第十二届全国大学生数学竞赛非数类试题

合集下载

全国大学生数学竞赛(非数学类)大纲及历年预赛试卷

全国大学生数学竞赛(非数学类)大纲及历年预赛试卷
—1—
余弦函数,以及它们的和与积 7. 欧拉(Euler)方程. 8. 微分方程的简单应用 五、向量代数和空间解析几何 1. 向量的概念、向量的线性运算、向量的数量积和向量积、向量的混合积. 2. 两向量垂直、平行的条件、两向量的夹角. 3. 向量的坐标表达式及其运算、单位向量、方向数与方向余弦. 4. 曲面方程和空间曲线方程的概念、平面方程、直线方程. 5. 平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件、点到平面和
f ( y) x2[1 f ( y)]3
1 x2 (1 f ( y))
f ( y) [1 f ( y)]2 x2[1 f ( y)]3
解法 2 方程 xe f (y) ey ln 29 取对数,得 f ( y) ln x y ln ln 29
(1)
方程(1)的两边对 x 求导,得 f ( y) y 1 y x
4.设函数 y y(x) 由方程 xe f ( y) ey ln 29 确定,其中 f 具有二阶导数,且 f 1 ,

d2 y dx 2
________________.
解法 1 方程 xe f ( y) ey ln 29 的两边对 x 求导,得
e f ( y) xf ( y) ye f ( y) e y y ln 29

[ 1 f ( y) y]xe f ( y) ye y ln 29 x
因 e y ln 29 xe f ( y) 0 ,故 1 f ( y) y y,即 y
1
,因此
x
x(1 f ( y))
d2 y dx 2
y
1 x2 (1 f
( y))
f ( y) y x[1 f ( y)]2
点到直线的距离. 6. 球面、母线平行于坐标轴的柱面、旋转轴为坐标轴的旋转曲面的方程、常用的二次

全国大学生数学竞赛试题解答及评分标准非数学类

全国大学生数学竞赛试题解答及评分标准非数学类

全国高校生竞赛历年试题名师精讲〔非数学类〕〔2021——2021〕第五届全国高校生数学竞赛预赛试卷〔非数学类〕一、 解答以下各题〔每题6分共24分,要求写出重要步骤〕(lim 1sin nn →∞+.解 因为()sin sin 2n π==……〔2分〕;原式lim 1exp lim ln 1sin nn n n →∞→∞⎡⎤⎛⎫⎛⎫=+=+⎢⎥ ⎢⎥⎝⎝⎣⎦exp ⎛= ⎝0sin xdx x+∞⎰不是肯定收敛的 解 记()1sin n n nx a dx xππ+=⎰,只要证明0n n a ∞=∑发散即可。

……………………〔2分〕因为()()()()10112sin sin 111n n n a x dx xdx n n n ππππππ+≥==+++⎰⎰。

…………〔2分〕 而()021n n π∞=+∑发散,故由比较判别法nn a∞=∑发散。

……………………………………〔2分〕()y y x =由323322x x y y +-=确定,求()y x 的极值。

解 方程两边对x 求导,得22236360x xy x y y y ''++-= ………………〔1分〕 故()2222x x y y y x+'=-,令0y '=,得()200x x y x +=⇒=或2x y =-………〔2分〕将2x y =-代入所给方程得2,1x y =-=,将0x =代入所给方程得0,1x y ==-,…………………………………〔2分〕又()()()()()2222222222422x xy y y x x x y yy x y yx''++--+-''=-()()()0,1,02,1,0200220010,1020x y y x y y y y ''====-==+---''''==-<=>-, 故()01y =-为极大值,()21y -=为微小值。

全国大学生数学竞赛试题解答及评分标准(非数学类)

全国大学生数学竞赛试题解答及评分标准(非数学类)

全国大学生竞赛历年试题名师精讲(非数学类)(2009——2013)第五届全国大学生数学竞赛预赛试卷(非数学类)一、 解答下列各题(每小题6分共24分,要求写出重要步骤)1.求极限(lim 1sin nn →∞+.解因为()sin sin 2n π==……(2分);原式lim 1exp lim ln 1nn n n →∞→∞⎡⎤⎛⎫⎛⎫=+=+⎢⎥ ⎢⎥⎝⎝⎣⎦=2.证明广义积分0sin xdx x ⎰不是绝对收敛的解 记()1sin n n nx a dx xππ+=⎰,只要证明0n n a ∞=∑发散即可。

……………………(2分)因为()()()()10112sin sin 111n n n a x dx xdx n n n ππππππ+≥==+++⎰⎰。

…………(2分) 而()021n n π∞=+∑发散,故由比较判别法0n n a ∞=∑发散。

……………………………………(2分)3.设函数()y y x =由323322x x y y +-=确定,求()y x 的极值。

解 方程两边对x 求导,得22236360x xy x y y y ''++-= ………………(1分)故()2222x x y y y x +'=-,令0y '=,得()200x x y x +=⇒=或2x y =-………(2分) 将2x y =-代入所给方程得2,1x y =-=,将0x =代入所给方程得0,1x y ==-,…………………………………(2分)又()()()()()2222222222422x xy y y x x x y yy x y y x ''++--+-''=-()()()0,1,02,1,0200220010,1020x y y x y y y y ''====-==+---''''==-<=>-,故()01y=-为极大值,()21y-=为极小值。

第12~18届北京市大学生数学竞赛全部试题解答

第12~18届北京市大学生数学竞赛全部试题解答

∫ f (tx)dt = f ( x) + x sin x, f (0) = 0 且有一阶导数,则当 x ≠ 0 时, f ′( x) =
0
.
10 . 设 C 是 从 球 面 x + y + z = a 上 任 一 点 到 球 面 x + y + z = b 上 任 一 点 的 任 一 条 光 滑 曲 线
1 1 1 n ,则 lim < xn < (n + 2) sin xk = ∑ n →∞ n + 1 n +1 n +1 k =1
x →0
.
8.设 f ( x ) 在点 x = 0 可导,且 lim
1
cos x − 1 = 1 ,则 f ′(0) = e f ( x) − 1
.
9. 设 f ( x ) 满足
∑ na ( x − 3)
n=0 n
n
的收敛区间为
.
5. tdt e
0 t
∫ ∫
1 ( )2 x
dx =
.
6.设 y = 1, y = e x , y = 2e x , y = e x + 程为 .
1
π
都是某二阶常系数线性微分方程的解,则此二阶常系数线性微分方
7.设数列 { xn } 满足: n sin
五、从已知 ABC 的内部的点 P 向三边作三条垂线,求使此三条垂线长的乘积为最大的点 P 的位置. 六、求
(−1) n n3 n x 的收敛区间及和函数. ∑ n = 0 ( n + 1)!

七、设 f ( x ) 是 [0,1] 上的连续函数,证明: e f ( x ) dx e − f ( y ) dy ≥ 1 .

2020年第十二届全国大学生数学竞赛--初赛《数学类A卷》试题(含参考答案)

2020年第十二届全国大学生数学竞赛--初赛《数学类A卷》试题(含参考答案)

(2) 求点 A1, B1,C1 三点的坐标; (3) 给定点A(1, 1, 0), B(1, 1, 0),C(1, 1, 0) ,求四面体 NA1B1C1 的体积. 【参考解答】:(1) 由直线的两点式方程,直接可得过 N, A 两点的直线方程为
(2) 直线 NA 的参数方程为
x y z 1
.
a1 a2 1
1 k
趋于
0,故
lim
n
yn
1
yn
0.
所以
bn an yn yn1 0, n
从而可知 an , bn 的极限相等,从而 yn 收敛. 最后,由 的连续性可得 xn 收
敛.
六、(20
分)对于有界区间
a,
b
的划分
P : a x0 x1 xn1 b
其范数定义为||
P
||
max xk1
1
0
2021
1
代入极限式得I
.
2021
【思路二】 由 Stolz 公式,得
lim 1 12020 22020 n2020
n n 2021
lim
n 2020
1
n n2021 (n 1)2021 2021
12020 22020 n 2020
1
故 ln
有界. 故I .
n 2021
x a1t, y a2t, z 1 t
将其代入球面方程,得
2
a1t
2
a2t
(1 t)2
1
2
解得参数值为t
a12
a22
或t 1
0.
从容可得 A1 的坐标为
A1
a12
2a1 a22

第十二届全国大学生数学竞赛非数类试题

第十二届全国大学生数学竞赛非数类试题

,1 = .y2 4第十二届全国大学生数学竞赛试题(非数学类)2020 年 11 月 28 号 9:00 - 11:30(模板制作者:八一与酸奶)考试形式: 闭卷 考试时间: 150 分钟 满分: 100 分一、填空题 ( 本题满分 30 分,每题 6 分)1. 极限 lim x →0 (x − sin x ) e −x 22. 设函数 f (x ) = (x + 1)n e −x 2,则 f (n )(−1) =.3. 设 y = f (x ) 是由方程 arctan x = ln ,x 2 + y 2 − 1 ln 2 +v 确定的隐函数,且满足 f (1) = 1,则曲线 y = f (x ) 在点 (1; 1) 处的切线方程为 .注 意 事 项考生在答题前请认真阅读本注意事项及各题答题要求1. 所有答题都须写在试卷密封线右边, 写在其他纸上一律无效.2. 密封线左边请勿答题, 密封线外不得有姓名及相关标记.3. 如答题空白不够, 可写在当页背面, 并标明题号.省市:学校:姓名:准考证号:装订线 内 不要答题∈ = :∫ d4. 已知+∞sin x x = v ,则∫ +∞ ∫ +∞ sin x s in (x + y ) d d y =x 2 0 0x (x + y ) 5. 设 f (x ); g (x ) 在 x = 0 的某一邻域 U 内有定义, 对任意 x U; f (x ) g (x ),且 lim f (x ) =x →0lim g (x ) = a > 0; 则x →0lim [f (x )]g (x ) − [g (x )]g (x )x →0 f (x ) − g (x )二、解答题 ( 本题满分 10 分)设数列 {a } 满足:a = 1,且 a=a n; n > 1: 求极限 lim n !ann +1(n + 1) (a n + 1)n →∞n x三、解答题( 本题满分8 分)设f(x)在[0;1]连续,f(x)在(0;1)内可导,且f(0)=0;f(1)=1,证明:(1) 存在x0∈ (0; 1),使得f (x0) = 3 −x0;(2) 存在‡; y ∈ (0; 1),且‡ y,使得[1 + f ′(‡)][1 + f ′(y)] = 4.. y已知 z = xf y x 四、解答题 (本题满分 12 分)Σ+ 2y ' . x Σ,其中 f ; ' 均为二次可微函数,则求(1) 求 @z ;@x @2z ; @x @y@2z 当 f = ',且@x @y|x =a = −by 2,求 f (y ).(2)计算x 2 + y 2 + z 2 = 8I =Γ.,3y − x . d x − 5z d z曲线 Γ :x 2 + y 2 = 2z,从 z 轴正向从坐标原点看去取逆时针方向.省市:学校: 姓名: 准考证号:装 订 线 内 不 要 答题I∑证明f (n ) =n m =1m cos2v n [x + 1] d xm等于 n 的所有因子 (包括 1 和 n 本身) 之和,其中 [x + 1] 表示不超过 x + 1 的最大整数,并计算 f (2021).∫∫ t∑− n →∞n =1 n pn设u n =1d n (n > 1) 0(1 + t 4)(1) 证明数列 {u n } 收敛,并求极限 lim u n ;(2) 证明级数 ∞ ( 1)n u n 条件收敛;n =1(3) 证明当 p > 1 时,级数∑∞u n收敛,并求级数∑∞u n 的和.n =1。

大学生数学竞赛非数试题及答案

大学生数学竞赛非数试题及答案

大学生数学竞赛(非数学类)试卷及标准答案一、填空(每小题5分,共20分).(1)计算)cos1(cos1lim0xxxx--+→= .(2)设()f x在2x=连续,且2()3lim2xf xx→--存在,则(2)f= .(3)若txx xttf2)11(lim)(+=∞→,则=')(tf.(4)已知()f x的一个原函数为2ln x,则()xf x dx'⎰= .(1)21. (2) 3 . (3)tet2)12(+. (4)Cxx+-2lnln2.二、(5分)计算dxdyxyD⎰⎰-2,其中110≤≤≤≤yxD,:.解:dxdyxyD⎰⎰-2=dxdyyxxyD)(21:2-⎰⎰<+⎰⎰≥-22:2)(xyDdxdyxy-------- 2分=dyyxdx x)(221-⎰⎰+dyxydxx)(12102⎰⎰--------------4分分.三、(10分)设)](sin[2xfy=,其中f具有二阶导数,求22dxyd.解:)],(cos[)(222xfxf xdxdy'=---------------3分)](sin[)]([4)](cos[)(4)](cos[)(222222222222xfxfxxfxfxxfxfdxyd'-''+'=-----7分姓名:身份证号:所在院校:年级:专业:线封密密封线左边请勿答题,密封线外不得有姓名及相关标记.=)]}(sin[)]([)](cos[)({4)](cos[)(222222222x f x f x f x f x x f x f '-''+'---------10分.15分)已知3123ln 0=-⋅⎰dx e e a x x ,求a 的值. )23(23ln 0xa x e d e -----------3分 令t e x =-23,所以dt t dx e e aaxx⎰⎰--=-⋅231ln 02123---------6分=a t 231233221-⋅-------------7分=]1)23([313--⋅-a ,-----------9分由3123ln 0=-⋅⎰dx e e a x x ,故]1)23([313--⋅-a =31,-----------12分即3)23(a -=0-----------13分 亦即023=-a -------------14分所以3=a -------------15分.10分)求微分方程0=-+'x e y y x 满足条件e yx ==1的特解.解:原方程可化为xe y x y x=+'1-----------2分这是一阶线性非齐次方程,代入公式得⎥⎦⎤⎢⎣⎡+⎰⋅⎰=⎰-C dx ex e e y dxx xdx x 11----------4分 =⎥⎦⎤⎢⎣⎡+⋅⎰-C dx e x e ex x xln ln ----------5分 =[]⎰+C dx e x x 1-----------6分 =)(1C e xx+.---------------7分 所以原方程的通解是)(1C e xy x+=.----------8分所在院校:年级:专业:线封密再由条件e yx ==1,有C e e +=,即0=C ,-----------9分因此,所求的特解是xe y x=.----------10分.六(10分)、若函数()f x 在(,)a b 内具有二阶导数,且12()()()f x f x f x ==,其中123a x x x b <<<<,证明:在13(,)x x 内至少有一点ξ,使()0f ξ'=。

全国大学生数学竞赛(非数学类)大纲及历年预赛试卷

全国大学生数学竞赛(非数学类)大纲及历年预赛试卷

(*) 2 0 (1 2t 2 t 4 )dt 1
2
1 0
(1 2t 2
t 4 )dt
2t
2 t3 3
1 5
t
5
1 0
16 15
2.设 f (x) 是连续函数,且满足 f (x) 3x2
2
f (x)dx 2 , 则 f (x) ____________.
0
解 令 A 2 f (x)dx ,则 f (x) 3x2 A 2 , 0
n
x0
n

A lim ex e2x enx n e
x0
n
x
e lim ex e2x enx n
x0
nx
e lim ex 2e2x nenx e 1 2 n n 1 e
x0
n
n
2
因此
lim ( ex
e2x
e
nx
)
e x
eA
n1e
e 2
x0
n
解法 2 因
(x0 , y0 ) 处 的 法 向 量 为 (zx (x0 , y0 ), z y (x0 , y0 ),1) , 故 (zx (x0 , y0 ), z y (x0 , y0 ),1) 与
(2,2,1) 平行,因此,由 zx x , z y 2 y 知 2 zx (x0 , y0 ) x0 ,2 z y (x0 , y0 ) 2 y0 ,
y(1
f ( y))
因此
—4—
y
f ( y) [1 f ( y)]2 x2[1 f ( y)]3
二、(5
分)求极限 lim ( ex
e2x
e nx
e
)x

历届全国大学生高等数学竞赛真题及答案非数学类

历届全国大学生高等数学竞赛真题及答案非数学类

前三届高数竞赛预赛试题(非数学类)(参加高等数学竞赛的同学最重要的是好好复习高等数学知识,适当看一些辅导书及相关题目,主要是一些各大高校的试题。

)2009年 第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.解: 令v x u y x ==+,,则v u y v x -==,,v u v u y x d d d d 1110det d d =⎪⎪⎭⎫ ⎝⎛-=, v u u v u u u y x y x x yy x D D d d 1ln ln d d 1)1ln()(⎰⎰⎰⎰--=--++⎰⎰⎰⎰----=---=1021000d 1)ln (1ln d )d ln 1d 1ln (u uu u u u u u u u v v uuv u u u u u ⎰-=12d 1u uu (*) 令u t -=1,则21t u -=dt 2d t u -=,42221t t u +-=,)1)(1()1(2t t t u u +-=-,⎰+--=0142d )21(2(*)tt t⎰+-=1042d )21(2t t t 1516513221053=⎥⎦⎤⎢⎣⎡+-=t t t2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.解: 令⎰=20d )(x x f A ,则23)(2--=A x x f ,A A x A x A 24)2(28d )23(202-=+-=--=⎰,解得34=A 。

因此3103)(2-=x x f 。

3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________. 解: 因平面022=-+z y x 的法向量为)1,2,2(-,而曲面2222-+=y x z 在),(00y x 处的法向量为)1),,(),,((0000-y x z y x z y x ,故)1),,(),,((0000-y x z y x z y x 与)1,2,2(-平行,因此,由x z x =,y z y 2=知0000002),(2,),(2y y x z x y x z y x ====,即1,200==y x ,又5)1,2(),(00==z y x z ,于是曲面022=-+z y x 在)),(,,(0000y x z y x 处的切平面方程是0)5()1(2)2(2=---+-z y x ,即曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是0122=--+z y x 。

历年全国大学生高等数学竞赛真题及答案(2009-2011非数学类).

历年全国大学生高等数学竞赛真题及答案(2009-2011非数学类).

1
1 2 4 2 3 1 5 16
2 (12t t )dt 2 t t t
令t 1u ,则u 1t2 ,du 2tdt ,u2 12t2 t4 ,u(1u) t2 (1t)(1t) ,
0
(*) 2 (12t2 t4 )dt
1
2
d y
则 2 ________________.
dx
f (y ) y
x
解方程xe e ln 29 的两边对 求导,得
y
(x y ) ln(1 ) u ln u u ln v
1x y
坐标轴所围成三角形区域.
0 1
解令 ,则 , ,
x y u,x v x v,y u v dxdy det dudv dudv
1 1
2 .设f (x) 是连续函数,且满足f (x) 3x 2 f (x)dx 2 , 则f (x) ____________.
0
处的切平面方程是2(x 2) 2(y 1) (z 5) 0 ,即曲面z y 2 平行平面
2
2x 2y z 0 的切平面方程是2x 2y z 1 0 。
4 .设函数y y (x) 由方程 f (y ) y 确定,其中 具有二阶导数,且 ,
xe e ln 29 f f 1
处的法向量为(z (x , y ), z (x , y ),1) ,故(z (x , y ), z (x , y ),1) 与(2,2,1) 平行,
x 0 0 y 0 0 x 0 0 y 0 0
D x dxdy D dudv
1x y 1u
1 u ln u u u u
4 2 10
解得A 。因此f (x) 3x 。

第十二届全国大学生数学竞赛决赛试题(非数学类)参考答案及评分标准

第十二届全国大学生数学竞赛决赛试题(非数学类)参考答案及评分标准

F= (b) 0 . 对 F (x) 在[a,b] 上利
a
∫ 用洛尔定理,存在 x0 ∈ (a,b) ,使得 F′(x0 ) = 0 ,即 f (x0 ) =
x0 f (t)dt .
a
---------------- 3 分
3
2021 年 05 月决赛试题
x
∫ 再令 G= (x)
f (x) − f (t)dt ,则 G= (a) a

2 x32
= 0 . 由此解得 u
113
在定义域内的唯一驻点 P0 (24 , 22 , 24 ) ,且 u 在该点取得最小值 u(P0 ) = 4 4 2 ,这是
113
函数唯一的极值. 因此 u 的唯一极值点为 (24 , 22 , 24 ) .
【注】 也可用通常的充分性条件(海赛矩阵正定)判断驻点 P0 为极小值点.
1,2, ,s)
.
因为 p(D) = D 2021 ,所以
1
= p( A) p= (QDQT ) Q= p(D)QT Q= D 2021QT B .
--------------- 3 分
(3) 设另存在 n 阶实对称矩阵 C 使得 C2021=A ,则=B p= ( A) p(C2021) ,所以
1 2
(xn
+
yn
)

---------------- 4 分
这只需证明:对任意 n

0
,都有
x+ 2
y
n

An (x, x) n +1

1 2
(xn
+
yn ) ,其中 0
<
x,

第12届数学竞赛预赛试卷(非数学)-答案

第12届数学竞赛预赛试卷(非数学)-答案

0
m
m
cos kt
k =1
=
cos
m+ 2
1
t
sin mt 2
sin t

2
极值学院
4

极值学院


m 0
cos
2πn[ x m
+
1]dx
=
co(s
m+ 2
1
2 n m
)
sin( m 2πn 2m
sin 2πn
)
=0
,因此得证.
2m
…………… 5 分
= (n +1) + (n +1)n + (n +1)n 1 , an−1
……………… 4 分
如此递推,得
1 an+1
=
(n +1)!
n k =1
1+ k!
1 a1
=
n
(n +1)!
k =0
1, k!
……………… 3 分
极值学院
2

极值学院

2 4

1 F(x)2
2
+ 0
=
2 4

1 2
2
2
=
2 8
.
【5】 设 f (x) ,g(x) 在 x = 0 的某一邻域U 内有定义,对任意 x U ,f (x) g(x) ,
且 lim f (x) = lim g(x) = a 0 ,则 lim [ f (x)]g(x) −[g(x)]g(x) =
所以
f
(n) (−1)
=
n!
.

陕西省第12届数学竞赛预赛试卷(非数学)-答案

陕西省第12届数学竞赛预赛试卷(非数学)-答案


f
( y)
=
a3b 3
1 (3y2

y3 6
)
+
C1 y
+
C2
.
……………… 4 分
五、(本题满分 12 分) 计算 I =
3y

x
dx

5zdz
,曲线
:
x2
x2
+ +
y2 y2
+ z2 = = 2z
8
,从
z

正向往坐标原点看去取逆时针方向.
【解】
曲线
也可表示为
z x
= 2, 2 + y2
+ sin x dx
0x
x sin u du . 0u
令 F(x) = x sin u du ,则 F(x) = sin x , lim F(x) = ,所以
0u
x
x→+
2
2
I= − 4
+ 0
F ( x) F ( x)dx
=
2 4

1 F(x)2
2
+ 0
=
2 4

1 2
2
2
=
2 8
.
【5】 设 f (x) ,g(x) 在 x = 0 的某一邻域U 内有定义,对任意 x U ,f (x) g(x) ,
y2
2
1
+
x y
=
x + yy x2 + y2
,即 (x + y)y =
y−x,
所以 f (1) = 0 ,曲线 y = f (x) 在点 (1,1) 处的切线方程为 y =1.

全国大学生高等数学竞赛真题及答案(非数学类)无答案

全国大学生高等数学竞赛真题及答案(非数学类)无答案

2009年 第一届全国大学生数学竞赛预赛试卷一、填空题(每小题5分,共20分)1.计算=--++⎰⎰y x yx x yy x Dd d 1)1ln()(____________,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.2.设)(x f 是连续函数,且满足⎰--=2022d )(3)(x x f x x f , 则=)(x f ____________.3.曲面2222-+=y x z 平行平面022=-+z y x 的切平面方程是__________.4.设函数)(x y y =由方程29ln )(y y f e xe =确定,其中f 具有二阶导数,且1≠'f ,则=22d d xy________________.二、(5分)求极限xenx x x x ne e e )(lim 20+++→ ,其中n 是给定的正整数.三、(15分)设函数)(x f 连续,⎰=10d )()(t xt f x g ,且A xx f x =→)(lim,A 为常数,求)(x g '并讨论)(x g '在0=x 处的连续性.四、(15分)已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证:(1)⎰⎰-=---Lx y Lx yx ye y xe x ye y xed d d d sin sin sin sin ;(2)2sin sin 25d d π⎰≥--Ly yx ye y xe .五、(10分)已知x x e xe y 21+=,xx exe y -+=2,xx x e e xe y --+=23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程.六、(10分)设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又已知该抛物线与x 轴及直线1=x 所围图形的面积为31.试确定c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积最小.七、(15分)已知)(x u n 满足),2,1()()(1 =+='-n e x x u x u x n n n, 且neu n =)1(, 求函数项级数∑∞=1)(n nx u之和.八、(10分)求-→1x 时, 与∑∞=02n n x 等价的无穷大量.2010年 第二届全国大学生数学竞赛预赛试卷一、(25分,每小题5分) (1)设22(1)(1)(1),nn x a a a =+++其中||1,a <求lim .n n x →∞(2)求21lim 1x xx ex -→∞⎛⎫+ ⎪⎝⎭。

历届全国大学生数学竞赛预赛试题

历届全国大学生数学竞赛预赛试题

全国大学生数学竞赛预赛试卷(非数学类)2009年 第一届全国大学生数学竞赛预赛试卷(非数学类) 一、填空题(每小题5分,共20分)1.计算()ln(1)d yx y x y ++=⎰⎰,其中区域D 由直线1=+y x 与两坐标轴所围成三角形区域.2.设)(x f 是连续函数,且满足22()3()d 2f x x f x x =--⎰,则()f x =.3.曲面2222x z y =+-平行平面022=-+z y x 的切平面方程是.4.设函数)(x y y =由方程29ln )(y y f e xe =确定,其中f 具有二阶导数,且1≠'f ,则=22d d xy.二、(5分)求极限x enx x x x ne e e )(lim 20+++→Λ,其中n 是给定的正整数. 三、(15分)设函数)(xf 连续,10()()g x f xt dt =⎰,且A x x f x =→)(lim 0,A 为常数,求()g x '并讨论)(x g '在0=x 处的连续性.四、(15分)已知平面区域}0,0|),{(ππ≤≤≤≤=y x y x D ,L 为D 的正向边界,试证:(1)⎰⎰-=---Lx y Lx y x ye y xe x ye y xe d d d d sin sin sin sin ;(2)2sin sin 25d d π⎰≥--Ly y x ye y xe .五、(10分)已知x x e xe y 21+=,x x e xe y -+=2,x x x e e xe y --+=23是某二阶常系数线性非齐次微分方程的三个解,试求此微分方程. 六、(10分)设抛物线c bx ax y ln 22++=过原点.当10≤≤x 时,0≥y ,又已知该抛物线与x 轴及直线1=x 所围图形的面积为31.试确定c b a ,,,使此图形绕x 轴旋转一周而成的旋转体的体积V 最小. 七、(15分)已知)(x u n 满足1()()1,2,n x n n u x u x x e n -'=+=L ,且ne u n =)1(,求函数项级数∑∞=1)(n n x u 之和.八、(10分)求-→1x 时,与∑∞=02n n x 等价的无穷大量.2010年 第二届全国大学生数学竞赛预赛试卷(非数学类) 一、(25分,每小题5分)(1)设22(1)(1)(1)nn x a a a =+++L ,其中||1,a <求lim .n n x →∞(2)求21lim 1x x x e x -→∞⎛⎫+ ⎪⎝⎭. (3)设0s >,求0(1,2,)sx n n I e x dx n ∞-==⎰L .(4)设函数()f t 有二阶连续导数,1(,)r g x y f r ⎛⎫== ⎪⎝⎭,求2222g gx y∂∂+∂∂. (5)求直线10:0x y l z -=⎧⎨=⎩与直线2213:421x y z l ---==--的距离.二、(15分)设函数()f x 在(,)-∞+∞上具有二阶导数,并且()0f x ''>,lim ()0x f x α→+∞'=>,lim ()0x f x β→-∞'=<,且存在一点0x ,使得0()0f x <. 证明:方程()0f x =在(,)-∞+∞恰有两个实根.三、(15分)设函数()y f x =由参数方程22(1)()x t t t y t ψ⎧=+>-⎨=⎩所确定,且22d 3d 4(1)y x t =+, 其中()t ψ具有二阶导数,曲线()y t ψ=与22132t u y e du e-=+⎰在1t =出相切,求函数()t ψ.四、(15分)设10,nn n k k a S a =>=∑,证明:(1)当1α>时,级数1nn na S α+∞=∑收敛;(2)当1α≤且()n s n →∞→∞时,级数1n n na S α+∞=∑发散.五、(15分)设l 是过原点、方向为(,,)αβγ,(其中2221)αβγ++=的直线,均匀椭球2222221x y z a b c ++≤(其中0c b a <<<,密度为1)绕l 旋转.(1)求其转动惯量;(2)求其转动惯量关于方向(,,)αβγ的最大值和最小值. 六、(15分)设函数()x ϕ具有连续的导数,在围绕原点的任意光滑的简单闭曲线C 上,曲线积分422d ()d 0Lxy x x yx y ϕ+=+⎰Ñ的值为常数.(1)设L 为正向闭曲线22(2)1x y -+=,证明422d ()d 0L xy x x yx yϕ+=+⎰Ñ; (2)求函数()x ϕ;(3)设C 是围绕原点的光滑简单正向闭曲线,求422d ()d C xy x x yx y ϕ++⎰Ñ.2011年 第三届全国大学生数学竞赛预赛试卷(非数学类) 一、计算下列各题(本题共3小题,每小题各5分,共15分)(1)求11cos 0sin lim xx x x -→⎛⎫⎪⎝⎭;(2).求111lim ...12n n n n n →∞⎛⎫+++ ⎪+++⎝⎭; (3)已知()2ln 1arctan ttx e y t e⎧=+⎪⎨=-⎪⎩,求22d d yx.二、(本题10分)求方程()()24d 1d 0x y x x y y +-++-=的通解. 三、(本题15分)设函数()f x 在0x =的某邻域内具有二阶连续导数,且()()()0,0,0f f f '''均不为0,证明:存在唯一一组实数123,,k k k ,使得()()()()12320230lim0h k f h k f h k f h f h →++-=. 四、(本题17分)设2221222:1x y z a b c∑++=,其中0a b c >>>,2222:z x y ∑=+,Γ为1∑与2∑的交线,求椭球面1∑在Γ上各点的切平面到原点距离的最大值和最小值. 五、(本题16分)已知S 是空间曲线22310x y z ⎧+=⎨=⎩绕y 轴旋转形成的椭球面的上半部分(0z ≥)(取上侧),∏是S 在(,,)P x y z 点处的切平面,(,,)x y z ρ是原点到切平面∏的距离,,,λμν表示S 的正法向的方向余弦. 计算: (1)()d ,,SzS x y z ρ⎰⎰;(2)()3d Sz x y z S λμν++⎰⎰ 六、(本题12分)设()f x 是在(,)-∞+∞内的可微函数,且()()f x mf x '<,其中01m <<,任取实数0a ,定义1ln (),1,2,...n n a f a n -==,证明:11()n n n a a ∞-=-∑绝对收敛.七、(本题15分)是否存在区间[]0,2上的连续可微函数()f x ,满足(0)(2)1f f ==,()1f x '≤,2()d 1f x x ≤⎰?请说明理由.2012年 第四届全国大学生数学竞赛预赛试卷(非数学类) 一、(本大题共5小题,每小题6分,共30分)解答下列各题(要求写出重要步骤). (1)求极限21lim(!)n n n →∞. (2)求通过直线2320:55430x y z l x y z +-+=⎧⎨+-+=⎩的两个互相垂直的平面1π和2π,使其中一个平面过点(4,3,1)-. (3)已知函数(,)ax byz u x y e+=,且20ux y∂=∂∂. 确定常数a 和b ,使函数(,)z z x y =满足方程20z z zz x y x y∂∂∂--+=∂∂∂∂.(4)设函数()u u x =连续可微,(2)1u =,且3(2)d ()d L x y u x x u u y +++⎰在右半平面与路径无关,求(,)u x y .(5)求极限1lim x x x t +. 二、(本题10分)计算20sin d x e x x +∞-⎰.三、(本题10分)求方程21sin 2501x x x=-的近似解,精确到0.001.四、(本题12分)设函数()y f x =二阶可导,且()0f x ''>,(0)0f =,(0)0f '=,求330()lim ()sin x x f u f x u→,其中u 是曲线()y f x =上点(,())P x f x 处的切线在x 轴上的截距.五、(本题12分)求最小实数C ,使得满足10()d 1f x x =⎰的连续函数()f x都有10f dx C ≤⎰.六、(本题12分)设()f x 为连续函数,0t >. 区域Ω是由抛物面22z x y =+和球面 2222x y z t ++=(0)z >所围起来的部分. 定义三重积分222()()d F t f x y z v Ω=++⎰⎰⎰,求()F t 的导数()F t ''.七、(本题14分)设1n n a ∞=∑与1n n b ∞=∑为正项级数,证明:(1)若()111lim 0n n n n n a a b b →∞++->,则级数1n n a ∞=∑收敛; (2)若()111lim 0n n n n n a a b b →∞++-<,且级数1n n b ∞=∑发散,则级数1n n a ∞=∑发散.2013年 第五届全国大学生数学竞赛预赛试卷(非数学类) 一、解答下列各题(每小题6分,共24分,要求写出重要步骤)1.求极限(lim 1sin nn →∞+.2.证明广义积分0sin d xx x+∞⎰不是绝对收敛的. 3.设函数()y y x =由323322x x y y +-=确定,求()y x 的极值. 4.过曲线0)y x =≥上的点A 作切线,使该切线与曲线及x 轴所围成的平面图形的面积为34,求点A 的坐标.二、(满分12分)计算定积分2sin arctan d 1cos xx x e I x xππ-⋅=+⎰.三、(满分12分)设()f x 在0x =处存在二阶导数(0)f '',且()lim 0x f x x→=.证明:级数11n f n ∞=⎛⎫⎪⎝⎭∑收敛.四、(满分12分)设(),()0()f x f x m a x b π'≤≥>≤≤,证明2sin ()d baf x x m ≤⎰.五、(满分14分)设∑是一个光滑封闭曲面,方向朝外.给定第二型的曲面积分()()()333d d 2d d 3d d I xx y z y y z x z z x y∑=-+-+-⎰⎰.试确定曲面∑,使积分I 的值最小,并求该最小值.六、(满分14分)设22d d ()()a aC y x x y I r x y -=+⎰,其中a 为常数,曲线C 为椭圆222x xy y r ++=,取正向.求极限lim ()a r I r →+∞. 七、(满分14分)判断级数()()1111212n n n n ∞=+++++∑L 的敛散性,若收敛,求其和.2014年 第六届全国大学生数学竞赛预赛试卷(非数学类) 一、填空题(共有5小题,每题6分,共30分)1.已知1x y e =和1x y xe =是齐次二阶常系数线性微分方程的解,则该方程是 .2.设有曲面22:2S z x y =+和平面022:=++z y x L . 则与L 平行的S 的切平面方程是 .3.设函数()y y x =由方程21sin d 4y xt x tπ-⎛⎫= ⎪⎝⎭⎰所确定.求d d x y x== .4.设1(1)!nn k kx k ==+∑,则=∞→n n x lim . 5.已知13()lim 1xx f x x e x →⎛⎫++= ⎪⎝⎭,则=→20)(lim x x f x . 二、(本题12分)设n 为正整数,计算21d 1cos ln d d n eI x x x π-⎛⎫= ⎪⎝⎭⎰. 三、(本题14分)设函数()f x 在]1,0[上有二阶导数,且有正常数,A B 使得()f x A ≤,|"()|f x B ≤. 证明:对任意]1,0[∈x ,有22|)('|BA x f +≤. 四、(本题14分)(1)设一球缺高为h ,所在球半径为R . 证明该球缺体积为2)3(3h h R -π,球冠面积为Rh π2;(2)设球体12)1()1()1(222≤-+-+-z y x 被平面6:=++z y x P 所截的小球缺为Ω,记球缺上的球冠为∑,方向指向球外,求第二型曲面积分d d d d d d I x y z y z x z x y ∑=++⎰⎰.五、(本题15分)设f 在],[b a 上非负连续,严格单增,且存在],[b a x n ∈,使得⎰-=b a nn n dx x f ab x f )]([1)]([.求n n x ∞→lim . 六、(本题15分)设2222212n n n n A n n n n =++++++L ,求⎪⎭⎫ ⎝⎛-∞→n n A n 4lim π.2015年 第七届全国大学生数学竞赛预赛试卷(非数学类) 一、填空题(每小题6分,共5小题,满分30分)(1)极限2222sin sin sin lim 12n n n n n n n n πππ→∞⎛⎫⎪+++= ⎪+++ ⎪⎝⎭L . (2)设函数(),z z x y =由方程,0z z F x y yx ⎛⎫++= ⎪⎝⎭所决定,其中(),F u v 具有连续偏导数,且0u v xF yF +≠则z z x y xy∂∂+=∂∂ .(3)曲面221z x y =++在点()1,1,3M -的切平面与曲面所围区域的体积是 . (4)函数()[)[)3,5,00,0,5x f x x ⎧∈-⎪=⎨∈⎪⎩在(]5,5-的傅立叶级数在0x =收敛的是 .(5)设区间()0,+∞上的函数()u x 定义域为()20xt u x e dt +∞-=⎰,则()u x 的初等函数表达式是 .二、(12分)设M 是以三个正半轴为母线的半圆锥面,求其方程. 三、(12分)设()f x 在(),a b 内二次可导,且存在常数,αβ,使得对于(),x a b ∀∈,有()()()f x f x f x αβ'=+,则()f x 在(),a b 内无穷次可导. 四、(14分)求幂级数()()30211!nn n x n ∞=+-+∑的收敛域及其和函数.五、(16分)设函数()f x 在[]0,1上连续,且()()11000,1f x dx xf x dx ==⎰⎰. 试证:(1)[]00,1x ∃∈使()04f x >; (2)[]10,1x ∃∈使()14f x =.五、(16分)设(),f x y 在221x y +≤上有连续的二阶偏导数,且2222xx xy yy f f f M ++≤. 若()()()0,00,0,00,00x y f f f ===,证明:()221,4x y f x y dxdy +≤≤⎰⎰.2016年 第八届全国大学生数学竞赛预赛试卷(非数学类) 一、填空题(每小题5分,满分30分) 1、若()f x 在点x a =可导,且()0f a ≠,则()1lim nn f a n f a →∞⎛⎫⎛⎫+ ⎪ ⎪⎝⎭ ⎪= ⎪⎪⎝⎭. 2、若()10f =,()1f '存在,求极限()()220sin cos tan3lim1sin x x f x x xI ex→+=-.3、设()f x 有连续导数,且()12f =,记()2x z f e y =,若z z x∂=∂,求()f x 在0x >的表达式.4、设()sin 2xf x ex =,求02n a π<<,()()40f .5、求曲面22 2x z y =+平行于平面220x y z +-=的切平面方程.二、(14分)设()f x 在[]0,1上可导,()00f =,且当()0,1x ∈,()01f x '<<,试证当()0,1a ∈,()()()2300d d aaf x xf x x >⎰⎰.三、(14分)某物体所在的空间区域为222:22x y z x y z Ω++≤++,密度函数为222x y z ++,求质量()222d d d M xy z x y z Ω=++⎰⎰⎰.四、(14分)设函数()f x 在闭区间[]0,1上具有连续导数,()00f =,()11f =,证明:()10111lim 2nn k k n f x dx f n n →∞=⎛⎫⎛⎫-=-⎪ ⎪⎝⎭⎝⎭∑⎰.五、(14分)设函数()f x 在闭区间[]0,1上连续,且()10d 0I f x x =≠⎰,证明:在()0,1内存在不同的两点12,x x ,使得()()12112f x f x I+=. 六、(14分)设()f x 在(),-∞+∞可导,且()()(2f x f x f x =+=.用级数理论证明()f x 为常数.2017年 第九届全国大学生数学竞赛预赛试卷(非数学类) 一、1. 已知可导函数满足⎰+=+xx tdt t f x xf 01sin )(2)(cos ,则()f x .2. 求⎪⎭⎫ ⎝⎛+∞→n n n 22sin lim π.3. 设(,)w f u v =具有二阶连续偏导数,且==+u x cy v x cy -,,其中c为非零常数. 则21xx yy w w c-. 4. 设()f x 有二阶导数连续,且(0)'(0)0,"(0)6f f f ===,则240(sin )lim x f x x →. 5. 不定积分sin 2sin 2(1sin )x e xI dx x -=-⎰. 6. 记曲面222z x y =+和224z x y =--围成空间区域为V ,则三重积分Vzdxdydz ⎰⎰⎰.二、(本题满分14分) 设二元函数(,)f x y 在平面上有连续的二阶偏导数. 对任何角度α,定义一元函数()(cos ,sin )g t f t t =ααα.若对任何α都有(0)0dg dtα=且22(0)0d g dt α>. 证明)0,0(f 是(,)f x y 的极小值.三、(本题满分14分) 设曲线Γ为在2221x y z ++=,1x z +=,0,0,0x y z ≥≥≥上从(1,0,0)A 到(0,0,1)B 的一段. 求曲线积分⎰Γ++=xdz zdy ydx I .四、(本题满分15分) 设函数()0f x >且在实轴上连续,若对任意实数t ,有||()1t x ef x dx +∞---∞≤⎰,则,()a b a b ∀<,2()2ba b a f x dx -+≤⎰. 五、(本题满分15分) 设{}n a 为一个数列,p 为固定的正整数。

全国大学生数学竞赛试题解答及评分标准(非数学类)

全国大学生数学竞赛试题解答及评分标准(非数学类)
设 是 的反函数,那么 ………(3分)
又 ,那么 ,因此 …(3分)
…………………(2分)
五、(总分值14分)设 是一个滑腻封锁曲面,方向朝外。给定第二型的曲面积分 。试确信曲面 ,使积分I
的值最小,并求该最小值。
解 记 围成的立体为V,由高斯公式
……………(3分)
为了使得I的值最小,就要求V是使得的最大空间区域 ,即
取 ,曲面 ……(3分)
为求最小值,作变换 ,那么 ,
从而 ……………………………………(4分)
利用球坐标计算,得
……………………(4分)
六、(总分值14分)设 ,其中 为常数,曲线C为椭圆 ,取正向。求极限
解 作变换 (观看发觉或用线性代数里正交变换化二次型的方式),曲线C变成 平面上的椭圆 (实现了简化积分曲线),也是取正向…(2分)
(2)方式一:
方式二(将一型曲面积分转化为二型):
记 ,取面 向下, 向外,
由高斯公式得:
,求该三重积分的方式很多,现给出如下几种常见方式:
1先一后二:
②先二后一:
③广义极坐标代换:
六.(此题12分)设f(x)是在 内的可微函数,且 ,其中 ,任取实数 ,概念 证明: 绝对收敛。
证明:
由拉格朗日中值定理得: 介于 之间,使得
,又 得
级数 收敛, 级数 收敛,即 绝对收敛。
七.(此题15分)是不是存在区间 上的持续可微函数f(x),知足 ,
?请说明理由。
解:假设存在,当 时,由拉格朗日中值定理得:
介于0,x之间,使得 ,
同理,当 时,由拉格朗日中值定理得:
介于x,2之间,使得


显然,
,又由题意得
即 ,

全国大学生数学竞赛大纲(非数学专业组)

全国大学生数学竞赛大纲(非数学专业组)

中国大学生数学竞赛竞赛大纲(初稿)为了进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,激励大学生学习数学的兴趣,发现和选拔数学创新人才,更好地实现“中国大学生数学竞赛”的目标,特制订本大纲。

一、竞赛的性质和参赛对象“中国大学生数学竞赛”的目的是:激励大学生学习数学的兴趣,进一步推动高等学校数学课程的改革和建设,提高大学数学课程的教学水平,发现和选拔数学创新人才。

“中国大学生数学竞赛”的参赛对象为大学本科二年级及二年级以上的在校大学生。

二、竞赛的内容“中国大学生数学竞赛”分为数学专业类竞赛题和非数学专业类竞赛题。

(二)中国大学生数学竞赛(非数学专业类)竞赛内容为大学本科理工科专业高等数学课程的教学内容,具体内容如下:一、函数、极限、连续1.函数的概念及表示法、简单应用问题的函数关系的建立.2.函数的性质:有界性、单调性、周期性和奇偶性.3.复合函数、反函数、分段函数和隐函数、基本初等函数的性质及其图形、初等函数.4.数列极限与函数极限的定义及其性质、函数的左极限与右极限.5.无穷小和无穷大的概念及其关系、无穷小的性质及无穷小的比较.6.极限的四则运算、极限存在的单调有界准则和夹逼准则、两个重要极限.7.函数的连续性(含左连续与右连续)、函数间断点的类型.8.连续函数的性质和初等函数的连续性.9.闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理).二、一元函数微分学1. 导数和微分的概念、导数的几何意义和物理意义、函数的可导性与连续性之间的关系、平面曲线的切线和法线.2. 基本初等函数的导数、导数和微分的四则运算、一阶微分形式的不变性.3. 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法.4. 高阶导数的概念、分段函数的二阶导数、某些简单函数的n阶导数.5. 微分中值定理,包括罗尔定理、拉格朗日中值定理、柯西中值定理和泰勒定理.6. 洛必达(L’Hospital)法则与求未定式极限.7. 函数的极值、函数单调性、函数图形的凹凸性、拐点及渐近线(水平、铅直和斜渐近线)、函数图形的描绘.8. 函数最大值和最小值及其简单应用.9. 弧微分、曲率、曲率半径.三、一元函数积分学1.原函数和不定积分的概念.2. 不定积分的基本性质、基本积分公式.3. 定积分的概念和基本性质、定积分中值定理、变上限定积分确定的函数及其导数、牛顿-莱布尼茨(Newton-Leibniz )公式.4. 不定积分和定积分的换元积分法与分部积分法.5. 有理函数、三角函数的有理式和简单无理函数的积分.6. 广义积分.7. 定积分的应用:平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力及函数的平均值.四.常微分方程1. 常微分方程的基本概念:微分方程及其解、阶、通解、初始条件和特解等.2. 变量可分离的微分方程、齐次微分方程、一阶线性微分方程、伯努利(Bernoulli )方程、全微分方程.3. 可用简单的变量代换求解的某些微分方程、可降阶的高阶微分方程:),()n (x f y =),,(y x f y '='' ),(y y f y '=''.4. 线性微分方程解的性质及解的结构定理.5. 二阶常系数齐次线性微分方程、高于二阶的某些常系数齐次线性微分方程.6. 简单的二阶常系数非齐次线性微分方程:自由项为多项式、指数函数、正弦函数、余弦函数,以及它们的和与积7. 欧拉(Euler )方程.8. 微分方程的简单应用五、向量代数和空间解析几何1. 向量的概念、向量的线性运算、向量的数量积和向量积、向量的混合积.2. 两向量垂直、平行的条件、两向量的夹角.3. 向量的坐标表达式及其运算、单位向量、方向数与方向余弦.4. 曲面方程和空间曲线方程的概念、平面方程、直线方程.5. 平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件、点到平面和点到直线的距离.6. 球面、母线平行于坐标轴的柱面、旋转轴为坐标轴的旋转曲面的方程、常用的二次曲面方程及其图形.7. 空间曲线的参数方程和一般方程、空间曲线在坐标面上的投影曲线方程.六、多元函数微分学1. 多元函数的概念、二元函数的几何意义.2. 二元函数的极限和连续的概念、有界闭区域上多元连续函数的性质.3. 多元函数偏导数和全微分、全微分存在的必要条件和充分条件.4. 多元复合函数、隐函数的求导法.5. 二阶偏导数、方向导数和梯度.6. 空间曲线的切线和法平面、曲面的切平面和法线.7. 二元函数的二阶泰勒公式.8. 多元函数极值和条件极值、拉格朗日乘数法、多元函数的最大值、最小值及其简单应用.七、多元函数积分学1.二重积分和三重积分的概念及性质、二重积分的计算(直角坐标、极坐标)、三重积分的计算(直角坐标、柱面坐标、球面坐标).2.两类曲线积分的概念、性质及计算、两类曲线积分的关系.3.格林(Green)公式、平面曲线积分与路径无关的条件、已知二元函数全微分求原函数.4.两类曲面积分的概念、性质及计算、两类曲面积分的关系.5.高斯(Gauss)公式、斯托克斯(Stokes)公式、散度和旋度的概念及计算.6.重积分、曲线积分和曲面积分的应用(平面图形的面积、立体图形的体积、曲面面积、弧长、质量、质心、转动惯量、引力、功及流量等)八、无穷级数1.常数项级数的收敛与发散、收敛级数的和、级数的基本性质与收敛的必要条件.2.几何级数与p级数及其收敛性、正项级数收敛性的判别法、交错级数与莱布尼茨(Leibniz)判别法.3.任意项级数的绝对收敛与条件收敛.4.函数项级数的收敛域与和函数的概念.5.幂级数及其收敛半径、收敛区间(指开区间)、收敛域与和函数.6.幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分)、简单幂级数的和函数的求法.7.初等函数的幂级数展开式.8.函数的傅里叶(Fourier)系数与傅里叶级数、狄利克雷(Dirichlei)定理、函数在[-l,l]上的傅里叶级数、函数在[0,l]上的正弦级数和余弦级数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

设 ∫ 1 dt
un = 0 (1 + t 4)n (n > 1)
(1)
证明数列{un}收来自,并求极限limn→∞
un;
∑ ∞ (2) 证明级数 (−1)n un 条件收敛;
n=1
(3)
证明当
p
>
1
时,级数
∑ ∞
n=1
un np
收敛,并求级数
∑ ∞ un n=1 n
的和.
参考解答 第 7 页 (共 7 页)
n→∞
n!an
参考解答 第 2 页 (共 7 页)
得分 评卷人 复核人 三、解答题 ( 本题满分 8 分) 设 f (x) 在 [0; 1] 连续,f (x) 在 (0; 1) 内可导,且 f (0) = 0; f (1) = 1,证明:
(1) 存在 x0 ∈ (0; 1),使得 f (x0) = 2 − 3x0; (2) 存在 ; Á ∈ (0; 1),且 Á,使得 [1 + f ′( )][1 + f ′(Á)] = 4.
x→0
lim g(x) = a > 0; 则
x→0
lim [f (x)]g(x) − [g(x)]g(x) =
:
x→0
f (x) − g(x)
得分 评卷人 复核人 二、解答题 ( 本题满分 10 分)
设数列
{an}
满足:a1
=
1,且
an+1
=
an (n + 1) (an
;n + 1)
>
1:
求极限
lim
参考解答 第 3 页 (共 7 页)
得分 评卷人 复核人 四、解答题 (本题满分 12 分)
已知 z = xf y + 2y' x ,其中 f; ' 均为二次可微函数,则求
x
y
(1)

@z ;
@2z
;
@x @x@y
(2)

f
= ',且
@2z @x@y
|x=a= −by2,求
f (y).
参考解答 第 4 页 (共 7 页)
得分 评卷人 复核人 五、解答题 ( 本题满分 12 分)
计算
I = 3y − x dx − 5zdz
Γ
x2 +y2 +z2 = 8
曲线 Γ :
,从 z 轴正向从坐标原点看去取逆时针方向.
x2 + y2 = 2z

准考证号:



姓名:

线

学校:

省市:
参考解答 第 5 页 (共 7 页)
得分 评卷人 复核人 六、解答题 ( 本题满分 14 分)
1. 极限 lim (x − sin x) e−x2 =
.
x→0 1 − x3 − 1
2. 设函数 f (x) = (x + 1)ne−x2,则 f (n)(−1) =
.
3. 设 y = f (x) 是由方程 arctan x = ln x2 + y2 − 1 ln 2 + 确定的隐函数,且满足 f (1) = 1,

准考证号:


绝密 F 启用前
微信公众号:八一考研数学竞赛
第十二届全国大学生数学竞赛试题 (非数学类)
2020 年 11 月 28 号 9:00 - 11:30 (模板制作者:八一与酸奶)
考试形式: 闭卷 考试时间: 150 分钟 满分: 100 分
题号







总分
满分
24
8
14
12
14
14
y
2
4
则曲线 y = f (x) 在点 (1; 1) 处的切线方程为
.

姓名:

线

学校:

省市:
参考解答 第 1 页 (共 7 页)
4. 已知 ∫ +∞ sin x dx = ,则 ∫ +∞ ∫ +∞ sin x sin (x + y) dxdy =
0
x
2
0
0
x (x + y)
5. 设 f (x); g(x) 在 x = 0 的某一邻域 U 内有定义, 对任意 x ∈ U; f (x) g(x),且 lim f (x) =
14
100
得分
注意事项
考生在答题前请认真阅读本注意事项及各题答题要求 1. 所有答题都须写在试卷密封线右边, 写在其他纸上一律无效. 2. 密封线左边请勿答题, 密封线外不得有姓名及相关标记. 3. 如答题空白不够, 可写在当页背面, 并标明题号.
得分 评卷人 复核人 一、填空题 ( 本题满分 30 分,每题 6 分)
证明
f
(n)
=
∑n

m
cos
2
n [x + 1] dx
m=1 0
m
等于 n 的所有因子 (包括 1 和 n 本身) 之和,其中 [x + 1] 表示不超过 x + 1 的最大整数,并 计算 f (2021).
参考解答 第 6 页 (共 7 页)
得分 评卷人 复核人 七、解答题 ( 本题满分 14 分)
相关文档
最新文档