眼图测量
眼图观察测量实验
一、實驗目的及要求:1)實驗目的: 學會觀察眼圖及其分析方法2)實驗要求: 1 分析電路的工作原理,敘述其工作過程;2 敘述眼圖的產生原理以及它的作用;3 繪出實驗觀察到的眼圖形狀。
二、實驗原理:我們知道衡量整個通信系統的傳輸品質,最直觀的方法就是用眼圖來觀察傳輸畸變和雜訊干擾。
我們知道,在實際的通信系統中,數位信號經過非理想的傳輸系統必定要產生畸變,信號通過通道後,也會引入雜訊和干擾,也就是說,總是在不同程度上存在碼間串擾。
在碼間串擾和雜訊同時存在情況下,系統性能很難進行定量的分析,常常甚至得不到近似結果。
為了便於評價實際系統的性能,常用觀察眼圖進行分析。
眼圖可以直觀地估價系統的碼間干擾和雜訊的影響,是一種常用的測試手段。
什麼是眼圖?所謂“眼圖”,就是由解調後經過低通濾波器輸出的基帶信號,以碼元定時作為同步信號在示波器螢幕上顯示的波形。
干擾和失真所產生的傳輸畸變,可以在眼圖上清楚地顯示出來。
因為對於二進位信號波形,它很像人的眼睛的過程眼圖。
在圖15-1中畫出兩個無雜訊的波形和相應的“眼圖”,一個無失真,另一個有失真(碼間串擾)。
(無失真及有失真時的波形及眼圖):(a)無碼間串擾時波形; 無碼間串擾眼圖(b)有碼間串擾時波形; 有碼間串擾眼圖圖15-1中可以看出,眼圖是由虛線分段的接收碼元波形疊加組成的。
眼圖中央的垂直線表示取樣時刻。
當波形沒有失真時,眼圖是一隻“完全張開”的眼睛。
在取樣時刻,所有可能的取樣值僅有兩個:+1或-1。
當波形有失真時,在取樣時刻信號取值分佈在小於+1或大於-1附近,“眼睛”部分閉合。
這樣,保證正確判決所容許的雜訊電平就減小了。
換言之,在隨機雜訊的功率給定時,將使誤碼率增加。
“眼睛”張開的大小就表明失真的嚴重程度。
為便於說明眼圖和系統性能的關係,我們將它簡化成圖15-2的形狀。
(眼圖的重要性質,其中U=U++U)(a) 二进制系统(b) 随机数据输入后的二进制系统三、實驗步驟:、眼圖觀察及分析實驗;、模擬眼圖觀察測量實驗;观察眼图SP109 SP614 SP615CPLD 32PN 码'()H ω观察眼图SP708PSK 译码SP614SP615'()H ω1、打開實驗箱右側電源開關,電源指示燈亮,按動帶鎖開關使L2(紅燈)點亮表示系統正常工作;2、連接SP614和SP109或SP809,送入基帶信號;3、用模擬示波器CH1觀察SP105,CH2觀察SP615,調節示波器特性調節電位器,可以觀察到有碼間串擾和無碼間串擾時的眼圖;4、當連接SP809是將PSK 解調模組解調還原的數位基帶信號送入眼圖電路。
信号完整性分析基础系列之一——眼图测量
信号完整性分析基础系列之一——关于眼图测量(上)汪进进美国力科公司深圳代表处内容提要:本文将从作者习惯的无厘头漫话风格起篇,从四个方面介绍了眼图测量的相关知识:一、串行数据的背景知识; 二、眼图的基本概念; 三、眼图测量方法; 四、力科示波器在眼图测量方面的特点和优势。
全分为上、下两篇。
上篇包括一、二部分。
下篇包括三、四部分。
您知道吗?眼图的历史可以追溯到大约47年前。
在力科于2002年发明基于连续比特位的方法来测量眼图之前,1962年-2002的40年间,眼图的测量是基于采样示波器的传统方法。
您相信吗?在长期的培训和技术支持工作中,我们发现很少有工程师能完整地准确地理解眼图的测量原理。
很多工程师们往往满足于各种标准权威机构提供的测量向导,Step by Step,满足于用“万能”的Sigtest软件测量出来的眼图给出的Pass or Fail结论。
这种对于Sigtest的迷恋甚至使有些工程师忘记了眼图是可以作为一项重要的调试工具的。
在我2004年来力科面试前,我也从来没有听说过眼图。
那天面试时,老板反复强调力科在眼图测量方面的优势,但我不知所云。
之后我Google“眼图”,看到网络上有限的几篇文章,但仍不知所云。
刚刚我再次Google“眼图”,仍然没有找到哪怕一篇文章讲透了眼图测量。
网络上搜到的关于眼图的文字,出现频率最多的如下,表达得似乎非常地专业,但却在拒绝我们的阅读兴趣。
“在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。
为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。
如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元定时同步时,适当调整相位,使波形的中心对准取样时刻,在示波器上显示的图形很象人的眼睛,因此被称为眼图(Eye Map)。
信号完整性分析基础系列之一——眼图测量
信号完整性分析基础系列之一——关于眼图测量(上)汪进进美国力科公司深圳代表处内容提要:本文将从作者习惯的无厘头漫话风格起篇,从四个方面介绍了眼图测量的相关知识:一、串行数据的背景知识; 二、眼图的基本概念; 三、眼图测量方法; 四、力科示波器在眼图测量方面的特点和优势。
全分为上、下两篇。
上篇包括一、二部分。
下篇包括三、四部分。
您知道吗?眼图的历史可以追溯到大约47年前。
在力科于2002年发明基于连续比特位的方法来测量眼图之前,1962年-2002的40年间,眼图的测量是基于采样示波器的传统方法。
您相信吗?在长期的培训和技术支持工作中,我们发现很少有工程师能完整地准确地理解眼图的测量原理。
很多工程师们往往满足于各种标准权威机构提供的测量向导,Step by Step,满足于用“万能”的Sigtest软件测量出来的眼图给出的Pass or Fail结论。
这种对于Sigtest的迷恋甚至使有些工程师忘记了眼图是可以作为一项重要的调试工具的。
在我2004年来力科面试前,我也从来没有听说过眼图。
那天面试时,老板反复强调力科在眼图测量方面的优势,但我不知所云。
之后我Google“眼图”,看到网络上有限的几篇文章,但仍不知所云。
刚刚我再次Google“眼图”,仍然没有找到哪怕一篇文章讲透了眼图测量。
网络上搜到的关于眼图的文字,出现频率最多的如下,表达得似乎非常地专业,但却在拒绝我们的阅读兴趣。
“在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。
为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。
如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元定时同步时,适当调整相位,使波形的中心对准取样时刻,在示波器上显示的图形很象人的眼睛,因此被称为眼图(Eye Map)。
透彻解析眼图测量技术(lecroy)_力科
Slice 1
Slice 2
Slice 3
3
Slice 4
Slice 12
Slice 11
Slice 5
Slice 6
Slice 7
Slice 8
Slice 9
数据按单位间隔逐 位与恢复时钟比较 重叠形成眼图
4
ZERO TRIGGER JITTER
• 数据是根据单位间隔排列而不是触发点. • 零时钟恢复抖动,零触发抖动.
用户自定义模板可直接 输入示波器使用
19
力科示波器在眼图测量方面的特点
力科在眼图测量领域的解决方案拥有如下功能或特点: 力科在业界最先采用实时眼图生成方法来绘制眼图,如今该方法已成 为眼图测量的现实行业标准 力科SDAII串行数据分析软件包为您提供全面的眼图及抖动分析能力 力科Zi系列示波器拥有业界最为领先的硬件指标与全面的响应优化模 式,确保眼图测量结果权威精确 流程图式的操作界面与可拆卸式的前控面板确保眼图测量轻松顺畅 创新的 X-Stream II 架构与先进的计算机系统确保快速完成眼图测量 眼图故障定位功能助力您轻松完成眼图失效分析 IsoBER功能帮助您深入预测眼图张开程度 力科独有的ISI Plot功能帮助您分析眼图中的码间干扰 力科独有的光电转换器帮助您完成光信号眼图测量 眼图医生工具EyeDoctor II为您提供了最佳的信号完整性分析工具
23
速度需求 -- 眼图测量需要采集并处理大量数据
18M个UI叠加的眼图
18M个UI叠加的眼图,每周期采集8个样点,总共需要处理150M样点。
24
速度需求-- 测量环境改变需要重复眼图测量
10英寸长的传输线,眼高 = 592mV
20英寸长的传输线,眼高 = 457mV
眼图测量的概念
眼图测量的概念眼图测量是一种用于分析和评估数字通信系统的技术。
在数字通信中,信息以数字信号的形式传输,而数字信号由一系列离散的样本组成。
眼图测量通过显示和分析这些样本的时域波形,从而提供关于系统性能的重要信息。
在眼图中,每个数字信号样本被绘制为一个脉冲,这些脉冲被垂直堆叠在一起形成一个图像,类似于一个开放的眼睛。
每个脉冲代表着一个时刻的信号状态,而整个眼图则显示了多个时刻的信号状态的叠加。
通过观察眼图的形状、宽度和高度等特征,可以获得关于系统的多种信息。
眼图主要提供以下几个方面的信息:1. 时基抖动:眼图的开口宽度可以反映系统的时基抖动性能。
时基抖动是由于时钟不准确或传输路径中的噪声引起的,它会导致样本位置的不确定性。
如果眼图的开口很窄,意味着系统中存在较大的时基抖动,这可能会导致信号误码率的增加。
2. 眼图的对称性:眼图的对称性可以反映系统的码间干扰情况。
如果眼图两边的形状不对称,即开口宽度不一致,可能表明系统中存在码间干扰或码间失配。
码间干扰会导致信号间的互相干扰,增加误码率。
3. 眼图的噪声水平:眼图的噪声水平可以反映系统的噪声性能。
噪声会导致信号波形的不规则性和抖动,从而影响系统的可靠性和性能。
通过观察眼图的噪声水平,可以评估系统的抗噪声性能。
4. 采样时刻偏移:眼图可以显示信号采样时刻的偏移情况。
采样时刻偏移会导致信号样本的错位,从而影响信号的恢复和解调。
通过观察眼图的采样时刻偏移情况,可以判断系统是否存在采样时刻同步问题。
除了以上几个方面的信息,眼图还可以用于估计信号的传输带宽、检测系统中的串扰和非线性等问题。
通过对眼图的仔细分析,可以发现可能存在的问题,并采取相应的调整和优化措施,以提高系统的性能和稳定性。
眼图测量可以使用专用的示波器、时钟回路、采样仪等设备进行。
这些设备可以通过触发和同步功能来捕获和显示眼图。
通过调整样本时钟、增加采样速率、降低噪声等措施,可以改善眼图的质量和可读性,并获得更准确的眼图测量结果。
眼图——概念与测量
眼图——概念与测量中文名称:眼图英文名称:eye diagram;eye pattern定义:示波器屏幕上所显示的数字通信符号,由许多波形部分重叠形成,其形状类似“眼”的图形。
“眼”大表示系统传输特性好;“眼”小表示系统中存在符号间干扰。
一.概述“在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。
为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。
在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。
当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。
若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。
由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。
另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。
通常眼图可以用下图所示的图形来描述,由此图可以看出:眼图的重要性质(1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。
显然,最佳抽样时刻应选在眼睛张开最大的时刻。
(2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。
(3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在许多接收设备中,定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要。
(4)在抽样时刻,阴影区的垂直宽度表示最大信号失真量。
(5)在抽样时刻上、下两阴影区间隔的一半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决。
(6)横轴对应判决门限电平。
眼图观察测量实验
实验12 眼图观察测量实验一、实验目得1、学会观察眼图及其分析方法,调整传输滤波器特性。
二、实验仪器1、眼图观察电路(底板右下侧)2.时钟与基带数据发生模块,位号:G 3.噪声模块,位号E 4.100M双踪示波器1台三、实验原理在整个通信系统中,通常利用眼图方法估计与改善(通过调整)传输系统性能。
我们知道,在实际得通信系统中,数字信号经过非理想得传输系统必定要产生畸变,也会引入噪声与干扰,也就就是说,总就是在不同程度上存在码间串扰。
在码间串扰与噪声同时存在情况下,系统性能很难进行定量得分析,常常甚至得不到近似结果。
为了便于评价实际系统得性能,常用观察眼图进行分析。
眼图可以直观地估价系统得码间干扰与噪声得影响,就是一种常用得测试手段。
什么就是眼图?所谓“眼图”,就就是由解调后经过接收滤波器输出得基带信号,以码元时钟作为同步信号,基带信号一个或少数码元周期反复扫描在示波器屏幕上显示得波形称为眼图。
干扰与失真所产生得传输畸变,可以在眼图上清楚地显示出来。
因为对于二进制信号波形,它很像人得眼睛故称眼图。
在图12-1中画出两个无噪声得波形与相应得“眼图”,一个无失真,另一个有失真(码间串扰)。
图12-1中可以瞧出,眼图就是由虚线分段得接收码元波形叠加组成得。
眼图中央得垂直线表示取样时刻。
当波形没有失真时,眼图就是一只“完全张开”得眼睛。
在取样时刻,所有可能得取样值仅有两个:+1或-1。
当波形有失真时,“眼睛”部分闭合,取样时刻信号取值就分布在小于+1或大于-1附近。
这样,保证正确判决所容许得噪声电平就减小了。
换言之,在随机噪声得功率给定时,将使误码率增加。
“眼睛”张开得大小就表明失真得严重程度。
为便于说明眼图与系统性能得关系,我们将它简化成图12-2得形状。
由此图可以瞧出:(1)最佳取样时刻应选择在眼睛张开最大得时刻;(2)眼睛闭合得速率,即眼图斜边得斜率,表示系统对定时误差灵敏得程度,斜边愈陡,对定位误差愈敏感; (3)在取样时刻上,阴影区得垂直宽度表示最大信号失真量;(4)在取样时刻上,上下两阴影区得间隔垂直距离之半就是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决;(5) 阴影区与横轴相交得区间表示零点位置变动范围,它对于从信号平均零点位置提取定时信息得解调器有重要影响。
眼图--概念与测量
眼图——概念与测量(摘记)中文名称:眼图英文名称:eye diagram;eye pattern定义:示波器屏幕上所显示的数字通信符号,由许多波形部分重叠形成,其形状类似“眼”的图形。
“眼”大表示系统传输特性好;“眼”小表示系统中存在符号间干扰。
一.概述“在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。
为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。
在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。
当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。
若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。
由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。
另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。
通常眼图可以用下图所示的图形来描述,由此图可以看出:(1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。
显然,最佳抽样时刻应选在眼睛张开最大的时刻。
(2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。
(3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在许多接收设备中,定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要。
(4)在抽样时刻,阴影区的垂直宽度表示最大信号失真量。
(5)在抽样时刻上、下两阴影区间隔的一半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决。
(6)横轴对应判决门限电平。
信号完整性系列之十七—— 基于误码率的眼图测试,ISOBER
常规的眼图测量眼图测试是高速串行信号物理层测试的一个重要项目。
眼图是由多个比特的波形叠加后的图形,从眼图中可以看到:数字信号1电平、0电平,信号是否存在过冲、振铃?抖动是否很大?眼图的信噪比?上升下降时间是否对称(占空比)?眼图反映了大数据量时的信号质量,可以最直观的描述高速数字信号的质量与性能。
如图1所示为某1.25G信号的眼图。
可以看到该信号的抖动较大。
另外,在很多高速数字信号的标准中,定义了不同测量点的眼图模板。
图1的深蓝色部分是眼图模板,测量到的眼图不能触碰到该模板。
在实时示波器中,通常使用连续比特位的眼图生成方法。
力科于2002年在业界最早采用连续比特位的眼图测试方法。
首先,示波器采集到一长串连续的数据波形;然后,使用软件CDR恢复时钟,用恢复的时钟切割每个比特的波形,从第1个、第2个、第3个、一直到第n-1个、第n个比特;最后一步是把所有比特重叠,得到眼图。
什么是BER?在数字电路系统中,发送端发送出多个比特的数据,由于多种因素的影响,接收端可能会接收到一些错误的比特(即误码)。
错误的比特数与总的比特数之比称为误码率,即Bit Error Ratio,简称BER。
误码率是描述数字电路系统性能的最重要的参数。
在GHz比特率的通信电路系统中(比如Fibre Channel、PCIe、SONET、SATA),通常要求BER小于或等于。
BER= 指的是发送/接收了10 个比特,只允许1个比特出错。
误码率较大时,通信系统的效率低、性能不稳定。
影响误码率的因素包括抖动、噪声、信道的损耗、信号的比特率等等。
基于误码率的眼图轮廓测试(BER Eye Contour)-力科称为ISOBER在上文中提到眼图是多个比特位的信号叠加得到的测量结果,所以测试中需要注意眼图是由多少个比特组成的?使用常规的实时示波器来测量高速串行信号的眼图,在几秒钟内可以生成1万个比特叠加的眼图。
力科示波器使用了创新的XStream II专利技术,可以快速的生成眼图,以SDA816Zi测量3.125Gbps的XAUI信号为例,大概几秒就可以得到上百万个比特的眼图。
眼图测试
实验二数字光纤通信系统信号眼图测试一.实验目的1.了解眼图产生的基础,根据眼图测量数字通信系统性能的原理;2.学习通过数字示波器调试、观测眼图;3.掌握判别眼图质量的指标;4.熟练使用数字示波器和误码仪。
二.实验原理眼图是估计数字传输系统性能的一种十分有效的实验方法。
这种方法已广泛应用于数字通信系统,在光纤数字通信中也是评价系统性能的重要实验方法。
眼图是在时域进行的用示波器显示二进制数字信号波形的失真效应的测量方法。
图2.1是测量眼图的装置图。
由Aς5233X误码仪产生一定长度的伪随机二进制数据流(AMI码、H∆B3码、PZ码、NPZ码)调制单模光产生相应的伪随机数据光脉冲并通过光纤活动连接器注入单模光纤,经过光纤传输后,再与光接收机相接。
光接收机将从光纤传输的光脉冲变为电脉冲,并输入到Aς4451(500MHζ)示波器,示波器显示的扫描图形与人眼相似,因此称为眼图。
用眼图法测量系统时应有多种字型,可以采用各比特位上0和1出现的概率相等的随机数字信号进行测试。
Aς5233X误码仪用来产生伪随机数字序列信号。
在这里“伪随机”的意义是伪随机码型发生器产生N比特长度的随机二进制数字信号是数字序列在N 比特后发生重复,并不是测试时间内整个数字序列都是随机的,因此称为“伪随机”。
伪随机序列如果由2比特位组成,则共有四种组合,3比特数字信号有8种组合,N比特数字信号有2N个组合。
伪随机数字信号的长度为2N-1,这种选择可保证字型不与数据率相关。
例如N可取7、10、15、23、31等。
如果只考虑3比特非归零码,应有如图2.2所示的8种组合。
将这8种组合同时叠加,就可形成如图2.3所示的眼图。
图2.1 眼图测量装置许多数字通信系统的重要性能可以从眼图测试中得到。
为了理解眼图测量原理,考虑图2.4所示简化的眼图,可以得到关于信号幅度失真、定时抖动和系统上升时间等系统性能参数。
接收信号的最佳取样时间是纵向眼开度最大的时刻t1。
眼图测量分析
眼圖之量測分析引言眼圖是一項時間分析工具,讓使用者能夠清楚看見時間和強度的誤差。
在真實生活中,諸如抖動之類的誤差非常難以量化,因為經常改變,而且非常小。
因此,眼圖非常利於尋找最大抖動以及電壓強度的誤差,如圖一所示。
圖一、眼圖檢視的抖動和電壓雜訊示意圖誤差增加時,眼圖中心的白色空間就會縮小。
那個空間由兩項特性所定義:眼寬(Eye Width)和眼高(Eye Height)。
圖二中白色空間的寬度就稱為眼寬。
因此,眼圖由數量足夠的樣本構成(數百萬個時間段落轉換),眼寬就是用來度量在任何指定的時間期間內、資料線穩定的時間長度的良好工具。
這樣可以了解可允許的保存時間和建立時間有多少。
最後完成的眼圖中的白色空間的高度就稱為眼高。
如果眼圖由數量足夠的樣本構成(數百萬個時間段落轉換),眼高可以指出接收器的VIH和VIL必須位於何處,才能正確地對資料取樣。
數位訊號轉換的品質越好,眼圖中的開放白色空間越大。
換言之,眼寬和眼高應該盡可能地大。
圖二、眼圖的高度及寬度示意圖實驗原理其形狀似人的眼睛,因此被稱爲眼圖。
而檢視數位傳輸器的輸出三個時間段落,即可建構出眼圖。
圖三中的眼圖是將所有可能的0與1的組合疊在一條線段上,而完成建構。
圖三、數位訊號對應之眼圖在數位系統中,時間是最重要的因素之一。
數位通訊的可靠性和準確性都是根據其時間功能的品質而定。
在真實世界的數位通訊系統中,有許多時間上的誤差,其中最重要的兩個是抖動(Jitter)和飄移(Drift)。
分別以抖動(Jitter)及飄移(Drift)敘述之:一、抖動(Jitter)抖動(Jitter)是指與事件的理想時間的誤差,通常是從參考訊號的過零點(Zero-Crossing)進行測量。
抖動通常歸因於串音(Cross-Talk)、同時切換輸出,以及其它週期性發生的干擾訊號。
由於抖動會隨著時間而變化,如圖四所示,因此對抖動的測量及量化有多種進行方式,從目測幾秒鐘內的抖動範圍,到以數據進行的測量(例如根據長時間的標準誤差)。
眼图的定义与测量方法
眼图的测量内容提要:本文将从作者习惯的无厘头漫话风格起篇,从四个方面介绍了眼图测量的相关知识:一、串行数据的背景知识; 二、眼图的基本概念; 三、眼图测量方法; 四、力科示波器在眼图测量方面的特点和优势。
全分为上、下两篇。
上篇包括一、二部分。
下篇包括三、四部分。
您知道吗?眼图的历史可以追溯到大约47年前。
在力科于2002年发明基于连续比特位的方法来测量眼图之前,1962年-2002的40年间,眼图的测量是基于采样示波器的传统方法。
您相信吗?在长期的培训和技术支持工作中,我们发现很少有工程师能完整地准确地理解眼图的测量原理。
很多工程师们往往满足于各种标准权威机构提供的测量向导,Step by Step,满足于用“万能”的Sigtest软件测量出来的眼图给出的Pass or Fail结论。
这种对于Sigtest的迷恋甚至使有些工程师忘记了眼图是可以作为一项重要的调试工具的。
在我2004年来力科面试前,我也从来没有听说过眼图。
那天面试时,老板反复强调力科在眼图测量方面的优势,但我不知所云。
之后我Google“眼图”,看到网络上有限的几篇文章,但仍不知所云。
刚刚我再次Google“眼图”,仍然没有找到哪怕一篇文章讲透了眼图测量。
网络上搜到的关于眼图的文字,出现频率最多的如下,表达得似乎非常地专业,但却在拒绝我们的阅读兴趣。
“在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。
为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。
如果将输入波形输入示波器的Y轴,并且当示波器的水平扫描周期和码元定时同步时,适当调整相位,使波形的中心对准取样时刻,在示波器上显示的图形很象人的眼睛,因此被称为眼图(Eye Map)。
二进制信号传输时的眼图只有一只“眼睛”,当传输三元码时,会显示两只“眼睛”。
实验2眼图观察测量实验
班级通讯1403学号2姓名裴振启指导教师邵军花日期实验 2眼图察看丈量实验一、实验目的学会察看眼图及其剖析方法,调整传输滤波器特征。
二、实验仪器1. 眼图察看电路2.时钟与基带数据发生模块,位号:G3. PSK调制模块,位号A4.噪声模块,位号B5. PSK解调模块,位号C6.复接 / 解复接、同步技术模块,位号:I7. 20M 双踪示波器 1 台三、实验原理在整个通讯系统中,往常利用眼图方法预计和改良(经过调整)传输系统性能。
所谓“眼图”,就是由解调后经过接收滤波器输出的基带信号,以码元时钟作为同步信号,基带信号一个或少量码元周期频频扫描在示波器屏幕上显示的波形称为眼图。
扰乱和失真所产生的传输畸变,能够在眼图上清楚地显示出来。
因为关于二进制信号波形,它很像人的眼睛故称眼图。
在图 2-1 中画出两个无噪声的波形和相应的“眼图”,一个无失真,另一个有失真(码间串扰 )。
图 2-1 中能够看出,眼图是由虚线分段的接收码元波形叠加构成的。
眼图中央的垂直线表示取样时辰。
当波形没有失真时,眼图是一只“完整张开”的眼睛。
在取样时辰,全部可能的取样值仅有两个: +1 或 -1。
当波形有失真时,“眼睛”部分闭合,取样时辰信号取值就散布在小于 +1 或大于 -1 邻近。
这样,保证正确裁决所允许的噪声电平就减小了。
换言之,在随机噪声的功率给准时,将使误码率增添。
“眼睛”张开的大小就表示失真的严重程度。
眼图图 2-1 无失真及有失真时的波形及眼图(a)无码间串扰时波形;无码间串扰眼图(b)有码间串扰时波形;有码间串扰眼图通讯工程实验教课中心通讯系统原理实验报告在图 2-2 中给出从示波器上察看到的比较理想状态下的眼图照片。
本实验主假如达成PSK解调输出基带信号的眼图观察实验。
(a) 二进制系统(b) 随机数据输入后的二进制系统图 2-2 实验室理想状态下的眼图四、各丈量点和可调元件作用底板右侧“眼图察看电路”W06 :接收滤波器特征调整电位器。
眼图测量
传统的眼图生成方法 ("Triggered Eye", "Single-Bit Eye"), Circa 1962 - 2002
Trigger Point
1st
Aquisition
1
同步触发+叠加显示 同步:硬件CDR恢复出理想时钟 触发:时钟的上升沿作为触发源
触发一次,叠加一个UI
Oscilloscope Acquisition
19
LeCroy Company Confidential
Comparing Traditional and Real Time Eye Patterns
The RTE is superior to the TEP for a multitude of reasons
Traditional Eye Pattern (TEP):
• Is 100-1000x slower than RTE • Provides lower measurement accuracy than RTE • Introduces trigger jitter • Introduces CDR jitter (when using CDR) • Does not allow for edge timing measurements to be performed during eye pattern testing • Events that occur on consecutive bits are not detected • Provides limited functionality
2. Multiple acquisitions (multiple triggers) can be used and still no trigger jitter will be introduced because data from those acquisitions are not combined using a trigger point reference.
最常用的就是眼图的测量方法,眼图测试分析
最常用的就是眼图的测量方法,眼图测试分析
波形参数测试是数字信号质量评估最常用的测量方法,但是随着数字信号速率的提高,仅仅靠幅度、上升时间等的波形参数的测量方法越来越不适用了。
比如下图的一个5Gbps的信号来说,由于受到传输通道的损耗的影响,不同位置的信号的幅度、上升时间、脉冲宽度等都是不一样的。
不同的操作人员在波形的不同位置测量得到的结果也是不一样的。
因此我们必须采用别的方法对于信号的质量进行评估,对于高速数字信号来说最常用的就是眼图的测量方法。
所谓眼图,实际上就是高速数字信号不同位置的数据比特按照时钟的间隔叠加在一起自然形成的一个统计分布图。
下面几张图显示了眼图的形成过程。
我们可以看到,随着叠加的波形数量的增加,数字信号逐渐形成了一个个类似眼睛一样的形状,我们就把这种图形叫做眼图。
眼图观察测量实验
实验12 眼图观察测量实验一、实验目的1.学会观察眼图及其分析方法,调整传输滤波器特性。
二、实验仪器1. 眼图观察电路(底板右下侧)2.时钟与基带数据发生模块,位号:G 3.噪声模块,位号E 4.100M双踪示波器1台三、实验原理在整个通信系统中,通常利用眼图方法估计和改善(通过调整)传输系统性能。
我们知道,在实际的通信系统中,数字信号经过非理想的传输系统必定要产生畸变,也会引入噪声和干扰,也就是说,总是在不同程度上存在码间串扰。
在码间串扰和噪声同时存在情况下,系统性能很难进行定量的分析,常常甚至得不到近似结果。
为了便于评价实际系统的性能,常用观察眼图进行分析。
眼图可以直观地估价系统的码间干扰和噪声的影响,是一种常用的测试手段。
什么是眼图所谓“眼图”,就是由解调后经过接收滤波器输出的基带信号,以码元时钟作为同步信号,基带信号一个或少数码元周期反复扫描在示波器屏幕上显示的波形称为眼图。
干扰和失真所产生的传输畸变,可以在眼图上清楚地显示出来。
因为对于二进制信号波形,它很像人的眼睛故称眼图。
在图12-1中画出两个无噪声的波形和相应的“眼图”,一个无失真,另一个有失真(码间串扰)。
图12-1中可以看出,眼图是由虚线分段的接收码元波形叠加组成的。
眼图中央的垂直线表示取样时刻。
当波形没有失真时,眼图是一只“完全张开”的眼睛。
在取样时刻,所有可能的取样值仅有两个:+1或-1。
当波形有失真时,“眼睛”部分闭合,取样时刻信号取值就分布在小于+1或大于-1附近。
这样,保证正确判决所容许的噪声电平就减小了。
换言之,在随机噪声的功率给定时,将使误码率增加。
“眼睛”张开的大小就表明失真的严重程度。
为便于说明眼图和系统性能的关系,我们将它简化成图12-2的形状。
由此图可以看出:(1)最佳取样时刻应选择在眼睛张开最大的时刻;(2)眼睛闭合的速率,即眼图斜边的斜率,表示系统对定时误差灵敏的程度,斜边愈陡,对定位误差愈敏感; (3)在取样时刻上,阴影区的垂直宽度表示最大信号失真量;(4)在取样时刻上,上下两阴影区的间隔垂直距离之半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决;(5) 阴影区与横轴相交的区间表示零点位置变动范围,它对于从信号平均零点位置提取定时信息的解调器有重要影响。
眼图观察测量实验
实验六:眼图观察测量实验
一.实验目的
1.学会眼图观察与测量方法 2.学会利用眼图对传输特性进行调整 二.实验仪器
1.RZ8621D 实验箱一台 2.20MHz 双踪示波器一台 3.平头小起子一个 三.实验电路连接
CPLD PSK 解调FSK 解调
TP708
图6-1 眼图观察实验方框图
四.实验预习测量点说明
实验前请预习规格化眼图的五项重点参量的定义,及观察眼图时示波器连接方法。
1、位同步提取是采用CPLD 软件编程实现位脉冲的提取及码元再生。
眼图观察是通过改变低通滤波器的传递函数H(f)使眼图图形随之改变。
用CPLD 实现位同步提取的功能框图如图6-2所示。
图6-2 数字锁相法位同步提取框图
数字锁相环框图中,频率为Nf B 的晶振产生方波振荡经两并联的窄脉形成电路,形成的输出信号为反向的方波。
分别加到扣除门和附加门,扣除门为常开门,附加门为常闭门。
因。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
眼图——概念与测量(摘记)
中文名称:
眼图
英文名称:
eyediagram;eye pattern
定义:
示波器屏幕上所显示的数字通信符号,由许多波形部分重叠形成,其形状类似“眼”的图形。
“眼”大表示系统传输特性好;“眼”小表示系统中存在符号间干扰。
一.概述
“在实际数字互连系统中,完全消除码间串扰是十分困难的,而码间串扰对误码率的影响目前尚无法找到数学上便于处理的统计规律,还不能进行准确计算。
为了衡量基带传输系统的性能优劣,在实验室中,通常用示波器观察接收信号波形的方法来分析码间串扰和噪声对系统性能的影响,这就是眼图分析法。
在无码间串扰和噪声的理想情况下,波形无失真,每个码元将重叠在一起,最终在示波器上看到的是迹线又细又清晰的“眼睛”,“眼”开启得最大。
当有码间串扰时,波形失真,码元不完全重合,眼图的迹线就会不清晰,引起“眼”部分闭合。
若再加上噪声的影响,则使眼图的线条变得模糊,“眼”开启得小了,因此,“眼”张开的大小表示了失真的程度,反映了码间串扰的强弱。
由此可知,眼图能直观地表明码间串扰和噪声的影响,可评价一个基带传输系统性能的优劣。
另外也可以用此图形对接收滤波器的特性加以调整,以减小码间串扰和改善系统的传输性能。
通常眼图可以用下图所示的图形来描述,由此图可以看出:
(1)眼图张开的宽度决定了接收波形可以不受串扰影响而抽样再生的时间间隔。
显然,最佳抽样时刻应选在眼睛张开最大的时刻。
(2)眼图斜边的斜率,表示系统对定时抖动(或误差)的灵敏度,斜率越大,系统对定时抖动越敏感。
(3)眼图左(右)角阴影部分的水平宽度表示信号零点的变化范围,称为零点失真量,在许多接收设备中,定时信息是由信号零点位置来提取的,对于这种设备零点失真量很重要。
(4)在抽样时刻,阴影区的垂直宽度表示最大信号失真量。
(5)在抽样时刻上、下两阴影区间隔的一半是最小噪声容限,噪声瞬时值超过它就有可能发生错误判决。
(6)横轴对应判决门限电平。
”
二、眼图的一些基本概念
—“什么是眼图?”
“眼图就是象眼睛一样形状的图形。
图五眼图定义”
眼图是用余辉方式累积叠加显示采集到的串行信号的比特位的结果,叠加后的图形形状看起来和眼睛很像,故名眼图。
眼图上通常显示的是1.25UI的时间窗口。
眼睛的形状各种各样,眼图的形状也各种各样。
通过眼图的形状特点可以快速地判断信号的质量。
图六的眼图有“双眼皮”,可判断出信号可能有串扰或预(去)加重。
图六“双眼皮”眼图
图七的眼图“眼睛里布满血丝”,这表明信号质量太差,可能是测试方法有错误,也可能是PCB布线有明显错误。
图七“眼睛布满血丝”的眼图
图八的眼图非常漂亮,这可能是用采样示波器测量的眼图。
图八最漂亮的“眼睛”
由于眼图是用一张图形就完整地表征了串行信号的比特位信息,所以成为了衡量信号质量的最重要工具,眼图测量有时侯就叫“信号质量测试(Signal Quality Test,SQ Test)”。
此外,眼图测量的结果是合格还是不合格,其判断依据通常是相对于“模板(Mask)”而言的。
模板规定了串行信号“1”电平的容限,“0”电平的容限,上升时间、下降时间的容限。
所以眼图测量有时侯又被称为“模板测试(Mask Test)”。
模板的形状也各种各样,通常的NRZ信号的模板如图五和图八蓝色部分所示。
在串行数据传输的不同节点,眼图的模板是不一样的,所以在选择模板时要注意具体的子模板类型。
如果用发送端的模板来作为接收端眼图模板,可能会一直碰模板。
但象以太网信号、E1/T1的信号,不是NRZ码形,其模板比较特别。
当有比特位碰到模板时,我们就认为信号质量不好,需要调试电路。
有的产品要求100%不能碰模板,有的产品是允许碰模板的次数在一定的概率以内。
(有趣的是,眼图85%通过模板的产品,功能测试往往是没有问题的,譬如我在用的电脑网口总是测试不能通过,但我上网一直没有问题。
这让很多公司觉得不用买示波器做信号完整性测试以一样可以做出好产品来,至于山寨版的,更不会去买示波器测眼图了。
)示波器中有测量参数可自动统计出碰到模板的次数。
此外,根据“侵犯”模板的位置就能知道信号的哪方面有问题从而指导调试。
如图九表明信号的问题主要是下降沿太缓,图十表明1电平和0电平有“塌陷”,可能是
ISI问题导致的。
图九下降沿碰到模板的眼图
图十“1”电平和“0”电平有“塌陷”的模板和眼图相关的眼图参数有很多,如眼高、眼宽、眼幅度、眼交叉比、“1”电平,“0”电平,消光比,Q因子,平均功率等。
图十二表示幅度相关的测量参数的定义。
图十一眼图参数定义
“1”电平和”0”电平表示选取眼图中间的20%UI部分向垂直轴投影做直方图,直方图的中心值分别为“1”电平和“0”电平。
眼幅度表示“1”电平减去“0”电平。
上下直方图的3sigm之差表示眼高。
图十二、十三、十四,十五表示了其它一些眼图参数的定义,一目了然,在此不再一一描述。
图十二眼图参数定义
图十三眼图参数定义
图十四眼图参数定义
图十五眼图参数定义
三、眼图测量方法(传统眼图测量方法)
之前谈到,眼图测量方法有两种:传统眼图测量方法用中文来理解是八个字:“同步触发+叠加显示”,现代眼图测量方法用中文来理解也是八个字:“同步切割+叠加显示”。
两种方法的差别就四个字:传统的是用触发的方法,现代的是用切割的方法。
“同步”是准确测量眼图的关键,传统方法和现代方法同步的方法是不一样的。
“叠加显示”就是用模拟余辉的方法不断累积显示。
传统的眼图方法就是同步触发一次,然后叠加一次。
每触发一次,眼图上增加了一个UI,每个UI的数据是相对于触发点排列的,因此是每触发一次眼图上只增加了一个比特位。
图一形象表示了这种方法形成眼图的过程。
图一传统眼图测量方法的原理
传统方法的第一个缺点就是效率太低。
对于现在的高速信号如PCI-Express Gen2,PCI-SIG要求测量1百万个UI的眼图,用传统方法就需要触发1百万次,这可能需要几个小时才能测量完。
第二个缺点是,由于每次触发只能叠加一个UI,形成1百万个UI的眼图就需要触发1百万次,这样不断触发的过程中必然将示波器本身的触发抖动也引入到了眼图上。
对于2.5GBbps以上的高速信号,这种触发抖动是不可忽略的。
如何同步触发,也就是说如何使每个UI的数据相对于触发点排列?也有两种方法,一种方法是在被测电路板上找到和串行数据同步的时钟,将此时钟引到示波器作为触发源,时钟的边沿作为触发的条件。
另外一种方法是将被测的串行信号同时输入到示波器的输入通道和硬件时钟恢复电路(CDR)通道,硬件CDR 恢复出串行数据里内嵌的时钟作为触发源。
这种同步方法引入了CDR抖动,这是传统方法的第三个缺点。
此外,硬件CDR只能侦测连续串行信号才能工作正常,如果被测信号不是连续的,譬如两段连续比特位之间有一段低电平,硬件CDR就不能恢复出正确的时钟。
另外,传统方法的工作原理决定了它不能对间歇性的串行信号做眼图,不能对保存的波形做眼图,不能对运算后的波形做眼图,这限制了应用范围。
这是传统方法的第四个缺点。