ABAQUS汽车安全气囊碰撞传感器有限元分析(中英对照)
Abaqus基本操作中文教程
![Abaqus基本操作中文教程](https://img.taocdn.com/s3/m/dfccb62827d3240c8547ef02.png)
A b a q u s基本操作中文教程目录1 Abaqus软件基本操作常用的快捷键旋转模型—Ctrl+Alt+鼠标左键平移模型—Ctrl+Alt+鼠标中键缩放模型—Ctrl+Alt+鼠标右键单位的一致性CAE软件其实是数值计算软件,没有单位的概念,常用的国际单位制如下表1所示,建议采用SI (mm)进行建模。
国际单位制SI (m) SI (mm)长度m mm力N N质量kg t时间s s应力Pa (N/m2) MPa (N/mm2)质量密度kg/m3t/mm3加速度m/s2mm/s2例如,模型的材料为钢材,采用国际单位制SI (m)时,弹性模量为m2,重力加速度m/s2,密度为7850 kg/m3,应力Pa;采用国际单位制SI (mm)时,弹性模量为mm2,重力加速度9800 mm/s2,密度为7850e-12??T/mm3,应力MPa。
分析流程九步走几何建模(Part)→属性设置(Property)→建立装配体(Assembly)→定义分析步(Step)→相互作用(Interaction)→载荷边界(Load)→划分网格(Mesh)→作业(Job)→可视化(Visualization)以上给出的是软件常规的建模和分析的流程,用户可以根据自己的建模习惯进行调整。
另外,草图模块可以进行参数化建模,建议用户可以参考相关资料进行学习。
几何建模(Part)关键步骤的介绍:➢部件(Part)导入Pro/E等CAD软件建好的模型后,另存成iges、sat、step等格式;然后导入Abaqus可以直接用,实体模型的导入通常采用sat格式文件导入。
➢部件(Part)创建简单的部件建议直接在abaqus中完成创建,复杂的可以借助Pro/E或者Solidworks等专业软件进行建模,然后导入。
常用按键的说明:属性设置(Property)建立装配体(Assembly)其中:①实例类型中的独立(网格在实例上),耗用内存较多,生成的inp文件也较大。
abaqus有限元分析报告过程
![abaqus有限元分析报告过程](https://img.taocdn.com/s3/m/377f823a52ea551810a68793.png)
一、有限单元法的基本原理有限单元法(The Finite Element Method)简称有限元(FEM),它是利用电子计算机进行的一种数值分析方法。
它在工程技术领域中的应用十分广泛,几乎所有的弹塑性结构静力学和动力学问题都可用它求得满意的数值结果。
有限元方法的基本思路是:化整为零,积零为整。
即应用有限元法求解任意连续体时,应把连续的求解区域分割成有限个单元,并在每个单元上指定有限个结点,假设一个简单的函数(称插值函数)近似地表示其位移分布规律,再利用弹塑性理论中的变分原理或其他方法,建立单元结点的力和位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程组,从而求解结点的位移分量. 进而利用插值函数确定单元集合体上的场函数。
由位移求出应变, 由应变求出应力二、ABAQUS有限元分析过程有限元分析过程可以分为以下几个阶段1.建模阶段: 建模阶段是根据结构实际形状和实际工况条件建立有限元分析的计算模型――有限元模型,从而为有限元数值计算提供必要的输入数据。
有限元建模的中心任务是结构离散,即划分网格。
但是还是要处理许多与之相关的工作:如结构形式处理、集合模型建立、单元特性定义、单元质量检查、编号顺序以及模型边界条件的定义等。
2.计算阶段:计算阶段的任务是完成有限元方法有关的数值计算。
由于这一步运算量非常大,所以这部分工作由有限元分析软件控制并在计算机上自动完成3.后处理阶段: 它的任务是对计算输出的结果惊醒必要的处理,并按一定方式显示或打印出来,以便对结构性能的好坏或设计的合理性进行评估,并作为相应的改进或优化,这是惊醒结构有限元分析的目的所在。
下列的功能模块在ABAQUS/CAE操作整个过程中常常见到,这个表简明地描述了建立模型过程中要调用的每个功能模块。
“Part(部件)用户在Part模块里生成单个部件,可以直接在ABAQUS/CAE环境下用图形工具生成部件的几何形状,也可以从其它的图形软件输入部件。
abaqus碰撞算法原理
![abaqus碰撞算法原理](https://img.taocdn.com/s3/m/3db3689477a20029bd64783e0912a21614797f29.png)
abaqus碰撞算法原理
碰撞是物体间最基本的相互作用方式之一,也是工程领域中常见的问题。
abaqus碰撞算法是一种用于模拟物体碰撞过程的计算方法,它能够准确地预测碰撞发生的位置和时间,并计算出碰撞后物体的运动状态。
在abaqus碰撞算法中,首先需要定义碰撞的几何模型和材料参数。
几何模型可以使用abaqus提供的建模工具进行创建,包括定义物体的形状、尺寸和位置等。
材料参数包括物体的弹性模量、密度和摩擦系数等,这些参数将影响碰撞后物体的响应。
在模拟过程中,abaqus将物体划分为多个有限元单元,并通过求解有限元方程组来计算物体的位移和应力分布。
在碰撞发生时,abaqus会根据碰撞模型和材料参数计算物体受到的碰撞力和碰撞点的位置。
然后,abaqus会根据这些信息来更新物体的位移和速度,并继续模拟后续的碰撞过程。
abaqus碰撞算法中的碰撞模型可以分为刚体碰撞和非刚体碰撞两种。
刚体碰撞是指物体之间没有变形,只有位置和速度的改变。
非刚体碰撞是指物体之间发生了变形,需要考虑物体的弹性性质。
在实际应用中,abaqus碰撞算法可以用于多个领域,如汽车碰撞、航空航天、结构工程等。
通过模拟碰撞过程,可以评估物体的结构强度和安全性能,为设计和优化提供依据。
abaqus碰撞算法是一种用于模拟物体碰撞过程的计算方法,能够准确地预测碰撞发生的位置和时间,并计算出碰撞后物体的运动状态。
它在工程领域中具有广泛的应用,并为设计和优化提供了重要的支持。
基于ABAQUS的碰撞有限元分析
![基于ABAQUS的碰撞有限元分析](https://img.taocdn.com/s3/m/eb6956adb14e852459fb5731.png)
Interna l Combustion Engine&Parts0引言在某系统中,转动台体需要绕着其转轴在有限转角范围内转动。
当转动台体运动极限位置处时,就会与极限位置处结构发生打边碰撞,这样会造成转动台体和极限位置处结构发生破坏损伤。
尤其是当转动台体高速运动时,发生碰撞的破坏程度就越大。
为了保护转动台体和极限位置处结构,在极限位置处设计了一种橡胶缓冲垫[1]。
橡胶是一种用粘弹性橡胶材料,抗压性好,回弹性强,广泛运用于缓冲减振情形。
本文设计了一种条状橡胶缓冲垫,通过螺钉固定在极限位置处结构上。
当转动台体运动到极限位置处时,首先与橡胶缓冲垫发生接触,橡胶被压缩变形缓冲转动台体的碰撞,可以起到保护转动台体和极限位置处结构的功能。
为了验证缓冲效果,本文采用了仿真软件,建立了碰撞分析模型,对转动台体和橡胶缓冲垫的碰撞过程进行仿真分析。
1橡胶本构模型橡胶作为一种超弹性材料,在较小外力作用下就能够高度变形,在外力除去后又能恢复原状,几乎无永久变形。
橡胶的模型有很多种,本文采用Mooney-rivlin本构模型,其应变能密度函数表达式为:W=C10(I1-3)+C01(I2-3)。
其中C10和C01分别为Rivlin系数;I1和I2分别为Green应变不变量。
对于橡胶类材料,其初始弹性模量E0、剪切模量G 的关系为:G=E0/3=2(C10+C01)。
橡胶硬度HS与弹性模量E0有如下关系:E0=(15.75+2.15HS)/(100-HS)。
综上,可得出:基于ABAQUS的碰撞有限元分析汪俊伟(中国空空导弹研究院,洛阳471000)摘要:本文针对某系统中转动台体存在的极限位置处会发生打边碰撞问题,设计了一种橡胶缓冲垫进行结构保护。
采用了ABAQUS仿真软件对碰撞过程进行仿真分析,结果显示碰撞过程中最大应力值远小于结构材料的屈服极限,橡胶缓冲垫的设计能满足使用要求。
仿真分析过程也为类似碰撞结构设计及优化提供一定的参考依据。
ABAQUS有限元分析方法
![ABAQUS有限元分析方法](https://img.taocdn.com/s3/m/f5d95a0abb68a98271fefa23.png)
一. 有限单元法的基本原理
有限元方法的基本思路是:化整为零,积零为整。即应用有限元
二 ABAQUS简介
ABAQUS是建立在有限元方法上的强大的工程计算软件。 能解决从简单的线性问题和困难的非线性问题,可以绘画任何 存在的几何形状,而且能够模拟大多数工程材料的行为,是一 个通用的计算工具。 它不仅能解决结构力学问题,而且能够模拟热传导,辐射 和声音传播。它能解决一大批工程实际中所遇到的结构分析问 题,对固体,结构及结构-流体系统做静、动位移和应力进行 线性和非线性分析。 程序包括的单元类型有:桁元、二维平面应力和平面应变 元、三维平面应力元、等参梁元、板/壳元及二维、三维流体 元等。 交异性线弹性、弹塑性材料(包 括等向强化,随动强化和混合强化)等。 ABAQUS是一个模块存贮计算的解题程序。方程是按块处 理的,输入数据分成许多模块,各种复杂的分析都可以通过不 同的模块的组合来处理,因此,它可以求解很大的有限元系统。
ABAQUS/CAE 模块: 用于分析对象的建模,特性及约束条件
的给定,网格的划分以及数据传输等。
1. ABAQUS/CAE前处理模块:
(1)建立几何力学模型。 (2)给模型赋予材料参数。 (3)建立边界条件。 (4)施加载荷。 (5)划分网格。 (6)定义加载步。 (7)形成Input文件。
非对称四点弯曲试验装置图
能解决从简单的线性问题和困难的非线性问题可以绘画任何存在的几何形状而且能够模拟大多数工程材料的行为是一个通用的计算工具
ABAQUS有限元分析方法简介
有限单元法(The Finite Element Method)简称有限元 (FEM),它是利用电子计算机进行的一种数值分析方法。它在工 程技术领域中的应用十分广泛,几乎所有的弹塑性结构静力学和动 力学问题都可用它求得满意的数值结果。
基于ABAQUS的轿车前保险杠100%正面碰撞仿真分析
![基于ABAQUS的轿车前保险杠100%正面碰撞仿真分析](https://img.taocdn.com/s3/m/df7f2e016c85ec3a87c2c55e.png)
Thank you
Add Your Company Slogan
Hale Waihona Puke 2.有限元分析模型的建立2.1导入模型有限元单元文件 此处导入的是包含模型网格单元信息的inp文件.
2.有限元分析模型的建立
2.2 定义分析模型的材料和属性 散热器支架 、纵梁、缓冲梁、固定架、加强支架定义金属材料属性 缓冲器罩定义塑料材料属性 缓冲泡沫定义泡沫材料属性
3.施加边界条件与接触算法
Add Your Company Slogan
基于ABAQUS的轿车前保险杠 100%正面碰撞仿真分析
报告内容
1 2 3 4 5
案例分析背景 有限元分析模型的建立 施加边界条件与接触算法 查看碰撞仿真分析结果 案例分析意义
1.案例分析背景
汽车前保险杠位于汽车最前部,是前部或追尾 碰撞事故中首先接触的部件,在减小碰撞事故中对 行人的伤害,降低低速碰撞事故对车辆的损坏方面 起着重要作用。保险杠横梁的主要作用是将碰撞中 产生的能量均匀地传递给吸能盒,同时防止内侵量 过大造成发动机前部件的损坏,对于提高车辆的被 动安全性实现保险杠的轻量化设计具有重要意义。 此次研究是基于有限元分析软件Abaqus,对汽车保 险杠的碰撞过程吸能特性进行了仿真分析。.
1、对墙壁施加固定约束 2、对车体x方向定义30km/h的初始速度
3、各部件之间定义通用(自动)接触算法,接触面之间的表面摩擦系数假 设为0.1
4.查看碰撞仿真分析结果
4.1保险杠碰撞变形过程 从图中可以看出在15ms之前横梁发生轻微变形,30ms之后横梁变形加 大。碰撞过程中横梁吸收主要动能。
4.求解并查看碰撞仿真分析结果
4.2保险杠碰撞变形法向接触力云图
4.求解并查看碰撞仿真分析结果
全面介绍ABAQUS有限元分析
![全面介绍ABAQUS有限元分析](https://img.taocdn.com/s3/m/a30e594e3d1ec5da50e2524de518964bcf84d24d.png)
全面介绍ABAQUS有限元分析有限元分析软件ABAQUS介绍(一)数值模拟方法介绍一:数值模拟也叫计算机模拟。
它以电子计算机为手段,通过数值计算和图像显示的方法,达到对工程问题和物理问题乃至自然界各类问题研究的目的,节约时间、成本。
数值模拟的基本步骤:(1)建立数学模型--基本守恒方程(2)建立物理问题模型--前处理建模(3)离散方程--选择离散方法和格式(4)求解方程--选择求解算法(5)编制、调试程序(6)研究结果--后处理(7)改进模型或提出指导方案使用软件分析的优势二、有限元软件的介绍三种数值分析方法:有限元方法,有限差分,有限体积方法有限元分析是对结构力学分析迅速发展起来的一种现代计算方法。
有限元分析软件目前最流行的有:ANSYS、ADINA、ABAQUS、MSC四个比较知名比较大的公司。
有限元软件的对比ANSYS是商业化比较早的一个软件,目前公司收购了很多其他软件在旗下。
ABAQUS专注结构分析,目前没有流体模块。
MSC是比较老(1963)的一款软件目前更新速度比较慢。
ADINA是在同一体系下开发有结构、流体、热分析的一款软件,功能强大但进入中国时间比较晚市场还没有完全铺开。
结构分析能力排名:ABAQUS、ADINA、MSC、ANSYS流体分析能力排名:ANSYS、ADINA、MSC、ABAQUS耦合分析能力排名:ADINA、ANSYS、MSC、ABAQUS性价比排名:ADINA,ABAQUS、ANSYS、MSCANSYS与ABAQUS的对比应用领域:1. ANSYS软件注重应用领域的拓展,目前已覆盖流体、电磁场和多物理场耦合等十分广泛的研究领域。
2. ABAQUS则集中于结构力学和相关领域研究,致力于解决该领域的深层次实际问题。
其强大的非线性分析功能在设计和研究的高端用户群中得到了广泛的认可求解器功能(1)对于常规的线性问题,两种软件都可以较好的解决,在模型规模限制、计算流程、计算时间等方面都较为接近。
abaqus使用中英文词汇对比
![abaqus使用中英文词汇对比](https://img.taocdn.com/s3/m/3783db5af342336c1eb91a37f111f18583d00c85.png)
abaqus使用中英文词汇对比1vane shear test|十字板剪切试验a semi-infinite elastic solid|半无限弹性体AASHTO= American Association State Highway Officials|美国州公路官员协会active earth pressure|主动土压力additional stress|附加应力allowable bearing capacity of foundation soil|地基容许承载力alluvial expansive soil|冲积膨胀土anchored plate retaining wall|锚定板挡土墙anchored sheet pile wall|锚定板板桩墙angle of internal friction|内摩擦角angle of repose|休止角anisotropy|各向异性ANSYS Booleans|布尔运算ANSYS Booleans Intersect|布尔交运算ANSYS Booleans Overlap|布尔搭接运算ANSYS Booleans Partition|布尔分割运算ANSYS Cartesian|笛卡儿坐标ANSYS Cylindrical|柱坐标ANSYS Eigen Buckling|特征值屈伸分析ANSYS Global Cartesian|笛卡儿坐标系ANSYS Global Cylindrical|柱坐标系ANSYS Global Spherical|球坐标系ANSYS Grid|网格ANSYS Harmonic|谐振分析ANSYS Model|模态分析ANSYS Normal|法向向量ANSYS Polar|极坐标ANSYS Spectrum|谱分析ANSYS Spherical|球坐标ANSYS Static|静态分析ANSYS Substructuring|子结构分析ANSYS Tolerance|允许偏差ANSYS Transient|瞬态分析ANSYS Trial|坐标轴ANSYS Working Plane Origin|工作平面原点anti-slide pile|抗滑桩arrangement of piles|桩的布置artificial foundation|人工地基ASCE=American Society of Civil Engineer|美国土木工程师学会associated flow|关联流动Atterberg limits|阿太堡界限Barraon’s consolidation theory|巴隆固结理论bearing capacity|承载力bearing capacity of foundation soil|地基承载力bearing capacity of single pile|单桩承载力bearing stratum|持力层belled pier foundation|钻孔墩基础bench slope|台阶式坡形Biot’s consolidation theory|比奥固结理论Bishop method|毕肖普法bore hole columnar section|钻孔柱状图bored pile|钻孔桩bottom heave|(基坑)底隆起boulder|漂石boundary surface model|边界面模型box foundation|箱型基础braced cuts|支撑围护braced excavation|支撑开挖braced sheeting|支撑挡板bracing of foundation pit|基坑围护bulk constitutive equation|体积本构模型caisson foundation|沉井(箱)Cambridge model|剑桥模型cantilever retaining wall|悬臂式挡土墙cantilever sheet pile wall|悬臂式板桩墙cap model|盖帽模型casing|套管cast in place|灌注桩cement column|水泥桩cement mixing method|水泥土搅拌桩centrifugal model test|离心模型试验chemical stabilization|化学加固法clay|粘土clay fraction|粘粒粒组clay minerals粘土|矿物clayey silt|粘质粉土clayey soil|粘性土coarse sand|粗砂cobble|卵石coefficent of compressibility|压缩系数coefficient of consolidation|固结系数coefficient of gradation|级配系数coefficient of permeability|渗透系数coefficient of variation|变异系数cohesion|粘聚力collapsible loess treatment|湿陷性黄土地基处理compacted expansive soil|击实膨胀土compaction test|击实试验compactness|密实度compensated foundation|补偿性基础complex texture|复合式结构composite foundation|复合地基compressibility|压缩性compressibility modulus|压缩摸量compression index|压缩指数concentrated load|集中荷载consolidated drained direct shear test|慢剪试验consolidated drained triaxial test|固结排水试验(CD) consolidated quick direct shear test|固结快剪试验consolidated undrained triaxial test|固结不排水试验(CU) consolidation| 固结consolidation curve|固结曲线consolidation test|固结试验consolidation under K0 condition| K0固结constant head permeability|常水头渗透试验constitutive equation|本构关系constitutive model|本构模型Coulomb’s earth pressure theory|库仑土压力理论counter retaining wall|扶壁式挡土墙country rock|围岩critical edge pressure|临塑荷载cross-hole test| 跨孔试验cushion|垫层cyclic loading|周期荷载cycling load|反复荷载damping ratio|阻尼比Darcy’s law| 达西定律dead load sustained load|恒载持续荷载deep foundation|深基础deep settlement measurement|深层沉降观测deep well point|深井点deformation|变形deformation modulus|变形摸量deformation monitoring|变形监测degree of consolidation|固结度degree of saturation|饱和度density|密度dewatering|(基坑)降水dewatering method|降低地下水固结法diaphragm wall|地下连续墙截水墙dilatation|剪胀dimensionless frequency|无量纲频率direct shear|直剪direct shear apparatus|直剪仪direct shear test|直剪试验direct simple shear test|直接单剪试验direction arrangement|定向排列discount coefficient|折减系数diving casting cast-in-place pile|沉管灌注桩domain effect theory|叠片体作用理论drilled-pier foundation|钻孔扩底墩dry unit weight|干重度dry weight density|干重度Duncan-Chang model|邓肯-张模型duration of earthquake|地震持续时间dyke堤|(防)dynamic compaction|强夯法dynamic compaction replacement|强夯置换法dynamic load test of pile|桩动荷载试验dynamic magnification factor|动力放大因素dynamic penetration test|(DPT)动力触探试验dynamic pile testing|桩基动测技术dynamic properties of soils| 土的动力性质dynamic settlement|振陷(动沉降)dynamic shear modulus of soils|动剪切模量dynamic strength|动力强度dynamic strength of soils|动强度dynamic subgrade reaction method|动基床反力法dynamic triaxial test|三轴试验earth pressure|土压力earth pressure at rest|静止土压力earthquake engineering|地震工程earthquake intensity|地震烈度earthquake magnitude|震级earthquake response spectrum|地震反应谱effective stress|有效应力effective stress approach of shear strength|剪胀抗剪强度有效应力法effective stress failure envelop|有效应力破坏包线effective stress strength parameter|有效应力强度参数effective unit weight|有效重度efficiency factor of pile groups|群桩效率系数(η)efficiency of pile groups|群桩效应elastic half-space foundation model|弹性半空间地基模型elastic half-space theory of foundation vibration|基础振动弹性半空间理论elastic model|弹性模型elastic modulus|弹性模量elastoplastic model|弹塑性模型embedded depth of foundation|基础埋置深度end-bearing pile|端承桩engineering geologic investigation|工程地质勘察equivalent lumped parameter method|等效集总参数法equivalent node load|等小结点荷载evaluation of liquefaction|液化势评价ewatering method|降低地下水位法excavation|开挖(挖方)excess pore water pressure|超孔压力expansive ground treatment|膨胀土地基处理expansive soil|膨胀土failure criterion|破坏准则failure of foundation|基坑失稳falling head permeability|变水头试验fatigue test|疲劳试验Fellenius method of slices|费纽伦斯条分法field permeability test|现场渗透试验field vane shear strength|十字板抗剪强度filling condition|填筑条件final set|最后贯入度final settlement|最终沉降fine sand|细砂finite element method|有限员法flexible foundation|柔性基础floor heave|底膨flow net|流网flowing soil|流土foundation design|基础设计foundation engineering|基础工程foundation vibration|基础振动foundation wall|基础墙fractal structure|分形结构free swell|自由膨胀率freezing and heating|冷热处理法free(resonance)vibration column test|自(共)振柱试验friction pile|摩擦桩frozen heave|冻胀frozen soil|冻土general shear failure|整体剪切破化geofabric|土工织物geologic mode|地质结构模式geometric damping|几何阻尼geostatic stress|自重应力geotechnical engineering|岩土工程geotechnical model test|土工模型试验gravel|砂石gravelly sand|砾砂gravity retaining wall|重力式挡土墙ground treatment|地基处理ground treatment in mountain area|山区地基处理groundwater|地下水groundwater level|地下水位groundwater table|地下水位group action|群桩作用high pressure consolidation test|高压固结试验high-rise pile cap|高桩承台homogeneous|均质hydraulic gradient|水力梯度hydrometer analysis|比重计分析hyperbolic model|双曲线模型hysteresis failure|滞后破坏ideal elastoplastic model|理想弹塑性模型in situ test|原位测试in-situ pore water pressure measurement|原位孔隙水压量测in-situ soil test|原位试验initial liquefaction|初始液化initial pressure|初始压力initial stress field|初始应力场isotropic|各向同性ISSMGE=International Society for Soil Mechanics and Geotechnical Engineering| 国际土力学与岩土工程学会jet grouting|高压喷射注浆法Kaolinite|高岭石laminar texture|层流结构landslide precasting|滑坡预报landslides|滑坡lateral load test of pile|单桩横向载荷试验lateral pile load test|单桩横向载荷试验lateral pressure coefficient|侧压力系数layered filling|分层填筑leakage|渗流light sounding|轻便触探试验lime soil pile|灰土挤密桩lime-soil compacted column|灰土挤密桩lime-soil compaction pile| 灰土挤密桩limit equilibrium method|极限平衡法limiting pressure|极限压力lining|衬砌liquefaction strength|抗液化强度live load|活载local shear failure|局部剪切破坏long term strength|长期强度long-term strength|长期强度long-term transient load|长期荷载low activity|低活性low pile cap|低桩承台material damping|材料阻尼mathematical method|数学模型maximum acceleration of earthquake|地震最大加速度maximum dry density|最大干密度medium sand|中砂modulus of compressibility|压缩模量Mohr-Coulomb failure condition|摩尔-库仑破坏条件Mohr-Coulomb theory|莫尔-库仑理论Mohr-Coulomb yield criterion|莫尔-库仑屈服准则moist unit weight|湿重度multi-dimensional consolidation|多维固结NATM|新奥法natural frequency of foundation|基础自振频率natural period of soil site|地基固有周期net foundation pressure|基底附加应力nonlinear analysis|非线性分析nonlinear elastic model|非线性弹性模型normal distribution| 正态分布normal stresses|正应力normally consolidated soil|正常固结土numerical geotechanics|数值岩土力学one-dimensional consolidation|一维固结optimum water content|最优含水率over consolidation ration| (OCR)超固结比overconsolidated soil|超固结土overconsolidation|超固结性overconsolidation soil|超固结土passive earth pressure|被动土压力peak strength|峰值强度peat|泥炭permeability|渗透性physical properties|物理性质pile caps|承台(桩帽)pile cushion|桩垫pile foundation|桩基础pile groups|群桩pile headt|桩头pile integrity test|桩的完整性试验pile noise|打桩噪音pile pulling test|拔桩试验pile rig|打桩机pile shoe|桩靴pile spacing|桩距pile tip|桩端(头)piles set into rock|嵌岩灌注桩pillow|褥垫piping|管涌plastic drain|塑料排水带plate loading test|载荷试验Poisson ratio|泊松比poorly-graded soil|级配不良土pore pressure|孔隙压力pore water pressure|孔隙水压力pore-pressure distribution|孔压分布precast concrete pile|预制混凝土桩preconsolidated pressure|先期固结压力preconsolidation pressure|先期固结压力preloading|预压法pressuremeter test|旁压试验prestressed concrete pile|预应力混凝土桩prestressed concrete pipe pile|预应力混凝土管桩primary consolidation|主固结primary structural surface|原生结构面principal plane|主平面principal stress|主应力principle of effective stress|有效应力原理probabilistic method|概率法probability of failure|破坏概率progressive failure|渐进破坏punching shear failure|冲剪破坏quick direct shear test|快剪试验rammed bulb pile|夯扩桩rammed-cement-soil pile|夯实水泥土桩法random arrangement|随机排列Rankine’s earth pressure theory|朗金土压力理论rebound index|回弹指数recompaction|再压缩reduced load|折算荷载reinforced concrete sheet pile|钢筋混凝土板桩reinforcement method|加筋法reloading|再加载replacement ratio|(复合地基)置换率residual diluvial expansive soil|残坡积膨胀土residual soil|残积土residual strength|残余强度resistance to side friction|侧壁摩擦阻力retaining wall|挡土墙rigid foundation|刚性基础rigid plastic model|刚塑性模型rolling compaction|碾压root pile|树根桩safety factor|安全系数safety factor of slope|边坡稳定安全系数sand boiling|砂沸sand drain|砂井sand wick|袋装砂井sand-gravel pile|砂石桩sandy silt|砂质粉土saturated soil|饱和土saturated unit weight|饱和重度saturation degree|饱和度screw plate test|螺旋板载荷试验secondary consolidation|次固结secondary minerals|次生矿物secondary structural surface|次生结构面seepage|渗透(流)seepage force|渗透力seepage pressure|渗透压力seismic predominant period|地震卓越周期sensitivity|灵敏度settlement|沉降shaft|竖井身shallow foundation|浅基础shear modulus|剪切摸量shear strain rate|剪切应变速率shear strength|抗剪强度shear strength of interlayered weak surface|层间软弱面强度shear strength of repeated swelling shrinkage|反复胀缩强度shear stresses|剪应力sheet pile structure|板桩结构物shield tunnelling method|盾构法shinkrage coefficient|收缩系数shinkrage limit|缩限short –term transient load|短期瞬时荷载sieve analysis|筛分silent piling|静力压桩silt|粉土silty clay|粉质粘土silty sand|粉土size effect|尺寸效应slaking characteristic|崩解性slices method|条分法slip line|滑动线slope protection|护坡slope stability analysis|土坡稳定分析soft clay|软粘土soft clay ground|软土地基soft soil|软土soil dynamics|土动力学soil fraction|粒组soil mass|土体soil mechanics|土力学special-shaped cast-in-place pile|机控异型灌注桩specific surface|比表面积spread footing|扩展基础square spread footing|方形独立基础sshaft resistance|桩侧阻stability analysis|稳定性分析stability of foundation soil|地基稳定性stability of retaining wall|挡土墙稳定性state of limit equilibrium|极限平衡状态static cone penetration|(SPT) 静力触探试验static load test of pile|单桩竖向静荷载试验steel pile|钢桩steel piles|钢桩steel pipe pile|钢管桩steel sheet pile|钢板桩stress path|应力路径stress wave in soils|土中应力波striation|擦痕strip footing|条基strip foundation|条形基础structural characteristic|结构特征structure-foundation-soil interaction analysis|上部结构-基础-地基共同作用分析subgrade|路基surcharge preloading|超载预压法surface compaction|表层压实法Swedish circle method|瑞典圆弧滑动法swelling index|回弹指数system of engineering structure|工程结构系统technical code for ground treatment of building|建筑地基处理技术规范tectonic structural surface|构造结构面Terzzaghi’s consolidation theory|太沙基固结理论thermal differential analysis|差热分析three phase diagram|三相图timber piles|木桩time effcet|时间效应time effect|时间效应time factor Tv|时间因子tip resistance|桩端阻total stress|总应力total stress approach of shear strength|抗剪强度总应力法tri-phase soil|三相土triaxial test|三轴试验ultimate bearing capacity of foundation soil|地基极限承载力ultimate lateral resistance of single pile|单桩横向极限承载力unconfined compression|无侧限抗压强度unconfined compression strength|无侧限抗压强度unconsolidated-undrained triaxial test|不固结不排水试验(UU) underconsolidated soil|欠固结土undrained shear strength|不排水抗剪强度Unified soil classification system|土的统一分类系统uniformity coefficient|不均匀系数unloading|卸载unsaturated soil|非饱和土uplift pile|抗拔桩vacuum preloading|真空预压法vacuum well point|真空井点vane strength|十字板抗剪强度vertical allowable load capacity|单桩竖向容许承载力vertical ultimate uplift resistance of single pile|单桩抗拔极限承载力vibration isolation|隔振vibroflotation method|振冲法viscoelastic foundation|粘弹性地基viscoelastic model|粘弹性模型viscous damping|粘滞阻尼water affinity|亲水性wave equation analysi|s波动方程分析wave velocity method|波速法well point system|井点系统(轻型)well-graded soil|级配良好土Winkler foundation model|文克尔地基模型wooden sheet pile|木板桩work hardening|加工硬化work softening|加工软化yield function|屈服函数yield surface|屈服面zonal soil|区域性土。
abaqus有限元动力学标准算例
![abaqus有限元动力学标准算例](https://img.taocdn.com/s3/m/008f2727a200a6c30c22590102020740bf1ecd73.png)
abaqus有限元动力学标准算例
在ABAQUS中,有许多标准的有限元动力学算例可以参考。
以下是一些常见的有限元动力学标准算例:
1. 车辆碰撞:模拟两辆车发生碰撞的情况,可以研究对车辆结构和乘员的影响。
2. 地震分析:模拟建筑物或结构在地震中的响应,了解结构的动力性能。
3. 风力荷载:模拟大型建筑物或桥梁在风力荷载下的响应,评估结构的稳定性和安全性。
4. 冲击分析:模拟物体撞击结构的过程,研究结构的破坏行为。
5. 振动模态分析:计算结构的固有频率和模态形态,用于确定结构设计的合理性。
6. 爆炸分析:模拟炸药爆炸引起的冲击波和结构的响应。
以上只是一些常见的有限元动力学标准算例,根据具体需求和研究对象,还可以设计其他类型的动力学算例。
在ABAQUS
软件中,可以根据具体的算例需求选择相应的分析模块和设置参数。
abaqus有限元分析报告
![abaqus有限元分析报告](https://img.taocdn.com/s3/m/cc7f2385a0c7aa00b52acfc789eb172ded63991a.png)
Abaqus有限元分析报告1. 简介在工程领域中,有限元分析是一种常见的数值计算方法,用于解决结构力学问题。
Abaqus是一种常用的有限元分析软件,它提供了强大的求解能力和丰富的后处理功能。
本文档将介绍一个基于Abaqus的有限元分析报告。
2. 模型建立在开始分析之前,我们首先需要建立一个合适的模型。
模型的建立通常包括几何建模、材料属性定义、边界条件设置等步骤。
在本次分析中,我们将以一个简单的弹性力学问题为例进行说明。
2.1 几何建模首先,我们需要根据实际情况绘制结构的几何形状。
Abaqus提供了丰富的建模工具,可以绘制复杂的几何形状。
在本次分析中,我们将使用一个简单的矩形构件作为示例。
*Geometry*Part, name=RectangularPart*Rectangle, name=RectangleProfile, x1=0, y1=0, x2=10, y2=5*End Part2.2 材料属性定义在有限元分析中,材料的力学性质对结果具有重要影响。
在Abaqus中,我们可以通过定义材料属性来描述材料的力学性质。
在本次分析中,我们假设材料为线性弹性材料。
*Material, name=ElasticMaterial*Elastic210000, 0.32.3 边界条件设置边界条件的设置是有限元分析中的关键步骤之一。
它描述了结构在哪些部位受到限制,哪些部位可以自由变形。
在本次分析中,我们将在矩形构件的两侧设置固定边界条件。
*BoundaryRectangleProfile.Left, 1, 1RectangleProfile.Right, 1, 13. 求解过程在完成模型建立后,我们可以开始进行有限元分析的求解过程。
Abaqus提供了多种求解器,可以选择适合问题的求解算法和计算资源。
3.1 求解器选择在Abaqus中,我们可以通过选择合适的求解器来进行求解。
常见的求解器包括静态求解器、动态求解器等。
(整理)汽车安全气囊碰撞有限元分析外文翻译
![(整理)汽车安全气囊碰撞有限元分析外文翻译](https://img.taocdn.com/s3/m/9e1c60b0ec3a87c24028c443.png)
FINITE ELEMENT ANALYSIS OF AUTOMOBILE CRASH SENSORS FOR AIRBAG SYSTEMSABSTRACTAutomobile spring bias crash sensor design time can be significantly reduced by using finite element analysis as a predictive engineering tool.The sensors consist of a ball and springs cased in a plastic housing.Two important factors in the design of crash sensors are the force-displacement response of the sensor and stresses in the sensor springs. In the past,sensors were designed by building and testing prototype hardware until the force-displacement requirements were met. Prototype springs need to be designed well below the elastic limit of the ing finite element analysis, sensors can be designed to meet forcedisplacement requirements with acceptable stress levels. The analysis procedure discussed in this paper has demonstrated the ability to eliminate months of prototyping effort.MSC/ABAQUS has been used to analyze and design airbag crash sensors.The analysis was geometrically nonlinear due to the large deflections of the springs and the contact between the ball and springs. Bezier 3-D rigid surface elements along with rigid surface interface (IRS) elements were used to model ball-to-springcontact.Slideline elements were used with parallel slideline interface (ISL) elements for spring-to-spring contact.Finite element analysis results for the force-displacement response of the sensor were in excellent agreement with experimental results.INTRODUCTIONAn important component of an automotive airbag system is the crash sensor. Various types of crash sensors are used in airbag systems including mechanical,electro-mechanical, and electronic sensors. An electro-mechanical sensor (see Figure 1) consisting of a ball and two springs cased in a plastic housing is discussed in thispaper. When the sensor experiences a severe crash pulse, the ball pushes two springs into contact completing the electric circuit allowing the airbag to fire. Theforce-displacement response of the two springs is critical in designing the sensor to meet various acceleration input requirements. Stresses in the sensor springs must be kept below the yield strength of the spring material to prevent plastic deformation in the springs. Finite element analysis can be used as a predictive engineering tool to optimize the springs for the desired force-displacement response while keeping stresses in the springs at acceptable levels.In the past, sensors were designed by building and testing prototype hardware until the forcedisplacement requirements were met. Using finite element analysis, the number of prototypes built and tested can be significantly reduced, ideally to one, which substantially reduces the time required to design a sensor. The analysis procedure discussed in this paper has demonstrated the ability to eliminate months of prototyping effort.MSC/ABAQUS [1] has been used to analyze and design airbag crash sensors. The analysis was geometrically nonlinear due to the large deflections of the springs and the contact between the ball and springs. Various contact elements were used in this analysis including rigid surface interface (IRS) elements, Bezier 3-D rigid surface elements, parallel slide line interface (ISL) elements, and slide line elements. The finite element analysis results were in excellent agreement with experimental results for various electro-mechanical sensors studied in this paper.PROBLEM DEFINITIONThe key components of the electro-mechanical sensor analyzed are two thin metallic springs (referred to as spring1 and spring2) which are cantilevered from a rigid plastic housing and a solid metallic ball as shown in Figure 1. The plastic housing contains a hollow tube closed at one end which guides the ball in the desired direction. The ball is held in place by spring1 at the open end of the tube. When the sensor is assembled, spring1 is initially displaced by the ball which creates a preload on spring1. The ball is able to travel in one direction only in this sensor and this direction will be referredto as the x-direction (see the global coordinate system shown in Figure 2) in this paper. Once enough acceleration in the x-direction is applied to overcome the preload on spring1, the ball displaces the spring. As the acceleration applied continues to increase, spring1 is displaced until it is in contact with spring2. Oncethe sensor to perform its function within the airbag system.FINITE ELEMENT ANALYSIS METHODOLOGYWhen creating a finite element representation of the sensor, the following simplifications can be made. The two springs can be fully restrained at their bases implying a perfectly rigid plastic housing. This is a good assumption when comparing the flexibility of the thin springs to the stiff plastic housing. The ball can be represented by a rigid surface since it too is very stiff as compared to the springs. Rather than modeling the contact between the plastic housing and the ball, all rotations and translations are fully restrained except for the xdirection on the rigidsurface representing the ball. These restraints imply that the housingwill have no significant deformation due to contact with the ball. These restraints also ignore any gaps due to tolerances between the ball and the housing. The effect of friction between the ball and plastic is negligible in this analysis.The sensor can be analyzed by applying an enforced displacement in the x-direction to the rigid surface representing the ball to simulate the full displacement of the ball. Contact between the ball and springs is modeled with various contact elements as discussed in the following section. A nonlinear static analysis is sufficient to capture the force-displacement response of the sensor versus using a more expensive and time consuming nonlinear transient analysis. Although the sensor is designed with a ball mass and spring stiffness that gives the desired response to a given acceleration, thereis no mass associated with the ball in this static analysis. The mass of the ball can be determined by dividing the force required to deflect the springs by the acceleration input into the sensor.MeshThe finite element mesh for the sensor was constructed using MSC/PATRAN [2]. The solver used to analyze the sensor was MSC/ABAQUS. The finite element mesh including the contact elements is shown in Figure 2. The plastic housing was assumed to be rigid in this analysis and was not modeled. Both springs were modeled with linear quadrilateral shell elements with thin shell physical properties. The ball was assumed to be rigid and was modeled with linear triangular shell elements with Bezier 3-D rigid surface properties.To model contact between the ball and spring1, rigid surface interface (IRS) elements were used in conjunction with the Bezier 3-D rigid surface elements making up the ball. Linear quadrilateral shell elements with IRS physical properties were placed on spring1 and had coincident nodes with the quadrilateral shell elements making up spring1. The IRS elements were used only in the region of ball contact.To model contact between spring1 and spring2, parallel slide line interface (ISL) elements were used in conjunction with slide line elements. Linear bar elements with ISL physical properties were placed on spring1 and had coincident nodes with the shell elements on spring1. Linear bar elements with slide line physical properties were placed on spring2 and had coincident nodes with the shell elements making up spring2.MaterialBoth spring1 and spring2 were thin metallic springs modeled with a linear elastic material model. No material properties were required for the contact or rigid surface elements.Boundary ConditionsBoth springs were assumed to be fully restrained at their base to simulate a rigid plastichousing. An enforced displacement in the x-direction was applied to the ball. The ball wasfully restrained in all rotational and translational directions with the exception of the xdirection translation. Boundary conditions for the springs and ball are shown in Figure 2.DISCUSSIONTypical results of interest for an electro-mechanical sensor would be the deflected shape of the springs, the force-displacement response of the sensor, and the stress levels in the springs. Results from an analysis of the electro-mechanical sensor shown in Figure 2 will be used asfull ball travel. Looking at the deflected shape of the springs can provide insight into the performance of the sensor as well as aid in the design of the sensor housing.Stresses in the springs are important results in this analysis to ensure stress levels in the springs are at acceptable levels. Desired components of stress can be examined through various means including color contour plots. One of the most important results from the analysis is the force-displacement response for the sensor shown in Figure 4. From this force-displacement response, the force required to push spring1 into contact with spring2 can readily be determined. This force requirement can be used with a given acceleration to determine the mass required for the ball. Based on these results, one or more variations of several variables such as spring width, spring thickness, ball diameter, and ball material can be updated until the force-displacement requirements are achieved within a desired accuracy.A prototype of the sensor shown in Figure 2 was constructed and tested to determine its actual force-displacement response. Figure 4 shows the MSC/ABAQUS results along with the experimental results for the force-displacement response of the sensor. There was an excellent correlation between finite element and experimental results for this sensor as well asfor several other sensors examined. Table 1 shows the difference in percent between finite element and experimental results including force at preload on spring1, force at spring1-tospring2 contact, and force at full ball travel for two sensor configurations. Sensor A in Table 1 is shown in Figure 1. Sensor B in Table 1 is based on the sensor shown in Figure 2.The sensor model analyzed in this paper was also analyzed with parabolic quadrilateral and bar elements to ensure convergence of the solution.Force-displacement results converged to less than 1% using linear elements. The stresses in the springs for this sensor converged to within 10% for the linear elements. The parabolic elements increased solve time by more than an order of magnitude over the linear elements. With more complex spring shapes, a denser linear mesh or parabolic elements used locally in areas of stress concentrations would be necessary to obtain more accurate stresses in the springs.Notes: 1. Sensor A results are based on 1 prototype manufactured and tested. Sensor Bexperimental results are based on the average of 20 prototypesmanufacturedand tested.2. No experimental data for force at full ball travel for Sensor A.3. %Difference=(FEA Result - Experimental Result)/Experimental ResultCONCLUSIONSMSC/ABAQUS has been used to analyze and design airbag crash sensors. The finite element analysis results were in excellent agreement with experimental results for several electromechanical sensors for which prototypes were built and tested. Using finite element analysis, sensors can be designed to meet force-displacement requirements with acceptable stress levels. The analysis procedure discussed in this paper has demonstrated the ability to eliminate months of prototyping effort. This paper has demonstrated the power of finite element analysis as a predictive engineering tool even with the use of multiple contact element types.汽车安全气囊系统撞击传感器的有限单元分析摘要:汽车弹簧碰撞传感器可以利用有限单元分析软件进行设计,这样可以大大减少设计时间。
ABAQUS有限元软件基本操作说明
![ABAQUS有限元软件基本操作说明](https://img.taocdn.com/s3/m/148c9dde51e2524de518964bcf84b9d528ea2cc7.png)
Abaqus仿真分析操作说明1.单位一致性(未列出参照国际单位)长度:米(m)力:牛(N)质量:千克(kg)时间:秒(s)强度(压力):帕(Pa)能量:焦耳(J)密度:千克/立方米(kg/m3)加速度:米/平方秒(m/s2)2.模型(part)的建立首先用三维绘图软件(CAD、PROE、SOLIDEDGE、SOLIDWORKS等)将模型画好。
3.模型(part)导入ABAQUS软件①将模型另存为sat或stp(step),示意图如下;文件名最好存为英文字母。
②模型另存为sat或stp(step)格式后,到“选项”进行设置,设置完成后将模型另存好(存放位置自设,能找到就好),示意图如下;③打开已经安装好的ABAQUS 软件,选中左上角“文件→导入→部件”,示意图如下;4. 模型(part)的参数设置和定义导出模型单位由mm 改为m 。
选中后隐藏的部件不能导入ABAQUS 软件。
版本设为ABAQUS 软件版本。
双击所有参数均为默认,确定就好。
到上面这一步骤,模型导入已经完成,接下来就是一些参数的设置和分析对象的定义。
具体的分析步骤按照下图所示一步一步完成即可。
(1)“属性”步完成材料的定义。
具体参数设置见下图:(1)(2)(3)(4)(5)(7)(6)1.双击“创建材料”2.自定义名称4.在“通用”下双击“密度”进行参数设置5.输入材料密度,单位kg/m3。
6.在“力学”下双击“弹性”进行参数设置。
7.输入材料杨氏模量(Pa)和泊松比(无单位),单击“确定”完成参数设置。
8.双击“创建截面”,“类别”和“类型”默认。
9.单击“继续”。
10.参数默认,单击“确定”。
11.双击“指定截面”。
(2)“装配”步完成分析对象的选定。
具体操作见下图:12.单击模型指定截面。
13.单击“完成”,完成截面指定。
14.模型变绿,指定截面成功;同时“属性”步参数定义结束。
1.切换到下一步(装配)。
3.选中要分析的部件,单击“确定”,完成“装配”步。
ABAQUS有限元分析实例详解
![ABAQUS有限元分析实例详解](https://img.taocdn.com/s3/m/f697d9bc900ef12d2af90242a8956bec0975a509.png)
ABAQUS有限元分析实例详解有限元分析(Finite Element Analysis,简称FEA)是一种工程分析方法,它将连续物体分割为无数个小的有限元单元,并在每个有限元上分别进行力学方程求解,最终得到整个物体的力学性能。
ABAQUS是目前使用最广泛的有限元分析软件之一,本文将详细介绍ABAQUS有限元分析的实例。
一、准备工作在进行ABAQUS有限元分析之前,首先需要准备以下工作:1.模型准备:将需要分析的物体建模为几何模型,并进行网格划分,划分成有限元单元,以便进行分析。
2.边界条件:设定物体的边界条件,即模拟施加在物体上的外力或约束条件,如支撑条件、加载条件等。
3.材料属性:设定物体的材料属性,包括弹性模量、泊松比等。
4.分析类型:选择适合的分析类型,如静态分析、动态分析、热分析等。
二、材料建模在进行ABAQUS有限元分析时,需要将材料的力学性质进行建模。
通常有以下几种材料建模方法:1.线弹性模型:认为材料的应力-应变关系在整个材料的应力范围内都是线性的,即满足胡克定律。
2.非线性弹性模型:考虑材料的应变硬化效应,即材料的刚度随加载的增加而增大。
3.塑性模型:考虑材料的塑性行为,在达到屈服点后,材料会发生塑性变形。
4.屈服准则模型:通过引入屈服准则,将材料的屈服破坏进行建模。
5.破坏模型:考虑材料的破坏行为,通常采用层间剪切应力、最大主应力等作为破坏准则。
三、加载和约束在进行ABAQUS有限元分析时,需要模拟实际工程中施加在物体上的外部载荷和约束条件。
常见的加载和约束方式有以下几种:1.固定支撑:将物体的一些边界固定,使其不能发生位移。
2.约束位移:设定物体一些节点的位移值,模拟实际固定住的情况。
3.压力加载:施加在物体上的压力载荷。
4.弯曲加载:施加在物体上的弯曲载荷。
5.温度加载:通过施加温度场来模拟温度载荷。
四、求解过程在进行ABAQUS有限元分析时,求解过程主要有以下几个步骤:1.指定分析步数:指定分析的总时间和分析步数,也可以根据需要进行自适应时间增量控制。
abaqus有限元分析过程
![abaqus有限元分析过程](https://img.taocdn.com/s3/m/ce7760a3700abb68a982fbd0.png)
一、有限单元法的基本原理有限单元法(The Finite Element Method)简称有限元(FEM),它是利用电子计算机进行的一种数值分析方法。
它在工程技术领域中的应用十分广泛,几乎所有的弹塑性结构静力学和动力学问题都可用它求得满意的数值结果。
有限元方法的基本思路是:化整为零,积零为整。
即应用有限元法求解任意连续体时,应把连续的求解区域分割成有限个单元,并在每个单元上指定有限个结点,假设一个简单的函数(称插值函数)近似地表示其位移分布规律,再利用弹塑性理论中的变分原理或其他方法,建立单元结点的力和位移之间的力学特性关系,得到一组以结点位移为未知量的代数方程组,从而求解结点的位移分量. 进而利用插值函数确定单元集合体上的场函数。
由位移求出应变, 由应变求出应力二、ABAQUS有限元分析过程有限元分析过程可以分为以下几个阶段1.建模阶段: 建模阶段是根据结构实际形状和实际工况条件建立有限元分析的计算模型――有限元模型,从而为有限元数值计算提供必要的输入数据。
有限元建模的中心任务是结构离散,即划分网格。
但是还是要处理许多与之相关的工作:如结构形式处理、集合模型建立、单元特性定义、单元质量检查、编号顺序以及模型边界条件的定义等。
2.计算阶段:计算阶段的任务是完成有限元方法有关的数值计算。
由于这一步运算量非常大,所以这部分工作由有限元分析软件控制并在计算机上自动完成3.后处理阶段: 它的任务是对计算输出的结果惊醒必要的处理,并按一定方式显示或打印出来,以便对结构性能的好坏或设计的合理性进行评估,并作为相应的改进或优化,这是惊醒结构有限元分析的目的所在。
下列的功能模块在ABAQUS/CAE操作整个过程中常常见到,这个表简明地描述了建立模型过程中要调用的每个功能模块。
“Part(部件)用户在Part模块里生成单个部件,可以直接在ABAQUS/CAE环境下用图形工具生成部件的几何形状,也可以从其它的图形软件输入部件。
ABAQUS有限元分析方法
![ABAQUS有限元分析方法](https://img.taocdn.com/s3/m/bfbb757182c4bb4cf7ec4afe04a1b0717fd5b309.png)
ABAQUS有限元分析方法ABAQUS是一种广泛使用的有限元分析软件,它可以用于计算和模拟复杂的实际工程问题。
ABAQUS能够解决结构力学、热力学、电磁学、流体力学、多物理场等各类问题,具备强大的建模和分析能力。
本文将介绍ABAQUS的有限元分析方法,包括其基本原理、建模流程、边界条件的设置以及结果分析等内容。
有限元分析方法是一种通过将连续物体离散为有限个小单元来近似求解连续介质中的物理场分布和结构行为的方法。
它基于连续介质力学、力学平衡方程和边界条件等理论,通过在每个单元内进行离散近似,将大问题分解为由离散单元组成的小问题,然后通过求解这些小问题得到整个问题的近似解。
ABAQUS的建模流程主要包括几何建模、边界条件的设置、网格划分和材料定义等步骤。
几何建模是指在ABAQUS软件中创建所需分析的几何形状,可以通过绘制直线、圆弧、曲线或导入CAD模型等方式进行。
边界条件设置则是指为模型的一些面或点施加边界条件,包括固定支撑、施加力、约束等。
网格划分是指将模型中的连续介质离散化为有限个小单元,ABAQUS可以进行自动网格划分或手动划分网格。
材料定义是指为模型中的每个单元指定材料属性,例如弹性模量、泊松比、密度等。
在边界条件设置和材料定义完成后,可以对模型进行加载和求解。
首先,需要指定施加在模型上的加载条件,例如力、温度、电场等。
然后,在分析控制命令下选择适当的解析方法和参数,启动求解器对模型进行计算。
ABAQUS的求解器可以是显式求解器或隐式求解器,根据具体的问题选择合适的求解器类型。
计算完成后,可以对结果进行后处理,包括生成应力、应变分布图、振动模态分析、疲劳分析等。
在进行有限元分析时,需要注意选择合适的单元类型和网格密度。
ABAQUS提供了多种类型的单元,例如线性单元、三角形单元、四边形单元、六面体单元等,根据几何形状和物理场的特点选择合适的单元类型。
网格密度决定了分析结果的精度和计算时间,通常需要进行网格收敛性分析,即逐步增加网格密度,直到结果在精度和计算时间之间达到平衡。
abaqus中英文
![abaqus中英文](https://img.taocdn.com/s3/m/6301a5ec2dc58bd63186bceb19e8b8f67c1cefc3.png)
abaqus中英文ABAQUS专业术语中英文对照前后处理器模块——ABAQUS/CAE几何体建模——GeometryGeometry Creation Tools(几何体生成工具)2-D Sketcher(二维草图)Sketch T ools and Options(草图工具和选项)Geometry Import/Export(几何体导入和导出)Geometry Repair T ools(几何体修补工具)Mesh Edit(网格编辑)模型装配——AssemblyInstance Tools(实例工具)Sets and Surfaces(集合和表面)Display Groups(显式组)Merge/Cut T ools(合并/剪切操作)定义材料性质——PropertiesMaterial Models(材料模型)General(一般性质)Elasticity(弹性性质)Electrical properties(电性质)Mass diffusion(质量扩散)Plasticity(塑性性质)Pore fluid properties(孔隙流体性质)Thermal properties(热性质)Gasket(垫片)Acoustic medium(声学介质)Equation of state (EOS) materials(状态方程)User materials(用户自定义材料)Hyperelastic material evaluation(超弹性材料评估)Sections(截面性质)Solid(实体)homogeneous(各向同性的), generalized plane strain(广义平面应变的Shell(壳)homogeneous(各向同性的), composite(复合材料壳单元), membrane (薄膜),surface (rebar layers)(带钢筋层的曲面)Beam(梁) beam(梁), truss(杆)Point(点)mass(质量单元), rotary inertia(转动惯量), damping(阻尼), capacitance(电容)Gasket(垫片)Beam section profiles(梁截面形状)Skin(蒙皮)Orientations(材料方向)分析流程功能——AnalysisGeneral, Linear and Nonlinear Analyses(通用,线性和非线性分析)Static stress/displacement analysis(静力分析)Viscoelastic/viscoplastic response(粘弹/粘塑响应)Dynamic stress/displacement analysis(动力分析)Heat transfer analysis(热传导分析)Mass diffusion analysis(质量扩散分析)Acoustic analysis(声学分析)Coupled problems(耦合问题)– Thermo-mechanical(热固)– Thermo-electrical(热电)– Piezoelectric(压电)– Pore fluid flow-mechanical(孔隙流动)– Thermo-mechanical mass diffusion(热-固-质量扩散)– Shock and acoustic-structural(冲击和声固耦合)Linear Perturbation Analyses(线性摄动分析)Static stress/displacement analysis(应力位移静力分析)– Linear static stress/displacement analysis(应力位移线性静力分析)– Eigenvalue buckling estimates(特征值屈曲分析)Dynamic stress/displacement analysis(应力位移动力学分析)– Natural frequency extraction(自振频率提取)– Complex eigenvalue extraction(复频率提取)– Transient response via modal superposition(通过模态叠加法计算瞬态响应)–Steady-state response to harmonic loading (简谐载荷下的稳态响应)– Response spectrum analysis(响应谱分析)– Random response analysis(随机响应分析)Analysis Controls(分析控制)Output Requests(输出请求)定义约束和接触——Constraints and InteractionsContact(接触)General contact (ABAQUS/Explicit)(通用接触)Surface-to-surface contact(面面接触)Self-contact(自接触)Contact Properties(接触性质)Constraints(约束)Thermal(热)Loads(载荷)Mechanical(机械)Bolt load(螺栓预紧力)Thermal(热)Acoustic(声场)Fluid(流体)Electrical(电)Mass diffusion(质量扩散)Fields(场)Multiple load cases(多工况)Connectors(连接单元)Boundary Conditions(边界条件)Nodal(节点位移)Velocity(速度)Acceleration(加速度)Velocity/angular velocity(角速度)Submodel(子模型)Pore pressure(孔压)Electric potential(电势)Temperatures(温度)网格划分——MeshingMesh Seeding(网格种子)Structured Meshing(结构化分网)Surface Meshing(表面分网)Solid Meshing(实体分网)Virtual Topology(虚拟拓扑)单元库——Element Library Beam(梁单元)Truss(杆单元)Connector(连接单元)Shell(壳单元)Membrane(薄膜单元)Continuum(实体单元)Elbow(弯管单元)Gasket(垫片单元)Pipe(管道单元)后处理——VisualizationModel plotting(模型图)Deformed, contour, vector/tensor, path, tickmark, overlay, material orient ations, X–Y plots(变形图,云图、矢量/张量图、材料方向图、X-Y曲线图等)Animations(动画)Stress linearization(应力线性化)Tabular data reports(数据报表)Probe/query tools(查询工具)Diagnostics visualization(结果诊断)过程自动化——Process AutomationPython scripting(Python脚本)GUI toolkit(用户界面工具包)Macro manager(宏管理器)隐式求解器模块——ABAQUS/STANDARD分析类型——Analysis TypesGeneral, Linear and Nonlinear Analyses(通用,线性和非线性分析) Static stress/displacement analysis(静力分析)Direct cyclic analysis(直接载荷循环分析)Viscoelastic/viscoplastic response(粘弹性和粘塑性)Dynamic stress/displacement analysis(动力学分析)Steady-state transport analysis(稳态传输分析)Heat transfer analysis(热传导分析)Mass diffusion analysis(质量扩散分析)Acoustic analysis(声场分析)Coupled analysis(耦合分析)Linear Perturbation Analyses(线性摄动分析)分析和建模技术——Analysis and Modeling Techniques求解技术——Solution Techniques材料定义——Material DefinitionsElastic Mechanical Properties(弹性机械性质)Inelastic Mechanical Properties(非弹性机械性质)Additional Material Properties(其他材料性质)单元库——Element LibraryContinuum(实体单元)Membranes(薄膜单元)Beams(梁单元)Pipes(管道单元)Elbows(弯管单元)Frame Elements(框架单元)Trusses(杆单元)Gasket Elements(垫片单元)Inertial Elements(惯性单元)Rigid Elements(刚体单元)Capacitance Elements(热容单元)Connector Elements(连接单元)Springs, Dashpots, Flexible Joints(弹簧,阻尼器,柔性接头)Distributed Coupling(分布耦合)Special-Purpose Elements(特殊用途单元)User-Defined Elements(用户自定义单元)预设条件——Prescribed Conditions约束和接触——Constraints and Interactions Kinematic Constraints(自由度约束)Surface-Based Contact Modeling(基于表面的接触建模)Element-Based Contact Modeling(基于单元的接触建模)Cavity Radiation(空腔辐射)用户子程序——User Subroutines显式求解器模块——ABAQUS/EXPLICIT分析类型——Analysis Types非线性显示动力学分析分析和建模技术——Analysis and Modeling Techniques 材料定义——Material DefinitionsElastic Mechanical Properties(弹性机械性质)Inelastic Mechanical Properties(非弹性机械性质)Additional Material Properties(其他材料性质)单元库——Element LibraryContinuum(实体单元)Structural(结构单元)Inertial Elements(惯性单元)Rigid Elements(刚体单元)Capacitance Elements(热容单元)Connector Elements(连接单元)Springs, Dashpots(弹簧和阻尼器)预设条件——Prescribed Conditions约束和接触——Constraints and InteractionsKinematic Constraints(自由度约束)Contact Modeling(接触建模)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汽车安全气囊系统撞击传感器的有限单元分析摘要汽车弹簧碰撞传感器可以利用有限单元分析软件进行设计,这样可以大大减少设计时间。
该传感器包括一个球和一个有弹簧在内的塑料套管的外壳。
传感器设计的重要因素是碰撞中的两个传感器的力位移响应和传感器的弹簧压力。
以前传感器的设计、制作和测试需要满足力位移原型硬件的要求。
弹簧必须远低于材料的弹性极限而设计。
利用有限元分析,传感器可以被设计为满足力位移的水平压力。
本文的讨论说明利用有限单元分析进行设计可以节省很多时间。
MSC/ABAQUS已经被用于分析和设计安全气囊碰撞传感器。
弹簧的大挠度和球与弹簧之间的接触用几何非线性分析。
贝塞尔三维刚性球表面元素和惯性基准系统刚性表面界面元素被用于塑料球与弹簧接触面的分析。
滑动轨道分析被用于弹簧与弹簧接触的平行界面间。
有限元传感器的力位移响应分析结果与实验结果非常一致。
引言汽车安全气囊系统的重要组成部分是碰撞传感器。
包括机械、电子传感器在内的碰撞传感器主要用于各类安全气囊系统。
本文研究的是由一个球和一个塑料套管和两个弹簧组成的机电传感器(见图1)。
当传感器遇到严重的撞击脉冲,球被推入完成电路连接然后两个弹簧接触到消防安全气囊。
这两个弹簧的力位移设计关键是要满足不同的加速度对传感器的输入要求。
传感器的弹簧强度必须保持低于弹簧材料屈服强度,防止弹簧塑性变形。
有限元分析,可以作为预测工具,以优化工程所需的力和位移反应,同时保持在弹簧压力可接受的水平。
过去传感器的设计需要不断地进行制作和测试,直到力位移原型硬件得到满足需要的条件。
利用有限元分析,制作和测试原型的数量大大减少,这大大降低了传感器设计的时间。
本文讨论的内容可以表明有限单元分析软件能够节省原型制作时间的能力。
MSC/ABAQUS [1]已经用于分析和设计安全气囊碰撞传感器。
对于大挠度的弹簧与球接触的有限单元分析应是几何非线性的。
各种接触单元中使用了这个包括硬表面界面分析,例如贝塞尔曲线的三维刚性表面元素,平行线界面元素,以及滑线元素。
有限元分析结果与各种机械文献研究传感器的实验结果非常一致。
问题的定义机电传感器的关键部件是由两个以悬臂式存在于硬性塑料外壳和刚性球之间的两个金属弹簧组成的。
在塑料外壳中包含一个能指导球运动方向的一端封闭的真空管。
球在真空管中被弹簧顶在管子的一端。
传感器组装时弹簧被球顶着产生最初的预紧力。
球在传感器中只能沿着一个方向运动,这个方向被称为X方向。
一旦在X方向的加速度足够用来克服spring1的预紧力,球就能是弹簧弹开。
如果加速度继续增加,弹簧1就能直接与弹簧2接触。
一旦弹簧1与弹簧2接触上,一个电路接通然后启动安全气囊的体统。
有限元分析方法当创建一个传感器的有限元描述时,剩下的可以被简化。
这两个弹簧完全的被固定在刚性的塑料外壳中。
当一个刚性外壳和薄的弹簧作比较时这是一个很好的假设。
当球和弹簧接触时球可以被表示为一个刚性表面。
球和外壳接触的建模系统中,除了球在X轴移动外壳中的所有的转动和移动都受到限制。
球与外壳之间的公差。
在有限元分析中球和塑料外壳的摩擦可以忽略不计。
传感器在X轴的分析,可以用一个刚性表面的的移动表示球的所有移动。
下面讨论的是球与弹簧间的接触,和各种不同的接触原理。
一个非线性静态分析,足以捕获耗费大量时间的非线性瞬态传感器的力位移响应。
虽然该传感器的设计是由球质量和给定一个加速度回应的弹簧刚度组成的,但是在静态分析中没有球的质量。
单元网格球的质量可以被把球挤进传感器的偏转力所确定。
利用MSC / Patran的[2]构建传感器的有限单元网络。
用MSC/ABAQUS来求解并分析传感器。
包括接触单元的有限元网格,如图2所示的内容。
该塑料外壳在这种分析中被假定为是刚性的。
然后对线性弹簧与薄壳四边形进行了物理性质的建模。
球被假定为刚性的,并以线性贝塞尔3 - D刚性表面性质做参考。
模型之间的球和弹簧1的接触,使用了刚性表面接触和贝塞尔3 - D刚性表面性质的原理。
线性物理性质与IRS物理性质被用在弹簧1上,并保证四边形外壳与弹簧1的节点同步。
惯性基准系统元件只用在球状接触区域。
在弹簧1和弹簧2的接触模型中,滑道连接原理用了平行滑道连接原理。
线性杆元和ISL物理性质被一起用在了弹簧1上并与外壳组成弹簧1同步节点。
滑线与直线杆单元的物理性能用在spring2并与外壳组成弹簧2同步节点。
材料弹簧1和弹簧2都是具有线性弹性材料的薄金属弹簧。
材料特性必须是接触的或刚性的表面元素。
临界条件假设两弹簧被完全的固定在刚性塑料外壳中。
球在X轴上有一个强制的位移。
除了X轴的平移以外球在所有方向的移动和转动都受到约束。
球和弹簧的临界条件,如图2所示。
讨论电动机械传感器的重要因素是弹簧的偏转形状,传感器的力位移响应和弹簧的压力水平线。
器中球的所有偏转和移动。
研究弹簧的偏转形状何以提供更多的对传感器的执行性能设计以及外壳设计的见解。
在确保弹簧能够承受所受到的水平压力时,对弹簧的分析是非常重要的。
可以通过各种手段检查各部件的压力。
分析中最重要的部分之一是图4所示的传感器力位移响应。
在这个力位移响应中,外力必须能够轻易地推动弹簧1接触到弹簧2。
这个力必须能够保证作用在球上并且给它一个足够的加速度。
根据这些结果,一个或者更多的变量例如弹簧的宽度、球的直径、球的材料都可以被设计直到达到理想的精度范围。
图2所示传感器模型的建立和测试,确定了他的实际受力和力位移响应。
图4显示的MSC / ABAQUS分析结果为传感器的力位移响应的实验结果。
机电传感器和一些其他的传感器之间的有限元实验结果有着很高的相关性。
表1显示了包括弹簧1、弹簧和弹簧1与弹簧2接触和球的转动与位移的实验结果。
表1中传感器A如图1所示。
表1中传感器B如图2所示。
为确保解决方案的衔接,还对传感器模型外壳进行了分析。
力位移不足1%时按线性原理分析。
弹簧对传感器的压力小于10%的按线性原理分析。
用抛物线原理要比用线性原理分析费更多的时间。
随着弹簧形状变的更加复杂,弹簧的分析必须要获得一个更精准密集的受力的线性网或局部受力的网。
注释:1.传感器A的结果是根据模型1制作和测试的。
传感器B的结果是根据20个模型的数据制作和测试的。
2.没有球运动队模型A产生压力的实验数据。
3.误差=(有限元分析结果—实验结果)/实验结果。
结论MSC/ABAQUS软件已被用于分析和设计安全气囊碰撞传感器。
对于机电传感器模型的建立和测试来说有限元分析的结果和实验结果非常一致。
利用有限元分析,传感器可以被设计为满足力位移性的需要与可接受的压力水平。
本文的讨论说明利用有限单元分析进行设计可以节省很多时间。
本文能够说明有限元分析作为一个分析对重要接触元件进行分析的能力。
FINITE ELEMENT ANALYSIS OF AUTOMOBILE CRASH SENSORS FOR AIRBAG SYSTEMSABSTRACTAutomobile spring bias crash sensor design time can be significantly reduced by using finite element analysis as a predictive engineering tool.The sensors consist of a ball and springs cased in a plastic housing.Two important factors in the design of crash sensors are the force-displacement response of the sensor and stresses in the sensor springs. In the past,sensors were designed by building and testing prototype hardware until the force-displacement requirements were met. Prototype springs need to be designed well below the elastic limit of the ing finite element analysis, sensors can be designed to meet forcedisplacement requirements with acceptable stress levels. The analysis procedure discussed in this paper has demonstrated the ability to eliminate months of prototyping effort.MSC/ABAQUS has been used to analyze and design airbag crash sensors.The analysis was geometrically nonlinear due to the large deflections of the springs and the contact between the ball and springs. Bezier 3-D rigid surface elements along with rigid surface interface (IRS) elements were used to model ball-to-springcontact.Slideline elements were used with parallel slideline interface (ISL) elements for spring-to-spring contact.Finite element analysis results for the force-displacement response of the sensor were in excellent agreement with experimental results.INTRODUCTIONAn important component of an automotive airbag system is the crash sensor. Various types of crash sensors are used in airbag systems including mechanical,electro-mechanical, and electronic sensors. An electro-mechanical sensor (see Figure 1) consisting of a ball and two springs cased in a plastic housing is discussed in thispaper. When the sensor experiences a severe crash pulse, the ball pushes two springs into contact completing the electric circuit allowing the airbag to fire. Theforce-displacement response of the two springs is critical in designing the sensor to meet various acceleration input requirements. Stresses in the sensor springs must be kept below the yield strength of the spring material to prevent plastic deformation in the springs. Finite element analysis can be used as a predictive engineering tool to optimize the springs for the desired force-displacement response while keeping stresses in the springs at acceptable levels.In the past, sensors were designed by building and testing prototype hardware until the forcedisplacement requirements were met. Using finite element analysis, the number of prototypes built and tested can be significantly reduced, ideally to one, which substantially reduces the time required to design a sensor. The analysis procedure discussed in this paper has demonstrated the ability to eliminate months of prototyping effort.MSC/ABAQUS [1] has been used to analyze and design airbag crash sensors. The analysis was geometrically nonlinear due to the large deflections of the springs and the contact between the ball and springs. Various contact elements were used in this analysis including rigid surface interface (IRS) elements, Bezier 3-D rigid surface elements, parallel slide line interface (ISL) elements, and slide line elements. The finite element analysis results were in excellent agreement with experimental results for various electro-mechanical sensors studied in this paper.PROBLEM DEFINITIONThe key components of the electro-mechanical sensor analyzed are two thin metallic springs (referred to as spring1 and spring2) which are cantilevered from a rigid plastic housing and a solid metallic ball as shown in Figure 1. The plastic housing contains a hollow tube closed at one end which guides the ball in the desired direction. The ball is held in place by spring1 at the open end of the tube. When the sensor is assembled, spring1 is initially displaced by the ball which creates a preload on spring1. The ball is able to travel in one direction only in this sensor and this direction will be referredto as the x-direction (see the global coordinate system shown in Figure 2) in this paper. Once enough acceleration in the x-direction is applied to overcome the preload on spring1, the ball displaces the spring. As the acceleration applied continues to increase, spring1 is displaced until it is in contact with spring2. Oncethe sensor to perform its function within the airbag system.FINITE ELEMENT ANALYSIS METHODOLOGYWhen creating a finite element representation of the sensor, the following simplifications can be made. The two springs can be fully restrained at their bases implying a perfectly rigid plastic housing. This is a good assumption when comparing the flexibility of the thin springs to the stiff plastic housing. The ball can be represented by a rigid surface since it too is very stiff as compared to the springs. Rather than modeling the contact between the plastic housing and the ball, all rotations and translations are fully restrained except for the xdirection on the rigidsurface representing the ball. These restraints imply that the housingwill have no significant deformation due to contact with the ball. These restraints also ignore any gaps due to tolerances between the ball and the housing. The effect of friction between the ball and plastic is negligible in this analysis.The sensor can be analyzed by applying an enforced displacement in the x-direction to the rigid surface representing the ball to simulate the full displacement of the ball. Contact between the ball and springs is modeled with various contact elements as discussed in the following section. A nonlinear static analysis is sufficient to capture the force-displacement response of the sensor versus using a more expensive and time consuming nonlinear transient analysis. Although the sensor is designed with a ball mass and spring stiffness that gives the desired response to a given acceleration, thereis no mass associated with the ball in this static analysis. The mass of the ball can be determined by dividing the force required to deflect the springs by the acceleration input into the sensor.MeshThe finite element mesh for the sensor was constructed using MSC/PATRAN [2]. The solver used to analyze the sensor was MSC/ABAQUS. The finite element mesh including the contact elements is shown in Figure 2. The plastic housing was assumed to be rigid in this analysis and was not modeled. Both springs were modeled with linear quadrilateral shell elements with thin shell physical properties. The ball was assumed to be rigid and was modeled with linear triangular shell elements with Bezier 3-D rigid surface properties.To model contact between the ball and spring1, rigid surface interface (IRS) elements were used in conjunction with the Bezier 3-D rigid surface elements making up the ball. Linear quadrilateral shell elements with IRS physical properties were placed on spring1 and had coincident nodes with the quadrilateral shell elements making up spring1. The IRS elements were used only in the region of ball contact.To model contact between spring1 and spring2, parallel slide line interface (ISL) elements were used in conjunction with slide line elements. Linear bar elements with ISL physical properties were placed on spring1 and had coincident nodes with the shell elements on spring1. Linear bar elements with slide line physical properties were placed on spring2 and had coincident nodes with the shell elements making up spring2.MaterialBoth spring1 and spring2 were thin metallic springs modeled with a linear elastic material model. No material properties were required for the contact or rigid surface elements.Boundary ConditionsBoth springs were assumed to be fully restrained at their base to simulate a rigid plastichousing. An enforced displacement in the x-direction was applied to the ball. The ball wasfully restrained in all rotational and translational directions with the exception of the xdirection translation. Boundary conditions for the springs and ball are shown in Figure 2.DISCUSSIONTypical results of interest for an electro-mechanical sensor would be the deflected shape of the springs, the force-displacement response of the sensor, and the stress levels in the springs. Results from an analysis of the electro-mechanical sensor shown in Figure 2 will be used asfull ball travel. Looking at the deflected shape of the springs can provide insight into the performance of the sensor as well as aid in the design of the sensor housing.Stresses in the springs are important results in this analysis to ensure stress levels in the springs are at acceptable levels. Desired components of stress can be examined through various means including color contour plots. One of the most important results from the analysis is the force-displacement response for the sensor shown in Figure 4. From this force-displacement response, the force required to push spring1 into contact with spring2 can readily be determined. This force requirement can be used with a given acceleration to determine the mass required for the ball. Based on these results, one or more variations of several variables such as spring width, spring thickness, ball diameter, and ball material can be updated until the force-displacement requirements are achieved within a desired accuracy.A prototype of the sensor shown in Figure 2 was constructed and tested to determine its actual force-displacement response. Figure 4 shows the MSC/ABAQUS results along with the experimental results for the force-displacement response of the sensor. There was an excellent correlation between finite element and experimental results for this sensor as well asfor several other sensors examined. Table 1 shows the difference in percent between finite element and experimental results including force at preload on spring1, force at spring1-tospring2 contact, and force at full ball travel for two sensor configurations. Sensor A in Table 1 is shown in Figure 1. Sensor B in Table 1 is based on the sensor shown in Figure 2.The sensor model analyzed in this paper was also analyzed with parabolic quadrilateral and bar elements to ensure convergence of the solution.Force-displacement results converged to less than 1% using linear elements. The stresses in the springs for this sensor converged to within 10% for the linear elements. The parabolic elements increased solve time by more than an order of magnitude over the linear elements. With more complex spring shapes, a denser linear mesh or parabolic elements used locally in areas of stress concentrations would be necessary to obtain more accurate stresses in the springs.Notes: 1. Sensor A results are based on 1 prototype manufactured and tested. Sensor Bexperimental results are based on the average of 20 prototypesmanufacturedand tested.2. No experimental data for force at full ball travel for Sensor A.3. %Difference=(FEA Result - Experimental Result)/Experimental ResultCONCLUSIONSMSC/ABAQUS has been used to analyze and design airbag crash sensors. The finite element analysis results were in excellent agreement with experimental results for several electromechanical sensors for which prototypes were built and tested. Using finite element analysis, sensors can be designed to meet force-displacement requirements with acceptable stress levels. The analysis procedure discussed in this paper has demonstrated the ability to eliminate months of prototyping effort. This paper has demonstrated the power of finite element analysis as a predictive engineering tool even with the use of multiple contact element types.。