的意思,明确已知的和未知的内容以及所求的目标.通过审题,学生们纷纷表示:已知的内容有数列a n 的首项、第二项与第三项的和、{a n }为正项等比数列;所求的目标是数列{a n }、{b n }的通项公式以及{b n }的前n 项和.第二步,教师可引导学生将已知条件和所求目标联系起来,并由“等比数列的通项公式”“数列{b n }的前n 项和”展开联想.学生通过讨论、分析,逐步找到解题的思路:对于第一个问题,需先根据等比数列的性质、前n 项求和公式求出求出{a n }的首项和公比,然后利用等比数列的通项公式求出数列{a n }的通项公式.对于第二个问题,要先根据数列{a n }的通项公式求出{b n }的通项公式,然后利用错位相减法求出数列{b n }的前n 项和.第三步,教师可要求学生按照上述思路来解题.学生得到了如下的解题过程:(1)设数列{a n }的公比为q (q >0),∵2S 2=a 2+a 3,∴2(a 1+a 2)=a 1q +a 2q ,∴q =2,∴a n =2⋅2n -1=2n .(2)由(1)可得b n =2n -12n ;设{b n }的前n 项和为T n ,则T n =1×12+2×(12)2+5×(12)3+⋯+(2n -3)×(12)n -1+(2n -1)×(12)n ①,又12T n =1×(12)2+3×(12)2+⋯+(2n -3)×(12)n +(2n -1)×(12)n +1②,由①-②得:12T n =12+2×(12)2+2×(12)3+⋯+(12)n -(2n -1)×(12)n +1,即12T n =12+12[1-(12)n -1]1-12-(2n -1)×(12)n +1,即12T n =12+1-(12)n ⋅2-(2n -1)×(12)n +1,∴T n =3-4⋅(12)n -(2n -1)×(12)n ,∴T n =3-(2n +3)×(12)n .第四步,在解题完成后,教师要引导学生对该题进行回顾和反思.通过总结和反思,有的学生表示:本题主要考查等比数列的性质、通项公式以及错位相减法;有的学生认为:本题属于中等难度的题目;有的学生表示:解答本题第一问的关键是求出数列{a n }的首项和公比,第二问的关键是利用错位相减法求和;有的学生认为:第二问比较难,难点在于计算……通过这样的总结,学生便能掌握此类问题的本质,也明确了解答此类问题的方法和技巧,并学会举一反三.在高中数学解题教学中应用波利亚解题模型,不仅可以提高学生的解题效率,还能帮助他们养成良好的解题习惯.在实际教学的过程中,教师可以将该解题模型细化,引导学生对解题的过程、思路进行深入的分析.(作者单位:贵州省湄潭县求是高级中学)李辉55Copyright©博看网 . All Rights Reserved.。
数学建模在高中数学教学中的应用案例
数学建模在高中数学教学中的应用案例数学建模是一种将现实问题转化为数学问题,并通过数学方法进行求解的过程。
它不仅能提高学生的数学思维能力和解决实际问题的能力,还能激发学生对数学的兴趣。
在高中数学教学中,数学建模已经逐渐得到应用。
本文将以几个实际案例来探讨数学建模在高中数学教学中的应用。
案例一:城市交通流量优化城市交通拥堵一直是人们头疼的问题。
如何合理规划城市道路,优化交通流量,成为了城市规划师们的重要任务。
在高中数学课堂中,可以通过数学建模来让学生了解交通流量优化的原理和方法。
首先,学生可以通过观察城市道路交通流量的数据,了解不同时间段和不同道路的交通流量情况。
然后,他们可以使用数学模型,如线性规划模型,来分析交通流量的变化规律,并提出相应的优化方案。
通过这种方式,学生不仅能够学习到线性规划的基本原理,还能将其应用到实际问题中。
案例二:环境污染治理环境污染是当前社会面临的严重问题之一。
在高中数学教学中,可以通过数学建模来让学生了解环境污染治理的方法和效果。
学生可以通过收集环境污染数据,了解不同因素对环境污染的影响。
然后,他们可以使用数学模型,如微分方程模型,来模拟环境污染的传播和变化过程,并提出相应的治理方案。
通过这种方式,学生不仅能够学习到微分方程的基本原理,还能将其应用到实际问题中。
案例三:金融风险评估金融风险评估是金融领域的重要工作之一。
在高中数学教学中,可以通过数学建模来让学生了解金融风险评估的方法和意义。
学生可以通过收集金融市场数据,了解不同金融产品的风险情况。
然后,他们可以使用数学模型,如概率模型,来评估金融产品的风险水平,并提出相应的风险控制方案。
通过这种方式,学生不仅能够学习到概率论的基本原理,还能将其应用到实际问题中。
通过以上几个案例,我们可以看到数学建模在高中数学教学中的应用是非常广泛的。
通过数学建模,学生不仅能够学习到数学的基本知识和技能,还能培养他们的实际问题解决能力和创新精神。
高中数学数学建模的基本步骤和应用
高中数学数学建模的基本步骤和应用在高中数学学习中,数学建模是一项重要的技能,它将已学知识应用于实际问题的解决过程中。
本文将介绍高中数学数学建模的基本步骤和应用。
一、基本步骤1. 问题理解与分析:首先,我们需要理解和分析给定的问题。
明确问题的背景、条件和目标,确保对问题有全面的理解,并能提炼出关键信息。
2. 建立数学模型:在理解问题基础上,我们需要建立数学模型来描述问题。
数学模型是对实际问题的抽象与简化,通常由数学方程、函数或图形表示。
选择合适的模型是解决问题的关键。
3. 模型求解:一旦建立了数学模型,我们就需要求解模型以得到问题的解。
根据具体情况,可以采用解析方法、数值方法或计算机模拟等方式进行求解。
4. 模型验证与优化:完成模型求解后,我们应该对模型进行验证和优化。
验证是指根据问题的实际情况,对模型的可靠性和实用性进行检验。
优化是指对模型进行修改和改进,以得到更准确和可行的结果。
5. 模型分析与应用:最后,我们需要对求解结果进行分析和应用。
分析是指对结果进行解释和说明,找出问题的规律和特点。
应用是指利用结果解决实际问题,为决策提供科学依据。
二、应用案例1. 食品配送问题:假设一家餐厅需要将食品从仓库送到不同的客户处,每个客户对食品的需求量不同,仓库到客户的距离也不同。
我们可以建立数学模型,将餐厅、仓库和客户看作点,建立起点、路径和终点间的数学关系。
通过模型求解,确定最佳配送路径,以提高配送效率和降低成本。
2. 疫情传播模型:在疫情爆发时,我们可以利用数学建模来研究疫情的传播规律和控制策略。
例如,可以建立传染病传播的差分方程模型,通过调整模型中的参数,预测疫情的传播趋势,评估防控措施的效果,为疫情防控提供科学依据。
3. 人口增长模型:人口增长是一个复杂而重要的问题。
通过建立人口增长的微分方程模型,我们可以研究人口数量的变化趋势和影响因素,了解人口增长与资源分配、环境保护等问题之间的关系,以制定科学的人口政策。
高中数学中的解题模型教案
高中数学中的解题模型教案
课题:解题模型
教材:高中数学教材
目标:学生能够掌握常见数学问题的解题模型,提高解题能力。
教学内容:
1. 引入:解题模型在解决数学问题中的重要性和作用。
2. 概念:解题模型是指解决数学问题时的一种规范化的思维方式,通过建立模型、分析问题、推导解答等步骤,找到问题的解答。
3. 培养学生制定解题模型的能力:通过实例讲解和练习,教导学生如何在遇到数学问题时,找到适合的解题模型,并灵活运用。
4. 练习:对不同类型的数学问题,进行实例讲解和练习,巩固学生的解题模型运用能力。
5. 总结:总结本节课所学的解题模型,强调灵活运用解题模型的重要性。
教学活动:
1. 以问题为导向,引导学生通过思考、讨论,找到适合的解题模型。
2. 分组练习,让学生在合作中互相交流、讨论,并找出最佳解题方法。
3. 在课堂上进行实例讲解,并指导学生如何运用解题模型解决不同类型的数学问题。
4. 布置作业,让学生在家中巩固所学内容。
教学评估:
1. 通过课堂练习和作业,检验学生是否掌握了解题模型的使用方法。
2. 观察学生的课堂表现,看是否能够灵活运用解题模型解决数学问题。
3. 与学生进行交流,了解他们对解题模型的理解和反馈。
教学反思:
根据学生的表现和反馈,及时调整教学方法,帮助学生更好地掌握解题模型,提高解题能力。
高中数学解题大模型
高中数学解题大模型随着高中数学的不断发展,解题技巧也在不断的深入探索。
高中数学的解题是一门系统性的研究,解题模型也是一个重要的组成部分。
解题模型是指用某种格式或形式,把问题解决的方法表达出来,且表达形式应当比较完整,从而使问题得到解决。
在解题模型的研究中,有一系列常用的、核心的解题模型,这些模型在高中数学解题中都有其重要的作用。
下面将介绍几种最常用的解题模型。
1、概率解题模型。
概率解题模型用来解决概率的计算问题,其基本形式为:某事件的概率=此事件的发生的次数/可能发生的所有事件的次数。
概率解题模型在高中数学中有着广泛的应用。
2、数列解题模型。
数列解题模型是高中数学解题中最重要的一种模型,用来解决数列的求和、求平均数等问题。
这种模型一般采用数列通项公式的形式,通过构造数列公式,对一定规律的数列求出其求和、求平均数等关键数据。
3、二次函数解题模型。
二次函数解题模型是高中数学中常见的一种解题模型,指的是将二次函数的图像、周长、最大值、最小值、极值点、凹凸性等问题,用二次函数的函数表达式或变量关系来解决。
4、排列组合计算模型。
排列组合计算模型是指从所有可能的排列组合中选出满足某一要求的排列组合的个数,此类问题通常采用“排列组合数公式”的形式进行求解。
5、几何解题模型。
几何解题模型是指用直线、圆、三角形、椭圆等图形的性质来解决几何问题的模型,其中最重要的两个性质是“相似性”和“平行性”。
通过这两个性质,一些复杂的几何问题可以被轻松解决。
6、比例解题模型。
比例解题模型是指用比例关系解决问题的模型,它是高中数学中最常用的解题模型之一,它可以用来解决比例关系问题,如比例结合题、比例平分题、比例比较题等。
7、函数解题模型。
函数解题模型是指用函数的单调性和凹凸性来解决函数的一类问题,它是高中数学解题中常用的一种模型,有着广泛的应用。
以上就是高中数学解题模型大全,在高中数学解题中,这些模型都有重要的作用,对于学生们,要掌握这些模型,把它们正确的应用到解题中,以便解决问题。
快解高中数学143模型
快解高中数学143模型数学模型在现实生活中扮演着重要的角色,能够帮助人们理解和解决各种实际问题。
在高中数学教学中,143模型被广泛地应用于各类数学题目的解决过程中。
本文将以实际案例为依据,通过快速解析高中数学143模型,帮助读者更好地理解和掌握该模型的应用。
案例一:图形的变换假设有一辆卡车,长为8m,宽为2m,高为3m,在运输过程中,将其放入一船箱中,该箱的尺寸为10m×3m×5m,问是否能够容纳?解析:这个问题可以转化为求箱子的体积是否大于卡车的体积。
我们可以先计算卡车的体积,即8m × 2m × 3m = 48m³。
接下来计算箱子的体积,即10m × 3m × 5m =150m³。
由此可知,箱子的体积大于卡车的体积,因此可以容纳卡车。
案例二:数列的求和已知数列{an}的通项公式为an = 3n² + 2n + 1,试求该数列的前n项和。
解析:对于此类数列,我们可以利用143模型中的求和公式来求解。
首先,我们要明确该数列的首项和公差,通过观察可以得知,a₁ = 6,d = 4。
接下来,我们可以利用求和公式Sₙ = (a₁ + aₙ) * n/2来计算前n项和。
将已知的数值代入公式中,得到Sₙ = (6 + (3n² + 2n + 1)) * n/2。
化简后,得到Sₙ = (3n³ + 5n² + 3n)/2。
案例三:函数的应用某人在市场上购买一个商品,它的价格随销量的增加而变动。
已知当销量为10时,该商品的价格为100元,当销量为30时,价格为200元。
问当销量为20时,商品的价格是多少?解析:这个问题可以通过函数的应用来解决。
假设动态函数f(x)表示商品的价格,其中x表示销量。
根据已知信息,我们可以列出两个点的坐标:(10, 100)和(30, 200)。
利用两点式求出直线的方程为f(x) = 6x - 40,其中x表示销量,f(x)表示价格。
143个高中高频数学解题模型
143个高中高频数学解题模型一、一元一次方程与一元一次方程组1. 一元一次方程的定义一元一次方程指的是只含有一个变量,并且最高次数为一的方程,通常表示为ax+b=0。
解一元一次方程的方法主要有求解法和图解法。
2. 一元一次方程组的概念一元一次方程组指的是由若干个一元一次方程组成的方程组,通常表示为a1x+b1y=c1a2x+b2y=c2解一元一次方程组的方法主要有代入法、加减法和等系数消去法。
二、一元二次方程与一元二次不等式1. 一元二次方程的特点一元二次方程指的是最高次数为二的方程,通常表示为ax^2+bx+c=0。
解一元二次方程的方法主要有配方法和求根公式。
2. 一元二次不等式的解法一元二次不等式指的是最高次数为二的不等式,通常表示为ax^2+bx+c>0或ax^2+bx+c<0。
解一元二次不等式的方法主要有因式分解法和图像法。
三、二元二次方程与二元二次不等式1. 二元二次方程的定义二元二次方程指的是含有两个变量且最高次数为二的方程,通常表示为ax^2+by^2+cxy+dx+ey+f=0。
解二元二次方程的方法主要有配方法和消元法。
2. 二元二次不等式的概念二元二次不等式指的是含有两个变量且最高次数为二的不等式。
解二元二次不等式的方法主要有图解法和代数法。
四、指数与对数1. 指数的基本性质指数是幂运算的一种表示方式,有基本性质包括乘法法则、除法法则和零指数法则。
2. 对数的基本概念对数是幂运算的逆运算,有基本性质包括对数的乘除法则和对数的换底公式。
五、三角函数与解三角形1. 三角函数的基本性质三角函数包括正弦函数、余弦函数和正切函数,有基本性质包括奇偶性、周期性和对称性。
2. 解三角形的基本方法解三角形主要包括利用三角函数和利用三角恒等式两种方法,主要应用于解直角三角形和不定角三角形。
六、平面向量的运算1. 平面向量的基本定义平面向量是具有大小和方向的量,有基本运算包括数乘、加法和减法。
高中数学解题指导八个无敌模型全搞定空间几何的外接球和内切球问题
高中数学解题指导八个无敌模型全搞定空间几何的外接球和内切球问题八个有趣模型——搞定空间几何体的外接球与内切球类型一、墙角模型墙角模型是指三条线段两两垂直的几何体,通过公式(2R) = a + b + c,即2R = a^2 + b^2 + c^2,可以求出其外接球半径R。
例1:1)已知顶点都在同一球面上的正四棱柱的高为4,体积为16,求该球的表面积。
解:由V = ah = 16,得a = 2,4R = a + a + h = 4 + 4 + 16 = 24,S = 24π,答案为C。
2)若三棱锥的三个侧面两两垂直,且侧棱长均为3,求其外接球的表面积。
解:由2R = a + b + c = 3 + 3 + 3 = 9,得R = 9/4,S =4πR^2 = 9π。
3)在正三棱锥S-ABC中,M、N分别是棱SC、BC的中点,且AM⊥MN,若侧棱SA = 23,求正三棱锥S-ABC外接球的表面积。
解:由墙角模型的特点可知,正三棱锥的对棱互垂直。
连接AB、BC的中点D、E,连接AE、CD,交于H,则H是底面正三角形ABC的中心。
由AM⊥MN,SB//MN,可得AM⊥SB,AC⊥SB,故SB⊥平面SAC,SB⊥SA,SB⊥SC,即SB⊥SA,BC⊥SA,故SA⊥平面SBC,SA⊥SC。
因此,三棱锥S-ABC的三棱条侧棱两两互相垂直,由2R^2 = 23^2 + 23^2 + 23^2 = 36,得R^2 = 9,S = 36π。
类型二、棱台模型棱台模型是指上底面和下底面都是正多边形,且两底面中心连线与侧棱垂直的几何体。
通过勾股定理和相似三角形,可以求出其外接球半径R和内切球半径r。
例2:1)已知棱台的上底面和下底面都是正三角形,上底边长为3,下底边长为6,侧棱长为5,求其外接球半径R和内切球半径r。
解:由勾股定理可得棱台的高为4√3.设外接球半径为R,内切球半径为r,则有R/r = (a + b + c)/(a + b - c) = (3 + 6 +5)/(3 + 6 - 5) = 7,解得R = 7r。
波利亚解题模型在高中数学解题教学中的运用分析
波利亚解题模型在高中数学解题教学中的运用分析冯㊀洁(江苏省常州市龙城高级中学ꎬ江苏常州213000)摘㊀要:培养高中生数学解题能力ꎬ是判断学生知识掌握和应用情况的关键指标ꎬ同时也是提升学生学习兴趣的重要途径.鉴于当前高中生在解题中面临的重重困难ꎬ科学融入波利亚解题模型ꎬ可促使学生在 理清题意㊁制定计划㊁执行计划㊁检验与回顾 的解题流程中高效解答题目ꎬ逐渐提升学生的解题能力.本文聚焦于此ꎬ结合解题实践ꎬ针对波利亚解题模型在数学解题中的应用展开了详细探究.关键词:高中数学ꎻ解题能力ꎻ波利亚解题模型ꎻ课堂教学中图分类号:G632㊀㊀㊀文献标识码:A㊀㊀㊀文章编号:1008-0333(2023)30-0014-03收稿日期:2023-07-25作者简介:冯洁(1996.11-)ꎬ女ꎬ江苏省溧阳人ꎬ硕士ꎬ中小学二级教师ꎬ从事高中数学教学研究.㊀㊀波利亚解题模型源于波利亚«怎样解题:数学思维的新方法».在该书中ꎬ波利亚紧紧围绕 解决数学问题 这一中心任务ꎬ提出了 波利亚解题模型 ꎬ倡导学生在解题时ꎬ应遵循 理清题意 制定计划 执行计划 检验与回顾 四个流程开展.其中ꎬ 理清题意 即为理解题目意思㊁明确题目已知条件㊁所求问题等ꎬ这是学生高效解题的关键ꎻ 制定计划 是联系题目已知条件㊁所求问题ꎬ运用所学的知识进行思考ꎬ寻找解题思路ꎻ 执行计划 则是依据上一个阶段中制定的解题思路ꎬ利用所学的知识㊁方法进行推理㊁运算ꎬ最终得出正确的结论ꎻ 检验与回顾 则是对整个解题过程进行回顾㊁反思㊁总结ꎬ在检验解题正确与否的基础上ꎬ进行知识积累ꎬ并为学生后续的解题奠定基础[1].鉴于波利亚思想的内涵ꎬ将其应用到高中数学解题教学中ꎬ已经成为一线教师研究的重点.1高中数学解题教学状况1.1解题教学驱动性不足ꎬ学生学习积极性较低新课标执行前期ꎬ高中数学解题教学大多仍以讲解式教学和练习式教学为主.讲解式教学由教师主导ꎬ注重对问题进行剖析和讲解ꎬ学生处于被动学习状态ꎻ练习式教学则以学生为主体ꎬ对学生自主学习能力和独立思考能力要求较高.因此ꎬ教师教学设计不够全面ꎬ教学模式趣味性较低ꎬ导致解题教学驱动性不足ꎬ学生学习缺乏主动性等现象在讲解式教学和练习式教学中都有体现.在讲解式教学中的体现为学生注意力不集中ꎬ打瞌睡㊁走神等现象频发ꎻ在练习式教学中的体现为学生解题效率较低㊁正确度较低.例如ꎬ教师在讲解 椭圆的标准方程 相关的知识点时ꎬ会在引导学生进行等式的化简后推导出椭圆的标准方程ꎬ但因为学生对于等式的化简存在困难ꎬ而课堂时间有限ꎬ造成学生缺少练习时间ꎬ教师也需要进行后续的讲解.这造成 一步慢ꎬ步步慢 的情况ꎬ学生也无法跟上教师后续的讲解进度ꎬ学习自信心也会受到打击.1.2解题教学创新性不足ꎬ难以培养学生核心素养新课程标准指出ꎬ高中数学教学需要在传授知识的基础上培养学生的运用能力㊁创新精神㊁核心素养等综合能力.数学习题每年都会迎来一定的创新ꎬ41虽然考查的内容大体相同ꎬ但解题思路会发生一定的改变.前期高中数学教师因为没有针对性地培养学生的解题能力和核心素养ꎬ导致学生掌握了某一个问题的解题方法ꎬ并未掌握这一类题型的解题方法.例如ꎬ教师在讲解 已知函数f(x)=ln(x+x2+1)ꎬ若实数aꎬb满足f(a)+f(b-1)=0ꎬ则a+b=? 这一问题的核心在于观察f(x)在定义域内是增函数还是减函数.教师在讲解时也会按部就班地完成讲解ꎬ但在实际过程中缺乏引导学生深度思考的过程ꎬ导致学生只能将解题方法运用到这一个题目上ꎬ无法触类旁通.1.3忽视回顾与反思环节ꎬ解题教学有效性不足回顾反思作为解题教学的收尾阶段ꎬ其具有帮助学生查漏补缺㊁增强学生记忆力㊁提升学生解题思维的重要作用.但在当前高中数学教学中ꎬ仍有部分教师忽视回顾反思教学开展ꎬ导致解题教学有效性不足.以 立体几何初步 这一章节知识点为例ꎬ教师在讲解完成之后会为学生布置相关的复习任务ꎬ如进行习题训练等.因为教师并未了解学生的实际学情ꎬ其很难针对性地布置复习任务ꎬ因此大部分教师会选择 题海战术 ꎬ试图通过量变来引起质变.并且ꎬ学生在完成复习任务之后教师的评价也极其简单ꎬ大都只有几个 对钩 或者一个 阅 字ꎬ复习任务的有效性难以充分体现ꎬ学生也无法根据教师的评价确定自身的问题.久而久之ꎬ学生的复习积极性会不断降低ꎬ学习压力也会因为题海战术不断增加.2波利亚解题模型在高中数学解题教学中的实践应用㊀㊀为对波利亚解题模版在解题中的应用展开深入研究ꎬ笔者结合以下两道题目进行了详细的探究:例1㊀已知正项等比数列an{}的前n项和为Snꎬa1=2ꎬ2S2=a2+a3求:(1)等比数列an{}的通项公式? (2)设bn=2n-1anꎬ求数列bn{}的前n项和?基于波利亚解题模型ꎬ在解答这一问题时ꎬ可从以下四个方面进行:第一ꎬ理清题意.引导学生自己读题㊁审题ꎬ理解题目的含义ꎬ明确题目中的已知条件㊁未知内容㊁所求目标等.在本题中学生经过审题ꎬ理清了题目中已知条件㊁所求目标.其中ꎬ已知条件:数列an{}的首项㊁第二项和第三项的和㊁an{}是正项等比数列ꎻ所求目标:数列an{}㊁bn{}的通项公式ꎬ以及bn{}的前n项和?第二ꎬ制定计划.本阶段是形成解题思路的核心ꎬ主要是聚焦所求的问题ꎬ围绕已知量和未知量之间的关系进行探究ꎬ并在此基础上形成解题思路.在本题目中ꎬ先将题目中已知条件和所求问题联系起来ꎬ并由 等比数列的通项公式㊁数列bn{}的前n项和 展开联想.在此基础上通过讨论㊁分析ꎬ逐渐形成本题目的解题思路:针对(1)来说ꎬ需要借助等比数列的性质ꎬ前n项和求和公式ꎬ将an{}的首项和公比q求出来ꎻ针对(2)来说ꎬ则需要借助数列an{}的通项公式ꎬ将bn{}的通项公式求出来.接着再利用错位相减的方法ꎬ将bn{}前n项和求出来.第三ꎬ执行计划.主要是按照上述设计的解题思路进行解答.在本题目中根据上述分析所形成的解题思路ꎬ按照如下步骤执行解题:(1)设数列an{}公比为q(q>0)ꎬ因为2S2=a2+a3ꎬ所以2(a1+a2)=a1q+a2qꎬq=2所以an=2 2n-1=2n(2)根据题目(1)得出:bn=2n-1an=2n-12nꎬ假设bn{}的前n项和为Tn则Tn=1ˑ12+2ˑ(12)2+5ˑ(12)3+ +(2n-3)ˑ(12)n-1+(2n-1)ˑ(12)n①又因为12Tn=1ˑ(12)2+3ˑ(12)2+ +(2n-3)ˑ(12)n+(2n-1)ˑ(12)n+1②由①-②得出:5112Tn=12+2ˑ(12)2+2ˑ(12)3+ +(12)n-(2n-1)ˑ(12)n+1即12Tn=12+1-(12)nˑ2-(2n-1)ˑ(12)n+1所以Tn=3-4ˑ(12)n-(2n-1)ˑ(12)n=3-(2n+3)ˑ(12)n第四ꎬ检验与回顾.这一环节主要是解题完成之后对其进行检验ꎬ看其是否正确.同时ꎬ在这一阶段中ꎬ还应及时进行反思和积累ꎬ为学生后续解题奠定基础.在本题目解答完毕后ꎬ就先引导学生开展检验ꎬ之后围绕整个解题过程进行反思和总结.对此ꎬ有的学生表示本题目中主要围绕等比数列的性质㊁通项公式㊁错位相减法进行了考查ꎻ还有的学生在总结中提出了解答第一问数列an{}的首项和公比q是关键ꎻ也有的学生在总结中提出了本题的难点在于第二问ꎬ关键是运算[2].如此ꎬ学生通过反思与总结ꎬ不仅掌握了这一类型数学解题的解答技巧ꎬ也学会了知识的迁移和应用ꎬ真正提升了学生的举一反三能力.3高中数学波利亚解题教学启示波利亚模型是一种重要的㊁系统化的解题方式ꎬ将其应用到数学解题中ꎬ可促使学生在 理清题意 制定计划 执行计划 检验与回顾 的引导下ꎬ深入挖掘题目中已知条件和所求问题ꎬ并引导学生运用所学的知识寻求已知条件和未知条件的内在联系ꎬ最终将陌生的数学题目转化成为学生所熟悉的数学解题类型ꎬ以便于学生形成明确㊁清晰的解题思路.鉴于波利亚模型在数学解题中的应用价值ꎬ高中数学教师还应灵活开展课堂教学ꎬ引导学生在日常学习中逐渐掌握这一解题技巧和能力.首先ꎬ引导学生灵活应用波利亚 怎样解题 表.波利亚模型为学生提供了一个常规的解题思路ꎬ无论是简单的数学题目ꎬ还是复杂的数学题目ꎬ都可以按照这一思路展开.因此ꎬ为了引导学生真正掌握这一解题技巧ꎬ就应结合具体的题目ꎬ引领学生分析题目㊁确定目标㊁研究解题思路㊁解题实践等.如此ꎬ经过一段时间的训练之后ꎬ学生就会逐渐形成波利亚解题思维.其次ꎬ深层次挖掘波利亚解题思想观ꎬ培养学生的核心素养.根据波利亚解题的具体流程和内涵ꎬ对学生的审题能力㊁基础知识体系㊁数学思想㊁数学运算等都提出了更高的要求.鉴于此ꎬ高中数学教师在日常教学中ꎬ还应立足于波利亚解题的思想观ꎬ聚焦学生的核心素养设计课堂教学方案ꎬ全面加强学生基础知识㊁数学审题能力㊁数学抽象素养㊁常见数学思想教学ꎬ借助针对性的训练提升学生的数学综合素养.最后ꎬ重视检验与总结.波利亚解题模型中的四个步骤组成了一个系统化的解题体系.在实际应用中ꎬ部分教师常常忽视回顾和检验.鉴于此ꎬ在日常解题教学时ꎬ应给予足够的重视ꎬ引导学生完成解题之后及时进行反思ꎬ使学生在反思㊁总结中ꎬ领悟数学解题中蕴含的数学思想ꎬ内化数学知识ꎬ并提升自身的数学解题能力[3].综上所述ꎬ波利亚模型作为一种有效的解题工具ꎬ将其应用到数学解题中ꎬ不仅提升了学生的数学解题效率ꎬ也帮助学生逐渐形成了良好的解题习惯ꎬ真正提升了高中生的数学解题能力.鉴于此ꎬ高中数学教师在日常解题教学中ꎬ应基于针对性的练习题目ꎬ对波利亚解题模型进行细化ꎬ使学生在针对性的训练中ꎬ逐渐掌握这一解题技巧.参考文献:[1]李辉.例谈波利亚解题模型在高中数学解题教学中的应用[J].语数外学习(高中版上旬)ꎬ2021(5):55.[2]黄倩欣.基于波利亚解题理论的高中数学习题课教学研究[D].海口:海南师范大学ꎬ2020.[3]赵源.运用波利亚数学解题表进行高中解题教学的策略研究[J].数理化解题研究ꎬ2018(12):40-41.[责任编辑:李㊀璟]61。
(完整版)高中数学通用模型解题方法技巧总结
高中数学通用模型解题方法1. 对于集合,一定要抓住集合的代表元素,及元素的“确定性、互异性、无序性”。
中元素各表示什么?A表示函数y=lgx的定义域,B表示的是值域,而C表示的却是函数上的点的轨迹2 进行集合的交、并、补运算时,不要忘记集合本身和空集的特殊情况注重借助于数轴和文氏图解集合问题。
空集是一切集合的子集,是一切非空集合的真子集。
显然,这里很容易解出A={—1,3}.而B最多只有一个元素.故B只能是-1或者3。
根据条件,可以得到a=-1,a=1/3。
但是,这里千万小心,还有一个B为空集的情况,也就是a=0,不要把它搞忘记了。
3。
注意下列性质:要知道它的来历:若B为A的子集,则对于元素a1来说,有2种选择(在或者不在).同样,对于元素a2, a3,……a n,都有2种选择,所以,总共有种选择,即集合A有个子集.当然,我们也要注意到,这种情况之中,包含了这n个元素全部在何全部不在的情况,故真子集个数为,非空真子集个数为(3)德摩根定律:有些版本可能是这种写法,遇到后要能够看懂4. 你会用补集思想解决问题吗?(排除法、间接法)的取值范围。
注意,有时候由集合本身就可以得到大量信息,做题时不要错过;如告诉你函数f(x)=ax2+bx+c(a〉0) 在上单调递减,在上单调递增,就应该马上知道函数对称轴是x=1。
或者,我说在上 ,也应该马上可以想到m,n实际上就是方程的2个根5、熟悉命题的几种形式、∨∧⌝可以判断真假的语句叫做命题,逻辑连接词有“或”,“且”和“非”()()().命题的四种形式及其相互关系是什么?(互为逆否关系的命题是等价命题。
)原命题与逆否命题同真、同假;逆命题与否命题同真同假。
6、熟悉充要条件的性质(高考经常考)满足条件,满足条件,若;则是的充分非必要条件;若;则是的必要非充分条件;若;则是的充要条件;若;则是的既非充分又非必要条件;7. 对映射的概念了解吗?映射f:A→B,是否注意到A中元素的任意性和B中与之对应元素的唯一性,哪几种对应能构成映射?(一对一,多对一,允许B中有元素无原象.)注意映射个数的求法。
高中数学数学模型解题技巧
高中数学数学模型解题技巧高中数学作为一门重要的学科,常常涉及到各种数学模型的解题。
数学模型是将实际问题抽象化为数学问题的过程,通过建立数学模型,我们可以更好地理解和解决实际问题。
然而,对于许多学生来说,数学模型解题常常是一项难题。
本文将介绍一些高中数学数学模型解题的技巧,帮助学生更好地应对这类题目。
首先,了解题目背景和要求是解决数学模型问题的第一步。
在解题过程中,我们需要仔细阅读题目,理解题目所描述的实际情境,并确定问题的要求。
例如,假设我们遇到一个汽车行驶问题,题目给出了汽车的速度和行驶时间,我们需要通过建立数学模型来求解汽车行驶的距离。
在这个例子中,我们需要明确问题的背景是汽车行驶,要求是求解行驶距离。
其次,建立数学模型是解决数学模型问题的关键。
建立数学模型是将实际问题转化为数学问题的过程,需要根据题目所给的条件和要求,选择适当的数学工具和方法。
在建立数学模型时,我们可以使用代数、几何、函数等数学概念和方法。
例如,在解决汽车行驶问题时,我们可以使用速度、时间和距离之间的关系进行建模,利用速度等于距离除以时间的公式来求解行驶距离。
然后,运用数学方法求解数学模型问题。
在建立数学模型后,我们需要运用数学方法来求解问题。
这包括代数运算、方程求解、函数图像分析等数学技巧。
在解题过程中,我们需要根据题目的要求,选择合适的数学方法进行求解。
例如,在解决汽车行驶问题时,我们可以使用代数运算和方程求解的方法,通过代入已知条件和未知数,求解出行驶距离的值。
最后,检验和解释结果是解决数学模型问题的最后一步。
在解题过程中,我们需要对所得的结果进行检验和解释。
检验结果是为了确保所得的解符合实际情况和题目要求。
解释结果是为了对解的意义和实际应用进行解释和说明。
例如,在解决汽车行驶问题时,我们可以检验所得的行驶距离是否满足速度和时间的关系,同时解释结果是指汽车在给定速度下行驶了多远。
通过以上的解题技巧,我们可以更好地解决高中数学数学模型问题。
高中数学解题大招,解题模型,提分秘籍,高中家长都在看
高中数学解题大招,解题模型,提分秘籍,高中家长都在看高中数学是一个相对较难的学科,不少学生在学习时遇到了许多困难。
针对这个问题,以下是一些解题大招、解题模型和提分秘籍。
一、解题大招。
1.理清思路:在做数学题时,必须先理清思路,理清每一道题目的解题步骤,避免盲目求解。
2.画图分析:很多数学题都需要画图来解决问题。
画图有助于更好地理解问题、准确表达思维和从容解题。
3.建立数学模型:数学建模是一种数学智慧的应用,必须对不同题型建立相应的数学模型,可以把复杂的问题简单化,最终解决问题。
4.积极研究:积极研究教师发布的每道题目,分析题干和答案,多按照一定套路思考解题思路,提高解题技巧。
将解题困难部分列于数学笔记本上,应该随时找老师、同学讨论。
5.自己解题:在课后自主解题,通过不断练习、反复推敲巩固知识点和掌握解题思路。
二、解题模型。
1.构建二元一次方程组、求方程组解。
2.利用函数与导数的关系求最值。
3.数学归纳法证明等。
三、提分秘籍。
1.攻克数学基础知识,巩固基础。
初中时期数学基础的掌握对高中数学的学习至关重要。
2.模拟考情较真实,切莫错过学习机会。
不轻视同学的考试成绩,多看一些模拟题,研究常考题型。
3.课上积极思考,用课下时间练习巩固。
每节课的时间都应该充分利用,积极思考问题,利用下课时间教师留下的作业练习巩固。
4.勤加思考,多思多练可提高升学率。
应该不断思考问题,拓宽思维,多练习提高对数学的认识和掌握程度。
总之,高中数学的学习离不开大量的实践和练习,并且需要建立自己的解题模型,理清思路,注重基础知识的掌握和复习。
只要坚持不懈,就可以取得良好的成绩。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学解题模型化及应用【摘要】在高中阶段,数学相对于其它学科来说是比较抽象、严密而泛味的,学生对数学的学习显得艰难而缺乏学习的兴趣。
要激发学生对数学的学习兴趣,培养学以致用的意识和能力,关键还是激发他们对数学重要性和应用性的再认识。
除了应将基本概念、定义、定理、方法讲清、讲透之外,在教学过程中适当地引入与课堂知识相关的简单“数学模型案例”,是行之有效的办法。
本文主要研究在数学解题中的模型化方法、步骤,以及数学模型化在高中解题中的应用。
【关键词】高中数学解题模型化方法步骤应用数学来源于实践,又高于实践,服务于实践。
因此,我们学习数学的目的,就是为解决实际问题,不管是运用已有数学知识去解决实际问题,还是从社会实践去发现新的数学研究课题,去创造性地研究和发展数学科学,化实际问题为数学模型都起着极其重要的作用。
因此,本文主要研究在数学解中的模型化方法、步骤,以及数学模型化在高中解题中的应用。
下面我们首先学习几个数学模型的有关概念:1.数学模型我们早在学习初等代数的时候就已经碰到过数学模型了,当然其中许多问题是老师为了教会学生知识而人为设置的。
譬如你一定解过这样的所谓“航行问题”:甲乙两地相距750km,船从甲到乙顺水航行需要30h,从乙到甲逆水航行需50h,问船速、水速各若干?用x 、y 分别代表船速和水速,可以列出方程(x+y)·30=750,(x-y)·50=750实际上,这组方程就是上述航行问题的数学模型,列出方程,原问题已转化为纯粹的数学问题,方程的解x=20km/h,y=5km/h,最终给出了航行问题的答案。
一般地说,数学模型可以描述为,对于现实世界的一个特定对象,为了一个特定目的,根据特有的内在规律,做出一些必要的简化假设,运用适当的数学工具,得到的一个数学结构。
数学模型是联系客观世界与数学的桥梁。
数学模型是用数学语言来模拟空间形式和数量关系的模型。
广义地看,一切数学概念、公式、理论体系、算法系统都可称为数学模型,如:算术是计算盈亏的模型,几何是物体外形的模型等.狭义地看,只有反映特定问题的数学结构才称为数学模型,如一次函数是匀速直线运动的模型,不定方程是鸡兔同笼问题的模型等[1] 。
2.模型化方法在数学解题中的基本步骤(1)从要解决的现实问题中恰当构建相应的数学模型。
(2)在建立的数学模型上进行推理或演算,求得解答。
(3)把所得的解答“翻译”回原问题中,得到原问题的解答。
(4)将这些结果用实际的现实原型信息加以验证。
模型化流程图。
3.在模型化中几种常用的数学模型3.1 函数模型。
函数的本质是几个变量之间的对应,它反映了事物运动变化过程中的关系,是一个具有广泛应用价值的模型。
许多问题借助于函数模型的构建,使得问题在新的观念实行转化,再由函数的性质来寻求解题途径。
3.1.1 常用函数模型。
例1:求证|x1+x2+…+x n|1+|x1+x2+…+x n|≤x11+|x2|+|x2|1+|x2|+…+|x n|1+|x n|分析:要证不等式的每一项都是x1+x的形式,于是可构造函数f(x)=x1+x证明:构造函数:f(x)=x1+x∵f(x1) -f(x2)=x11+x 1 -x21+x 2 =x1-x2(1+x1)(1+x2),当x2>x1≥0f(x1)<f(x2),所以f(x)当x≥0是增函数。
因为|x1+x2+…+x n|≤|x1|+|x2|+…+|x n| ,所以|x1+x2+…+x n|1+|x1+x2+…+x n|≤|x1|+|x2|+…+|x n|1+|x1+x 2+…+x n|=|x1|1+|x1+x2+…+x n| +…+|x n|1+|x1+x2+…+x n|≤|x1|1+|x1|+…+|x n|1+|x n|3.1.2 抽象函数模型。
常用函数模型一般给出解析式,但有些函数,在推理与分析中,经常未给解析式、仅给出恒等式或方程。
像这类抽象函数问题呈现的都是抽象函数的有关性质,学生便难以像常规问题那样去寻求信息、布置解题方案,即使教师反复多次地把“绝妙”的解题方法奉献给学生,他们偶遇类似问题仍不知所措[2]。
本文尝试从特殊模型出发进行思考,以期突破教与学之难点。
1.二次函数模型。
二次函数在形上的对称性所产生的数量关系的恒等式:f(a-x)=f(a+x) ②,是这类命题的基础。
而②式也恰好反映了抽象函数关于x=a对称。
例1: 已知函数f(x) 在[2,+∞)上为减函数,且f(1-x)=f(3+x) ,试解关于x的不等式:f[log12(x2+x+12)]<f[log12(2x2-x+58)]。
分析:恒等式②表明了函数f(x) 的图像关于直线x=2对称,此时,不必借助于满足条件的一个具体函数y=(x-2)2,也能发现f(x) 在(-∞,2]上为增函数。
∵f[log12(x2+x+12)=f[log12(x+12)2+14]≤2,f[log12(2x2-x+58)=f[log12[2(x-14)2+12)]≤1∴原不等式等价于log12 (x2+x+12)<log12(2x2-x+58)x2+x+12>2x2-x+58x2-2x+18<0,∴1-174<x<1+174 ,故原不等式的解集为(1-174,1+174) 。
3.2 方程模型。
方程是解决实际问题的数学模型,其要点是:(1)设未知量。
将未知量与已知量一齐参与问题各有关量的表述。
(2) 根据条件列出已知量与未知量之间的等量关系式。
(3) 解方程,求得未知量。
其中第二点用数学模型来模拟数量关系,是列方程的关键,借助方程可得简捷解法。
例[4] :求证tanπ7tan2π7tan3π7= 7 。
分析:式子两边平方得tan2π7tan22π7tan23π7=7,因此,设法构造一个以tan2π7tan22π7tan23π7为根的一元三次方程证明:构造方程tan3a=-tan4a (0<a<π)①则有tan7a=tan3a+tan4a1-tan3atan4a=0 ,于是(1)有a=kπ7 (K=1,2,…6),用倍角公式把方程化为3tana-tan3a1-3tan3a+4tana-4tan2a1-6tan2atan4a =0,从而tan6-21tan4a-35tan2a-7=0,令tan2a=x ,则x3-21x2+35x-7=0 ②因为tannπ7 =-tan(π-nπ7) (n=1,2,3),所以方程②的三个根为tan2π7 ,tan22π7 ,tan23π7 ,由韦达定理得(tanπ7tan2π7tan3π7)=7 ,即=tanο7 tan2π7tan3π7=73.3 几何模型。
一些代数问题直接解答比较困难,若根据数量关系化将其为与之相关的图形问题,再通过几何作图构建几何模型,再根据图形的性质和特点求解,将会使得问题的解答简易直观。
例[4]:正数a,b,c,A,B,C满足a+A=b+B=c+C=K,求证:aB+bC+ca<k2。
分析:由aB+bC+cA<k2联想到面积关系.又由a+A=b+B=c+C=K,联想到构造以K为边长的正三角形.证明:作边长为K的正三角形PQR如图3.1分别在各边上取点L,M,N使QL=A,LR=a,RM=B,MP=b ,PN=C,NQ=c,因为S LRM+ S MPN+S NQL<S PQR所以34aB+34cA<34k2,即aB+bC+cA<k 24 .数学模型化在中学解题中的应用根据中学数学自身的特点,在中学数学教学中应注重以下两个方面的教学:4.1 数学模型化教育的两个问题。
(一)要使学生从数学概念模型化入手,掌握数学基本模型构造的原则。
(二)在数学解题中运用模型化思维方法。
下面列举几个相关例子加深对这些方法原则的认识。
4.1.1 数形结合的问题。
这是一将抽象的数学语言与直观的数学图形结合起来的解题方法。
例1:求函数y=x2+4x+5+x2-4x+8的值域。
分析:把原函数稍加变形:y=(x+2)2+1+(x-2)2+2 2 即可发现,可以用两点间的距离公式加以解决。
函数值可以看作是x轴上动点P(x,0) 到两定点A(-2,-1) 、B(2,2) 的距离之和(如右图4.1所示),y=|PA|+|PB|≥|AB|=5,故函数的值域为[5,+∞)本题构造了平面内两点间距离这一数学模型,把代数问题转化为几何问题求解。
4.1.2 求极值问题。
这类问题在中学数学中极为普遍,解法也不惟一,绝大多数方法是借助于数学模型,使问题简化,从而达到解题的目的。
例2:对于满足(x-3)2+(y-3)2=6的所有实数对(x,y),求yx 的最大值。
分析:yx易让人联想到直线的的斜率公式,结合题意。
我们可以建立起斜率的数学模型,yx可以理解为圆(x-3)2+(y-3)2=6上的动点P(x,y) 与原点相连的斜率(如图4.2所示)。
由点到直线的距离公式即可求出:(yx)max=3+22 ,(yx)min=3-22 。
4.2 正确掌握数学思想方法的辩证关系,进而优化思维品质。
如果说数学问题是数学的心脏,那么解决数学问题的思想方法应当是数学的灵魂。
数学思想方法是数学思想的导向,它不是指解决某一具体问题的方法与技巧,而是根据数学学科本身的认识规律来看待数学世界的[3]。
如何考察数学问题中带有普遍指导性的思想方法,正确地掌握思想方法,即是要注意它们各自的特点及相互关系,并加以有机结合与灵活运用。
5.结论在学习数学的过程中,熟练掌握数学模型化方法,对于解决一些繁杂的问题是具有极其重要的作用,通过建立数学模型,把一些难题简化为人人都可以看懂学会的题目,从而培养学生对数学学习的浓厚兴趣。
在高中阶段,数学相对于其它学科来说是比较抽象、严密而泛味的,学生对数学的学习显得艰难而缺乏学习的兴趣,要激发学生对数学的学习兴趣,培养学以致用的意识和能力,关键还是激发他们对数学重要性和应用性的再认识。
除了应将基本概念、定义、定理、方法讲清、讲透之外,在教学过程中适当地引入与课堂知识相关的简单“数学模型案例”,是行之有效的办法。
参考文献[1]姜启源.数学模型[M].第三版.高等教育出版社,2003.08.[2]张德勤.数学解题中的模型化思考[J].数学通报,2004.04.[3]鲁凤菊.构造数学模型例说[J]. 株洲师范高等专科学校学报,2000.09.。