{3套试卷汇总}2018年贵阳市八年级上学期数学期末统考试题
〖汇总3套试卷〗贵阳市2018年八年级上学期数学期末调研试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列说法正确的是( )A .若ab =0,则点P (a ,b )表示原点B .点(1,﹣a 2)一定在第四象限C .已知点A (1,﹣3)与点B (1,3),则直线AB 平行y 轴D .已知点A (1,﹣3),AB ∥y 轴,且AB =4,则B 点的坐标为(1,1)【答案】C【分析】直接利用坐标轴上点的坐标特点以及平行于坐标轴的直线上点的关系分别分析得出答案.【详解】解:A 、若ab =0,则点P (a ,b )表示在坐标轴上,故此选项错误;B 、点(1,﹣a 2)一定在第四象限或x 轴上,故此选项错误;C 、已知点A (1,﹣3)与点B (1,3),则直线AB 平行y 轴,正确;D 、已知点A (1,﹣3),AB ∥y 轴,且AB =4,则B 点的坐标为(1,1)或(1,﹣7),故此选项错误. 故选C .【点睛】本题考查了坐标与图形的性质,正确把握点的坐标特点是解题的关键2.某射击运动员练习射击,5次成绩分别是:8、9、7、8、x (单位:环),下列说法中正确的个数是( ) ①若这5次成绩的平均数是8,则8x =;②若这5次成绩的中位数为8,则8x =;③若这5次成绩的众数为8,则8x =;④若这5次成绩的方差为8,则8x =A .1个B .2个C .3个D .4个 【答案】A【分析】根据中位数,平均数,众数和方差的概念逐一判断即可.【详解】①若这5次成绩的平均数是8,则8589788x =⨯----=,故正确;②若这5次成绩的中位数为8,则x 可以任意数,故错误;③若这5次成绩的众数为8,则x 只要不等于7或9即可,故错误;④若8x =时,方差为2221[3(88)(98)(78)]0.45⨯-+-+-=,故错误.所以正确的只有1个故选:A .【点睛】本题主要考查数据的分析,掌握平均数,中位数,众数,方差的求法是解题的关键.3.在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( )A .15B .13C .58D .38【答案】C【分析】先求出球的所有个数与红球的个数,再根据概率公式解答即可.【详解】解:共8球在袋中,其中5个红球, 故摸到红球的概率为58, 故选:C .【点睛】本题考查了概率的求法:如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P(A)= m n,难度适中. 4.已知y 2+my+1是完全平方式,则m 的值是( )A .2B .±2C .1D .±1【答案】B【分析】完全平方公式:a 1±1ab+b 1的特点是首平方,尾平方,首尾底数积的两倍在中央,这里首末两项是y 和1的平方,那么中间项为加上或减去y 和1的乘积的1倍.【详解】∵(y±1)1=y 1±1y+1,∴在y 1+my+1中,my =±1y ,解得m=±1.故选B.【点睛】本题是完全平方公式的应用,两数的平方和,再加上或减去它们积的1倍,就构成了一个完全平方式.注意积的1倍的符号,避免漏解.5.若实数,m n 满足等式 40m -=,且mn 、恰好是等腰ABC ∆的两条的边长,则ABC ∆的周长是( )A .6或8B .8或10C .8D .10【答案】D【分析】根据 40m -=可得m ,n 的值,在对等腰△ABC 的边长进行分类讨论即可.【详解】解:∵ 40m -=∴40m -=,20n -=∴4,2m n ==,当m=4是腰长时,则底边为2,∴周长为:4+4+2=10,当n=2为腰长时,则底边为4,∵2+2=4,不能构成三角形,所以不符合题意,故答案为:D.【点睛】本题考查了非负数的性质,等腰三角形的定义以及三角形的三边关系,解题的关键是对等腰三角形的边长进行分类讨论,注意运用三角形的三边关系进行验证.6.已知等腰三角形的两边长分别为2cm和4cm,则它的周长为()A.8 B.10 C.8 或10 D.6【答案】B【解析】题目给出等腰三角形有两条边长为2和4,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】当2是腰时,2,2,4不能组成三角形,应舍去;当4是腰时,4,4,2能够组成三角形.∴周长为10cm,故选B.【点睛】本题考查等腰三角形的性质及三角形三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键.7.长度分别为2,7,x的三条线段能组成一个三角形,的值可以是()A.4B.5C.6D.9【答案】C【分析】根据三角形的三边关系可判断x的取值范围,进而可得答案.【详解】解:由三角形三边关系定理得7-2<x<7+2,即5<x<1.因此,本题的第三边应满足5<x<1,把各项代入不等式符合的即为答案.4,5,1都不符合不等式5<x<1,只有6符合不等式,故选C.【点睛】本题考查的是三角形的三边关系,属于基础题型,掌握三角形的三边关系是解题的关键.8.点P(1,﹣2)关于y轴对称的点的坐标是()A.(1,2)B.(﹣1,2)C.(﹣1,﹣2)D.(﹣2,1)【答案】C【解析】关于y 轴对称的点,纵坐标相同,横坐标互为相反数,由此可得P (1,﹣2)关于y 轴对称的点的坐标是(﹣1,﹣2),故选C .【点睛】本题考查了关于坐标轴对称的点的坐标,正确地记住关于坐标轴对称的点的坐标特征是关键. 关于x 轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数;关于y 轴对称的点的坐标特点:纵坐标不变,横坐标互为相反数.9.已知111ABC A B C ∆≅∆,A 与1A 对应,B 与1B 对应,170,50A B ∠=︒∠=︒,则C ∠的度数为( ) A .70︒B .50︒C .120︒D .60︒【答案】D【分析】根据全等三角形的对应角相等,得到150B B ∠=∠=︒,然后利用三角形内角和定理,即可求出C ∠.【详解】解:∵111ABC A B C ∆≅∆,∴150B B ∠=∠=︒,∵180A B C ∠+∠+∠=︒,70A ∠=︒,∴180705060C ∠=︒-︒-︒=︒;故选择:D.【点睛】本题考查了全等三角形的性质,三角形的内角和定理,解题的关键是掌握全等三角形的对应角相等,以及熟练运用三角形内角和定理解题.10.下列四组数据中,能作为直角三角形三边长的是( )A .1,2,3B 3,C .23,24,25D .0.3,0.4,0.5 【答案】D【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.【详解】解:A 、12+22≠32,根据勾股定理的逆定理可知不能作为直角三角形三边长;B 、2+2≠32,根据勾股定理的逆定理可知不能作为直角三角形三边长;C 、(32)2+(42)2≠(52)2,根据勾股定理的逆定理可知不能作为直角三角形三边长;D 、0.32+0.42=0.52,根据勾股定理的逆定理可知能作为直角三角形三边长.故选:D .【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.二、填空题11.如图,在平面直角坐标系中,111A B C ∆、222A B C ∆、333A B C ∆、…、n n n A B C ∆均为等腰直角三角形,且123n C C C C ∠=∠=∠==∠90=︒,点1A 、2A 、3A 、……、n A 和点1B 、2B 、3B 、……、n B 分别在正比例函数12y x =和y x =-的图象上,且点1A 、2A 、3A 、……、n A 的横坐标分别为1,2,3…n ,线段11A B 、22A B 、33A B 、…、n n A B 均与y 轴平行.按照图中所反映的规律,则n n n A B C ∆的顶点n C 的坐标是_____.(其中n 为正整数)【答案】71,44n n ⎛⎫- ⎪⎝⎭ 【分析】当x=1代入12y x =和 y x =-中,求出A 1,B 1的坐标,再由△A 1B 1C 1为等腰直角三角形,求出C 1的坐标,同理求出C 2,C 3,C 4的坐标,找到规律,即可求出n n n A B C ∆的顶点n C 的坐标.【详解】当x=1代入12y x =和y x =-中,得:11122y =⨯=,1y =-, ∴111,2A ⎛⎫ ⎪⎝⎭,()11,1B -,∴()1113122A B =--=, ∵△A 1B 1C 1为等腰直角三角形,∴C 1的横坐标为111137112224A B +=+⨯=, C 1的纵坐标为111131112224A B -+=-+⨯=-, ∴C 1的坐标为71,44⎛⎫- ⎪⎝⎭; 当x=2代入12y x =和y x =-中,得:1212y =⨯=,2y =-, ∴()22,1A ,()22,2B -,∴()22123A B =--=,∵△A 2B 2C 2为等腰直角三角形,∴C 2的横坐标为22117223222A B +=+⨯=, C 2的纵坐标为22111223222A B -+=-+⨯=-, ∴C 2的坐标为71,22⎛⎫- ⎪⎝⎭; 同理,可得C 3的坐标为213,44⎛⎫- ⎪⎝⎭;C 4的坐标为()7,1-; ∴n n n A B C ∆的顶点n C 的坐标是71,44n n ⎛⎫-⎪⎝⎭, 故答案为:71,44n n ⎛⎫-⎪⎝⎭. 【点睛】 本题考查了一次函数图象上点的坐标特征,等腰直角三角形的性质,正确求出C 1、C 2、C 3、C 4的坐标找到规律是解题的关键.12.若不等式组81x x m <⎧⎨+>⎩有解,则m 的取值范围是____. 【答案】9m <【分析】根据题意,利用不等式组取解集的方法即可得到m 的范围.【详解】解:由题知不等式为81x x m <⎧⎨>-⎩, ∵不等式有解,∴18m -<,∴9m <,故答案为9m <.【点睛】此题考查了不等式的解集,熟练掌握不等式组取解集的方法是解本题的关键.13.若正比例函数2y x =-的图象经过点()1,4A a -,则a 的值是__________.【答案】-1【分析】把点()1,4A a -代入函数解析式,列出关于a 的方程,通过解方程组来求a 的值.【详解】∵正比例函数2y x =-的图象经过点()1,4A a -,∴2(1)4a --=解得,a=-1.故答案为:-1.【点睛】本题考查了一次函数图象上点的坐标特征.直线上任意一点的坐标都满足函数关系式y=kx (k≠0). 14.因式分解:3x 2-6xy+3y 2=______.【答案】3(x ﹣y )1【解析】试题分析:原式提取3,再利用完全平方公式分解即可,得到3x 1﹣6xy+3y 1=3(x 1﹣1xy+y 1)=3(x ﹣y )1.考点:提公因式法与公式法的综合运用15.4的平方根是 .【答案】±1.【解析】试题分析:∵2(2)4±=,∴4的平方根是±1.故答案为±1.考点:平方根.16.据统计分析2019年中国互联网行业发展趋势,3年内智能手机用户将达到1.2亿户,用科学记数法表示1.2亿为_______户.【答案】3.32×2【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】将1.2亿用科学记数法表示为:3.32×2.故答案为3.32×2.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.17.点(3,2-)关于x 轴的对称点的坐标是__________.【答案】(3,2)【解析】利用关于x 轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P (x ,y )关于x 轴的对称点P'的坐标是(x ,﹣y ),进而求出即可.【详解】点(3,﹣2)关于x 轴的对称点坐标是(3,2).故答案为(3,2).【点睛】本题考查了关于x 轴对称点的性质,正确记忆横纵坐标的关系是解题的关键.三、解答题18.有一家糖果加工厂,它们要对一款奶糖进行包装,要求每袋净含量为100g .现使用甲、乙两种包装机同时包装100g的糖果,从中各抽出10袋,测得实际质量(g)如下:甲:101,102,99,100,98,103,100,98,100,99乙:100,101,100,98,101,97,100,98,103,102(1)分别计算两组数据的平均数、众数、中位数;(2)要想包装机包装奶糖质量比较稳定,你认为选择哪种包装机比较适合?简述理由.【答案】(1)甲:平均数为100、众数为100、中位数为100;乙:平均数为100、中位数是100、乙的众数是100;(2)选择甲种包装机比较合适.【分析】(1)根据平均数是指在一组数据中所有数据之和再除以数据的个数;一组数据中出现次数最多的数据叫做众数;将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数进行计算即可.(2)利用方差公式分别计算出甲、乙的方差,然后可得答案.【详解】解:(1)甲的平均数为:110(101+102+99+100+98+103+100+98+100+99)=100;乙的平均数为:110(100+101+100+98+101+97+100+98+103+102)=100;甲中数据从小到大排列为:98,98,99,99,100,100,100,101,102,103 故甲的中位数是:100,甲的众数是100,乙中数据从小到大排列为:97,98,98,100,100,100,101,101,102,103 故乙的中位数是:100,乙的众数是100;(2)甲的方差为:2S甲=110[(101﹣100)2+(102﹣100)2+(99﹣100)2+(100﹣100)2+(98﹣100)2+(103﹣100)2+(100﹣100)2+(98﹣100)2+(100﹣100)2+(98﹣100)2) =2.4;乙的方差为:2S乙=110[(100﹣100)2+(101﹣100)2+(100﹣100)2+(98﹣100)2+(101﹣100)2+(97﹣100)2+(100﹣100)2+(98﹣100)2+(103﹣100)2+(102﹣100)2] =3.2,∵2S甲<2S乙,∴选择甲种包装机比较合适.【点睛】此题主要考查了中位数、平均数、众数以及方差,关键是掌握三数的计算方法,掌握方差公式.19.如图,在 ABC中,AB=13,BC=14,AC=15.求BC边上的高.【答案】1【分析】AD 为高,那么题中有两个直角三角形.AD 在这两个直角三角形中,设BD 为未知数,可利用勾股定理都表示出AD 长.求得BD 长,再根据勾股定理求得AD 长.【详解】解:设BD=x,则CD=14-x .在Rt ∆ABD 中,222AD AB BD =-=132-2x在Rt ∆ACD 中,222AD AC CD =-=152-()214x -∴132-2x =152-()214x -解之得x =5∴AD=22AB BD -=22135-=1.【点睛】勾股定理.20.某校计划组织1920名师生研学,经过研究,决定租用当地租车公司一共40辆A 、B 两种型号客车作为交通工具.下表是租车公司提供给学校有关两种型号客车的载客量和租金信息.(注:载客量指的是每辆客最多可载该校师生的人数)设学校租用A 型号客车x 辆,租车总费用为y 元.(1)求y 与x 的函数关系式,并求出x 的取值范围;(2)若要使租车总费用不超过25200元,一共有几种租车方案?哪种租车方案最省钱,并求此方案的租车费用.【答案】(1)15≤ x <40且x 为整数;(2)若要使租车总费用不超过25200元,一共有6种方案,当租用A 型号客车15辆,B 型号客车25辆时最省钱,此时租车总费用为24700元。
(汇总3份试卷)2018年贵阳市八年级上学期数学期末联考试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.已知方程组03mx y x ny +=⎧⎨+=⎩的解是12x y =⎧⎨=-⎩,则2m n +的值为( )A .1B .2C .3D .0【答案】C【分析】将12x y =⎧⎨=-⎩代入03mx yx ny +=⎧⎨+=⎩求出m 、n 的值,再计算2m n +的值即可.【详解】将12x y =⎧⎨=-⎩代入03mx y x ny +=⎧⎨+=⎩可得21m n =⎧⎨=-⎩, 则222(1)3m n +=⨯+-=.故选C.【点睛】本题考查方程组的解,解题的关键是将将12x y =⎧⎨=-⎩代入03mx y x ny +=⎧⎨+=⎩求出m 、n 的值. 2.如图,已知△ABC 是等边三角形,点B 、C ,D 、E 在同一直线上,且CG=CD ,DF=DE ,则∠E=()A .30°B .25°C .15°D .10°【答案】C 【详解】解: , ,, ,,.,.3.代数式22248x x y y -+++的值为( )A .正数B .非正数C .负数D .非负数【答案】D【分析】首先将代数式变换形式,然后利用完全平方公式,即可判定其为非负数.【详解】由题意,得()()()()22222224821443123x x y y x x y y x y -+++=-+++++=-+++ ∴无论x 、y 为何值,代数式的值均为非负数,故选:D.【点睛】此题主要考查利用完全平方公式判定代数式的值,熟练掌握,即可解题.4.若关于x 的方程2122ax x x 无解,则a 的值是( ) A .1B .2C .-1或2D .1或2【答案】A【分析】根据解分式方程的步骤,可求出分式方程的解,根据分式方程无解,可得a 的值.【详解】解:方程两边同乘()2x -,得()22ax x =+-, ()10a x -=,∵关于x 的方程2122axx x 无解,∴20x -=,10a -=,解得:2x =,1a =,把2x =代入()10a x -=,得:()120a -⨯=,解得:1a =,综上,1a =,故答案为:1.【点睛】本题考查了分式方程的解,把分式方程转化成整式方程,把分式方程的增根代入整式方程,求出答案. 5.下列图形中有稳定性的是( )A .正方形B .长方形C .直角三角形D .平行四边形【答案】C【分析】根据三角形稳定性即可得答案.【详解】三角形具有稳定性,有着稳固、坚定、耐压的特点;而四边形不具有稳定性,易于变形.四个选项中,只有C 选项是三角形,其他三个选项均为四边形,故答案为C.【点睛】本题考查的知识点是三角形稳定性. 6.将两块完全相同的长方体木块先按图1的方式放置,再按图2的方式放置,测得的数据如图(单位:cm )所示.则桌子的高度h=图1 图2A .30cmB .35cmC .40cmD .45cm【答案】C【分析】设小长方形的长为x ,宽为y ,根据题意可列出方程组,即可求解h.【详解】设小长方形的长为x ,宽为y ,由图可得 -6020h y x y x h+=⎧⎨-+=⎩ 解得h=40cm ,故选C.【点睛】此题主要考查二元一次方程组的应用,解题的关键是根据图形列出方程组进行求解.7.要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米,要围成的菜园是如图所示的矩形ABCD ,设BC 的边长为x 米,AB 边的长为y 米,则y 与x 之间的函数关系式是( )A .y=-2x+24(0<x <12)B .y=-12x+12(0<x <24) C .y=-2x-24(0<x <12)D .y=-12x-12(0<x <24) 【答案】B 【分析】根据题意可得2y+x=24,继而可得出y 与x 之间的函数关系式,及自变量x 的范围.【详解】解:由题意得:2y+x=24,故可得:y=12-x +12(0<x <24). 故选:B .【点睛】此题考查了根据实际问题列一次函数关系式的知识,属于基础题,解答本题关键是根据三边总长应恰好为24米,列出等式.8.下列各式中,是最简二次根式的是( )A .6B .12C .18D .27【答案】A 【分析】根据最简二次根式的定义判断即可.需要符合以下两个条件: 1.被开方数中不含能开得尽方的因数或因式;2.被开方数的因数是整数,因式是整式.【详解】解:A.6不能继续化简,故正确; B.12=23,故错误; C.18=32,故错误; D. 27=33故错误.故选:A.【点睛】本题考查最简二次根式的定义,理解掌握定义是解答关键.9.将两块完全一样(全等)的含30的直角三角板按如图所示的方式放置,其中交点M 为AC 和A C ''的中点,若2BC =,则点A 和点A '之间的距离为( )A .2B .3C .1D .32【答案】B 【分析】连接A A ',A C '和C C ',根据矩形的判定可得:四边形A ACC ''是矩形,根据矩形的性质可得:A A '=C C ',90A CC ''∠=︒,然后根据30°所对的直角边是斜边的一半即可求出A B '',再根据勾股定理即可求出A C '',然后根据30°所对的直角边是斜边的一半即可求出C C ',从而求出A A '.【详解】解:连接A A ',A C '和C C '∵点M 为AC 和A C ''的中点∴四边形A ACC ''是平行四边形根据全等的性质AC =A C '',BC=2B C ''=∴四边形A ACC ''是矩形∴A A '=C C ',90A CC ''∠=︒在Rt △C B A '''中,∠A '=30°∴A B ''=24B C ''=根据勾股定理,A C ''=2223A B B C ''''-=在Rt △A CC ''中,∠A '=30°132C C A C '''== ∴A A '=3C C '=故选B .【点睛】此题考查的是矩形的判定及性质、直角三角形的性质和勾股定理,掌握矩形的判定及性质、30°所对的直角边是斜边的一半和用勾股定理解直角三角形是解决此题的关键.10.如图,已知∠ACD =60°,∠B =20°,那么∠A 的度数是( )A .40°B .60°C .80°D .120°【答案】A 【分析】根据三角形的外角性质解答即可.【详解】解:∵∠ACD=60°,∠B=20°,∴∠A=∠ACD-∠B=60°-20°=40°,故选A .【点睛】此题考查三角形的外角性质,关键是根据三角形外角性质解答.二、填空题11.如图,已知点M (-1,0),点N (5m ,3m+2)是直线AB :4y x =-+右侧一点,且满足∠OBM=∠ABN ,则点N 的坐标是_____.【答案】5,3 3⎛⎫ ⎪⎝⎭【分析】在x轴上取一点P(1,0),连接BP,作PQ⊥PB交直线BN于Q,作QR⊥x轴于R,构造全等三角形△OBP≌△RPQ(AAS);然后根据全等三角形的性质、坐标与图形性质求得Q(5,1),易得直线BQ 的解析式,所以将点N代入该解析式来求m的值即可.【详解】解:在x轴上取一点P(1,0),连接BP,作PQ⊥PB交直线BN于Q,作QR⊥x轴于R,∴∠BOP=∠BPQ=∠PRQ=90°,∴∠BPO=∠PQR,∵OA=OB=4,∴∠OBA=∠OAB=45°,∵M(-1,0),∴OP=OM=1,∴BP=BM,∴∠OBP=∠OBM=∠ABN,∴∠PBQ=∠OBA=45°,∴PB=PQ,∴△OBP≌△RPQ(AAS),∴RQ=OP=1,PR=OB=4,∴OR=5,∴Q(5,1),∴直线BN的解析式为y=−35x+4,将N(5m,3m+2)代入y=−35x+4,得3m+2=﹣35×5m+4解得m=13,∴N5,33⎛⎫ ⎪⎝⎭.故答案为:5,3 3⎛⎫ ⎪⎝⎭【点睛】本题考查了一次函数综合题,需要熟练掌握待定系数法确定函数关系式,一次函数图象上点的坐标特征,全等三角形的判定与性质,坐标与图形性质,两点间的距离公式等知识点,难度较大.12.观察下列各式:111113132a ⎛⎫==- ⎪⨯⎝⎭; 2111135235a ⎛⎫==- ⎪⨯⎝⎭; 3111157257a ⎛⎫==- ⎪⨯⎝⎭; 4111179279a ⎛⎫==- ⎪⨯⎝⎭; ⋯⋯⋯,则123200a a a a +++⋅⋅⋅+=______ 【答案】200401【分析】根据题意,总结式子的变化规律,然后得到1111()(21)(21)22121n a n n n n ==--⨯+-+,然后把代数式化简,通过拆项合并的方法进行计算,即可求出答案. 【详解】解:∵111113132a ⎛⎫==- ⎪⨯⎝⎭; 2111135235a ⎛⎫==- ⎪⨯⎝⎭; 3111157257a ⎛⎫==- ⎪⨯⎝⎭; 4111179279a ⎛⎫==- ⎪⨯⎝⎭;…… ∴1111()(21)(21)22121n a n n n n ==--⨯+-+; ∴123200a a a a +++⋅⋅⋅+11111111111(1)()()()232352572399401=-+-+-+⋅⋅⋅+⨯- 11111111(1)233557399401=⨯-+-+-+⋅⋅⋅+- 11(1)2401=⨯- 14002401=⨯ 200401=; 故答案为:200401. 【点睛】 本题考查了整式的混合运算,以及数字的变化规律,解题的关键是熟练掌握正确掌握题意,找到题目的规律,从而运用拆项法进行解题.13.如图,AD 、BE 是等边ABC 的两条高线,AD 、BE 交于点O ,则∠AOB =_____度.【答案】1【分析】根据等边三角形的性质可得AB =AC =BC ,∠CAB =∠ABC =60°,然后根据三线合一求出∠BAD 和∠ABE ,最后利用三角形的内角和定理即可求出结论.【详解】解:∵ABC 是等边三角形,∴AB =AC =BC ,∠CAB =∠ABC =60°,∵AD 、BE 是等边ABC 的两条高线,∴∠BAD =12∠BAC =30°,∠ABE =12∠ABC =30°, ∴∠AOB =180°﹣∠BAD ﹣∠ABE =180°﹣30°﹣30°=1°,故答案为:1.【点睛】此题考查的是等边三角形的性质,掌握等边三角形的定义和三线合一是解题关键.14.“关心他人,奉献爱心”.我市某中学举行慈善一日捐活动,活动中七年级一班50名学生自发组织献爱心捐款活动.班长将捐款情况进行了统计,并绘制成了条形统计图.根据图中提供的信息,全班同学捐款的总金额是___元.【答案】1620【分析】由表提供的信息可知,把金额乘以对应人数,然后相加即可.【详解】解:根据题意,得,⨯+⨯+⨯+⨯+⨯总金额为:106201330205081003=++++60260600400300=元;1620故答案为1620.【点睛】本题考查了有理数的加减乘除混合运算,解题的关键是读懂题意,根据表格中的数据进行计算.15.如图,在△ABC中∠ABC和∠ACB平分线交于点O,过点O作OD⊥BC于点D,△ABC的周长为21,OD=4,则△ABC的面积是_____.【答案】1【分析】作OE⊥AB于E,OF⊥AC于F,连接OA,根据角平分线的性质求出OE=OD=4和OF=OD=4,根据三角形面积公式计算即可.【详解】解:作OE⊥AB于E,OF⊥AC于F,连接OA,∵OB是∠ABC的平分线,OD⊥BC,OE⊥AB,∴OE=OD=4,同理OF=OD=4,△ABC的面积=12×AB×4+12×AC×4+12×BC×4=1.故答案为:1.【点睛】本题主要考查角平分线的性质,解题的关键是掌握角的平分线上的点到角的两边的距离相等.16.如图,在长方形ABCD的边AD上找一点P,使得点P到B、C两点的距离之和最短,则点P的位置应该在_____.【答案】AD的中点【详解】分析:过AD作C点的对称点C′,根据轴对称的性质或线段垂直平分线的性质得出AC=PC′,从而根据两点之间线段最短,得出这时的P点使BP+PC的之最短.详解:如图,过AD作C点的对称点C′,根据轴对称的性质可得:PC=PC′,CD=C′D∵四边形ABCD是矩形∴AB=CD∴△ABP≌△DC′P∴AP=PD即P为AD的中点.故答案为P为AD的中点.点睛:本题考查了轴对称-最短路线问题,矩形的性质,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.17.甲、乙两地9月上旬的日平均气温如图所示,则甲、乙两地这10天日平均气温方差大小关系为s 甲2__________s 乙2(填“>”或“<”).【答案】>【分析】根据方差的意义:方差越小则波动越小,稳定性也越好,结合气温统计图即可得出结论. 【详解】解:由气温统计图可知:乙地的气温波动小,比较稳定 ∴乙地气温的方差小∴22s s >乙甲故答案为:>. 【点睛】此题考查的是比较方差的大小,掌握方差的意义:方差越小则波动越小,稳定性也越好是解决此题的关键. 三、解答题18.设121515x x -+--==21x x 和221122x x x x ++的值 【答案】35+2 【分析】直接将12x x 、代入21x x ,再分母有理化即可;先求得12x x +,12x x 的值,再将221122x x x x ++变形为12x x +,12x x 的形式即可求解.【详解】()()2222115515151(51)6253521551(5)15151x x --+++++======-+---+ ∵12151515151x x -+---+--+===-, 22121515(1)5)1224x x -----===-, ∴()()()222211221212112x x x x x x x x ++=+-=---=.本题考查了二次根式的混合运算,涉及的知识点有分母有理化、完全平方公式的应用、平方差公式的应用,熟练掌握二次根式的运算法则和完全平方公式的结构特征是解题的关键.19.问题背景:(1)如图1,已知△ABC 中,∠BAC =90°,AB =AC ,直线m 经过点A ,BD ⊥直线m ,CE ⊥直线m ,垂足分别为点D 、E .求证:DE =BD +CE .拓展延伸:(2)如图2,将(1)中的条件改为:在△ABC 中,AB =AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA =∠AEC =∠BAC .请写出DE 、BD 、CE 三条线段的数量关系.(不需要证明)实际应用:(3)如图,在△ACB 中,∠ACB =90°,AC =BC ,点C 的坐标为(-2,0),点A 的坐标为(-6,3),请直接写出B 点的坐标.【答案】(1)证明见解析;(2)DE =BD +CE ;(3)B(1,4)【分析】(1)证明△ABD ≌△CAE ,根据全等三角形的性质得到AE=BD ,AD=CE ,结合图形解答即可; (2)根据三角形内角和定理、平角的定义证明∠ABD=∠CAE ,证明△ABD ≌△CAE ,根据全等三角形的性质得到AE=BD ,AD=CE ,结合图形解答即可;(3)根据△AEC ≌△CFB ,得到CF=AE=3,BF=CE=OE-OC=4,根据坐标与图形性质解答. 【详解】(1)证明:∵BD ⊥直线m ,CE ⊥直线m , ∴∠ADB =∠CEA =90° ∵∠BAC =90° ∴∠BAD +∠CAE =90° ∵∠BAD +∠ABD =90° ∴∠CAE =∠ABD ∵在△ADB 和△CEA 中ABD CAE ADB CEA AB CA ∠=∠⎧⎪∠=∠⎨⎪=⎩∴AE =BD ,AD =CE ∴DE =AE +AD =BD +CE 即:DE =BD +CE(2)解:数量关系:DE =BD +CE理由如下:在△ABD 中,∠ABD=180°-∠ADB-∠BAD , ∵∠CAE=180°-∠BAC-∠BAD ,∠BDA=∠AEC , ∴∠ABD=∠CAE , 在△ABD 和△CAE 中,ABD CAE BDA AEC AB CA ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△ABD ≌△CAE (AAS ) ∴AE=BD ,AD=CE , ∴DE=AD+AE=BD+CE ;(3)解:如图,作AE ⊥x 轴于E ,BF ⊥x 轴于F , 由(1)可知,△AEC ≌△CFB , ∴CF=AE=3,BF=CE=OE-OC=4, ∴OF=CF-OC=1,∴点B 的坐标为B (1,4).【点睛】本题考查的是全等三角形的判定和性质、坐标与图形性质,掌握全等三角形的判定定理和性质定理是解题的关键.20.如图1,A 为x 轴负半轴上一点,B 为x 轴正半轴上一点,C 点坐标为()0,a ,D 点坐标(),,b a 为且2 30a b ++=.(1)求C D 、两点的坐标; (2)求BDC S ∆;(3)如图2,若A 点坐标为()3,0,B -点坐标为()2,0,点P 为线段OC 上一点,BP 的延长线交线段AC 于点Q ,若BPC AOPQ S S ∆=四边形,求出点Q 坐标.(4)如图3,若ADC DAC ∠=∠,点B 在x 轴正半轴上任意运动,ACB ∠的平分线CE 交DA 的延长线于点E ,在B 点的运动过程中,EABC∠∠的值是否发生变化,若不变化,求出比值;若变化请说明理由.【答案】(1)C (0,-2),D (-3,-2);(2)3;(3)Q (95-,45-);(4)E ABC∠∠值不变,且为12【分析】(1)根据 2 30a b ++=中绝对值和算术平方根的非负性可求得a 和b 的值,从而得到C 和D 的坐标;(2)求出CD 的长度,再根据三角形的面积公式列式计算即可;(3)根据BPC AOPQ S S ∆=四边形可得△ABQ 的面积等于△BOC 的面积,求出△OBC 的面积,再根据AB 的长度可求得点Q 的纵坐标,然后求出直线AC 的表达式,代入点Q 纵坐标即可求出点Q 的横坐标; (4)在△AOE 和△BFC 中,利用三角形内角和定理列式整理表示出∠ABC ,然后相比即可得解. 【详解】解:(1)∵ 2 30a b ++=, ∴a+2=0,b+3=0, ∴a=-2,b=-3,∴C (0,-2),D (-3,-2); (2)∵C (0,-2),D (-3,-2), ∴CD=3,且CD ∥x 轴, ∴BDC S △=12×3×2=3; (3)∵BPC AOPQ S S ∆=四边形,△OBP 为公共部分,∴S △ABQ =S △BOC ,∵B (2,0),C (0,-2) ∴S △BOC =1222⨯⨯=2= S △ABQ , ∵A (-3,0), ∴AB=5,S △ABQ =152Q y ⨯⨯=2,∴45Q y =-,设直线AC 的表达式为y=kx+b , 将A ,C 坐标代入,032k bb =-+⎧⎨-=⎩, 解得:232k b ⎧=-⎪⎨⎪=-⎩,∴直线AC 的表达式为:223y x =--, 令y=45-, 解得x=95-,∴点Q 的坐标为(95-,45-); (4)在△ACE 中,设∠ADC=∠DAC=α,∠ACE=β, ∠E=∠DAC-∠ACE=α-β, ∵CE 平分∠ACB , ∴∠BCE=∠ACE=β, 在△AFE 和△BFC 中, ∠E+∠EAF+∠AFE=180°, ∠ABC+∠BCF+∠BFC=180°, ∵CD ∥x 轴, ∴∠EAF=∠ADC=α, 又∵∠AFE=∠BFC ,∴∠E+∠EAF=∠ABC+∠BCF , 即α-β+α=∠ABC+β,∴E ABC ∠∠=()2αβαβ--=12,为定值.【点睛】本题考查了坐标与图形的性质,三角形角平分线,三角形的面积,三角形内角和定理,待定系数法求一次函数解析式,属于综合体,熟记性质并准确识图是解题的关键.21.已知在△ABC中,AB=AC,射线BM、BN在∠ABC内部,分别交线段AC于点G、H.(1)如图1,若∠ABC=60°,∠MBN=30°,作AE⊥BN于点D,分别交BC、BM于点E、F.①求证:∠1=∠2;②如图2,若BF=2AF,连接CF,求证:BF⊥CF;(2)如图3,点E为BC上一点,AE交BM于点F,连接CF,若∠BFE=∠BAC=2∠CFE,求ABFACFSS的值.【答案】(1)①见解析;②见解析;(2)2【分析】(1)①只要证明∠2+∠BAF=∠1+∠BAF=60°即可解决问题;②只要证明△BFC≌△ADB,即可推出∠BFC=∠ADB=90°;(2)在BF上截取BK=AF,连接AK.只要证明△ABK≌CAF,可得S△ABK=S△AFC,再证明AF=FK=BK,可得S△ABK=S△AFK,即可解决问题;【详解】(1)①证明:如图1中,∵AB=AC,∠ABC=60°∴△ABC是等边三角形,∴∠BAC=60°,∵AD⊥BN,∴∠ADB=90°,∠BFD=60°=∠1+∠BAF=∠2+∠BAF,∴∠1=∠2②证明:如图2中,在Rt△BFD中,∵∠FBD=30°,∴BF=2DF,∵BF=2AF,∴BF=AD,∵∠BAE=∠FBC,AB=BC,∴△BFC≌△ADB,∴∠BFC=∠ADB=90°,∴BF⊥CF(2)在BF上截取BK=AF,连接AK.∵∠BFE=∠2+∠BAF,∠CFE=∠4+∠1,∴∠CFB=∠2+∠4+∠BAC,∵∠BFE=∠BAC=2∠EFC,∴∠1+∠4=∠2+∠4∴∠1=∠2,∵AB=AC,∴△ABK≌CAF,∴∠3=∠4,S△ABK=S△AFC,∵∠1+∠3=∠2+∠3=∠CFE=∠AKB,∠BAC=2∠CEF,∴∠KAF=∠1+∠3=∠AKF,∴AF=FK=BK,∴S△ABK=S△AFK,∴ABFAFCS2S∆∆=.【点睛】本题考查全等三角形的判定和性质、等边三角形的性质、等腰三角形的判定和性质、直角三角形30度角性质等知识,解题的关键是能够正确添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.22.如图1,在平面直角坐标系中,直线l1:y=-x+5与x轴,y轴分别交于A.B两点.直线l2:y=-4x+b与l1交于点D(-3,8)且与x轴,y轴分别交于C、E.(1)求出点A坐标,直线l2的解析式;(2)如图2,点P为线段AD上一点(不含端点),连接CP ,一动点Q从C出发,沿线段CP 以每秒1个单位的速度运动到点P,再沿着线段PD以每秒2个单位的速度运动到点D停止,求点Q在整个运动过程中所用最少时间与点P的坐标;(3)如图3,平面直角坐标系中有一点G(m,2),使得S∆CEG=S∆CEB,求点G的坐标.【答案】(1)A(5,0),y=-4x-4;(2)8秒,P(-1,6);(3)1315G G,244-⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭2,2,.【分析】(1)根据l1解析式,y=0即可求出点A坐标,将D点代入l2解析式并解方程,即可求出l2解析式(2)根据OA=OB可知ABO和DPQ都为等腰直角三角形,根据路程和速度,可得点Q在整个运动过程中所用的时间为PC PQ+,当C,P,Q三点共线时,t有最小值,根据矩形的判定和性质可以求出P和Q 的坐标以及最小时间.(3)用面积法CEG HEG HCG-S S S∆∆∆=,用含m的表达式求出CEGS∆,根据S∆CEG=S∆CEB可以求出G点坐标. 【详解】(1)直线l1:y=-x+5,令y=0,则x=5,故A(5,0).将点D(-3,8)代入l2:y=-4x+b,解得b=-4,则直线l2的解析式为y=-4x-4.∴点A 坐标为A (5,0),直线l 2的解析式为y =-4x-4.(2)如图所示,过P 点做y 轴平行线PQ ,做D 点做x 轴平行线DQ ,PQ 与DQ 相交于点Q ,可知DPQ为等腰直角三角形,DP=2QP .依题意有12PC t PC PQ =+=+ 当C,P,Q 三点共线时,t 有最小值,此时=8PC PQ +故点Q 在整个运功过程中所用的最少时间是8秒,此时点P 的坐标为(-1,6). (3)如图过G 做x 轴平行线,交直线CD 于点H ,过C 点做CJ ⊥HG .根据l 2的解析式,可得点H (3,22-),E (0,-4),C (-1,0) 根据l 1的解析式,可得点A (5,0),B (0,5) 则GH=32m +CEB 119E CO=91=222S B ∆=⋅⨯⨯ CEG HEG HCG 1113=HG EK HG CJ=HG EK CJ =2222∆∆∆-⨯⨯-⨯⨯⨯⨯-+=()2S m S S又S ∆CEG =S ∆CEB 所以39=m +2,解得12315,m m ==-故1315G G ,244-⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭2,2, 【点睛】本题考察一次函数的综合题、待定系数法、平行线的性质、等高模型、垂线段最短等性质,解题的关键是灵活运用所学的知识解决问题,学会用转化的思想思考问题,属于压轴题.23.为响应国家的号召,减少污染,某厂家生产出一种节能又环保的油电混合动力汽车,既可以用油做动力行驶,也可以用电做动力行驶.这种油电混合动力汽车从甲地行驶到乙地,若完全用油做动力行驶,费用为118元;若完全用电做动力行驶,费用为36元,已知汽车行驶中每千米用油的费用比用电的费用多1.6元.(1)求汽车行驶中每千米用电的费用和甲、乙两地之间的距离.(2)若汽车从甲地到乙地采用油电混合动力行驶,且所需费用不超过61元,则至少需要用电行驶多少千米?【答案】(1)汽车行驶中每千米用电的费用是0.3元,甲、乙两地之间的距离是121千米;(2)至少需要用电行驶81千米.【分析】(1)设汽车行驶中每千米用电的费用是x 元,则每千米用油的费用为()0.6x +元,根据题意,列出分式方程,并解方程即可;(2)先求出汽车行驶中每千米用油的费用,设汽车用电行驶ykm ,然后根据题意,列出一元一次不等式,即可求出结论.【详解】解:(1)设汽车行驶中每千米用电的费用是x 元,则每千米用油的费用为()0.6x +元, 列方程得108360.6x x=+,解得0.3x =,经检验0.3x =是原方程的解,则甲、乙两地之间的距离是360.3120÷=千米.答:汽车行驶中每千米用电的费用是0.3元,甲、乙两地之间的距离是360.3120÷=千米. (2)汽车行驶中每千米用油的费用为0.30.60.9+=元. 设汽车用电行驶ykm , 可得()0.30.912060y y +-≤, 解得80y ≥,答:至少需要用电行驶81千米. 【点睛】题的关键.24.如图,点C,F,B,E在同一条直线上,AC⊥CE,DF⊥CE,垂足分别为C,F,且AB=DE,CF=BE.求证:∠A=∠D.【答案】详见解析【分析】证明Rt△ACB≌Rt△DFE(HL)可得结论.【详解】证明:∵AC⊥CE,DF⊥CE,∴∠C=∠DFE=90°,∵CF=BE,∴CB=FE,∵AB=DE,∴Rt△ACB≌Rt△DFE(HL),∴∠A=∠D.【点睛】本题考查三角形全等的判定,关键在于记住判定条件.25.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,△ADC和△CEB全等吗?请说明理由;(2)聪明的小亮发现,当直线MN绕点C旋转到图1的位置时,可得DE=AD+BE,请你说明其中的理由;(3)小亮将直线MN绕点C旋转到图2的位置,发现DE、AD、BE之间存在着一个新的数量关系,请直接写出这一数量关系。
贵阳市八年级上册数学期末考试试卷
贵阳市八年级上册数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2018九上·内蒙古期末) 下列图形中,既是中心对称图形又是轴对称图形的是()A .B .C .D .2. (2分)下列各组线段中,能够组成直角三角形的一组是()A . 1,2,3B . 2,3,4C . 4,5,6D . 1,,3. (2分)已知p(x,y)在函数y=−的图象上,那么点P应在平面直角坐标系中的()A . 第一象限B . 第二象限C . 第三象限D . 第四象限4. (2分)如图,已知矩形纸片ABCD,点E是AB的中点,点G是BC上的一点,∠BEG>60°.现沿直线EG 将纸片折叠,使点B落在纸片上的点H处,连接AH,则与∠BEG相等的角的个数为()A . 4B . 3C . 2D . 15. (2分) (2015八下·灌阳期中) 已知一个平行四边形两邻边的长分别为4和7,那么它的周长为()A . 11B . 18C . 22D . 286. (2分)菱形的周长为8 cm,高为1 cm,则该菱形较大的内角的度数为()A . 160°B . 150°C . 135°D . 120°7. (2分)菱形,矩形,正方形都具有的性质是()A . 对角线相等且互相平分B . 对角线相等且互相垂直平分C . 对角线互相平分D . 四条边相等,四个角相等8. (2分)已知函数y=3x+1,当自变量x增加m时,相应函数值增加()A . 3m+1B . 3mC . mD . 3m-1二、填空题 (共8题;共8分)9. (1分) (2019八上·顺德月考) 点M(﹣1,y1),N(3,y2)在该函数y=﹣ x+1的图象上,则y1________ y2(填>、< 或=).10. (1分)如图,正六边形ABCDEF,P是BC边上一动点,过P作PM∥AB交AF于M,作PN∥CD交DE于N.则∠MPN=________.11. (1分)请写出一个图象经过第一、三象限的正比例函数的解析式________ .12. (1分) (2017七下·临川期末) 如图∠C=∠D=900 ,要使△ABC≌△BAD需要添加的一个条件是________.13. (1分) (2019七下·南京月考) 如图,直线a经过平移后得到直线b,若∠3=30°,则∠1+∠2=________°.14. (1分)(2017·微山模拟) 如图平行四边形ABCD中,∠ABD=30°,AB=4,AE⊥BD,CF⊥BD,且,E,F 恰好是BD的三等分点,又M、N分别是AB,CD的中点,那么四边形MENF的面积是________.15. (1分) (2020八下·重庆月考) 如图,在矩形ABCD中,AC,BD交于点O,M、N分别为BC、OC的中点.若BD=8,则MN的长为________.16. (1分)(2017·兰州模拟) 在平面直角坐标系中,正方形ABCD的位置如右图所示,点A的坐标为(1,0),点D的坐标为(0,2).延长CB交x轴于点A1 ,作正方形A1B1C1C;延长C1B1交x轴于点A2 ,作正方形A2B2C2C1 ,…按这样的规律进行下去,第2017个正方形的面积为________.三、解答题 (共8题;共77分)17. (8分) (2016八上·道真期末) 如图,在平面直角坐标系中,每个小正方形的边长为1,点A的坐标为(﹣3,2).请按要求分别完成下列各小题:(1)①把△ABC向下平移4个单位得到△A1B1C1,画出△A1B1C1;画出△ABC关于y轴对称的△A2B2C2;________②点A1的坐标是________;点C2的坐标是________;(2)求△ABC的面积.18. (5分)如图,在△ABC中,AD=BD,AD⊥BC于点D,∠C=55°,求∠BAC的度数.19. (7分)已知,关于x的一次函数y=(1-3a)x+2a-4的图象不经过第三象限.(1)当-2≤x≤5时,________≤y≤________.(用含a的代数式表示)(2)确定a的取值范围.20. (5分)如图,一高层住宅发生火灾,消防车立即赶到距大厦9米处(车尾到大厦墙面),升起云梯到火灾窗口,已知云梯长15米,云梯底部距地面2米,问:发生火灾的住户窗口距离地面多高?21. (15分)(2017·微山模拟) 雾霾天气已经成为人们普遍关注的话题,雾霾不仅仅影响人们的出行,还影响着人们的健康.在2017年2月周末休息期间,某校九年级一班综合实践小组的同学以“雾霾天气的主要成因”为主题,随机调查了太原市部分市民的观点,并对调查结果进行了整理,绘制了如下不完整的统计表及统计图,观察并回答下列问题:类别雾霾天气的主要成因百分比A工业污染45%B汽车尾气排放mC城中村燃煤问题15%D其他(绿化不足等)n(1)请你求出本次被调查市民的人数及m,n的值,并补全条形统计图;(2)若该市有800万人口,请你估计持有B,C两类看法的市民共有多少人?(3)小明同学在四个质地、大小、形状都完全相同的小球上标记A,B,C,D代表四个雾霾天气的主要成因中,放在一个不透明的盒子中,他先随机抽取一个小球,放回去,再随机抽取一个小球,请用画树状图或列表的方法,求出小颖同学刚好抽到B和D的概率.(用A,B,C,D表示各项目)22. (15分)(2018·泰安) 如图,在菱形ABCD中,AC与BD交于点O,E是BD上一点,EF//AB,∠EAB=∠EBA,过点B作DA的垂线,交DA的延长线于点G.(1)∠DEF和∠AEF是否相等?若相等,请证明;若不相等,请说明理由;(2)找出图中与ΔAGB相似的三角形,并证明;(3) BF的延长线交CD的延长线于点H,交AC于点M.求证:BM2=MF⋅MH.23. (10分)某苹果生产基地,用30名工人进行采摘或加工苹果,每名工人只能做其中一项工作.苹果的销售方式有两种:一种是可以直接出售;另一种是可以将采摘的苹果加工成罐头出售.直接出售每吨获利4000元;加工成罐头出售每吨获利10000元.采摘的工人每人可以采摘苹果0.4吨;加工罐头的工人每人可加工0.3吨.设有x名工人进行苹果采摘,全部售出后,总利润为y元.(1)求y与x的函数关系式.(2)如何分配工人才能获利最大?24. (12分)(2017·石景山模拟) 在平面直角坐标系xOy中,对“隔离直线”给出如下定义:点P(x,m)是图形G1上的任意一点,点Q(x,n)是图形G2上的任意一点,若存在直线l:kx+b(k≠0)满足m≤kx+b且n≥kx+b,则称直线l:y=kx+b(k≠0)是图形G1与G2的“隔离直线”.如图1,直线l:y=﹣x﹣4是函数y= (x<0)的图象与正方形OABC的一条“隔离直线”.(1)在直线y1=﹣2x,y2=3x+1,y3=﹣x+3中,是图1函数y= (x<0)的图象与正方形OABC的“隔离直线”的为________;请你再写出一条符合题意的不同的“隔离直线”的表达式:________;(2)如图2,第一象限的等腰直角三角形EDF的两腰分别与坐标轴平行,直角顶点D的坐标是(,1),⊙O的半径为2.是否存在△EDF与⊙O的“隔离直线”?若存在,求出此“隔离直线”的表达式;若不存在,请说明理由;(3)正方形A1B1C1D1的一边在y轴上,其它三边都在y轴的右侧,点M(1,t)是此正方形的中心.若存在直线y=2x+b是函数y=x2﹣2x﹣3(0≤x≤4)的图象与正方形A1B1C1D1的“隔离直线”,请直接写出t的取值范围.参考答案一、单选题 (共8题;共16分)1-1、2、答案:略3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共8题;共8分)9-1、10-1、11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共77分)17-1、17-2、18-1、19-1、19-2、20-1、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、24-1、24-2、24-3、。
2018-2019学年贵州省贵阳市八年级(上)期末数学试卷-普通用卷
2018-2019学年贵州省贵阳市八年级(上)期末数学试卷副标题题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.下列实数中是无理数的是()A. 237B. π C. √16 D. −232.在下列图形中,由∠1=∠2一定能得到AB∥CD的是()A. B.C. D.3.下列二次根式中,是最简二次根式的为()A. √12B. √8C. √10D. √504.下列描述不能确定具体位置的是()A. 贵阳横店影城1号厅6排7座B. 坐标(3,2)可以确定一个点的位置C. 贵阳市筑城广场北偏东40∘D. 位于北纬28∘,东经112∘的城市5.下列命题中真命题是()A. 若a2=b2,则a=bB. 4的平方根是±2C. 两个锐角之和一定是钝角D. 相等的两个角是对顶角6.某地连续统计了10天日最高气温,并绘制成如图所示的扇形统计图.这10天日最高气温的众数是()A. 32∘CB. 33∘CC. 34∘CD. 35∘C7.在同一平面直角坐标系中,直线y=2x+3与y=2x-5的位置关系是()A. 平行B. 相交C. 重合D. 垂直8.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x 两,每枚白银重y 两,根据题意得( )A. {(10y +x)−(8x +y)=1311x=9yB. {9x +13=11y 10y+x=8x+yC. {(8x +y)−(10y +x)=139x=11yD. {(10y +x)−(8x +y)=139x=11y9. 在精准扶贫中,某乡镇实施产业扶贫,帮助贫困户承包荒山种植猕猴桃.到了收获季节,已知猕猴桃销售量y (千克)与销售单价x (元/千克)之间的函数关系如图所示.则y 与x 的函数关系式为( )A. y =−10x −300B. y =10x +300C. y =−10x +300D. y =10x −30010. 如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形G 的边长是6cm ,则正方形A ,B ,C ,D ,E ,F ,G 的面积之和是( )A. 18cm 2 B. 36cm 2C. 72cm 2D. 108cm 2二、填空题(本大题共4小题,共16.0分)11. 比较大小:√6______3(填:“>”或“<”或“=”) 12. 用图象法解二元一次方程组{x −y +2=0kx−y+b=0小英所画图象如图所示,则方程组的解为______.13. 如图,△ABO 是关于y 轴对称的轴对称图形,点A 的坐标为(-2,3),则点B 的坐标为______.14. 如图,在△ABC 中,点D 是BC 边上的一点,∠B =50°,∠BAD =26°,将△ABD 沿AD折叠得到△AED ,AE 与BC 交于点F ,则∠AFC =______度.三、计算题(本大题共1小题,共10.0分)15.为传承中华文化,学习六艺技能,某中学组织初二年级学生到孔学堂研学旅行.已知大型客车每辆能坐60人,中型客车每辆能坐45人,现该校有初二年级学生375人.根据题目提供的信息解决下列问题:(1)这次研学旅行需要大、中型客车各几辆才能使每个学生上车都有座位,且每辆车正好坐满?(2)若大型客车租金为1500元/辆,中型客车租金为1200元/辆,请帮该校设计一种最划算的租车方案.四、解答题(本大题共6小题,共44.0分)16.(1)化简:√12−√24+(√5+√3)(√5−√3)√6(2)如图,数轴上点A和点B表示的数分别是1和√5.若点A是BC的中点.求点C所表示的数.17.已知:△ABC在平面直角坐标系中的位置如图所示.(1)画出△ABC关于y轴对称的图形△A1B1C1;(2)求△ABC的面积.18.如图,∠AOB=90°,OA=9cm,OB=3cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?19.读书可以遇见更好的自己,4月23日是世界读书日,某校为了解学生阅读情况,抽样调查了部分学生每周用于课外阅读的时间.数据收集:从全校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min)9060601504011013014690100758112014015981102010081整理分析数据:(1)补全下列表格中的统计量:平均数中位数众数92.15______ 81(2)按如下分段整理样本数据并补全表格:课外阅读时间x(min)0≤x<4040≤x<8080≤x<120120≤x<160等级D C B A人数2______ 8______得出结论:(3)用样本中的统计量估计该校学生每周用于课外阅读时间的等级情况,并说明理由.20.如图,AB∥CD,∠B=70°,∠BCE=20°,∠CEF=130°,请判断AB与EF的位置关系,并说明理由.21.在如图所示的平面直角坐标系中,已知一次函数y=x+3的图象与x轴交于点A,与y轴交于点B.(1)写出A点和B点的坐标;(2)在平面直角坐标系中画出一次函数=x+3的图象;(3)若C点的坐标为C(3,0),判断△ABC的形状,并说明理由.答案和解析1.【答案】B【解析】解:A、,是有理数,故此选项错误;B、π是无理数,故此选项正确;C、=4,是有理数,故此选项错误;D、-,是有理数,故此选项错误;故选:B.直接利用无理数的定义分析得出答案.此题主要考查了无理数的定义,正确把握无理数的定义是解题关键.2.【答案】A【解析】解:如下图,∵∠1=∠2,∴AB∥CD,故选:A.根据同位角相等两直线平行判断即可.此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.3.【答案】C【解析】解:A、=,被开方数含分母,不是最简二次根式;B、=2,被开方数含能开得尽方的因数,不是最简二次根式;C、是最简二次根式;D、=5,被开方数含能开得尽方的因数,不是最简二次根式.故选:C.判定一个二次根式是不是最简二次根式的方法,就是逐个检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.本题考查最简二次根式的定义.根据最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.4.【答案】C【解析】解:A.贵阳横店影城1号厅6排7座能确定具体位置;B.坐标(3,2)可以确定一个点的位置;C.贵阳市筑城广场北偏东40°不能确定具体位置;D.位于北纬28°,东经112°的城市能确定具体位置;故选:C.在数轴上,用一个数据就能确定一个点的位置;在平面直角坐标系中,要用两个数据才能表示一个点的位置;在空间内要用三个数据才能表示一个点的位置.本题考查了坐标确定位置,是数学在生活中应用,平面位置对应平面直角坐标系,空间位置对应空间直角坐标系.可以做到在生活中理解数学的意义.5.【答案】B【解析】解:A、若a2=b2,则a=b或a=-b,所以A选项错误;B、4的平方根是±2,所以B选项正确;C、两个锐角之和不一定是钝角,若30°与60°的和为直角;所以C选项错误;D、相等的两个角不一定为对顶角,所以D选项错误.故选:B.利用平方根的定义对A、B进行判断;利用反例对C进行判断;根据对顶角的定义对D进行判断.本题考查了命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.6.【答案】C【解析】解:由扇形统计图知,这10天日最高气温为34°的天数所占百分比最大,所以这10天日最高气温为34°的天数最多,所以这10天日最高气温的众数为34°,故选:C.由扇形统计图知,这10天日最高气温为34°的天数所占百分比最大,即最高气温为34°的天数最多,根据众数的定义可得答案.本题主要考查扇形统计图与众数,解题的关键是根据扇形统计图得出解题所需数据及众数的定义.7.【答案】A【解析】解:∵直线y=2x+3与y=2x-5的k值相等,∴直线y=2x+3与y=2x-5的位置关系是平行,故选:A.根据直线y=2x+3与y=2x-5中的k都等于2,于是得到结论.本题考查了两条直线相交或平行问题,知道两直线的k值相等时两直线平行是解题的关键.8.【答案】D【解析】解:设每枚黄金重x两,每枚白银重y两,由题意得:,故选:D.根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)-(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.9.【答案】C【解析】解:设y与x的函数关系式为y=kx+b,将点(10,200),(15,150)代入y=kx+b,得:,解得:,所以y与x的函数关系式为y=-10x+300.故选:C.根据函数图象可设y与x的函数关系式为y=kx+b,找出点的坐标,利用待定系数法求出y与x的函数关系式即可.本题考查了一次函数的应用,待定系数法求一次函数解析式,一次函数图象上点的坐标特征.解题的关键是:利用函数图象得出y与x的函数关系是一次函数的关系,从而利用待定系数法求解.10.【答案】D【解析】解:由图可得,A与B的面积的和是E的面积;C与D的面积的和是F的面积;而E,F的面积的和是G的面积.即A、B、C、D、E、F、G的面积之和为3个G的面积.∵G的面积是62=36cm2,∴A、B、C、D、E、F、G的面积之和为36×3=108cm2.故选:D.根据正方形的面积公式,运用勾股定理可以证明:正方形A,B,C,D的面积之和等于正方形E,F的面积之和,正方形E,F的面积之和等于最大正方形G的面积.本题主要考查了勾股定理,注意在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.11.【答案】<【解析】解:∵6<9,∴<3.故答案为:<.依据被开放数越大对应的算术平方根越大可估算出的大小,故此可求得问题的答案.本题主要考查的是比较实数的大小,熟练掌握相关知识是解题的关键.x=112.【答案】{y=3【解析】解:把A(1,m)代入x-y+2=0得1-m+2=0,解得m=3,所以A点坐标为(1,3),所以二元一次方程组的解为.故答案为.先利用直线x-y+2=0确定A点坐标,然后根据方程组的解就是两个相应的一次函数图象的交点坐标求解.本题考查了一次函数与二元一次方程(组):方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.13.【答案】(2,3)【解析】解:∵△ABO是关于y轴对称的轴对称图形,∴点A(-2,3)与点B关于y轴对称,∴点B坐标为(2,3),故答案为:(2,3).由△ABO 是关于y 轴对称的轴对称图形知点A (-2,3)与点B 关于y 轴对称,据此可得.本题主要考查关于坐标轴对称点的坐标,解题的关键是熟练掌握轴对称图形的性质和关于y 轴对称的两点的坐标特点.14.【答案】102【解析】解:∵将△ABD 沿AD 折叠得到△AED ,∴∠BAD=∠DAF=26°, ∴∠BAF=52°, ∵∠B+∠BAF+∠AFB=180°, ∴∠AFB=78°, ∴∠AFC=102°, 故答案为:102.由折叠的性质可得∠BAD=∠DAF=26°,根据三角形内角和定理可求出∠AFB=78°,即可得∠AFC 的度数. 本题考查了折叠的性质,三角形内角和定理,熟练运用折叠的性质是本题的关键.15.【答案】解:(1)设需要大型客车x 辆,中型客车y 辆,根据题意,得:60x +45y =375,当x =1时,y =7;当x =2时,y =173;当x =3时,y =133;当x =4时,y =3;当x =5时,y =53;当x =6时,y =13;∵要使每个学生上车都有座位,且每辆车正好坐满,∴有两种选择,方案一:需要大型客车1辆,中型客车7辆;方案二:需要大型客车4辆,中型客车3辆.(2)方案一:1500×1+1200×7=9900(元), 方案二:1500×4+1200×3=9600(元), ∵9900>9600,∴方案二更划算.【解析】(1)设需要大型客车x 辆,中型客车y 辆,根据学生总人数为375人列出关于x 、y 的二元一次方程,再利用x 、y 均为非负整数可得答案;(2)分别计算出每个方案中的总租金,从而得出答案.本题主要考查二元一次方程,解题的关键是理解题意,找到题目蕴含的相等关系,并据此列出方程.16.【答案】解:(1)原式=√126-√246+5-3 =√2-2+2=√2;(2)∵数轴上点A 和点B 表示的数分别是1和√5,∴OA =1,AB =OB -OA =√5-1,∵点A 是BC 的中点.∴CA =BA =√5-1,∴OC =CA -OA =√5-1-1=√5-2,∴点C 所表示的数为2-√5.【解析】(1)根据二次根式的除法法则和平方差公式计算;(2)先计算出AB 的长,再利用线段中点定义得到CA 的长,然后计算出OC 的长则可表示出点C 所表示的数.本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.也考查了数轴.17.【答案】解:(1)如图所示:△A 1B 1C 1,即为所求;(2)△ABC 的面积为:6-12×3×1-12×2×2-12×1×1=2. 【解析】(1)直接利用关于y 轴对称点的性质得出对应点位置进而得出答案;(2)直接利用△ABC 所在矩形面积减去周围三角形面积进而得出答案. 此题主要考查了轴对称变换,正确得出对应点位置是解题关键.18.【答案】解:∵小球滚动的速度与机器人行走的速度相等,运动时间相等, ∴BC =CA .设AC 为x ,则OC =9-x ,由勾股定理得:OB 2+OC 2=BC 2,又∵OA=9,OB=3,∴32+(9-x)2=x2,解方程得出x=5.∴机器人行走的路程BC是5cm.【解析】根据小球滚动的速度与机器人行走的速度相等,运动时间相等得出BC=CA.设AC为x,则OC=9-x,根据勾股定理即可得出结论.本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.19.【答案】90 4 6【解析】解:(1)将20个学生每周用于课外阅读的时间的数据按大小顺序排列后,可得中位数为=90,故答案为:90;(2)由题可得,在40≤x<80范围内的数据有4个;在120≤x<160范围内的数据有6个;故答案为:4,6;(3)估计该校学生每周用于课外阅读时间的等级为B,理由:由于平均数为92.7,中位数为90,众数为81,这三个统计量均在80≤x<120范围内,次范围内的等级为B等.(1)将一组数据按照从小到大(或从大到小)的顺序排列,如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.(2)依据样本中的数据,即可得到不同等级的人数;(3)依据平均数为92.7,中位数为90,众数为81,三个统计量均在80≤x<120范围内,可得结论.此题主要考查数据的统计和分析的知识.准确把握三数(平均数、中位数、众数)和理解样本和总体的关系是关键.20.【答案】解:AB∥EF,理由如下:∵AB∥CD,∴∠B=∠BCD,(两直线平行,内错角相等)∵∠B=70°,∴∠BCD=70°,(等量代换)∵∠BCE=20°,∴∠ECD=50°,∵CEF=130°,∴∠E+∠DCE=180°,∴EF∥CD,(同旁内角互补,两直线平行)∴AB∥EF.(平行于同一直线的两条直线互相平行)【解析】依据平行线的性质,即可得到∠BCD=70°,进而得出∠E+∠DCE=180°,进而得到EF∥CD,进而得到AB∥EF.本题考查平行线的性质和判定,解题的关键是熟练掌握平行线的判定和性质.21.【答案】解:(1)在y=x+3中,令x=0,则y=3;令y=0,则x=-3;∴A(-3,0),B(0,3);(2)一次函数=x+3的图象如图所示,(3)如图,依题意得AO=BO=CO=3,∴AB=BC=√32+32=3√2,AC=6,∵AB2+BC2=36,AC2=36,∴AB2+BC2=AC2,∴△ABC是等腰直角三角形.【解析】(1)依据一次函数y=x+3的图象与x轴交于点A,与y轴交于点B,即可得到A点和B点的坐标;(2)依据A点和B点的坐标,即可画出一次函数=x+3的图象;(3)依据勾股定理的逆定理,即可得出△ABC的形状.本题考查了一次函数的图象和性质、一次函数图象上点的坐标特征等知识点,能熟记一次函数的性质是解此题的关键.。
[试卷合集3套]贵阳市2018年八年级上学期数学期末复习检测试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,点C 的坐标为(3,4),CA y ⊥轴于点A ,D 是线段AO 上一点,且OD 3AD =,点B 从原点O 出发,沿x 轴正方向运动,CB 与直线13y x =交于E ,则CDE ∆的面积( )A .逐渐变大B .先变大后变小C .逐渐变小D .始终不变【答案】D【分析】根据已知条件得到OA=4,AC=3,求得AD=1,OD=3,设E 1,3m m ⎛⎫ ⎪⎝⎭,即可求得BC 直线解析式为123933-=---m my x m m,进而得到B 点坐标,再根据梯形和三角形的面积公式进行计算即可得到结论.【详解】∵点C 的坐标为(3,4),CA ⊥y 轴于点A , ∴OA=4,AC=3, ∵OD=3AD , ∴AD=1,OD=3,∵CB 与直线13y x =交于点E ,∴设E 1,3m m ⎛⎫ ⎪⎝⎭,设直线BC 的解析式为:y kx b =+ 将C(3,4)与E 1,3m m ⎛⎫ ⎪⎝⎭代入得:3413k b mk b m +=⎧⎪⎨+=⎪⎩,解得129333m k mm b m -⎧=⎪⎪-⎨⎪=-⎪-⎩ ∴直线BC 解析式为:123933-=---m m y x m m令y=0,则123=0933----m mx m m 解得912=-mx m∴9B 012,⎛⎫⎪-⎝⎭m mS △CDE =S 梯形AOBC -S △ACD -S △DOE -S △OBE=191119134313212222123⎛⎫⨯+⨯-⨯⨯-⨯-⨯⨯ ⎪--⎝⎭m m m m m m =92所以△CDE 的面积始终不变, 故选:D . 【点睛】本题考查了一次函数中的面积问题,解题的关键是求出BC 直线解析式,利用面积公式求出△CDE 的面积. 2.如图所示,△ABC 中AC 边上的高线是( )A .线段DAB .线段BAC .线段BD D .线段BC【答案】C【解析】从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高. 【详解】由图可知,ABC 中AC 边上的高线是BD.故选:C. 【点睛】掌握垂线的定义是解题的关键.3.以下列选项中的数为长度的三条线段中,不能组成直角三角形的是( ) A .8,15,17 B .4,6,8C .3,4,5D .6,8,10【答案】B【解析】试题解析:A. 22281517+=, 故是直角三角形,故错误; B. 222468+≠, 故不是直角三角形,正确; C. 222345+=, 故是直角三角形,故错误; D. 2226810+=, 故是直角三角形,故错误. 故选B.点睛:如果三角形中两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形. 4.已知14x x -=,则221x x+的值是( )A .18B .16C .14D .12【答案】A【分析】根据完全平方公式可得2211216x x x x -⨯⨯+=,然后变形可得答案. 【详解】∵14x x-= ∴2211216x x x x-⨯⨯+= ∴22118x x += 故选:A . 【点睛】此题主要考查了完全平方公式,关键是掌握完全平方公式:222()2a b a ab b ±=±+. 5.如图,△ABC 中,AB =AC ,∠A =36°,BD 是AC 边上的高,则∠DBC 的度数是( )A .18°B .24°C .30°D .36°【答案】A【解析】试题分析:先根据等腰三角形的性质求得∠C 的度数,再根据三角形的内角和定理求解即可. ∵AB =AC ,∠A =36° ∴∠C =72°∵BD 是AC 边上的高 ∴∠DBC =180°-90°-72°=18° 故选A.考点:等腰三角形的性质,三角形的内角和定理点评:三角形的内角和定理是初中数学的重点,贯穿于整个初中数学的学习,是中考中比较常见的知识点,一般难度不大,需熟练掌握.6.如图是中国古代建筑中的一个正六边形的窗户,则它的内角和为( )A .1080︒B .900︒C .720︒D .540︒【分析】根据多边形的内角和=180°(n-2),其中n为正多边形的边数,计算即可【详解】解:正六边形的内角和为:180°×(6-2)=720°故选C.【点睛】此题考查的是求正六边形的内角和,掌握多边形的内角和公式是解决此题的关键.7.下列图形中,不是轴对称图形的是()A.B.C.D.【答案】A【分析】根据轴对称图形概念进行解答即可.【详解】解:A、不是轴对称图形,符合题意;B、是轴对称图形,不合题意;C、是轴对称图形,不合题意;D、是轴对称图形,不合题意;故选:A.【点睛】本题考查了轴对称图形的概念,判断轴对称图形的关键是寻找对称轴;轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合, 这个图形叫做轴对称图形.8.通过统计甲、乙、丙、丁四名同学某学期的四次数学测试成绩,得到甲、乙、丙、丁三明同学四次数学测试成绩的方差分别为S甲2=17,S乙2=36,S丙2=14,丁同学四次数学测试成绩(单位:分).如下表:第一次第二次第三次第四次丁同学80 80 90 90则这四名同学四次数学测试成绩最稳定的是()A.甲B.乙C.丙D.丁【答案】C【分析】求得丁同学的方差后与前三个同学的方差比较,方差最小的成绩最稳定.【详解】丁同学的平均成绩为:14⨯(80+80+90+90)=85;方差为S丁214=[2×(80﹣85)2+2×(90﹣85)2]=25,所以四个人中丙的方差最小,成绩最稳定.故选C.本题考查了方差的意义及方差的计算公式,解题的关键是牢记方差的公式,难度不大. 9.如图,它由两块相同的直角梯形拼成,由此可以验证的算式为( )A .22()()a b a b a b -=+-B .222()2a b a ab b +=++C .222()2a b a ab b -=-+D .22(1)(1)a b -=+【答案】A【分析】根据图中边的关系,可求出两图的面积,而两图面积相等,从而推导出了平方差的公式. 【详解】如图,拼成的等腰梯形如下:上图阴影的面积s =a 2−b 2,下图等腰梯形的面积s =2(a +b )(a−b )÷2=(a +b )(a−b ), 两面积相等所以等式成立a 2−b 2=(a +b )(a−b ).这是平方差公式. 故选:A .【点睛】本题考查了平方差公式的几何背景,解决本题的关键是求出两图的面积,而两图面积相等,从而推导出了平方差的公式.10.如果0a b -<,且0ab <,那么点(),a b 在( ) A .第一象限 B .第二象限C .第三象限D .第四象限【答案】B【分析】根据0a b -<,且0ab <可确定出a 、b 的正负情况,再判断出点(),a b 的横坐标与纵坐标的正负性,然后根据各象限内点的坐标特征解答.【详解】解:∵0a b -<,且0ab <, ∴a 0,0b <> ∴点(),a b 在第二象限 故选:B 【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-). 二、填空题 11.若,则=_____.【答案】1.【解析】将m=2n 代入原式中进行计算即可. 【详解】解:由题意可得m=2n ,则原式=,故答案为:1. 【点睛】本题考查了分式的化简求值.12.一个等腰三角形的内角为80°,则它的一个底角为_____. 【答案】50°或80°【分析】分情况讨论,当80°是顶角时,底角为(18080)250︒-︒÷=︒;当80°是底角时,则一个底角就是80°.【详解】在等腰三角形中,若顶角是80°,则一个底角是(18080)250︒-︒÷=︒;若内角80°是底角时,则另一个底角就是80°,所以它的一个底角就是50°或80°, 故答案为:50°或80°. 【点睛】本题考查了等腰三角形的性质,分类讨论思想的应用,三角形内角和的定理,熟记等腰三角形的性质以及内角和定理是解题关键.13.计算02(3)(3)--⨯-=_______. 【答案】19【分析】先运用零次幂和负整数次幂化简,然后再计算即可. 【详解】解:0211=1=(3)(3)99-⨯-⨯-.故答案为:19.【点睛】本题主要考查了零次幂和负整数次幂,运用零次幂和负整数次幂对原式化简成为解答本题的关键.14.如图,C、D点在BE上,∠1=∠2,BD=EC,请补充一个条件:____________,使△ABC≌△FED;【答案】AC=DF(或∠A=∠F或∠B=∠E)【解析】∵BD=CE,∴BD-CD=CE-CD,∴BC=DE,①条件是AC=DF时,在△ABC和△FED中,12AC DFBC DE⎧⎪∠∠⎨⎪⎩===∴△ABC≌△FED(SAS);②当∠A=∠F时,12A FBC DE∠=∠⎧⎪∠∠⎨⎪⎩==∴△ABC≌△FED(AAS);③当∠B=∠E时,12BC DEB E∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC≌△FED(ASA)故答案为AC=DF(或∠A=∠F或∠B=∠E).15.如图,已知函数y1=3x+b和y2=ax﹣3的图象交于点P(﹣2,﹣5),则不等式3x+b>ax﹣3的解集为_____.【答案】x >﹣2【分析】根据两函数的交点坐标,结合图象即可确定出所求不等式的解集. 【详解】解:由题意及图象得: 不等式3x+b >ax ﹣3的解集为x >﹣2, 故答案为:x >﹣2 【点睛】本题考查了一次函数与一元一次不等式,利用了数形结合的思想,灵活运用数形结合思想是解本题的关键. 16.如图,己知30MON ∠=︒,点1A ,2A ,3A ,…在射线ON 上,点1B ,2B ,3B ,…在射线OM 上,112A B A ∆,223A B A ∆,334A B A ∆,…均为等边三角形,若12OA =,则556A B A ∆的边长为________.【答案】32【分析】根据底边三角形的性质求出130∠=︒以及平行线的性质得出112233////A B A B A B ,以及22122A B B A =,得出332212244A B A B B A ===,441288A B B A ==,551216A B B A =⋯进而得出答案.【详解】解:△112A B A 是等边三角形,1121A B A B ∴=,341260∠=∠=∠=︒,2120∴∠=︒, 30MON ∠=︒,11801203030∴∠=︒-︒-︒=︒,又360∠=︒,5180603090∴∠=︒-︒-︒=︒,130MON ∠=∠=︒,1112OA A B ∴==,212A B ∴=,△223A B A 、△334A B A 是等边三角形,111060∴∠=∠=︒,1360∠=︒, 41260∠=∠=︒,112233////A B A B A B ∴,1223//B A B A ,16730∴∠=∠=∠=︒,5890∠=∠=︒,22122242A B B A =∴==,33232B A B A =, 33312428A B B A ∴===, 同理可得:444128216A B B A ===,⋯∴△1n n n A B A +的边长为2n , ∴△556A B A 的边长为5232=.故答案为:32. 【点睛】本题考查了等边三角形的性质以及30°直角三角形的性质,根据已知得出33124A B B A =,44128A B B A =,551216A B B A =进而发现规律是解题关键.17.甲、乙两个篮球队队员身高的平均数都为2.07米,方差分别是S 甲2、S 乙2,且S 甲2>S 乙2,则队员身高比较整齐的球队是_____. 【答案】乙队【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定. 【详解】∵S 甲2>S 乙2,∴队员身高比较整齐的球队是乙, 故答案为:乙队. 【点睛】此题考查方差的意义.解题关键在于掌握方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.三、解答题18.如图,在四边形ABCD中,对角线AC,BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形;(2)若∠ADF:∠FDC=3:2,DF⊥AC,求∠BDF的度数.【答案】(1)见解析;(2)∠BDF=18°.【分析】(1)先证明四边形ABCD是平行四边形,求出∠ABC=90°,然后根据矩形的判定定理,即可得到结论;(2)求出∠FDC的度数,根据三角形的内角和,求出∠DCO,然后得到OD=OC,得到∠CDO,即可求出∠BDF的度数.【详解】(1)证明:∵AO=CO,BO=DO,∴四边形ABCD是平行四边形,∴∠ABC=∠ADC,∵∠ABC+∠ADC=180°,∴∠ABC=∠ADC=90°,∴四边形ABCD是矩形;(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,∴∠FDC=36°,∵DF⊥AC,∴∠DCO=90°﹣36°=54°,∵四边形ABCD是矩形,∴CO=OD,∴∠ODC=∠DCO=54°,∴∠BDF=∠ODC﹣∠FDC=18°.【点睛】本题考查了平行四边形的判定和性质,矩形的判定和性质,能灵活运用定理进行推理是解题的关键.注意:矩形的对角线相等,有一个角是直角的平行四边形是矩形.19.如图,∠AFD=∠1,AC∥DE,(1)试说明:DF∥BC;(2)若∠1=68°,DF平分∠ADE,求∠B的度数.【答案】(1)证明见解析;(2)68°.【解析】试题分析:(1)由AC ∥DE 得∠1=∠C ,而∠AFD=∠1,故∠AFD=∠C ,故可得证;(2)由(1)得∠EDF=68°,又DF 平分∠ADE ,所以∠EDA=68°,结合DF ∥BC 即可求出结果.试题解析:(1)∵AC ∥DE ,∴∠1=∠C ,∵∠AFD=∠1,∴∠AFD=∠C ,∴DF ∥BC ;(2)∵DF ∥BC ,∴∠EDF=∠1=68°,∵DF 平分∠ADE ,∴∠EDA=∠EDF=68°,∵∠ADE=∠1+∠B∴∠B=∠ADE-∠1=68°+68°-68°=68°.20.如图①是一个长为2a ,宽为2b 的长方形,沿图中的虚线剪开均分成四个小长方形,然后按图②形状拼成一个正方形.(1)若13a =,3b =.求图②中阴影部分面积;(2)观察图②,写出()2a b +,()2a b -,ab 三个代数式之间的等量关系.(简要写出推理过程)(3)根据(2)题的等量关系,完成下列问题:若9a b +=,14ab =,求211a b ⎛⎫- ⎪⎝⎭的值.【答案】(1)100S =阴;(2)()()224a b a b ab +=-+或()()224a b ab a b +-=-,过程见解析;(3)25196【分析】(1)根据图形可知,阴影正方形的边长为小长方形的长与宽的差,写出即可求解; (2)根据完全平方公式的变形即可得到关系式;(3)根据1114b a a b --=,故求出()2222111414b a b a a b --⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭,代入(2)中的公式即可求解. 【详解】解:(1)∵阴影正方形的边长为小长方形的长与宽的差,即阴影正方形的边长为13-3=10∴100S =阴;(2)结论:()()224a b a b ab +=-+ 或()()224a b ab a b +-=-∵ ()2222a b a ab b +=++,()2222a b a ab b -=-+ ∴()222224242a b ab a ab b ab a ab b -+=-++=++ ∴()()224a b a b ab +=-+或()()224a b ab a b +-=-; (3) ∵11b a a b ab--=,14ab = ∴1114b a a b --= ∴()2222111414b a b a a b --⎛⎫⎛⎫-== ⎪ ⎪⎝⎭⎝⎭ 由(2)可知()()224b a b a ab -=+- ∴()()222224111414196b a b a ab b a a b -+--⎛⎫⎛⎫-=== ⎪ ⎪⎝⎭⎝⎭∵9a b +=,14ab = ∴()222411941425196196196b a ab a b +--⨯⎛⎫-=== ⎪⎝⎭. 【点睛】本题考查了完全平方公式的几何背景,以及两个公式之间的关系,从整体与局部两种情况分析并写出面积的表达式是解题的关键.21.综合与探究[问题]如图1,在Rt ABC ∆中,90,ACB AC BC ∠==,过点C 作直线l 平行于,90AB EDF ∠=,点D 在直线l 上移动,角的一边DE 始终经过点B ,另一边DF 与AC 交于点P ,研究DP 和DB 的数量关系.[探究发现](1)如图2,某数学学习小组运用“从特殊到一般”的数学思想,发现当点D 移动到使点P 与点C 重合时,很容易就可以得到,DP DB =请写出证明过程;[数学思考](2)如图3,若点P 是AC 上的任意一点(不含端点A C 、),受(1)的启发,另一个学习小组过点D ,DG CD ⊥交BC 于点C ,就可以证明DP DB =,请完成证明过程;[拓展引申](3)若点P 是CA 延长线上的任意一点,在图(4)中补充完整图形,并判断结论是否仍然成立.【答案】 [探究发现](1)见解析; [数学思考](2)见解析;[拓展引申](3)补充完整图形见解析;结论仍然成立.【分析】(1)根据等腰三角形性质和平行线性质可证45DCB DBC ∠=∠=︒;(2)在CDP ∆和GDB ∆中,证CDP GDB DC DG DCP DGB ∠=∠⎧⎪=⎨⎪∠=∠⎩,得()CDP GDB ASA ∆∆≌,可得; (3)根据题意画图,与(2)同理可得.【详解】[探究发现]()190,ACB AC BC ∠=︒=,45CAB CBA ∴∠=∠=︒//CD AB ,45CBA DCB ∴∠=∠=︒,且BD CD ⊥45DCB DBC ∴∠=∠=︒∴DB DC =.即.DP DB =[数学思考]()2,45DG CD DCB ⊥∠=︒45DCG DGC ∴∠=∠=︒.,135DC DG DCP DGB ∴=∠=∠=︒;90CDG BDP ∠=∠=︒在CDP ∆和GDB ∆中,CDP GDB DC DGDCP DGB ∠=∠⎧⎪=⎨⎪∠=∠⎩()CDP GDB ASA ∴∆∆≌DP DB ∴=.[拓展引申]()3如图,作DG CD ⊥,与(2)同理,可证()DCB GDP ASA ∆∆≌,得DP DB =.所以结论仍然成立.【点睛】考核知识点:等腰三角形判定和性质.运用全等三角形判定和性质解决问题是关键.22.如图,在△ABC 中,AB =AC ,点D 在△ABC 内,BD =BC ,∠DBC =60°,点E 在△ABC 外,∠BCE =150°,∠ABE=60°.(1)求∠ADB 的度数 .(2)判断△ABE 的形状并证明 .(3)连结DE,若DE⊥BD,DE=6,求AD的长【答案】(1)150°;(2)△ABE是等边三角形,理由详见解析;(1)1.【分析】(1)首先证明△DBC是等边三角形,推出∠BDC=60°,DB=DC,再证明△ADB≌△ADC,推出∠ADB =∠ADC即可解决问题;(2)利用ASA证明△ABD≌△EBC得到AB=BE,结合∠ABE=60°可得△ABE是等边三角形;(1)首先证明△DEC是含有10度角的直角三角形,求出EC的长,利用全等三角形的性质即可解决问题.【详解】解:(1)∵BD=BC,∠DBC=60°,∴△DBC是等边三角形,∴DB=DC,∠BDC=60°,∵AB=AC,AD=AD,∴△ADB≌△ADC(SSS),∴∠ADB=∠ADC,∴∠ADB=12(160°−60°)=150°;(2)△ABE是等边三角形.证明:∵∠ABE=∠DBC=60°,∴∠ABD=∠CBE,∵∠ADB=∠BCE=150°,BD=BC,∴△ABD≌△EBC(ASA),∴AB=BE,∵∠ABE=60°,∴△ABE是等边三角形;(1)连接DE.∵∠BCE=150°,∠DCB=60°,∴∠DCE=90°,∵∠EDB=90°,∠BDC=60°,∴∠EDC=10°,∴EC=12DE=1,∵△ABD≌△EBC,∴AD=EC=1.【点睛】本题考查全等三角形的判定和性质、等边三角形的判定和性质、10度角的直角三角形的性质等知识,解题的关键是熟练掌握全等三角形的判定和性质,属于中考常考题型.23.化简(1)2121 11x xx x++⎛⎫-⋅⎪+⎝⎭.(2)1193332xx x x-⎛⎫+⋅⎪-+⎝⎭.【答案】(1)x+1;(2)33x-+.【分析】(1)先算括号内的分式的减法,再算乘法,因式分解后约分可以解答本题;(2)先算括号内的分式的加法,再算乘法,因式分解后约分可以解答本题.【详解】解:(1)2121 11x xx x++⎛⎫-⋅⎪+⎝⎭=2 11(1)1x xx x +-+⋅+=1 1x xx+⋅=x+1;(2)1193332x x x x-⎛⎫+⋅⎪-+⎝⎭=333(3) (3)(3)2x x x x x x ++--⋅+-=2332 xx x-⋅+=33x-+.【点睛】本题考查了分式的四则混合运算,掌握运算法则和运算顺序是关键.24.如图1,已知直线y=2x+2与y轴、x轴分别交于A、B两点,以B为直角顶点在第二象限作等腰Rt△ABC .(1)求点C的坐标,并求出直线AC的关系式.(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于M,P(52,k)是线段BC上一点,在线段BM上是否存在一点N,使△BPN的面积等于△BCM面积的14?若存在,请求出点N的坐标;若不存在,请说明理由.【答案】(1)C(﹣3,1),直线AC:y=13x+2;(2)证明见解析;(3)N(﹣83,0).【分析】(1)作CQ⊥x轴,垂足为Q,根据条件证明△ABO≌△BCQ,从而求出CQ=OB=1,可得C(﹣3,1),用待定系数法可求直线AC的解析式y=13x+2;(2)作CH⊥x轴于H,DF⊥x轴于F,DG⊥y轴于G,证明△BCH≌△BDF,△BOE≌△DGE,可得BE=DE;(3)先求出直线BC的解析式,从而确定点P的坐标,假设存在点N使△BPN的面积等于△BCM面积的14,然后可求出BN的长,比较BM,BN的大小,判断点N是否在线段BM上即可.【详解】解:(1)如图1,作CQ⊥x轴,垂足为Q,∴∠OBA+∠OAB=90°,∠OBA+∠QBC=90°,∴∠OAB=∠QBC,又∵AB=BC,∠AOB=∠Q=90°,∴△ABO≌△BCQ,∵BQ=AO=2,OQ=BQ+BO=3,CQ=OB=1,∴C(﹣3,1),由A(0,2),C(﹣3,1)可知,直线AC:y=13x+2;(2)如图2,作CH⊥x轴于H,DF⊥x轴于F,DG⊥y轴于G,∵AC=AD,AB⊥CB,∵BC=BD,∴△BCH≌△BDF,∴BF=BH=2,∴OF=OB=1,∵DG=OB ,∴△BOE ≌△DGE ,∴BE=DE ;(3)如图3,直线BC :y=﹣12x ﹣12,P (52-,k )是线段BC 上一点, ∴P (﹣52,34),由y=13x+2知M (﹣6,0), ∴BM=5,则S △BCM =52, 则12BN·31=44×52, ∴BN=53,ON=83, ∴BN <BM ,∴点N 在线段BM 上,∴N (﹣83,0).考点:1.等腰直角三角形的性质;2.全等三角形的判定与性质;3.待定系数法求解析式. 25.分解因式:22363ax axy ay -+【答案】()23-a x y【分析】先提取公因式,然后在利用公式法分解因式即可.【详解】原式()2232a x xy y =-+()23a x y =-【点睛】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.已知 35x <<,则化简 221(5)x x 的结果是( ). A .4B .6-2xC .-4D .2x-6 【答案】A【分析】根据绝对值的性质以及二次根式的性质即可求出答案.【详解】解:因为35x <<,所以10x -<,50x ->,则221(5)xx 15x x 15x x4=,故选:A .【点睛】本题考查二次根式,解题的关键是熟练运用绝对值的性质以及二次根式的性质. 2.下列四个图案中,不是轴对称图案的是( )A .B .C .D .【答案】B【分析】根据轴对称图形的定义逐项判断即得答案.【详解】解:A 、是轴对称图案,故本选项不符合题意;B 、不是轴对称图案,故本选项符合题意;C 、是轴对称图案,故本选项不符合题意;D 、是轴对称图案,故本选项不符合题意.故选:B .【点睛】本题考查了轴对称图形的定义,属于应知应会题型,熟知概念是关键.3.为了解我区八年级学生的身高情况,教育局抽查了1000名学生的身高进行了统计分析所抽查的1000名学生的身高是这个问题的()A.总体B.个体C.样本D.样本容量【答案】C【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.根据概念进行判断即可.【详解】解:了解我区八年级学生的身高情况,抽查了1000名学生的身高进行统计分析.所抽查的1000名学生的身高是这个问题的样本,故选:C.【点睛】本题考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不带单位.4x必须满足的条件是()A.x≤2B.x<2C.x≤-2D.x<-2【答案】A,∴2-x≥0,∴x≤2.故选A.5.下列句子中,不是命题的是()A.三角形的内角和等于180度B.对顶角相等C.过一点作已知直线的垂线D.两点确定一条直线【答案】C【分析】判断一件事情的句子叫做命题,根据定义即可判断.【详解】解:C选项不能进行判断,所以其不是命题.故选C【点睛】本题考查了命题,判断命题关键掌握两点:①能够进行判断;②句子一般是陈述句.6.如果一个多边形的每个内角的度数都是108°,那么这个多边形的边数是()A.3 B.4 C.5 D.6【答案】C【分析】首先计算出多边形的外角的度数,再根据外角和÷外角度数=边数可得答案.【详解】解:∵多边形的每个内角都是108°,∴每个外角是180°﹣108°=72°,∴这个多边形的边数是360°÷72°=5,∴这个多边形是五边形,故选C.【点睛】此题主要考查了多边形的外角与内角,关键是掌握多边形的外角与它相邻的内角互补.7.如图,已知点A 和直线MN ,过点A 用尺规作图画出直线MN 的垂线,下列画法中错误的是( ) A . B .C .D .【答案】A【分析】根据经过直线外一点作已知直线的方法即可判断.【详解】解:已知点A 和直线MN ,过点A 用尺规作图画出直线MN 的垂线,画法正确的是B 、C 、D 选项,不符合题意.A 选项错误,符合题意;故选:A .【点睛】本题考查了作图-基本作图,解决本题的关键是掌握经过一点作已知直线的垂线的方法.8.如图,在下列四组条件中,不能判断ABC DEF △≌△的是( )A .AB DE BC EF AC DF ===,,B .AB DE B E BC EF =∠=∠=,,C .AB DE AC DF B E ==∠=∠,,D .BE BC EF C F ∠=∠=∠=∠,,【答案】C【分析】根据全等三角形的判定定理逐一判断即可.【详解】解:A . 若AB DE BC EF AC DF ===,,,利用SSS 可证ABC DEF △≌△,故本选项不符合题意;B . 若AB DE B E BC EF =∠=∠=,,,利用SAS 可证ABC DEF △≌△,故本选项不符合题意; C . 若AB DE AC DF B E ==∠=∠,,,两边及其一边的对角对应相等不能判定两个三角形全等,故本选项符合题意;D . 若BE BC EF C F ∠=∠=∠=∠,,,利用ASA 可证ABC DEF △≌△,故本选项不符合题意. 故选C .【点睛】此题考查的是判定全等三角形所需的条件,掌握全等三角形的各个判定定理是解决此题的关键. 9.若分式21x x --的值为零,则x 的值为( ) A .2-B .2±C .2D .2 【答案】B【分析】直接利用分式的值为零则分子为零,分母不为零进而得出答案. 【详解】解:∵分式21x x --的值为0,∴|x|-2=0,且x-1≠0,解得:x=2±.故选:B .【点睛】本题考查分式值为零的条件,解题关键是熟练掌握分式值为零的条件.10.一个正数的两个平方根分别是2a-1与-a+2,则a 的值为( )A .1B .-1C .2D .-2 【答案】B【分析】根据一个正数的两个平方根互为相反数得到关于a 的一元一次方程,求解即可.【详解】解:根据题意可得:()2120a a -+-+=,解得1a =-,故选:B .【点睛】本题考查了平方根的概念,正确理解一个正数的两个平方根的关系,求得a 的值是关键.二、填空题11.要使分式22x x -有意义,则x 的取值范围是_______________. 【答案】2x ≠【解析】根据分式有意义的条件,则:20.x -≠解得: 2.x ≠故答案为 2.x ≠【点睛】分式有意义的条件:分母不为零.12.方程233x x=-的解是 . 【答案】x=1.【分析】根据解分式方程的步骤解答即可.【详解】去分母得:2x=3x ﹣1,解得:x=1,经检验x=1是分式方程的解,故答案为x=1.【点睛】本题主要考查了解分式方程的步骤,牢牢掌握其步骤就解答此类问题的关键.13m =__________.【答案】1m +1=2,然后解方程即可.=∴m +1=2,∴m =1.故答案为1.【点睛】本题考查了同类二次根式:几个二次根式化为最简二次根式后,若被开方数相同,那么这几个二次根式叫同类二次根式.14.因式分解24ax a -= .【答案】(2)(2)a x x +-.【详解】试题分析:原式=2(4)(2)(2)a x a x x -=+-.故答案为(2)(2)a x x +-.考点:提公因式法与公式法的综合运用.15.如图,把△ABC 沿EF 对折,折叠后的图形如图所示.若∠A =60°,∠1=96°,则∠2的度数为_____.【答案】24°.【分析】首先根据三角形内角和定理可得∠AEF+∠AFE =120°,再根据邻补角的性质可得∠FEB+∠EFC =360°﹣120°=240°,再根据由折叠可得:∠B ′EF+∠EFC ′=∠FEB+∠EFC =240°,然后计算出∠1+∠2的度数,进而得到答案.【详解】解:∵∠A =60°,∴∠AEF+∠AFE =180°﹣60°=120°.∴∠FEB+∠EFC =360°﹣120°=240°.∵由折叠可得:∠B ′EF+∠EFC ′=∠FEB+∠EFC =240°.∴∠1+∠2=240°﹣120°=120°.∵∠1=96°,∴∠2=120°﹣96°=24°.故答案为:24°.【点睛】考核知识点:折叠性质.理解折叠性质是关键.16.若关于x 和y 的二元一次方程组22231x y x y m +=⎧⎨+=+⎩,满足0x y +>,那么m 的取值范围是_____. 【答案】m >−1【分析】两方程相加可得x +y =m +1,根据题意得出关于m 的不等式,解之可得.【详解】解:22231x y x y m +=⎧⎨+=+⎩①②, ①+②得:3x +3y =3m +3,则x +y =m +1,∵0x y +>,∴m +1>0,解得:m >−1,故答案为:m >−1.【点睛】本题考查的是解二元一次方程组以及解一元一次不等式,整体求出x +y =m +1是解题的关键. 17.等腰三角形的两边长分别为2和4,则其周长为_____.【答案】10【分析】根据等腰三角形的性质可分两种情况讨论:①当2为腰时②当4为腰时;再根据三角形的三边关系确定是否能构成三角形,再计算三角形的周长,即可完成.【详解】①当2为腰时,另两边为2、4, 2+2=4,不能构成三角形,舍去;②当4为腰时,另两边为2、4, 2+4>4,能构成三角形,此时三角形的周长为4+2+4=10故答案为10【点睛】本题主要考查等腰三角形的性质,还涉及了三角形三边的关系,熟练掌握以上知识点是解题关键.三、解答题18.如图,在ABC ∆中,D 是BC 边上的一点,AB DB =,BE 平分ABC ∠,交AC 边于点E ,连接DE .(1)求证:ABE DBE ∆≅∆;(2)若100A ∠=︒,50C ∠=︒,求AEB ∠的度数.【答案】 (1)见解析;(2)65︒【分析】(1)由角平分线定义得出ABE DBE ∠∠=,由SAS 证明ABE DBE ∆≅∆即可;(2)由三角形内角和定理得出30ABC ∠=︒,由角平分线定义得出1152ABE DBE ABC ∠∠∠︒===,在ABE ∆中,由三角形内角和定理即可得出答案.【详解】(1)证明:BE 平分ABC ∠,∴ABE DBE ∠∠=,在ABE ∆和DBE ∆中,AB DB ABE DBE BE BE =⎧⎪∠=∠⎨⎪=⎩,∴()ABE DBE SAS ∆≅∆;(2)100A ∠=︒,50C ∠=︒,∴30ABC ∠=︒,BE 平分ABC ∠, ∴1152ABE DBE ABC ∠∠∠︒===, 在ABE ∆中,1801801001565AEB A ABE ∠=︒∠∠=︒︒︒=︒----.【点睛】本题考查了全等三角形的判定与性质、角平分线的定义、三角形内角和定理;熟练掌握三角形内角和定理和角平分线定义,证明三角形全等是解题的关键.19.某商场花9万元从厂家购买A 型和B 型两种型号的电视机共50台,其中A 型电视机的进价为每台1500元,B 型电视机的进价为每台2500元.(1)求该商场购买A 型和B 型电视机各多少台?(2)若商场A 型电视机的售价为每台1700元,B 型电视机的售价为每台2800元,不考虑其他因素,那么销售完这50台电视机该商场可获利多少元?【答案】(1)该商场购买A 型电视机35台,B 型电视机15台;(2)销售完这50台电视机该商场可获利11500元.【分析】(1)根据A 型、B 型两种型号的电视机共50台,共用9万元列出方程组解答即可;(2)算出各自每台的利润乘台数得出各自的利润,再相加即可.【详解】解:(1)设该商场购买A 型电视机x 台,B 型电视机y 台,由题意得501500250090000x y x y +=⎧⎨+=⎩, 解得:3515x y =⎧⎨=⎩答:该商场购买A 型电视机35台,B 型电视机15台.(2)35×(1700﹣1500)+15×(2800﹣2500)=7000+4500=11500(元)答:销售完这50台电视机该商场可获利11500元.【点睛】本题考查二元一次方程组的应用,根据总台数和总价钱得出相应的等量关系是解题的关键.20.如图,在平面直角坐标系中,ABC ∆的三个顶点坐标分别为11A (,),4(3)B ,,42C (,).(1)在图中画出ABC ∆关于x 轴对称的111A B C ∆;(2)通过平移,使1C 移动到原点O 的位置,画出平移后的222A B C ∆.(3)在ABC ∆中有一点P m n (,),则经过以上两次变换后点P 的对应点2P 的坐标为 .【答案】(1)图见解析;(2)图见解析;(3)()4,2m n --+【分析】(1)先分别找到A 、B 、C 关于x 轴的对称点111A B C 、、,然后连接11A B 、11B C 、11A C 即可; (2)先判断1C 移动到原点O 的位置时的平移规律,然后分别将11A B 、、1C 按此规律平移,得到22A B 、、2C ,连接22A B 、22B C 、22A C 即可;(3)根据关于x 轴对称的两点坐标关系:横坐标相同,纵坐标互为相反数即可得到1P ,然后根据(2)中的平移规律即可得到2P 的坐标.【详解】解:(1)先分别找到A 、B 、C 关于x 轴的对称点111A B C 、、,然后连接11A B 、11B C 、11A C ,如下图所示:111A B C ∆即为所求(2)∵42C (,)∴()142C ,-∴()142C ,-到点O (0,0)的平移规律为:先向左平移4个单位,再向上平移2个单位分别将11A B 、、1C 按此规律平移,得到22A B 、、2C ,连接22A B 、22B C 、22A C ,如图所示,222A B C ∆即为所求;(3)由(1)可知,()P m n ,经过第一次变化后为()1,P m n -然后根据(2)的平移规律,经过第二次变化后为()24,2P m n --+故答案为:()4,2m n --+.【点睛】此题考查的是画已知图形关于x 轴对称的图形、平移后的图形、点的对称规律和平移规律,掌握关于x 轴对称图形画法、平移后的图形画法、关于x 轴对称两点坐标规律和坐标的平移规律是解决此题的关键. 21.先阅读下列材料:我们已经学过将一个多项式分解因式的方法有提公因式法和运用公式法,其实分解因式的方法还有分组分解法、拆项法、十字相乘法等等.(1)分组分解法:将一个多项式适当分组后,可提公因式或运用公式继续分解的方法.如:ax+by+bx+ay =(ax+bx)+(ay+by)=x(a+b)+y(a+b)=(a+b)(x+y)1xy+y 1﹣1+x 1=x 1+1xy+y 1﹣1=(x+y)1﹣1=(x+y+1)(x+y ﹣1)(1)拆项法:将一个多项式的某一项拆成两项后,可提公因式或运用公式继续分解的方法.如: x 1+1x ﹣3=x 1+1x+1﹣4=(x+1)1﹣11=(x+1+1)(x+1﹣1)=(x+3)(x ﹣1)请你仿照以上方法,探索并解决下列问题:(1)分解因式:a 1﹣b 1+a ﹣b ;(1)分解因式:x 1﹣6x ﹣7;(3)分解因式:a 1+4ab ﹣5b 1.【答案】(1)()()1a b a b -++;(1)()()17+-x x ;(3)()()5a b a b +-.【解析】试题分析:(1)仿照例(1)将前两项和后两项分别分作一组,然后前两项利用平方差公式分解,然后提出公因式(a-b)即可;(1)仿照例(1)将-7拆成9-16,然后前三项利用完全平方公式分解后,再用平方差公式分解即可;(3)仿照例(1)将-5b 1拆成4b 1-9b 1,然后前三项利用完全平方公式分解后,再用平方差公式分解即可.试题解析:解:(1)22a b a b -+-=()()()a b a b a b +-+-=()()1a b a b -++;(1)原式=22223337x x -⨯⨯+--=()2316x --=()()3434x x -+--=()()17x x +-; (3)原式=()()222222225a a b b b b +⨯⨯+--=()2229a b b +-=()()2323a b b a b b +++-=()()5a b a b +-. 点睛:本题考查了因式分解的综合应用,熟悉因式分解的方法和读懂例题是解决此题的关键. 22.如图,在ABC ∆中,AB AC =,点D 是BC 边上一点,EF 垂直平分CD ,交AC 于点E ,交BC 于点F ,连结DE ,求证://DE AB .。
(汇总3份试卷)2018年贵阳市某达标中学八年级上学期数学期末质量检测试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.以下列各组长度的线段为边,其中a>3,能构成三角形的是( )A.2a+7,a+3,a+4 B.5a²,6 a²,10 a²C.3a,4a,a D.a-1,a-2,3a-3【答案】B【分析】根据三角形的三边关系和a的取值范围逐一判断即可.【详解】解:A.(a+3)+(a+4)=2a+7,不能构成三角形,故本选项不符合题意;B.5a²+6a²>10a²,能构成三角形,故本选项符合题意;C.3a+a =4a,不能构成三角形,故本选项不符合题意;D.(a-1)+(a-2)=2a-3<2a-3+a=3a-3,不能构成三角形,故本选项不符合题意.故选B.【点睛】此题考查的是判断三条线段是否能构成三角形,掌握三角形的三边关系是解决此题的关键.2.若(x+4)(x﹣2)=x2+ax+b,则ab的积为()A.﹣10 B.﹣16 C.10 D.﹣6【答案】B【分析】首先利用多项式乘以多项式计算(x+4)(x﹣2),然后可得a、b的值,进而可得答案.【详解】(x+4)(x﹣2)=x2﹣2x+4x﹣8=x2+2x﹣8,∴a=2,b=﹣8,∴ab=﹣1.故选:B.【点睛】本题考查了多项式乘以多项式,关键是掌握多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.3.如图,D为等腰Rt△ABC的斜边AB的中点,E为BC边上一点,连接ED并延长交CA的延长线于点F,过D作DH⊥EF交AC于G,交BC的延长线于H,则以下结论:①DE=DG;②BE=CG;③DF=DH;④BH =CF.其中正确的是()A.②③B.③④C.①④D.①②③④【答案】D【分析】连接CD ,欲证线段相等,就证它们所在的三角形全等,即证明,DBE DCG DCH DAF ∆≅∆∆≅∆即可.【详解】如图,连接CD∵△ABC 是等腰直角三角形,CD 是中线∴,45BD DC B DCA =∠=∠=︒又∵90BDC EDH ∠=∠=︒,即BDE EDC EDC CDH ∠+∠=∠+∠BDE CDH ∴∠=∠()DBE DCG ASA ∴∆≅∆,DE DG BE CG ∴==,则①②正确同理可证:DCH DAF ∆≅∆,DF DH AF CH ∴==,则③正确,BC AC CH AF ==BH CF ∴=,则④正确综上,正确的有①②③④故选:D .【点睛】本题考查了等腰三角形的性质、三角形全等的判定定理与性质等知识点,通过作辅助线,构造全等三角形是解题关键.4.如图,OP 平分MON ∠,PE OM ⊥于点E ,PF ON ⊥于点F ,OA OB =,则图中全等三角形的对数是( )A .1对B .2对C .3对D .4对【答案】C【分析】根据SAS , HL ,AAS 分别证明AOP BOP =,Rt PAE Rt PBF ≅,OEP OFP ≅,即可得到答案.【详解】∵OP 平分MON ∠,∴∠AOP=∠BOP ,∵OA OB =,OP=OP ,∴AOP BOP =(SAS )∴AP=BP ,∵OP 平分MON ∠,∴PE=PF ,∵PE OM ⊥于点E ,PF ON ⊥于点F ,∴Rt PAE Rt PBF ≅(HL ),∵OP 平分MON ∠,∴∠AOP=∠BOP ,又∵∠OEP=∠OFP=90°,OP=OP ,∴OEP OFP ≅(AAS ).故选C .【点睛】本题主要考查三角形全等的判定定理,掌握SAS , HL ,AAS 证明三角形全等,是解题的关键. 5.下列命题是假命题的是( ).A .两直线平行,内错角相等B .三角形内角和等于180°C .对顶角相等D .相等的角是对顶角【分析】根据平行线的性质、三角形的内角和定理和对顶角的性质逐一判断即可.【详解】解:A .两直线平行,内错角相等,是真命题,故不符合题意;B .三角形内角和等于180°,是真命题,故不符合题意;C .对顶角相等,是真命题,故不符合题意;D .相等的角不一定是对顶角,故符合题意.故选D .【点睛】此题考查的是真假命题的判断,掌握平行线的性质、三角形的内角和定理和对顶角的性质是解决此题的关键.6.在平行四边形ABCD 中,A ∠、B 的度数之比为3:1,则C ∠的度数为( )A .135︒B .130︒C .50︒D .45︒ 【答案】A【分析】由四边形ABCD 为平行四边形,可知∠A +∠B =180°,∠A =∠C ,依据:A B ∠∠=3:1可求得∠A 的度数,即可求得∠C 的度数.【详解】解:∵四边形ABCD 为平行四边形,∴∠A +∠B =180°,∠A =∠C ,∵:A B ∠∠=3:1, ∴31801354A ∠=︒⨯=︒ ∴135C ∠=︒,故选:A .【点睛】本题主要考查平行四边形的性质:(1)邻角互补;(2)平行四边形的两组对角分别相等.7.下列银行标志中,既不是中心对称图形也不是轴对称图形的是( )A .B .C .D .【答案】D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A 、是轴对称图形,也是中心对称图形,故A 选项不合题意;B 、是轴对称图形,不是中心对称图形,故B 选项不合题意;C 、是轴对称图形,也是中心对称图形.故C 选项不合题意;D 、不是轴对称图形,也不是中心对称图形,故D 选项符合题意;故选D .此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180°后与原图重合.8.某种产品的原料提价,因而厂家决定对产品进行提价,现有3种方案:①第一次提价%m ,第二次提价%n ;②第一次提价%n ,第二次提价%m ;③第一次、第二次提价均为%2m n +.其中m 和n 是不相等的正数.下列说法正确的是( )A .方案①提价最多B .方案②提价最多C .方案③提价最多D .三种方案提价一样多 【答案】C 【分析】方案①和②显然相同,用方案③的单价减去方案①的单价,利用完全平方公式及多项式乘以多项式的法则化简,去括号合并后再利用完全平方公式变形,根据m 不等于n 判定出其差为正数,进而确定出方案③的提价多.【详解】解:设%=m a ,%n b =,则提价后三种方案的价格分别为:方案①:(1)(1)(1)a b a b ab ++=+++;方案②:(1)(1)(1)a b a b ab ++=+++; 方案③:2222(1)(1)24a b a ab b a b ++++=+++, 方案③比方案①提价多:222(1)(1)4a ab b a b a b ab +++++-+++ 222114a ab b a b a b ab ++=+++---- 2224a ab b ab ++=- 21()4a b =-, m 和n 是不相等的正数,a b ∴≠, ∴21()04a b ->, ∴方案③提价最多.故选:C .【点睛】此题考查了整式混合运算的应用,比较代数式大小利用的方法为作差法,熟练掌握完全平方公式是解本题的关键.9. “某市为处理污水,需要铺设一条长为4000米的管道,为了尽量减少施工对交通所造成的影响,实际施工时×××××.设原计划每天铺设管道x 米,则可得方程400040002010x x -=+.”根据此情境,题中用“×××××”表示得缺失的条件,应补为( )A .每天比原计划多铺设10米,结果延期20天才完成任务B .每天比原计划少铺设10米,结果延期20天才完成任务C .每天比原计划多铺设10米,结果提前20天完成任务D .每天比原计划少铺设10米,结果提前20天完成任务【答案】C【分析】由题意根据工作时间=工作总量÷工作效率,那么4000÷x 表示原来的工作时间,那么4000÷(x+10)就表示现在的工作时间,20就代表原计划比现在多的时间进行分析即可.【详解】解:原计划每天铺设管道x 米,那么x+10就应该是实际每天比原计划多铺了10米, 而用400040002010x x -=+则表示用原计划的时间﹣实际用的时间=20天, 那么就说明每天比原计划多铺设10米,结果提前20天完成任务.故选:C .【点睛】本题考查分式方程的应用,是根据方程来判断缺失的条件,要注意方程所表示的意思,结合题目给出的条件得出正确的判断.10.点 P (x ,y )是平面直角坐标系内的一个点,且它的横、纵坐标是二元一次方程组 3243x y a x y a -=-⎧⎨+=-+⎩的解(a 为任意实数),则当 a 变化时,点 P 一定不会经过( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【分析】首先用消元法消去a ,得到y 与x 的函数关系式,然后根据一次函数的图象及性质即可得出结论. 【详解】解:3243x y a x y a -=-⎧⎨+=-+⎩①② 用②×2+①,得52x y +=∴52y x =-+∵50,20-<>∴52y x =-+过一、二、四象限,不过第三象限∴点P 一定不会经过第三象限,故选:C .【点睛】本题考查了一次函数与二元一次方程的知识,解题的关键是首先消去a ,求出y 与x 的函数关系式.二、填空题11.在平面直角坐标系中,点P (a-1,a )是第二象限内的点,则a 的取值范围是__________。
2018-2019学年贵州省贵阳市八年级(上)期末数学试卷
2018-2019学年贵州省贵阳市八年级(上)期末数学试卷(考试时间:80分满分:100分)一、选择题(每小题3分,共30分)1.下列实数中是无理数的是()A.B.πC.D.﹣2.在下列图形中,由∠1=∠2一定能得到AB∥CD的是()A. B.C. D.3.下列二次根式中,是最简二次根式的为()A.B.C.D.4.下列描述不能确定具体位置的是()A.贵阳横店影城1号厅6排7座 B.坐标(3,2)可以确定一个点的位置C.贵阳市筑城广场北偏东40° D.位于北纬28°,东经112°的城市5.下列命题中真命题是()A.若a2=b2,则a=b B.4的平方根是±2C.两个锐角之和一定是钝角 D.相等的两个角是对顶角6.某地连续统计了10天日最高气温,并绘制成如图所示的扇形统计图.这10天日最高气温的众数是()A.32°C B.33°C C.34°C D.35°C7.在同一平面直角坐标系中,直线y=2x+3与y=2x﹣5的位置关系是()A.平行B.相交C.重合D.垂直8.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得()A. B.C. D.9.在精准扶贫中,某乡镇实施产业扶贫,帮助贫困户承包荒山种植猕猴桃.到了收获季节,已知猕猴桃销售量y(千克)与销售单价x(元/千克)之间的函数关系如图所示.则y与x的函数关系式为()A.y=﹣10x﹣300 B.y=10x+300 C.y=﹣10x+300 D.y=10x﹣30010.如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若最大正方形G的边长是6cm,则正方形A,B,C,D,E,F,G的面积之和是()A.18cm2 B.36cm2C.72cm2D.108cm2二、填空题(每小题4分,共16分)11.比较大小:3(填:“>”或“<”或“=”)12.用图象法解二元一次方程组小英所画图象如图所示,则方程组的解为.13.如图,△ABO是关于y轴对称的轴对称图形,点A的坐标为(﹣2,3),则点B的坐标为.14.如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=26°,将△ABD沿AD折叠得到△AED,AE与BC交于点F,则∠AFC=度.三、解答题(共54分)15.(8分)(1)化简:+()()(2)如图,数轴上点A和点B表示的数分别是1和.若点A是BC的中点.求点C所表示的数.16.(8分)已知:△ABC在平面直角坐标系中的位置如图所示.(1)画出△ABC关于y轴对称的图形△A1B1C1;(2)求△ABC的面积.17.(6分)如图,∠AOB=90°,OA=9cm,OB=3cm,一机器人在点B处看见一个小球从点A出发沿着AO 方向匀速滚向点O,机器人立即从点B出发,沿BC方向匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?18.(8分)读书可以遇见更好的自己,4月23日是世界读书日,某校为了解学生阅读情况,抽样调查了部分学生每周用于课外阅读的时间.数据收集:从全校随机抽取20名学生,进行了每周用于课外阅读时间的调查,数据如下(单位:min)90 60 60 150 40 110 130 146 90 10075 81 120 140 159 81 10 20 100 81整理分析数据:(1)补全下列表格中的统计量:平均数中位数众数92.15 81(2)按如下分段整理样本数据并补全表格:课外阅读时间x(min) 0≤x<40 40≤x<80 80≤x<120 120≤x<160等级 D C B A人数 2 8得出结论:(3)用样本中的统计量估计该校学生每周用于课外阅读时间的等级情况,并说明理由.19.(6分)如图,AB∥CD,∠B=70°,∠BCE=20°,∠CEF=130°,请判断AB与EF的位置关系,并说明理由.20.(8分)在如图所示的平面直角坐标系中,已知一次函数y=x+3的图象与x轴交于点A,与y轴交于点B.(1)写出A点和B点的坐标;(2)在平面直角坐标系中画出一次函数=x+3的图象;(3)若C点的坐标为C(3,0),判断△ABC的形状,并说明理由.21.(10分)为传承中华文化,学习六艺技能,某中学组织初二年级学生到孔学堂研学旅行.已知大型客车每辆能坐60人,中型客车每辆能坐45人,现该校有初二年级学生375人.根据题目提供的信息解决下列问题:(1)这次研学旅行需要大、中型客车各几辆才能使每个学生上车都有座位,且每辆车正好坐满?(2)若大型客车租金为1500元/辆,中型客车租金为1200元/辆,请帮该校设计一种最划算的租车方案.参考答案一、选择题BACCB CADCD.二、填空题11.<.12..13.解:∵△ABO是关于y轴对称的轴对称图形,∴点A(﹣2,3)与点B关于y轴对称,∴点B坐标为(2,3),故答案为:(2,3).14.解:∵将△ABD沿AD折叠得到△AED,∴∠BAD=∠DAF=26°,∴∠BAF=52°,∵∠B+∠BAF+∠AFB=180°,∴∠AFB=78°,∴∠AFC=102°,故答案为:102.三、解答题15.解:(1)原式=﹣+5﹣3=﹣2+2=;(2)∵数轴上点A和点B表示的数分别是1和,∴OA=1,AB=OB﹣OA=﹣1,∵点A是BC的中点.∴CA=BA=﹣1,∴OC=CA﹣OA=﹣1﹣1=﹣2,∴点C所表示的数为2﹣.16.解:(1)如图所示:△A1B1C1,即为所求;(2)△ABC的面积为:6﹣×3×1﹣×2×2﹣×1×1=2.17.解:∵小球滚动的速度与机器人行走的速度相等,运动时间相等,∴BC=CA.设AC为x,则OC=9﹣x,由勾股定理得:OB2+OC2=BC2,又∵OA=9,OB=3,∴32+(9﹣x)2=x2,解方程得出x=5.∴机器人行走的路程BC是5cm.18.解:(1)将20个学生每周用于课外阅读的时间的数据按大小顺序排列后,可得中位数为=90,故答案为:90;(2)由题可得,在40≤x<80范围内的数据有4个;在120≤x<160范围内的数据有6个;故答案为:4,6;(3)估计该校学生每周用于课外阅读时间的等级为B,理由:由于平均数为92.7,中位数为90,众数为81,这三个统计量均在80≤x<120范围内,次范围内的等级为B等.19.解:AB∥EF,理由如下:∵AB∥CD,∴∠B=∠BCD,(两直线平行,内错角相等)∵∠B=70°,∴∠BCD=70°,(等量代换)∵∠BCE=20°,∴∠ECD=50°,∵CEF=130°,∴∠E+∠DCE=180°,∴EF∥CD,(同旁内角互补,两直线平行)∴AB∥EF.(平行于同一直线的两条直线互相平行)20.解:(1)在y=x+3中,令x=0,则y=3;令y=0,则x=﹣3;∴A(﹣3,0),B(0,3);(2)一次函数=x+3的图象如图所示,(3)如图,依题意得AO=BO=CO=3,∴AB=BC==3,AC=6,∵AB2+BC2=36,AC2=36,∴AB2+BC2=AC2,∴△ABC是等腰直角三角形.21.解:(1)设需要大型客车x辆,中型客车y辆,根据题意,得:60x+45y=375,当x=1时,y=7;当x=2时,y=;当x=3时,y=;当x=4时,y=3;当x=5时,y=;当x=6时,y=;∵要使每个学生上车都有座位,且每辆车正好坐满,∴有两种选择,方案一:需要大型客车1辆,中型客车7辆;方案二:需要大型客车4辆,中型客车3辆.(2)方案一:1500×1+1200×7=9900(元),方案二:1500×4+1200×3=9600(元),∵9900>9600,∴方案二更划算.。
(汇总3份试卷)2018年贵州省名校八年级上学期数学期末统考试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.已知11x y =3,则代数式232x xy y x xy y+---的值是( ) A .72- B .112- C .92 D .34【答案】D【分析】由113x y -=得出3y x xy -=,即3x y xy -=-,整体代入原式()()23x y xy x y xy-+=--,计算可得. 【详解】 113x y-=, ∴ 3y x xy-=, ∴ 3x y xy -=-,则原式()()236333344x y xyxy xy xy x y xy xy xy xy -+-+-====-----. 故选:D .【点睛】本题主要考查分式的加减法,解题的关键是掌握分式加减运算法则和整体代入思想的运用.2,3.1415926, 1.010010001…,227,2π-中,无理数有( ) A .1个B .2个C .3个D .4个 【答案】C【分析】根据无理数的定义,即可得到答案.,3.1415926, 1.010010001…,227,2π-中,,1.010010001…,2π-,共3个; 故选:C.【点睛】本题考查了无理数的定义,解答本题的关键是掌握无理数的三种形式. 3.在ABC 中,B 90∠=,若BC 3=,AC 5=,则AB 等于( )A .2B .3C .4D 【答案】C【解析】利用勾股定理计算即可.【详解】解:在Rt ABC 中,B 90∠=,AC 5=,BC 3=,2222AB AC BC 534∴--=,故选:C .【点睛】本题考查勾股定理,解题的关键是记住勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.4.下列各组线段,能构成三角形的是( )A .1,3,5cm cm cmB .2,4,6cm cm cmC .4,4,1cm cm cmD .8,8,20cm cm cm 【答案】C【分析】判断三条线段能否构成三角形,只需让两个较短的线段长度相加,其和若大于最长线段长度,则可以构成三角形,否则不能构成三角形.逐一判断即可.【详解】A 选项,1+3<5,不能构成三角形;B 选项,2+4=6,不能构成三角形;C 选项,1+4>4,可以构成三角形;D 选项,8+8<20,不能构成三角形,故选C.【点睛】本题考查了构成三角形的条件,掌握构成三角形的判断方法是解题的关键.5.若关于x 的分式方程3144x m x x ++=--有增根,则m 的值是( ) A . 0或3B . 3C . 0D .﹣1 【答案】D【分析】增根是化为整式方程后产生的不适合分式方程的根.所以应先确定增根的可能值,让最简公分母x-4=0,得到x=4,然后代入化为整式方程的方程算出m 的值. 【详解】解:3144x m x x++=--方程两边同乘(x-4)得3()4x m x -+=-∵原方程有增根,∴最简公分母x-4=0,解得x=4,把x=4代入3()4x m x -+=-,得3(4)44m -+=-,解得m=-1故选:D【点睛】本题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.6.一个两位数的个位数字与十位数字的和为14,若调换个位数字与十位数字,所得的新数比原数小36,则这个两位数是( )A .86B .95C .59D .68【答案】B【分析】先设出原两位数的十位与个位分别为x 和y ,再用含x 和y 的式子表示出原两位数和新两位数,最后根据题意找到等量关系列出方程组求解即可.【详解】设这个两位数的十位数字为x ,个位数字为y则原两位数为10x y +,调换个位数字与十位数字后的新两位数为10+y x∵这个两位数的个位数字与十位数字的和为14∴=14x y +∵调换个位数字与十位数字后的新两位数比原两位数小36∴()()1010=36x y y x +-+ ∴联立方程得()()=141010=36x y x y y x +⎧⎨+-+⎩解得:=9=5x y ⎧⎨⎩∴这个两位数为95故选:B .【点睛】本题主要考查二元一次方程组的应用,解答本题的关键是读懂题意找出等量关系.7.如图,是我们学过的用直尺和三角板画平行线的方法示意图,画图的原理是( )A .两直线平行,同位角相等B .同位角相等,两直线平行C .内错角相等,两直线平行D .同旁内角互补,两直线平行【答案】B 【分析】由已知可知∠DPF=∠BAF ,从而得出同位角相等,两直线平行.【详解】解:如图:∵∠DPF=∠BAF ,∴a ∥b (同位角相等,两直线平行).故选:B .【点睛】本题考查了平行线的判定方法,熟练掌握平行线的判定方法,根据题意得出同位角相等是解决问题的关键. 8.某工厂计划生产1500个零件,但是在实际生产时,……,求实际每天生产零件的个数,在这个题目中,若设实际每天生产零件x 个,可得方程150********x x-=-,则题目中用“……”表示的条件应是( ) A .每天比原计划多生产5个,结果延期10天完成B .每天比原计划多生产5个,结果提前10天完成C .每天比原计划少生产5个,结果延期10天完成D .每天比原计划少生产5个,结果提前10天完成【答案】B【解析】试题解析:实际每天生产零件x 个,那么5x -表示原计划每天生产的零件个数,实际上每天比原计划多生产5个,150********x x-=-表示原计划用的时间-实际用的时间=10天, 说明实际上每天比原计划多生产5个,提前10天完成任务.故选B.9.将数据0.0000025用科学记数法表示为( )A .72510-⨯B .80.2510-⨯C .72.510-⨯D .62.510-⨯【答案】D 【分析】绝对值小于1的负数也可以利用科学记数法表示,一般形式为a×10n -,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:60.0000025 2.510-=⨯.故选:D .【点睛】此题考查科学记数法,解题关键在于掌握其一般形式.10.如图,90ACB ∠=︒,AC CD =,过D 作AB 的垂线,交AB 的延长线于E ,若2AB DE =,则BAC ∠的度数为( )A .45°B .30°C .22.5°D .15°【答案】C 【分析】连接AD ,延长AC 、DE 交于M ,求出∠CAB=∠CDM ,根据全等三角形的判定得出△ACB ≌△DCM ,求出AB=DM ,求出AD=AM ,根据等腰三角形的性质得出即可.【详解】解:连接AD ,延长AC 、DE 交于M ,∵∠ACB=90°,AC=CD ,∴∠DAC=∠ADC=45°,∵∠ACB=90°,DE ⊥AB ,∴∠DEB=90°=∠ACB=∠DCM ,∵∠ABC=∠DBE ,∴∠CAB=∠CDM ,在△ACB 和△DCM 中CAB CDM AC CDACB DCM ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ACB ≌△DCM (ASA ),∴AB=DM ,∵AB=2DE ,∴DM=2DE ,∴DE=EM ,∵DE ⊥AB ,∴AD=AM , 114522.522BAC DAE DAC ︒︒∴∠=∠=∠=⨯= 故选:C .【点睛】本题考查了全等三角形的性质和判定,等腰直角三角形,等腰三角形的性质和判定等知识点,能根据全等求出AB=DM 是解此题的关键.二、填空题11.如图,将三角形纸片(△ABC )进行折叠,使得点B 与点A 重合,点C 与点A 重合,压平出现折痕DE ,FG ,其中D ,F 分别在边AB ,AC 上,E ,G 在边BC 上,若∠B =25°,∠C =45°,则∠EAG 的度数是_____°.【答案】40°【解析】依据三角形内角和定理,即可得到∠BAC 的度数,再根据折叠的性质,即可得到∠BAE=∠B=25°,∠CAG=∠C=45°,进而得出∠EAG 的度数.【详解】∵∠B=25°,∠C=45°,∴∠BAC=180°−25°−45°=110°,由折叠可得,∠BAE=∠B=25°,∠CAG=∠C=45°, ∴∠EAG=110°−(25°+45°)=40°, 故答案为:40°【点睛】此题考查三角形内角和定理,折叠的性质,解题关键在于得到∠BAC 的度数12. 如图,已知AB BC =,要使ABD CBD ∆≅∆,还需添加一个条件,则可以添加的条件是 .(只写一个即可,不需要添加辅助线)【答案】可添∠ABD=∠CBD 或AD=CD .【分析】由AB=BC 结合图形可知这两个三角形有两组边对应相等,添加一组边利用SSS 证明全等,也可以添加一对夹角相等,利用SAS 证明全等,据此即可得答案.【详解】.可添∠ABD=∠CBD 或AD=CD ,①∠ABD=∠CBD ,在△ABD 和△CBD 中,∵AB BC ABD CBD BD BD =⎧⎪∠=∠⎨⎪=⎩,∴△ABD ≌△CBD (SAS );②AD=CD ,在△ABD 和△CBD 中,∵AB BC AD CD BD BD =⎧⎪=⎨⎪=⎩,∴△ABD ≌△CBD (SSS ),故答案为∠ABD=∠CBD 或AD=CD .【点睛】本题考查了三角形全等的判定,结合图形与已知条件灵活应用全等三角形的判定方法是解题的关键. 熟记全等三角形的判定方法有:SSS ,SAS ,ASA ,AAS .13.如图,直线I I :1y x =+与直线2I :y mx n =+相交于点(,2)P a ,则关于x 的不等式1x mx n +≥+的解集为______.【答案】x≥1.【分析】把点P 坐标代入y=x+1中,求得两直线交点坐标,然后根据图像求解.【详解】解:∵1y x =+与直线2I :y mx n =+相交于点(,2)P a ,∴把y=2代入y=x+1中,解得x=1,∴点P 的坐标为(1,2);由图可知,x≥1时,1x mx n +≥+.故答案为:x≥1.【点睛】本题考查了一次函数与一元一次不等式,待定系数法求一次函数解析式,联立两直线解析式求交点坐标的方法,求一次函数与一元一次不等式关键在于准确识图,确定出两函数图象的对应的函数值的大小. 14.如图,在菱形ABCD 中,若AC=6,BD=8,则菱形ABCD 的面积是____.【答案】1【详解】试题解析:∵菱形ABCD 的对角线AC=6,BD=8,∴菱形的面积S=12AC•BD=12×8×6=1. 考点:菱形的性质.15.命题“如果0a b +>,则0a >,0b >”的逆命题为____________.【答案】若0,0a b >>,则0a b +>【分析】根据逆命题的定义即可求解.【详解】命题“如果0a b +>,则0a >,0b >”的逆命题为若0a >,0b >,则0a b +>故填:若0a >,0b >,则0a b +>.【点睛】此题主要考查逆命题,解题的关键是熟知逆命题的定义.16.等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为__________.【答案】60°或120°【分析】分别从△ABC 是锐角三角形与钝角三角形去分析求解即可求得答案.【详解】解:如图(1),∵AB=AC ,BD ⊥AC ,∴∠ADB=90°,∵∠ABD=30°,∴∠A=60°;如图(2),∵AB=AC ,BD ⊥AC ,∴∠BDC=90°,∵∠ABD=30°,∴∠BAD=60°,∴∠BAC=120°;综上所述,它的顶角度数为:60°或120°.【点睛】此题考查了等腰三角形的性质.此题难度适中,注意掌握分类讨论思想的应用是解此题的关键.17.当x为_____时,分式3621xx-+的值为1.【答案】2【解析】分式的值是1的条件是,分子为1,分母不为1.【详解】∵3x-6=1,∴x=2,当x=2时,2x+1≠1.∴当x=2时,分式的值是1.故答案为2.【点睛】本题考查的知识点是分式为1的条件,解题关键是注意的是分母不能是1.三、解答题18.如图所示,四边形OABC是长方形,点D在OC边上,以AD为折痕,将△OAD向上翻折,点O恰好落在BC边上的点E处,已知长方形OABC的周长为1.(1)若OA长为x,则B点坐标为_____;(2)若A点坐标为(5,0),求点D和点E的坐标.【答案】(1)B点坐标为(x,8-x);(2)D的坐标是(0,53),E的坐标是(1,3).【分析】(1)根据长方形的特点得到OA+AB=8,故OA=x,AB=8-x,即可写出B点坐标;(2)根据A点坐标为(5,0),得到OA=5,OC=3,由勾股定理得:BE=4,设OD=x,则DE=OD=x,DC=3-x,Rt△CDE中,由勾股定理得到方程求出x即可求解.【详解】(1)长方形OABC周长=1,则OA+AB=8OA=x,AB=8-xB 点坐标为(x ,8-x )(2)∵矩形OABC 的周长为1,∴2OA+2OC=1,∵A 点坐标为(5,0),∴OA=5,∴OC=3,∵在Rt △ABE 中,∠B=90°,AB=3,AE=OA=5,由勾股定理得:BE=4, ∴CE=5-4=1,设OD=x ,则DE=OD=x ,DC=3-x ,在Rt △CDE 中,由勾股定理得:x 2=12+(3-x )2,解得:x=53 即OD=53∴D 的坐标是(0,53),E 的坐标是(1,3). 【点睛】此题主要考查矩形的折叠问题,解题的关键是熟知矩形的性质及勾股定理的应用. 19.先化简,再求值:()()()21212x y x y y y x ⎛⎫⎡⎤-++--÷- ⎪⎣⎦⎝⎭,其中11.2x y ,== 【答案】-2【分析】先利用完全平方式展开化简,再将x,y 的值代入求解即可.【详解】解:原式=(222x xy y -++2x -2xy +y -2y -y )12x ⎛⎫÷- ⎪⎝⎭=(2x -4xy +2x)12x ⎛⎫÷- ⎪⎝⎭=-2x +8y -4, 代入112x y =,=得该式=-2. 【点睛】本题主要考察整式化简,细心化简是解题关键.20.(1)如图,已知ABC ∆的顶点在正方形方格点上每个小正方形的边长为1.写出ABC ∆各顶点的坐标(2)画出ABC ∆关于y 轴的对称图形111A B C ∆【答案】(1)A (-2,2),B (-3,-1),C (-1,1);(2)见解析【分析】(1)利用坐标可得A 、B 、C 三点坐标;(2)首先确定A 、B 、C 三点关于y 轴的对称点,然后再连接即可.【详解】解:(1)由图可知:A (-2,2),B (-3,-1),C (-1,1);(2)如图,△A 1B 1C 1即为所画图形.【点睛】此题主要考查了作图—轴对称变换,关键是正确确定组成图形的关键点关于y 轴的对称点位置. 21.如图,∠D =∠C =90°,点E 是DC 的中点,AE 平分∠DAB ,∠DEA =28°,求∠ABE 的大小.【答案】28°【分析】过点E 作EF ⊥AB 于F ,根据角平分线上的点到角的两边距离相等可得DE=EF ,根据线段中点的定义可得DE=CE ,然后求出CE=EF ,再根据到角的两边距离相等的点在角的平分线上证明即可得出BE 平分∠ABC ,即可求得∠ABE 的度数.【详解】如图,过点E 作EF ⊥AB 于F ,∵∠D=∠C=90°,AE平分∠DAB,∴DE=EF,∵E是DC的中点,∴DE=CE,∴CE=EF,又∵∠C=90°,∴点E在∠ABC的平分线上,∴BE平分∠ABC,又∵AD∥BC,∴∠ABC+∠BAD=180°,∴∠AEB=90°,∴∠BEC=90°-∠AED=62°,∴Rt△BCE中,∠CBE=28°,∴∠ABE=28°.【点睛】考查了平行线的性质与判定、角平分线上的点到角的两边距离相等的性质、到角的两边距离相等的点在角的平分线上的性质,解题关键是熟记各性质并作出辅助线.22.某商店销售A型和B型两种型号的电脑,销售一台A型电脑可获利120元,销售一台B型电脑可获利140元.该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的3倍.设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y与x的关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售利润最大?最大利润是多少?(3)若限定商店最多购进A型电脑60台,则这100台电脑的销售总利润能否为12760元?请说明理由.【答案】(1)y=-20x+14000;(2)商店购进25台A型电脑和75台B型电脑的销售利润最大;最大利润为13500元;(3)不能,理由见解析.【分析】(1)据题意即可得出y=-20x+14000;(2)利用不等式求出x的范围,又因为y=-20x+14000是减函数,所以得出y的最大值,(3)据题意得,y=-40x+14000 (25≤x≤60),y随x的增大而减小,进行求解.【详解】解:(1)由题意可得:y=120x+140(100-x)=-20x+14000;(2)据题意得,100-x≤3x,解得x≥25,∵y=-20x+14000,-20<0,∴y随x的增大而减小,∵x为正整数,∴当x=25时,y 取最大值,则100-x=75,y=-20×25+14000=13500即商店购进25台A 型电脑和75台B 型电脑的销售利润最大;最大利润为13500元;(3)据题意得,y=120x+140(100-x ),即y=-20x+14000 (25≤x≤60)当y=12760时,解得x=62,不符合要求所以这100台电脑的销售总利润不能为12760元.【点睛】本题主要考查了一次函数的应用,二元一次方程组及一元一次不等式的应用,解题的关键是根据题意确定一次函数x 的取值范围.23.(1)化简:2112x x x x x ⎛⎫++÷- ⎪⎝⎭; (2)化简分式:2221121x x x x x x x x -⎛⎫-÷ ⎪---+⎝⎭,并从13x -≤≤中选一个你认为适合的整数x 代人求值. 【答案】(1)21x -;(2)1x x +,x=3时,34【分析】(1)根据分式的减法和除法法则即可化简题目中的式子;(2)根据分式的减法和除法可以化简题目中的式子,再从13x -≤≤中选取一个使得原分式有意义的整数代入即可解答本题.【详解】解:(1)原式221212x x x x x=+--÷ ()()122111x x x x x x +⨯=+--=; (2)原式()()()()()()()22111111111x x x x x x x x x x x x x x x +---⨯=⨯=+--+-+, 当3x =时,原式33314==+. 【点睛】本题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.24.如图,AB CD ∥,点E 为CD 上点,射线EF 经过点A ,且EC EA =,若30CAE ∠=︒,求BAF ∠的度数.【答案】60︒【分析】先根据等腰三角形的性质得出∠C=30°,再根据三角形外角性质得到∠DEA=60°,最后根据平行线的性质得到BAF AED =∠∠即可.【详解】EC EA =,30CAE ∠=︒,30C CAE ∴∠=∠=︒,DEA ∠是ACE △的外角,AED C CAE ∴∠=∠+∠303060+︒=︒=︒,AB CD ∥,60BAF AED ∴∠=∠=︒.【点睛】椙主要考查了等腰三角形的性质、三角形外角的性质以及平行线的性质,熟练掌握这些性质是解题的关键. 25.张明和李强两名运动爱好者周末相约进行跑步锻炼,周日早上6点,张明和李强同时从家出发,分别骑自行车和步行到离家距离分别为4.5千米和1.2千米的体育场入口汇合,结果同时到达,且张明每分钟比李强每分钟多行220米,(1)求张明和李强的速度分别是多少米/分?(2)两人到达体育场后约定先跑6千米再休息,李强的跑步速度是张明跑步速度的m 倍,两人在同起点,同时出发,结果李强先到目的地n 分钟.①当m =1.2,n =5时,求李强跑了多少分钟?②直接写出张明的跑步速度为多少米/分(直接用含m ,n 的式子表示)【答案】(1)李强的速度为80米/分,张明的速度为1米/分;(2)①李强跑了2分钟;②张明的速度为6000(1)m mn-米/分. 【分析】(1)设李强的速度为x 米/分,则张明的速度为(x+220)米/分,根据时间=路程÷速度结合两人同时到达,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)①设张明的速度为y 米/分,则李强的速度为1.2y 米/分,根据李强早到5分钟,即可得出关于y 的分式方程,解方程即可;②设张明的速度为y 米/分,则李强的速度为my 米/分,根据李强早到n 分钟,即可得出关于y 的分式方程,解方程即可.【详解】解:(1)设李强的速度为x 米/分,则张明的速度为(x+220)米/分, 依题意,得:1200x =4500220x +, 解得:x =80,经检验,x =80是原方程的解,且符合题意,∴x+220=1.答:李强的速度为80米/分,张明的速度为1米/分.(2)①设张明的速度为y 米/分,则李强的速度为1.2y 米/分, 依题意,得:6000y -60001.2y=5,解得:y=200,经检验,y=200是原方程的解,且符合题意,∴60001.2y=2.答:李强跑了2分钟.②设张明的速度为y米/分,则李强的速度为my米/分,依题意,得:6000y-6000my=n,解得:y=6000(1)mmn-,经检验,y=6000(1)mmn-是原方程的解,且符合题意,答:张明的速度为6000(1)mmn-(米/分).【点睛】本题考查了分式方程的应用,熟悉路程问题的数量关系是列出方程的关键.注意分式方程要检验.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列各式从左边到右边的变形中,是因式分解的是( )A .()2983(3)8x x x x x -+=+-+B .()24444x x x x -+=-+ C .()-=-ax ay a x yD .2(32)(32)49a a a ---=-【答案】C【分析】根据因式分解的定义即可得. 【详解】A 、()2983(3)8x x x x x -+=+-+不是因式分解,此项不符题意; B 、()24444x x x x -+=-+不是因式分解,此项不符题意; C 、()-=-ax ay a x y 是因式分解,此项符合题意;D 、2(32)(32)49a a a ---=-不是因式分解,此项不符题意;故选:C .【点睛】本题考查了因式分解的定义,熟记定义是解题关键.2.我国古代数学名著《孙子算经》记载一道题,大意为100个和尚吃了100个馒头,已知1个大和尚吃3个馒头,3个小和尚吃1个馒头,问有几个大和尚,几个小和尚?若设有m 个大和尚,n 个小和尚,那么可列方程组为( )A .10033100m n m n +=⎧⎨+=⎩B .1003100m n m n +=⎧⎨+=⎩C .10031003m n n m +=⎧⎪⎨+=⎪⎩D .1003100m n m n +=⎧⎨+=⎩【答案】C 【分析】设有m 个大和尚,n 个小和尚,题中有2个等量关系:1个和尚吃了1个馒头,大和尚吃的馒头+小和尚吃的馒头=1.【详解】解:设有m 个大和尚,n 个小和尚, 根据数量关系式可得:10031003m n n m +=⎧⎪⎨+=⎪⎩, 故选C.【点睛】本题考查了由实际问题抽象出二元一次方程组.根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.3.英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖.石墨烯目前是世上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅0.000 000 000 34米,将这个数用科学记数法表示为A.9⨯D.113.410-⨯3.410-0.3410-⨯C.10⨯B.93.410-【答案】C【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数(含小数点前的1个0).0.000 000 000 34第一个有效数字前有10个0(含小数点前的1个0),从而100.00000000034 3.410=⨯-.故选C.4.下列命题中,是假命题的是()A.三角形的外角大于任一内角B.能被2整除的数,末尾数字必是偶数C.两直线平行,同旁内角互补D.相反数等于它本身的数是0【答案】A【解析】分析:利用三角形的外角的性质、偶数的性质、平行线的性质及相反数的定义分别判断后即可确定正确的选项.详解:A.三角形的外角大于任何一个不相邻的内角,故错误,是假命题;B.能被2整除的数,末位数字必是偶数,故正确,是真命题;C.两直线平行,同旁内角互补,正确,是真命题;D.相反数等于它本身的数是0,正确,是真命题.故选A.点睛:本题考查了命题与定理的知识,解题的关键是能够了解三角形的外角的性质、偶数的性质、平行线的性质及相反数的定义,属于基础题,难度不大.5.下列图形是轴对称图形的为()A.B.C.D.【答案】D【分析】根据轴对称图形的概念对各选项分析判断即可得解.【详解】A、不是轴对称图形,故本选项不合题意;B、不是轴对称图形,故本选项不合题意;C、不是轴对称图形,故本选项不合题意;D、是轴对称图形,故本选项符合题意.故选:D.【点睛】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.6.下列各组数不是勾股数的是()A.3,4,5B.6,8,10C.4,6,8D.5,12,13【答案】C【分析】根据勾股数的定义:有a、b、c三个正整数,满足a2+b2=c2,称为勾股数.由此判定即可.【详解】解:A、32+42=52,能构成勾股数,故选项错误;B、62+82=102,能构成勾股数,故选项错误C、42+62≠82,不能构成勾股数,故选项正确;D、52+122=132,能构成勾股数,故选项错误.故选:C.【点睛】本题考查勾股数,解答此题要深刻理解勾股数的定义,并能够熟练运用.7.如图,中,,点在边上,且,则的度数为()A.30°B.36°C.45°D.72°【答案】D【解析】利用等边对等角得到三对角相等,设∠A=∠ABD=x,表示出∠BDC与∠C,列出关于x的方程,求出方程的解得到x的值,即可确定出∠C的度数.【详解】解:∵AB=AC,∴∠ABC=∠C,∵BD=BC=AD,∴∠A=∠ABD,∠C=∠BDC,设∠A=∠ABD=x,则∠BDC=2x,∠C=,可得,解得:x=36°,则,故选:D.【点睛】此题考查了等腰三角形的性质,以及三角形内角和定理,熟练掌握等腰三角形的性质是解本题的关键.8.菱形不具备的性质是()A.四条边都相等B.对角线一定相等C.是轴对称图形D.是中心对称图形【答案】B【解析】根据菱形的性质逐项进行判断即可得答案.【详解】菱形的四条边相等,菱形是轴对称图形,也是中心对称图形,菱形对角线垂直但不一定相等,故选B.【点睛】本题考查了菱形的性质,解题的关键是熟练掌握菱形的性质.9.等腰三角形的两边长分别为8cm和4cm,则它的周长为()A.12cm B.16cm C.20cm D.16cm或20cm【答案】C【分析】根据等腰三角形的两腰相等,可知边长为8,8,4或4,4,8,再根据三角形三边关系可知4,4,8不能组成三角形,据此可得出答案.【详解】∵等腰三角形的两边长分别为8cm和4cm,∴它的三边长可能为8cm,8cm,4cm或4cm,4cm,8cm,∵4+4=8,不能组成三角形,∴此等腰三角形的三边长只能是8cm,8cm,4cm8+8+4=20cm故选C.【点睛】本题考查等腰三角形的性质与三角形的三边关系,熟练掌握三角形两边之和大于第三边是解题的关键.10.若代数式13x在实数范围内有意义,则实数x的取值范围是()A.x<3 B.x>3 C.x≠3D.x=3 【答案】C【分析】分式有意义时,分母x﹣3≠0,据此求得x的取值范围.【详解】依题意得:x ﹣3≠0,解得x≠3,故选C .【点睛】本题考查了分式有意义的条件.(1)分式有意义的条件是分母不等于零.(2)分式无意义的条件是分母等于零.二、填空题11.若关于x 的不等式组2020x k x ->⎧⎨-≤⎩有且只有五个整数解,则k 的取值范围是__________. 【答案】64k -≤<-【分析】先求出不等式组的解集,根据不等式组有且只有五个整数解,列出关于k 的不等式即可得到答案.【详解】解不等式组2020x k x ->⎧⎨-≤⎩得22k x <≤, ∵不等式组有且只有五个整数解,∴ 322k -≤<-, ∴64k -≤<-,故答案为:64k -≤<-.【点睛】此题考查不等式组的整数解问题,能根据不等式组的解集列出k 的不等式是解题的关键.12.已知实数a ,b 满足3a b -=,2ab =,则+a b 的值为_________.【答案】【分析】根据公式()()224a b a b ab +=-+即可求出()2a b +,从而求出+a b 的值.【详解】解:∵3a b -=,2ab =∴()()224a b a b ab +=-+=2342+⨯=17∴a b +=故答案为:【点睛】此题考查的是完全平方公式的变形,掌握完全平方公式的特征是解决此题的关键.13.当x ________时,分式1x x -无意义.【答案】x =1【解析】分式的分母等于0时,分式无意义.【详解】解:当10x -=即1x =时,分式无意义.故答案为:1x =【点睛】本题考查了分式无意义的条件,理解分式有意义无意义的条件是解题的关键.14.如图,在ABC ∆中,D 为边BC 的中点,DE AB ⊥于点E ,DF AC ⊥于点F ,且BE CF =.若30BDE ∠=︒,则A ∠的大小为__________度.【答案】60【分析】根据题意,点D 是BC 的中点,BE CF =,可证明Rt △BDE ≌Rt △CDF ,可得∠B=∠C=60°,利用三角形内角和180°,计算即可得.【详解】∵D 为边BC 的中点,DE AB ⊥于点E ,DF AC ⊥于点F ,∴BD=CD ,∠DEB=∠DFC=90°,又BE CF =,∴ Rt △BDE ≌Rt △CDF (HL ),∴30BDE ∠=︒∠CDF=,∴∠B=∠C=60°,∠A=180°-60°-60°=60°,故答案为:60°.【点睛】考查了垂直的定义,直角三角形全等的证明方法(HL ),三角形内角和定理,熟记几何图形的定理和性质是解题的关键.15.已知一次函数的图象经过点A (2,-1)和点B ,其中点B 是另一条直线132y x =-+与y 轴的交点,求这个一次函数的表达式___________【答案】y=-2x+1【分析】利用一次函数图象上点的坐标特征可求出点B 的坐标,再根据点A 、B 的坐标,利用待定系数法即可求出该一次函数的表达式.【详解】解:当x=0时,132y x =-+=1, ∴点B 的坐标为(0,1).设这个一次函数的表达式为y=kx+b (k≠0),将点A (2,-1)、B (0,1)代入y=kx+b ,213k b b +=-⎧⎨=⎩,解得:23k b =-⎧⎨=⎩, ∴该一次函数的表达式y=-2x+1.故答案为:y=-2x+1.【点睛】本题考查了待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,利用一次函数图象上点的坐标特征求出点B 的坐标是解题的关键.16.如图,把一张三角形纸片(△ABC )进行折叠,使点A 落在BC 上的点F 处,折痕为DE ,点D ,点E 分别在AB 和AC 上,DE ∥BC ,若∠B =75°,则∠BDF 的度数为_____.【答案】30°【分析】利用平行线的性质求出∠ADE =75°,再由折叠的性质推出∠ADE =∠EDF =75°即可解决问题.【详解】解:∵DE ∥BC ,∴∠ADE =∠B =75°,又∵∠ADE =∠EDF =75°,∴∠BDF =180°﹣75°﹣75°=30°,故答案为30°.【点睛】本题综合考查了平行线以及折叠的性质,熟练掌握两性质定理是解答关键.17.如图,AB=AC ,BD=BC,若∠A=40°,则∠ABD 的度数是_________.【答案】30°;【分析】利用三角形的内角和、外角性质与等腰三角形的“等边对等角”定理计算.【详解】由AB=AC 、BD=BC 得∠ABC=∠ACB 、∠C=∠BDC ,在△ABC 中,∠A=40°,∠C=∠ABC ,∴∠C=∠ABC=12 (180°−∠A)= 12(180°−40°)=70°; 在△ABD 中,由∠BDC=∠A+∠ABD 得∠ABD=∠BDC−∠A=70°−40°=30°故答案为30°【点睛】此题考查三角形内角和定理,等腰三角形的性质,三角形的外角性质,解题关键在于利用等边对等角三、解答题18.列二元一次方程组解决问题:某校八年级师生共466人准备参加社会实践活动,现已预备了,A B两种型号的客车共10辆,每辆A种型号客车坐师生49人,每辆B种型号客车坐师生37人,10辆客车刚好坐满,求,A B两种型号客车各多少辆?【答案】A种型号客车8辆,B种型号客车2辆【分析】设A型号客车用了x辆,B型号客车用了y辆,根据两种客车共10辆正好乘坐466人,即可得出关于x,y的二元一次方程组,解之即可得出结论.【详解】设A种型号客车x辆,B种型号客车y辆,依题意,得10 4937466 x yx y+=⎧⎨+=⎩解得82 xy=⎧⎨=⎩答:A种型号客车8辆,B种型号客车2辆.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.19.为了解学生参加户外活动的情况,和谐中学对学生每天参加户外活动的时间进行抽样调查,并将调查结果绘制成如图两幅不完整的统计图,根据图示,请回答下列问题:(1)被抽样调查的学生有______人,并补全条形统计图;(2)每天户外活动时间的中位数是______(小时);(3)该校共有2000名学生,请估计该校每天户外活动时间超过1小时的学生有多少人?【答案】(1)500;(2)1;(3)该校每天户外活动时间超过1小时的学生有800人.【分析】(1)根据条形统计图和扇形统计图可以求得被调查学生总数和1.5小时的学生数,从而可以将条形统计图补充完整;(2)根据条形统计图可以得到这组数据的中位数;。
2018-2019学年第一学期八年级期末考试数学试题(有答案和解析)
2018-2019学年八年级(上)期末数学试卷一、选择题(本题共10小题,每小题4分,共40分)1.点A(﹣3,4)所在象限为()A.第一象限B.第二象限C.第三象限D.第四象限2.一次函数y=﹣3x﹣2的图象和性质,述正确的是()A.y随x的增大而增大B.在y轴上的截距为2C.与x轴交于点(﹣2,0)D.函数图象不经过第一象限3.一个三角形三个内角的度数之比为3:4:5,这个三角形一定是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形4.下列命是真命题的是()A.π是单项式B.三角形的一个外角大于任何一个内角C.两点之间,直线最短D.同位角相等5.等腰三角形的底边长为4,则其腰长x的取值范国是()A.x>4B.x>2C.0<x<2D.2<x<46.已知点A(m,﹣3)和点B(n,3)都在直线y=﹣2x+b上,则m与n的大小关系为()A.m>n B.m<nC.m=n D.大小关系无法确定7.把函数y=3x﹣3的图象沿x轴正方向水平向右平移2个单位后的解析式是()A.y=3x﹣9B.y=3x﹣6C.y=3x﹣5D.y=3x﹣18.一个安装有进出水管的30升容器,水管单位时间内进出的水量是一定的,设从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,得到水量y(升)与时间x(分)之间的函数关系如图所示.根据图象信思给出下列说法,其中错误的是()A.每分钟进水5升B.每分钟放水1.25升C.若12分钟后只放水,不进水,还要8分钟可以把水放完D.若从一开始进出水管同时打开需要24分钟可以将容器灌满9.如图,在△ABC中,点D、E、F分别在边BC、AB、AC上,且BD=BE,CD=CF,∠A=70°,那么∠FDE等于()A.40°B.45°C.55°D.35°10.如图所示,△ABP与△CDP是两个全等的等边三角形,且PA⊥PD,有下列四个结论:①∠PBC =15°,②AD∥BC,③PC⊥AB,④四边形ABCD是轴对称图形,其中正确的个数为()A.1个B.2个C.3个D.4个二、填空(本大共4小,每小题5分,满分20分)11.函数y=中,自变量x的取值范围是.12.若点(a,3)在函数y=2x﹣3的图象上,a的值是.13.已知等腰三角形一腰的垂直平分线与另一腰所在直线的夹角为50°,则此等腰三角形的顶角为.14.如图,CA⊥AB,垂足为点A,AB=24,AC=12,射线BM⊥AB,垂足为点B,一动点E从A 点出发以3厘米/秒沿射线AN运动,点D为射线BM上一动点,随着E点运动而运动,且始终保持ED=CB,当点E经过秒时,△DEB与△BCA全等.三、解答题(本题共2小题,每小题8分,共16分)15.已知一次函数的图象经过A(﹣1,4),B(1,﹣2)两点.(1)求该一次函数的解析式;(2)直接写出函数图象与两坐标轴的交点坐标.16.△ABC在平面直角坐标系中的位置如图所示.(1)在图中画出△ABC与关于y轴对称的图形△A1B1C1,并写出顶点A1、B1、C1的坐标;(2)若将线段A1C1平移后得到线段A2C2,且A2(a,2),C2(﹣2,b),求a+b的值.四、解答题(本大題共2小题,每小题8分,计16分)17.如图,一次函数图象经过点A(0,2),且与正比例函数y=﹣x的图象交于点B,B点的横坐标是﹣1.(1)求该一次函数的解析式:(2)求一次函数图象、正比例函数图象与x轴围成的三角形的面积.18.如图,P,Q是△ABC的边BC上的两点,且BP=PQ=QC=AP=AQ,求∠ABC的度数.五、解答题(20分)19.小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是米.(2)小明在书店停留了分钟.(3)本次上学途中,小明一共行驶了米.一共用了分钟.(4)在整个上学的途中(哪个时间段)小明骑车速度最快,最快的速度是米/分.20.如图,在△ABC中,点D在AB上,点E在BC上,BD=BE.(1)请你再添加一个条件,使得△BEA≌△BDC,并给出证明.你添加的条件是.(2)根据你添加的条件,再写出图中的一对全等三角形.(只要求写出一对全等三角形,不再添加其他线段,不再标注或使用其他字母,不必写出证明过程)六、解答题(本大题12分)21.P为等边△ABC的边AB上一点,Q为BC延长线上一点,且PA=CQ,连PQ交AC边于D.(1)证明:PD=DQ.(2)如图2,过P作PE⊥AC于E,若AB=6,求DE的长.七、解答题(本大题12分)22.某校运动会需购买A,B两种奖品,若购买A种奖品3件和B种奖品2件,共需60元;若购买A种奖品5件和B种奖品3件,共需95元.(1)求A、B两种奖品的单价各是多少元?(2)学校计划购买A、B两种奖品共100件,购买费用不超过1150元,且A种奖品的数量不大于B种奖品数量的3倍,设购买A种奖品m件,购买费用为W元,写出W(元)与m(件)之间的函数关系式.求出自变量m的取值范围,并确定最少费用W的值.八、解答題(本大题14分23.在平面直角坐标系中,O是坐标原点,A(2,2),B(4,﹣3),P是x轴上的一点(1)若PA+PB的值最小,求P点的坐标;(2)若∠APO=∠BPO,①求此时P点的坐标;②在y轴上是否存在点Q,使得△QAB的面积等于△PAB的面积,若存在,求出Q点坐标;若不存在,说明理由.参考答案与试题解析一、选择题(本题共10小题,每小题4分,共40分)1.【分析】应先判断出所求的点的横纵坐标的符号,进而判断点A所在的象限.【解答】解:因为点A(﹣3,4)的横坐标是负数,纵坐标是正数,符合点在第二象限的条件,所以点A在第二象限.故选B.【点评】解决本题的关键是记住平面直角坐标系中各个象限内点的符号,第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).2.【分析】根据一次函数的图象和性质,依次分析各个选项,选出正确的选项即可.【解答】解:A.一次函数y=﹣3x﹣2的图象y随着x的增大而减小,即A项错误,B.把x=0代入y=﹣3x﹣2得:y=﹣2,即在y轴的截距为﹣2,即B项错误,C.把y=0代入y=﹣3x﹣2的:﹣3x﹣2=0,解得:x=﹣,即与x轴交于点(﹣,0),即C项错误,D.函数图象经过第二三四象限,不经过第一象限,即D项正确,故选:D.【点评】本题考查了一次函数图象上点的坐标特征,一次函数的图象,一次函数的性质,正确掌握一次函数图象的增减性和一次函数的性质是解题的关键.3.【分析】由题意知:把这个三角形的内角和180°平均分了12份,最大角占总和的,根据分数乘法的意义求出三角形最大内角即可.【解答】解:因为3+4+5=12,5÷12=,180°×=75°,所以这个三角形里最大的角是锐角,所以另两个角也是锐角,三个角都是锐角的三角形是锐角三角形,所以这个三角形是锐角三角形.故选:A.【点评】此题考查了三角形内角和定理,解题时注意:三个角都是锐角,这个三角形是锐角三角形;有一个角是钝角的三角形是钝角三角形;有一个角是直角的三角形是直角三角形.4.【分析】根据单项式、三角形外角性质、线段公理、平行线性质解答即可.【解答】解:A、π是单项式,是真命题;B、三角形的一个外角大于任何一个与之不相邻的内角,是假命题;C、两点之间,线段最短,是假命题;D、两直线平行,同位角相等,是假命题;故选:A.【点评】本题考查了命题与定理:命题写成“如果…,那么…”的形式,这时,“如果”后面接的部分是题设,“那么”后面解的部分是结论.命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.5.【分析】根据等腰三角形两腰相等和三角形中任意两边之和大于第三边列不等式,求解即可.【解答】解:∵等腰三角形的底边长为4,腰长为x,∴2x>4,∴x>2.故选:B.【点评】本题考查等腰三角形的性质,等腰三角形中两腰相等,以及三角形的三边关系.6.【分析】根据一次函数y=﹣2x+b图象的增减性,结合点A和点B纵坐标的大小关系,即可得到答案.【解答】解:∵一次函数y=﹣2x+b图象上的点y随着x的增大而减小,又∵点A(m,﹣3)和点B(n,3)都在直线y=﹣2x+b上,且﹣3<3,∴m>n,故选:A.【点评】本题考查了一次函数图象上点的坐标特征,正确掌握一次函数图象的增减性是解题的关键.7.【分析】根据平移性质可由已知的解析式写出新的解析式即可.【解答】解:根据题意,直线向右平移2个单位,即对应点的纵坐标不变,横坐标减2,所以得到的解析式是y=3(x﹣2)﹣3=3x﹣9.故选:A.【点评】此题主要考查了一次函数图象与几何变换,能够根据平移迅速由已知的解析式写出新的解析式:y=kx左右平移|a|个单位长度的时候,即直线解析式是y=k(x±|a|);当直线y=kx上下平移|b|个单位长度的时候,则直线解析式是y=kx±|b|.8.【分析】根据前4分钟计算每分钟进水量,结合4到12分钟计算每分钟出水量,可逐一判断.【解答】解:每分钟进水:20÷4=5升,A正确;每分钟出水:(5×12﹣30)÷8=3.75 升;故B错误;12分钟后只放水,不进水,放完水时间:30÷3.75=8分钟,故C正确;30÷(5﹣3.75)=24分钟,故D正确,故选:B.【点评】本题考查函数图象的相关知识.从图象中获取并处理信息是解答关键.9.【分析】首先根据三角形内角和定理,求出∠B+∠C的度数;然后根据等腰三角形的性质,表示出∠BDE+∠CDF的度数,由此可求得∠EDF的度数.【解答】解:△ABC中,∠B+∠C=180°﹣∠A=110°;△BED中,BE=BD,∴∠BDE=(180°﹣∠B);同理,得:∠CDF=(180°﹣∠C);∴∠BDE+∠CDF=180°﹣(∠B+∠C)=180°﹣∠FDE;∴∠FDE=(∠B+∠C)=55°.故选:C.【点评】此题主要考查的是等腰三角形的性质以及三角形内角和定理.有效地进行等角的转移时解答本题的关键.10.【分析】(1)先求出∠BPC的度数是360°﹣60°×2﹣90°=150°,再根据对称性得到△BPC 为等腰三角形,∠PBC即可求出;(2)根据题意:有△APD是等腰直角三角形;△PBC是等腰三角形;结合轴对称图形的定义与判定,可得四边形ABCD是轴对称图形,进而可得②③④正确.【解答】解:根据题意,∠BPC=360°﹣60°×2﹣90°=150°∵BP=PC,∴∠PBC=(180°﹣150°)÷2=15°,①正确;根据题意可得四边形ABCD是轴对称图形,∴②AD∥BC,③PC⊥AB正确;④也正确.所以四个命题都正确.故选:D.【点评】本题考查轴对称图形的定义与判定,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.二、填空(本大共4小,每小题5分,满分20分)11.【分析】由二次根式中被开方数为非负数且分母不等于零求解可得.【解答】解:根据题意,得:,解得:x≤2且x≠﹣2,故答案为:x≤2且x≠﹣2.【点评】本题主要考查函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.【分析】把点(a,3)代入y=2x﹣3得到关于a的一元一次方程,解之即可.【解答】解:把点(a,3)代入y=2x﹣3得:2a﹣3=3,解得:a=3,故答案为:3.【点评】本题考查了一次函数图象上点的坐标特征,正确掌握代入法是解题的关键.13.【分析】由题意可知其为锐角等腰三角形或钝角等腰三角形,不可能是等腰直角三角形,所以应分开来讨论.【解答】解:当为锐角时,如图∵∠ADE=50°,∠AED=90°,∴∠A=40°当为钝角时,如图∠ADE=50°,∠DAE=40°,∴顶角∠BAC=180°﹣40°=140°,故答案为40°或140°.【点评】本题考查了等腰三角形的性质及三角形内角和定理,分类讨论是正确解答本题的关键.14.【分析】设点E经过t秒时,△DEB≌△BCA;由斜边ED=CB,分类讨论BE=AC或BE=AB 或AE=0时的情况,求出t的值即可.【解答】解:设点E经过t秒时,△DEB≌△BCA;此时AE=3t分情况讨论:(1)当点E在点B的左侧时,BE=24﹣3t=12,∴t=4;(2)当点E在点B的右侧时,①BE=AC时,3t=24+12,∴t=12;②BE=AB时,3t=24+24,∴t=16.(3)当点E与A重合时,AE=0,t=0;综上所述,故答案为:0,4,12,16.【点评】本题考查了全等三角形的判定方法;分类讨论各种情况下的三角形全等是解决问题的关键.三、解答题(本题共2小题,每小题8分,共16分)15.【分析】(1)利用待定系数法容易求得一次函数的解析式;(2)分别令x=0和y=0,可求得与两坐标轴的交点坐标.【解答】解:(1)∵图象经过点(﹣1,4),(1,﹣2)两点,∴把两点坐标代入函数解析式可得,解得,∴一次函数解析式为y=﹣3x+1;(2)在y=﹣3x+1中,令y=0,可得﹣3x+1=0,解得x=;令x=0,可得y=1,∴一次函数与x轴的交点坐标为(,0),与y轴的交点坐标为(0,1).【点评】本题主要考查待定系数及函数与坐标轴的交点,掌握待定系数法求函数解析式的步骤是解题的关键.16.【分析】(1)根据轴对称的性质确定出点A1、B1、C1的坐标,然后画出图形即可;(2)由点A1、C1的坐标,根据平移与坐标变化的规律可规定出a、b的值,从而可求得a+b的值.【解答】解:(1)如图所示:A1(2,3)、B1(3,2)、C1(1,1).(2)∵A1(2,3)、C1(1,1),A2(a,2),C2(﹣2,b).∴将线段A1C1向下平移了1个单位,向左平移了3个单位.∴a=﹣1,b=0.∴a+b=﹣1+0=﹣1.【点评】本题主要考查的轴对称变化、坐标变化与平移,根据根据平移与坐标变化的规律确定出a、b的值是解题的关键.四、解答题(本大題共2小题,每小题8分,计16分)17.【分析】(1)根据点B在函数y=﹣x上,点B的横坐标为﹣1,可以求得点B的坐标,再根据一次函数过点A和点B即可求得一次函数的解析式;(2)将y=0代入(1)求得的一次函数的解析式,求得该函数与x轴的交点,即可求得一次函数图象、正比例函数图象与x轴围成的三角形的面积.【解答】解:(1)∵点B在函数y=﹣x上,点B的横坐标为﹣1,∴当x=﹣1时,y=﹣(﹣1)=1,∴点B的坐标为(﹣1,1),∵点A(0,2),点B(﹣1,1)在一次函数y=kx+b的图象上,∴,得,即一次函数的解析式为y=x+2;(2)将y=0代入y=x+2,得x=﹣2,则一次函数图象、正比例函数图象与x轴围成的三角形的面积为:=1.【点评】本题考查两条直线相交或平行问题、待定系数法求一次函数解析式,解答本题的关键是明确题意,利用数形结合的思想解答.18.【分析】根据等边三角形的性质,得∠PAQ=∠APQ=∠AQP=60°,再根据等腰三角形的性质和三角形的外角的性质求得∠ABC=∠BAP=∠CAQ=30°,从而求解.【解答】解:∵BP=PQ=QC=AP=AQ,∴∠PAQ=∠APQ=∠AQP=60°,∠B=∠BAP,∠C=∠CAQ.又∵∠BAP+∠ABP=∠APQ,∠C+∠CAQ=∠AQP,∴∠ABC=∠BAP=∠CAQ=30°.【点评】此题主要考查了运用等边三角形的性质、等腰三角形的性质以及三角形的外角的性质.五、解答题(20分)19.【分析】(1)因为y轴表示路程,起点是家,终点是学校,故小明家到学校的路程是1500米;(2)与x轴平行的线段表示路程没有变化,观察图象分析其对应时间即可.(3)共行驶的路程=小明家到学校的距离+折回书店的路程×2.(4)观察图象分析每一时段所行路程,然后计算出各时段的速度进行比较即可.【解答】解:(1)∵y轴表示路程,起点是家,终点是学校,∴小明家到学校的路程是1500米.(2)由图象可知:小明在书店停留了4分钟.(3)1500+600×2=2700(米)即:本次上学途中,小明一共行驶了2700米.一共用了14分钟.(4)折回之前的速度=1200÷6=200(米/分)折回书店时的速度=(1200﹣600)÷2=300(米/分),从书店到学校的速度=(1500﹣600)÷2=450(米/分)经过比较可知:小明在从书店到学校的时候速度最快即:在整个上学的途中从12分钟到14分钟小明骑车速度最快,最快的速度是450 米/分【点评】本题考查了函数的图象及其应用,解题的关键是理解函数图象中x轴、y轴表示的量及图象上点的坐标的意义.20.【分析】本题是开放题,应先确定选择哪对三角形,再对应三角形全等条件求解.【解答】解:添加条件例举:BA=BC;∠AEB=∠CDB;∠BAC=∠BCA;证明例举(以添加条件∠AEB=∠CDB为例):∵∠AEB=∠CDB,BE=BD,∠B=∠B,∴△BEA≌△BDC.另一对全等三角形是:△ADF≌△CEF或△AEC≌△CDA.故填∠AEB=∠CDB;△ADF≌△CEF或△AEC≌△CDA.【点评】三角形全等的判定是中考的热点,一般以考查三角形全等的方法为主,判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.六、解答题(本大题12分)21.【分析】(1)过点P作PF∥BC交AC于点F;证出△APF也是等边三角形,得出∠APF=∠BCA=60°,AP=PF=AF=CQ,由AAS证明△PDF≌△QDC,得出对应边相等即可;(2)过P作PF∥BC交AC于F.同(1)由AAS证明△PFD≌△QCD,得出对应边相等FD=CD,证出AE+CD=DE=AC,即可得出结果.【解答】(1)证明:如图1所示,点P作PF∥BC交AC于点F;∵△ABC是等边三角形,∴△APF也是等边三角形,∴∠APF=∠BCA=60°,AP=PF=AF=CQ,∴∠FDP=∠DCQ,∠FDP=∠CDQ,在△PDF和△QDC中,,∴△PDF≌△QDC(AAS),∴PD=DQ;(2)解:如图2所示,过P作PF∥BC交AC于F.∵PF∥BC,△ABC是等边三角形,∴∠PFD=∠QCD,△APF是等边三角形,∴AP=PF=AF,∵PE⊥AC,∴AE=EF,∵AP=PF,AP=CQ,∴PF=CQ.在△PFD和△QCD中,,∴△PFD≌△QCD(AAS),∴FD=CD,∵AE=EF,∴EF+FD=AE+CD,∴AE+CD=DE=AC,∵AC=6,∴DE=3.【点评】本题考查了等腰三角形的判定与性质、全等三角形的判定与性质、平行线的性质;熟练掌握等边三角形的性质,证明三角形全等是解决问题的关键.七、解答题(本大题12分)22.【分析】(1)设A奖品的单价是x元,B奖品的单价是y元,根据条件建立方程组求出其解即可;(2)根据总费用=两种奖品的费用之和表示出W与m的关系式,并有条件建立不等式组求出x 的取值范围,由一次函数的性质就可以求出结论.【解答】解(1)设A奖品的单价是x元,B奖品的单价是y元,由题意,得,解得:.答:A奖品的单价是10元,B奖品的单价是15元;(2)由题意,得W=10m+15(100﹣m)=﹣5m+1500∴,解得:70≤m≤75.∵m是整数,∴m=70,71,72,73,74,75.∵W=﹣5m+1500,∴k=﹣5<0,∴W随m的增大而减小,=1125.∴m=75时,W最小∴应买A种奖品75件,B种奖品25件,才能使总费用最少为1125元.【点评】本题考查了一次函数的性质的运用,二元一次方程组的运用,一元一次不等式组的运用,解答时求一次函数的解析式是关键.八、解答題(本大题14分23.【分析】(1)根据题意画坐标系描点,根据两点之间线段最短,求直线AB解析式,与x轴交点即为所求点P.(2)①作点A关于x轴的对称点A',根据轴对称性质有∠APO=∠A'PO,所以此时P、A'、B在同一直线上.求直线A'B解析式,与x轴交点即为所求点P.②法一,根据坐标系里三角形面积等于水平长(右左两顶点的横坐标差)与铅垂高(上下两顶点的纵坐标差)乘积的一半,求得△PAB的面积为12,进而求得△QAP的铅垂高等于6,再得出直线BQ上的点E坐标为(2,8)或(2,﹣4),求出直线BQ,即能求出点Q坐标.法二,根据△QAB与△PAB同以AB为底时,高应相等,所以点Q在平行于直线AB、且与直线AB距离等于P到直线AB距离的直线上.这样的直线有两条,一条即过点P且与AB平行的直线,另一条在AB上方,根据平移距离相等即可求出.所求直线与y轴交点即点Q.【解答】解:(1)∵两点之间线段最短∴当A、P、B在同一直线时,PA+PB=AB最短(如图1)设直线AB的解析式为:y=kx+b∵A(2,2),B(4,﹣3)∴解得:∴直线AB:y=﹣x+7当﹣x+7=0时,得:x=∴P点坐标为(,0)(2)①作点A(2,2)关于x轴的对称点A'(2,﹣2)根据轴对称性质有∠APO=∠A'PO∵∠APO=∠BPO∴∠A'PO=∠BPO∴P 、A '、B 在同一直线上(如图2)设直线A 'B 的解析式为:y =k 'x +b '解得:∴直线A 'B :y =﹣x ﹣1当﹣x ﹣1=0时,得:x =﹣2∴点P 坐标为(﹣2,0)②存在满足条件的点Q法一:设直线AA '交x 轴于点C ,过B 作BD ⊥直线AA '于点D (如图3)∴PC =4,BD =2∴S △PAB =S △PAA '+S △BAA '=设BQ 与直线AA '(即直线x =2)的交点为E (如图4)∵S △QAB =S △PAB则S △QAB ==2AE =12∴AE =6∴E 的坐标为(2,8)或(2,﹣4)设直线BQ 解析式为:y =ax +q或解得: 或∴直线BQ :y =或y =∴Q 点坐标为(0,19)或(0,﹣5)法二:∵S △QAB =S △PAB∴△QAB 与△PAB 以AB 为底时,高相等即点Q 到直线AB 的距离=点P 到直线AB 的距离i )若点Q 在直线AB 下方,则PQ ∥AB设直线PQ :y =x +c ,把点P (﹣2,0)代入解得c =﹣5,y =﹣x ﹣5即Q (0,﹣5)ii )若点Q 在直线AB 上方,∵直线y =﹣x ﹣5向上平移12个单位得直线AB :y =﹣x +7∴把直线AB:y=﹣x+7再向上平移12个单位得直线AB:y=﹣x+19∴Q(0,19)综上所述,y轴上存在点Q使得△QAB的面积等于△PAB的面积,Q的坐标为(0,﹣5)或(0,19)【点评】本题考查了两点之间线段最短,轴对称性质,求直线解析式,求三角形面积,平行线之间距离处处相等.解题关键是根据题意画图描点,直角坐标系里三角形面积的求法()是较典型题,两三角形面积相等且等底时,高相等即第三个顶点在平行于底的直线上.。
{3套试卷汇总}2018年贵阳市八年级上学期数学期末复习检测试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,已知30MON ∠=︒,点1A ,2A ,3A ,…在射线ON 上,点1B ,2B ,3B ,…在射线OM 上,112A B A △,223A B A △,334A B A △,…均为等边三角形,若12OA =,则556A B A △的边长为( )A .8B .16C .24D .32【答案】D 【分析】先根据等边三角形的各边相等且各角为60°得:∠B 1A 1A 2=60°,A 1B 1=A 1A 2,再利用外角定理求∠OB 1A 1=30°,则∠MON=∠OB 1A 1,由等角对等边得:B 1A 1=OA 1=2,得出△A 1B 1A 2的边长为2,再依次同理得出:△A 2B 2A 3的边长为4,△A 4B 4A 5的边长为:24=16,则△A 5B 5A 6的边长为:25=1.【详解】解:∵△A 1B 1A 2为等边三角形,∴∠B 1A 1A 2=60°,A 1B 1=A 1A 2,∵∠MON=30°,∴∠OB 1A 1=60°-30°=30°,∴∠MON=∠OB 1A 1,∴B 1A 1=OA 1=2,∴△A 1B 1A 2的边长为2,同理得:∠OB 2A 2=30°,∴OA 2=A 2B 2=OA 1+A 1A 2=2+2=4,∴△A 2B 2A 3的边长为4,同理可得:△A 3B 3A 4的边长为:23=8,△A 4B 4A 5的边长为:24=16,则△A 5B 5A 6的边长为:25=1,故选:D .【点睛】本题考查了等边三角形的性质和外角定理,难度不大,需要运用类比的思想,依次求出各等边三角形的边长,并总结规律,才能得出结论.2.将0.00002018用科学记数法表示应为( )A .42.01810-⨯B .52.01810-⨯C .62.01810-⨯D .40.201810-⨯【答案】B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00002018=52.01810-⨯.故选:B .【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3.我国古代数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成一个正方形和两对全等的三角形,如图所示,已知∠A =90°,BD =4,CF =6,设正方形ADOF 的边长为x ,则210x x +=( )A .12B .16C .20D .24【答案】D 【分析】设正方形ADOF 的边长为x ,在直角三角形ACB 中,利用勾股定理可建立关于x 的方程,整理方程即可.【详解】解:设正方形ADOF 的边长为x ,由题意得:BE =BD =4,CE =CF =6,∴BC =BE +CE =BD +CF =10,在Rt △ABC 中,AC 2+AB 2=BC 2,即(6+x )2+(x +4)2=102,整理得,x 2+10x ﹣24=0,∴x 2+10x =24,故选:D .【点睛】本题考查了正方形的性质、全等三角形的性质、勾股定理等知识;熟练掌握正方形的性质,由勾股定理得出方程是解题的关键.4.下列四组数据中,能作为直角三角形三边长的是( )A .1,2,3B 33,5C .23,24,25D .0.3,0.4,0.5【答案】D【分析】根据勾股定理的逆定理:如果三角形有两边的平方和等于第三边的平方,那么这个三角形是直角三角形.如果没有这种关系,这个就不是直角三角形.【详解】解:A 、12+22≠32,根据勾股定理的逆定理可知不能作为直角三角形三边长;B 、2+2≠32,根据勾股定理的逆定理可知不能作为直角三角形三边长;C 、(32)2+(42)2≠(52)2,根据勾股定理的逆定理可知不能作为直角三角形三边长;D 、0.32+0.42=0.52,根据勾股定理的逆定理可知能作为直角三角形三边长.故选:D .【点睛】本题考查了勾股定理的逆定理,在应用勾股定理的逆定理时,应先认真分析所给边的大小关系,确定最大边后,再验证两条较小边的平方和与最大边的平方之间的关系,进而作出判断.5.要使分式242x x -+无意义,则x 的取值范围是( ) A .2x =-B .2x =C .2x ≠-D .2x ≠±【答案】A【分析】根据分式无意义,分母等于0列方程求解即可. 【详解】∵分式242x x -+无意义, ∴x+1=0,解得x=-1.故选A .【点睛】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(1)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零. 6.下列各组数是勾股数的是( )A .6,7,8B .1,2,3C .3,4,5D .5,5,9【答案】C【分析】直接根据勾股数的概念进行排除选项即可.【详解】A 、2226+7=858≠,故不符合题意;B 、2221+2=53≠,故不符合题意;C 、2223+4=25=5,故符合题意;D 、2225+5=509≠,故不符合题意;故选C .【点睛】本题主要考查勾股数,熟练掌握勾股数的概念及勾股定理是解题的关键.7.如图,长方形ABCD 中,43,4AB BC ==,点E 是DC 边上的动点,现将BCE 沿直线BE 折叠,使点C 落在点F 处,则点D 到点F 的最短距离为( )A .5B .4C .3D .2【答案】B 【分析】连接DB ,DF ,根据三角形三边关系可得DF+BF >DB ,得到当F 在线段DB 上时,点D 到点F 的距离最短,根据勾股定理计算即可.【详解】解:连接DB ,DF ,在△FDB 中,DF+BF >DB ,由折叠的性质可知,FB=CB=4,∴当F 在线段DB 上时,点D 到点F 的距离最短,在Rt △DCB 中,228BD DC BC =+=,此时DF=8-4=4,故选:B .【点睛】本题考查的是翻转变换的性质,勾股定理,三角形三边关系.翻转变换是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.8.计算21211x x x x ++⎛⎫+÷ ⎪⎝⎭的结果是 ( ) A .x+1B .11x +C .1x x +D .1x x+ 【答案】B【解析】按照分式的运算、去分母、通分、化简即可. 【详解】21211x x x x ++⎛⎫+÷ ⎪⎝⎭=1·x 1?x x x ()++= 11x +. 【点睛】此题主要考察分式的运算.9.等腰三角形一腰上的高与另一腰的夹角为45°,则其顶角为( )A .45°B .135°C .45°或67.5°D .45°或135°【答案】D【解析】①如图,等腰三角形为锐角三角形,∵BD ⊥AC ,∠ABD=45°,∴∠A=45°,即顶角的度数为45°.②如图,等腰三角形为钝角三角形,∵BD ⊥AC ,∠DBA=45°,∴∠BAD=45°,∴∠BAC=135°.故选:D.10.点()2,1-M 先向左平移3个单位长度,再向上平移2个单位长度得到的点的坐标是( ) A .()5,1B .()1,1-C .()1,2-D .()5,3-【答案】B【分析】直接利用平移中点的变化规律求解即可,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.【详解】∵2-3=-1,-1+2=1,∴得到的点的坐标是(-1,1).【点睛】本题考查图形的平移变换,关键是要懂得左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.二、填空题11.甲、乙二人同时从A地出发,骑车20千米到B地,已知甲比乙每小时多行3千米,结果甲比乙提前20分钟到达B地,求甲、乙二人的速度。
★试卷3套精选★贵阳市2018届八年级上学期数学期末调研试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列命题:①如果0a b +=,那么0a b ;②有公共顶点的两个角是对顶角;③两直线平行,同旁内角互补;④平行于同一条直线的两条直线平行.其中是真命题的个数有( )A .1B .2C .3D .4【答案】B【分析】利用等式的性质、对顶角的定义、平形线的判定及性质分别判断后即可确定正确的选项.【详解】如果0a b +=,那么a b 、互为相反数或0a b ==,①是假命题;有公共顶点的两个角不一定是对顶角,②是假命题;两直线平行,同旁内角互补,由平行公理的推论知,③是真命题;平行于同一条直线的两条直线平行,由平行线的性质知,④是真命题.综上,真命题有2个,故选:B .【点睛】本题主要考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.2.实数a ,b 在数轴上的对应点如图所示,则|a ﹣b|﹣2a 的结果为( )A .bB .2a ﹣bC .﹣bD .b ﹣2a 【答案】A【分析】由数轴可知a <0<b ,根据绝对值的性质和二次根式的性质化简即可.【详解】解:由数轴可知,a <0<b ,则a ﹣b <0,则|a ﹣b|2a -(a-b)-(-a)=﹣a+b+a =b .故选A .【点睛】本题考查的是绝对值和二次根式,熟练掌握绝对值的性质和二次根式的性质是解题的关键. 3.如图所示:数轴上点A 所表示的数为a ,则a 的值是( )A .5+1B .5-1C .-5+1D .-5-1 【答案】B 【解析】试题解析:由勾股定理得:22125+=,∴数轴上点A 所表示的数是5 1.-51a ;∴=- 故选B.4.若(a+b)2=4,(a -b)2=6,则 a 2+b 2 的值为( )A .25B .16C .5D .4 【答案】C【分析】由()()222222a b a b a b ++-=+可得答案.【详解】解:()22224a b a ab b +=++=①,()22226a b a ab b -=-+=②∴ ①+②得:222210,a b +=22 5.a b ∴+=故选C .【点睛】本题考查了完全平方公式的应用,掌握两个完全平方公式的结合变形是解题的关键.5.如图,在ABC ∆中,60ABC ∠=,D 为AC 的中点,DE AB ⊥,DF BC ⊥,垂足分别为点E ,F ,且3DE DF ==,则线段BE 的长为( )A 3B .2C .3D .3【答案】C【分析】连接BD ,根据题意得到BD 平分∠CBA ,得到∠DBE=30°,再根据三角函数即可求解.【详解】连接BD ,∵DE AB ⊥,DF BC ⊥,3DE DF ==∴BD 平分∠CBA∴∠DBE=30°,∴BE=DE÷tan30°=33÷=3, 故选C.【点睛】此题主要考查解直角三角形,解题的关键是熟知角平分线的判定及性质、三角函数的应用.6.若m >n ,下列不等式不一定成立的是( )A .m+2>n+2B .2m >2nC .>D .m 2>n 2 【答案】D【解析】试题分析:A 、不等式的两边都加2,不等号的方向不变,故A 正确;B 、不等式的两边都乘以2,不等号的方向不变,故B 正确;C 、不等式的两条边都除以2,不等号的方向不变,故C 正确;D 、当0>m >n 时,不等式的两边都乘以负数,不等号的方向改变,故D 错误;故选D .【考点】不等式的性质.7.如果一次函数y kx b =+的图象经过第二第四象限,且与x 轴正半轴相交,那么( )A .0,0k b >>B .0,0k b ><C .0,0k b <>D .0,0k b << 【答案】C【分析】根据一次函数的性质,即可判断k 、b 的范围.【详解】解:∵一次函数y kx b =+的图象经过第二第四象限,∴k 0<,∵直线与x 轴正半轴相交,∴0b k->,∴0b >;故选择:C.【点睛】本题考查了一次函数的图形和性质,解题的关键是根据直线所经过的象限,正确判断k 、b 的取值范围. 8.把分式2223x y x y +-的x ,y 均扩大为原来的10倍后,则分式的值 A .为原分式值的110 B .为原分式值的1100 C .为原分式值的10倍D .不变 【答案】A【解析】试题解析:x 、y 均扩大为原来的10倍后,∴()()2222102312310100x y x y x y x y ++=⨯-- 故选A.9.若分式211x x -+的值为0,则x 应满足的条件是( ) A .x = -1B .x ≠ -1C .x = ±1D .x = 1【答案】D【分析】将分式方程转换成整式方程,一定要注意分母不为0【详解】由题意得:x 2-1=0 且x+1≠0,解得:x=1,故选D【点睛】求解分式方程是本题的考点,解分式方程时应注意分母不为010 )A .5±B .5CD .-5 【答案】B【解析】根据二次根式的性质进行化简,即可得到答案.5=,故选:B.【点睛】本题考查了二次根式的性质,解题的关键是熟练掌握二次根式的性质进行计算.二、填空题11.若(x+m )(x+3)中不含x 的一次项,则m 的值为__.【答案】-1【分析】把式子展开,找到x 的一次项的所有系数,令其为2,可求出m 的值.【详解】解:∵(x+m )(x+1)=x 2+(m+1)x+1m ,又∵结果中不含x 的一次项,∴m+1=2,解得m=-1.【点睛】本题主要考查了多项式乘多项式的运算,注意当多项式中不含有哪一项时,即这一项的系数为2. 12.如图,四边形ABCD 中,90BCD ∠=︒,,4,5ABD DBC AB DC ∠=∠==,则ABD ∆的面积为__________.【答案】10【分析】过点D 作DE ⊥AB 与点E ,根据角平分线的性质可得CD=DE ,再用三角形面积公式求解.【详解】解:如图,过点D 作DE ⊥AB 与点E ,∵ABD DBC ∠=∠,∴BD 平分∠ABC ,∵∠BCD=90°,∴CD=DE=5,∵AB=4,∴△ABD 的面积=12×AB×DE=12×4×5=10. 故答案为:10.【点睛】本题考查了角平分线的性质和三角形面积求法,角平分线上的点到角两边距离相等,根据题意作出三角形的高,从而求出面积.13.因式分解:3x 2-6xy+3y 2=______.【答案】3(x﹣y)1【解析】试题分析:原式提取3,再利用完全平方公式分解即可,得到3x1﹣6xy+3y1=3(x1﹣1xy+y1)=3(x﹣y)1.考点:提公因式法与公式法的综合运用14.某种商品的进价为150元,出售时标价为225元,由于销售情况不好,商店准备降价出售,但要保证利润不低于10%,如果商店要降x元出售此商品,请列出不等式_____.【答案】225-x≥150(1+10%)【解析】首先由题意得出不等关系为利润≥等于10%,然后列出不等式为225-x≥150(1+10%)即可.【详解】设商店降价x元出售,由题意得225-x≥150(1+10%).故答案为:225-x≥150(1+10%).【点睛】本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.15.9的平方根是_________.【答案】±1【解析】分析:根据平方根的定义解答即可.详解:∵(±1)2=9,∴9的平方根是±1.故答案为±1.点睛:本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.16.如图,在△ABC中,AB=AC=11,∠BAC=120°,AD是△ABC的中线,AE是∠BAD的角平分线,DF∥AB交AE的延长线于点F,则DF的长为________.【答案】1.1【分析】根据等腰三角形三线合一的性质可得AD⊥BC,∠BAD=∠CAD,再求出∠DAE=∠EAB=30°,然后根据平行线的性质求出∠F=∠BAE=30°,从而得到∠DAE=∠F,再根据等角对等边求出AD=DF,然后求出∠B=30°,根据直角三角形30°角所对的直角边等于斜边的一半解答.【详解】解:∵AB=AC,AD是△ABC的中线,∴AD⊥BC,∠BAD=∠CAD=∠BAC=×120°=60°,∵AE是∠BAD的角平分线,∴∠DAE=∠EAB=∠BAD=×60°=30°,∵DF∥AB,∴∠F=∠BAE=30°,∴∠DAE=∠F=30°,∴AD=DF,∵∠B=90°﹣60°=30°,∴AD=12AB=12×11=1.1,∴DF=1.1.故答案为1.1.考点:等腰三角形的判定与性质;含30度角的直角三角形.17.将一副学生用三角板(即分别含30°角、45°角的直角三角板)按如图所示方式放置,则∠1=____°.【答案】1.【分析】先根据三角形的内角和得出∠2=180°−90°−30°=60°,再利用对顶角相等可得∠3=∠2=60°,再根据三角形外角的性质得到∠1=45°+∠3,计算即可求解.【详解】如图:由三角形的内角和得∠2=180°﹣90°﹣30°=60°,则∠3=∠2=60°,则∠1=45°+∠3=1°.故答案为:1.【点睛】本题主要考查三角形的外角的性质,解题的关键是掌握三角形的内角和定理和三角形外角的性质.三、解答题18.计算下列各题.①(x2+3)(3x2﹣1)②(4x2y﹣8x3y3)÷(﹣2x2y)③[(m+3)(m ﹣3)]2④11﹣2×111+115÷113 ⑤22322432x y x y y x y x ⎛⎫⋅+⋅ ⎪⎝⎭ ⑥2311221x x x x x x -⎛⎫-÷- ⎪+++⎝⎭,其中x 满足x 2﹣x ﹣1=1. 【答案】①3x 4+8x 2﹣3;②﹣2+4xy 2;③m 4﹣18m 2+81;④1111100;⑤388x y +;⑥21x x +,1 【分析】①利用多项式乘以多项式进行计算即可;②利用多项式除以单项式法则进行计算即可;③首先利用平方差计算,再利用完全平方进行计算即可;④首先计算同底数幂的乘除,再算加法即可;⑤首先计算乘法,再算分式的加法即可;⑥先算小括号里面的减法,再算除法,最后再计算减法即可.【详解】解:①原式422393x x x =-+-,42383x x =+-;②原式224xy =-+;③原式2242(9)1881m m m =-=-+; ④原式111100100100100=⨯+=; ⑤原式22921163x y y x y =+, 3888x y y =+, 388x y+=; ⑥2311221x x x x x x -⎛⎫-÷- ⎪+++⎝⎭, ()223211x x x x x x x ++-=-+-+, ()21211x x x x x x x +-=-+-+, 1x x x =-+, 21x x x x +-=+, 21x x =+,210--=x x ,21x x ∴=+,代入∴原式1=.【点睛】此题主要考查了分式、整式和有理数的混合运算,关键是掌握计算法则和计算顺序.19.如图,直线1(0)y kx k =+≠角形与两坐标轴分别交于,A B ,直线24y x =-+与y 轴交于点,C 与直线1y kx =+交于点,D ACD ∆面积为32. (1)求k 的值(2)直接写出不等式124x x +<-+的解集;(3)点P 在x 上,如果DBP ∆的面积为4,点P 的坐标.【答案】(1)1k =; (2)1x <; (3)P (-5,0)或(3,0).【分析】(1)将x=0分别代入两个一次函数表达式中求出点A 、C 的坐标,进而即可得出AC 的长度,再根据三角形的面积公式结合△ACD 的面积即可求出点D 的横坐标,利用一次函数图象上的点的坐标特点即可求出点D 的坐标,由点D 的坐标即可得到结论.(2)先移项,再合并同类项,即可求出不等式的解集.(3)由直线AB 的表达式即可得出B 的坐标,根据三角形面积为4,可计算PB 的长,根据图形和点B 的坐标可得P 的坐标.【详解】(1)当x=0时,11y kx =+=,2+4=4y x =-∴A (0,1),C (0,4)∴AC=3∴133222D D S ACD AC x x ===△ ∴1D x =当x=1时,24=2y x =-+∴D (1,2)将D (1,2)代入1y kx =+中解得1k =(2)124x x +<-+241x x +<-33x <1x <(3)在1y x =+中,当0y =时,1x =-∴B (-1,0)∵点P 在x 轴上设P (m,0) ∵142D S BDP PB y ==△ ∴1342PB ⨯= ∴14PB m =+=解得3m =或5m =-∴P (-5,0)或(3,0).【点睛】本题考查了直线解析式的几何问题,掌握直线解析式的性质和解法、解不等式的方法、三角形面积公式是解题的关键.20.如图,已知Rt △ABC ≌Rt △ADE ,∠ABC =∠ADE =90°,BC 与DE 相交于点F ,连结CD 、BE . (1)请你找出图中其他的全等三角形;(2)试证明CF =EF .【答案】(1)图中其它的全等三角形为:①△ACD ≌△AEB ,②△DCF ≌△BEF ;(2)证明过程见解析;【分析】(1)图中除了已知的Rt △ABC ≌Rt △ADE ,还有①△ACD 与△AEB ,②△DCF 与△BEF ,根据全等三角形的性质可得AC =AE ,AB =AD ,∠BAC =∠DAE ,进一步即可根据SAS 判断①中两个三角形应是全等关系,然后根据这两对全等三角形的性质即可判断②中两个三角形的关系,问题从而解决;(2)根据全等三角形的性质和SAS 可证△CAD ≌△EAB ,然后根据全等三角形的性质可得∠ACB =∠AED ,∠ACD =∠AEB ,CD=BE ,再利用AAS 即可证明△CDF ≌△EBF ,进一步即可推出结论.【详解】解:(1)图中其它的全等三角形为:①△ACD ≌△AEB ,②△DCF ≌△BEF ;①∵Rt△ABC≌Rt△ADE,∴AC=AE,AB=AD,∠BAC=∠DAE,∵∠BAC﹣∠BAD=∠DAE﹣∠BAD,∴∠DAC=∠BAE,在△ADC和△ABE中,∵AC=AE,AD=AB,∠DAC=∠BAE,∴△ADC≌△ABE(SAS);②∵Rt△ABC≌Rt△ADE,△ADC≌△ABE,∴∠ACB=∠AED,∠ACD=∠AEB,DC=BE,∴∠DCF=∠BEF,在△DCF和△BEF中,∵∠CFD=∠EFB,∠DCF=∠BEF,DC=BE,∴△CDF≌△EBF(AAS).(2)∵Rt△ABC≌Rt△ADE,∴AC=AE,AD=AB,∠CAB=∠EAD,∴∠CAB﹣∠DAB=∠EAD﹣∠DAB.即∠CAD=∠EAB.∴△CAD≌△EAB(SAS),∵Rt△ABC≌Rt△ADE,△ADC≌△ABE,∴∠ACB=∠AED,∠ACD=∠AEB,DC=BE,∴∠DCF=∠BEF,在△DCF和△BEF中,∵∠CFD=∠EFB,∠DCF=∠BEF,DC=BE,∴△CDF≌△EBF(AAS)∴CF=EF.【点睛】本题主要考查了全等三角形的判定和性质,属于常考题型,灵活应用全等三角形的判定和性质是解题的关键.21.张明和李强两名运动爱好者周末相约到东湖绿道进行跑步锻炼.周日早上6点,张明和李强同时从家出发,分别骑自行车和步行到离家距离分别为4.5千米和1.2千米的绿道落雁岛入口汇合,结果同时到达,且张明每分钟比李强每分钟多行220米,(1)求张明和李强的速度分别是多少米/分?(2)两人到达绿道后约定先跑 6 千米再休息,李强的跑步速度是张明跑步速度的m 倍,两人在同起点,同时出发,结果李强先到目的地n 分钟.①当m =12,n =5时,求李强跑了多少分钟?②张明的跑步速度为 米/分(直接用含m ,n 的式子表示).【答案】(1)李强的速度为80米/分,张明的速度为1米/分.(2)()60001m mn +【分析】(1)设李强的速度为x 米/分,则张明的速度为(x+220)米/分,根据等量关系:张明和李强所用时间相同,列出方程求解即可;(2)①根据路程一定,时间与速度成反比,可求李强跑了多少分钟;②先根据路程一定,时间与速度成反比,可求李强跑了多少分钟,进一步得到张明跑了多少分钟,再根据速度=路程÷时间求解即可.【详解】(1)设李强的速度为x 米/分,则张明的速度为(x+220)米/分, 根据题意得:12004500220x x =+, 解得:x=80,经检验,x=80是原方程的根,且符合题意,∴x+220=1.答:李强的速度为80米/分,张明的速度为1米/分.(2)①∵m=12,n=5,∴5÷(12-1)=511(分钟). 故李强跑了511分钟; ②李强跑了的时间:1n m -分钟, 张明跑了的时间:11n mn n m m +=--分钟, 张明的跑步速度为:6000÷6000(1)1mn m m mn -=-米/分. 【点睛】本题考查分式方程的应用,分析题意,找到合适的等量关系是解决问题的关键.22.已知直线1l :4y x =+与 y 轴交于点B ,直线2l : 4y kx =+与x 轴交于点A ,且直线1l 与直线2l 相交所形成的的角中,其中一个角的度数是 75°,则线段AB 长为__.【答案】8或83 【分析】先求得()04B ,,()40C -,,继而证得45BCO ∠=︒,分两种情况讨论,根据“30︒角所对直角边等于斜边的一半”即可求解.【详解】令直线4y x =+与x 轴交于点C ,令4y x =+中0x =,则4y =,∴()04B ,, 令4y x =+中0y =,则4x =-,∴()40C -,, ∴4BO CO ==,∴45BCO ∠=︒,如图1所示,当75α=︒时,∵75BCO BAO α∠∠=+=︒,∴∠30BAO =︒,∴28AB OB ==;如图2所示,当∠75CBA =︒时,∵75CBO ABO α∠∠=+=︒,∴30ABO ∠=︒,∴2AO AB =,∵222AO BO AB +=,∴()22242AO AO +=,解得:433AO =, ∴833AB =, 故答案为: 8或833. 【点睛】本题考查了一次函数图象上点的坐标特征以及“30︒角所对直角边等于斜边的一半”,解题的关键是求出∠30BAO =︒或30ABO ∠=︒.23.(1)计算:()()22233x x y xy y x x y xy ⎡⎤---÷⎣⎦; (2)作图题:(不写作法,但必须保留作图痕迹)如图,点P 、Q 是MON ∠内两点,分别在OM 和ON 上找点A 和B ,使四边形PABQ 周长最小.【答案】(1)22233x y x -;(2)答案见解析. 【分析】(1)首先将小括号里的式子首先将原式的被除数去括号合并后,利用多项式除以单项式法则计算,即可得到结论;(2)根据题意和两点之间线段最短,首先画出点P 关于OM 的对称点P ₁,再画出点Q 关于直线ON 的对称点Q ₁,连接P ₁Q ₁于OM,ON 交于点A,B,,四边形PABQ 周长最小.【详解】(1)原式3222323x y x y x y x y xy ⎡⎤=--+÷⎣⎦322223x y x y xy ⎡⎤=-÷⎣⎦ 22233x y x =- (2)作法:首先画出点P 关于OM 的对称点P ₁,再画出点Q 关于直线ON 的对称点Q ₁,连接P ₁Q ₁于OM,ON 交于点A,B,,四边形PABQ 周长最小..【点睛】(1)本题考查了多项式混合运算,做这类题一定要细心;(2)考查的是四边形的周长最短,把它转化成线段最短问题.24.阅读以下内容解答下列问题.七年级我们学习了数学运算里第三级第六种开方运算中的平方根、立方根,也知道了开方运算是乘方的逆运算,实际上乘方运算可以看做是“升次”,而开方运算也可以看做是“降次”,也就是说要“升次”可以用乘方,要“降次”可以用开方,即要根据实际需要采取有效手段“升”或者“降”某字母的次数.本学期我们又学习了整式乘法和因式分解,请回顾学习过程中的法则、公式以及计算,解答下列问题: (1)对照乘方与开方的关系和作用,你认为因式分解的作用也可以看做是 .(2)对于多项式x 3﹣5x 2+x+10,我们把x =2代入此多项式,发现x =2能使多项式x 3﹣5x 2+x+10的值为0,由此可以断定多项式x 3﹣5x 2+x+10中有因式(x ﹣2),(注:把x =a 代入多项式,能使多项式的值为0,则多项式一定含有因式(x ﹣a )),于是我们可以把多项式写成:x 3﹣5x 2+x+10=(x ﹣2)(x 2+mx+n ),分别求出m 、n 后再代入x 3﹣5x 2+x+10=(x ﹣2)(x 2+mx+n ),就可以把多项式x 3﹣5x 2+x+10因式分解,这种因式分解的方法叫“试根法”.①求式子中m 、n 的值;②用“试根法”分解多项式x 3+5x 2+8x+1.【答案】(1)降次;(2)①m =﹣3,n =﹣5;②(x+1)(x+2)2.【分析】(1)根据材料回答即可;(2)①分别令x=0和x=1即可得到关于m 和n 的方程,即可求出m 和n 的值;②把x =﹣1代入x 3+5x 2+8x+1,得出多项式含有因式(x+1),再利用①中方法解出a 和b ,即可代入原式进行分解.【详解】解:(1)根据因式分解的定义可知:因式分解的作用也可以看做是降次,故答案为:降次;(2)①在等式x 3﹣5x 2+x+10=(x ﹣2)(x 2+mx+n )中,令x =0,可得:102n =-,解得:n=-5,令x=1,可得:()15110=1m n -++-++,解得:m=﹣3,故答案为:m =﹣3,n =﹣5;②把x =﹣1代入x 3+5x 2+8x+1,得x 3+5x 2+8x+1=0,则多项式x 3+5x 2+8x+1可分解为(x+1)(x 2+ax+b )的形式,同①方法可得:a =1,b =1,所以x 3+5x 2+8x+1=(x+1)(x 2+1x+1),=(x+1)(x+2)2.【点睛】本题考查了因式分解,二元一次方程组的应用,解题的关键是读懂材料中的意思,利用所学知识进行解答. 25.在如图所示的正方形网格中,每个小正方形的边长都是1,△ABC 的顶点都在正方形网格的格点(网格线的交点)上.(1)请在如图所示的网格平面内作出平面直角坐标系,使点A 坐标为(1,3)点B 坐标为(2,1); (2)请作出△ABC 关于y 轴对称的△A'B'C',并写出点C'的坐标;(3)判断△ABC 的形状.并说明理由.【答案】(1)如图见解析;(2)如图见解析,C'的坐标为(﹣5,5);(3)△ABC 是直角三角形.【解析】试题分析:(1)根据A B 、两点的坐标建立平面直角坐标系即可;(2)作出各点关于y 轴的对称点,顺次连接即可;(3)根据勾股定理的逆定理判断出ABC 的形状即可.试题解析:(1)如图所示:(2)如图所示:'''A B C 即为所求:C'的坐标为()55-,;(3)2221454162091625AB AC BC =+==+==+=,,,∴222AB AC BC +=,∴ABC 是直角三角形.点睛:一个三角形两条边的平方和等于第三条边的平方,那么这个三角形是直角三角形.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.等腰三角形一腰上的高与另一腰的夹角是60°,则顶角的度数是()A.30°B.30°或150°C.60°或150°D.60°或120°【答案】B【分析】本题要分情况讨论.当等腰三角形的顶角是钝角或者等腰三角形的顶角是锐角两种情况.【详解】解:①当为锐角三角形时,如图1,∵∠ABD=60°,BD⊥AC,∴∠A=90°-60°=30°,∴三角形的顶角为30°;②当为钝角三角形时,如图2,∵∠ABD=60°,BD⊥AC,∴∠BAD=90°-60°=30°,∵∠BAD+∠BAC=180°,∴∠BAC=150°∴三角形的顶角为150°,故选:B.【点睛】本题主要考查了等腰三角形的性质及三角形内角和定理,做题时,考虑问题要全面,必要的时候可以做出模型帮助解答,进行分类讨论是正确解答本题的关键.2.用四舍五入法将0.00519精确到千分位的近似数是()A.0.0052B.0.005C.0.0051D.0.00519【答案】B【分析】根据精确度的定义即可得出答案.【详解】0.00519精确到千分位的近似数是0.005,故答案选择B.【点睛】本题考查的是近似数,属于基础题型,需要熟练掌握相关基础知识.3.下列各式计算正确的是()A B±2 C±2 D【答案】A【分析】根据平方根和立方根分别对四个选项进行计算即可.-1= 2±3,故只有A计算正确;故选:A.【点睛】本题考查的是平方根、算术平方根和立方根,计算的时候需要注意审题是求平方根还是算术平方根.4.下列命题是假命题的是()A.两直线平行,同旁内角互补;B.等边三角形的三个内角都相等;C.等腰三角形的底角可以是直角;D.直角三角形的两锐角互余.【答案】C【分析】根据平行线的性质、等边三角形的性质、等腰三角形的性质和直角三角形的性质分别判断即可. 【详解】解:A. 两直线平行,同旁内角互补,正确;B. 等边三角形的三个内角都相等,正确;C. 由于等腰三角形的两个底角相等,且三角形内角和是180°,故等腰三角形的底角不可以是直角,错误;D. 直角三角形的两锐角互余,正确,故选:C.【点睛】本题考查了平行线的性质、等边三角形的性质、等腰三角形的性质和直角三角形的性质,熟练掌握各性质是解题关键.5.①实数和数轴上的点一一对应.②不带根号的数一定是有理数.③一个数的立方根是它本身,这样的1.其中真命题有( )A.1个B.2个C.3个D.4个【答案】A【分析】根据数轴的性质与实数的性质及二次根式的性质依次判断即可.【详解】实数和数轴上的点一一对应,①是真命题;不带根号的数不一定是有理数,例如π是无理数,②是假命题;一个数的立方根是它本身,这样的数有±1,0,共3个,③是假命题;3,④是假命题;综上所述,只有一个真命题,故选:A.【点睛】本题主要考查了命题真假的判断,熟练掌握各章节的相关概念是解题关键.6.如图,ACB ∆和ECD ∆都是等腰直角三角形,6CA CB ==,CE CD =,ACB ∆的顶点A 在ECD ∆的斜边DE 上,若:1:2AE AD =,则两个三角形重叠部分的面积为( )A .6B .9C .12D .14【答案】C 【分析】先根据已知条件,证明图中空白的三个小三角形相似,即CFB AFD CAE ,根据AD AFDF CE CA AE==,求出AF 的值,再求出BF 的值,由于△ACF 与△ABC 同高,故面积之比等于边长之比,最后根据AF 与BF 的关系,得出△ACF 与△ABC 的面积之比,由于△ABC 的面积可求,故可得出阴影部分的面积. 【详解】根据题意,补全图形如下:图中由于ACB ∆和ECD ∆都是等腰直角三角形,故可得出如下关系:BCD ACE BAD ∠=∠=∠,CBA ADC CED ∠=∠=∠由此可得CFB AFD CAE ,继而得到AD AF DF CE CA AE==,令AE x =,则2AD x =, 根据勾股定理,得出:322CE x = 那么23622AF =,解出422AF = 22664222BF =+=由于△ACF与△ABC同高,故面积之比等于边长之比,则2216612332 ACF ACBS S==⋅⋅⋅=故阴影部分的面积为12.【点睛】本题关键在于先证明三个三角形相似,得出对应边的关系,最后根据已知条件算出边长,得出阴影部分面积与已知三角形面积之比,故可得出阴影部分的面积.7.一个直角三角形的两条边长分别为3cm,4cm,则该三角形的第三条边长为()A.7cm B.5cm C.7cm或5cm D.5cm【答案】D【分析】本题已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,因此两条边中的较长边4既可以是直角边,也可以是斜边,所以求第三边的长必须分类讨论,即4是斜边或直角边的两种情况,然后利用勾股定理求解.【详解】设第三边为x,(1)若4是直角边,则第三边x是斜边,由勾股定理得:22234x+=,∴5x=;(2)若4是斜边,则第三边x为直角边,由勾股定理得:22234x+=,∴x=综上:第三边的长为5故选:D.【点睛】本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.8.因式分解x﹣4x3的最后结果是()A.x(1﹣2x)2B.x(2x﹣1)(2x+1)C.x(1﹣2x)(2x+1)D.x(1﹣4x2)【答案】C【分析】原式提取公因式,再利用平方差公式分解即可.【详解】原式=x(1﹣4x2)=x(1+2x)(1﹣2x).故选C.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解答本题的关键.9.下面是黑板上出示的尺规作图题,需要回答横线上符号代表的内容:如图,已知AOB ∠,求作:DEF ∠,使DEF AOB ∠=∠.作法:(1)以为圆心,任意长为半径画弧,分别交OA 、OB 于点P 、Q ;(2)作射线EG ,并以点E 为圆心,长为半径画弧交EG 于点D ; (3)以点D 为圆心,长为半径画弧交(2)步中所画弧于点F ; (4)作,DEF ∠即为所求作的角.A .表示点E B .表示PQ C .表示OQ D .表示射线EF【答案】D【分析】根据尺规作一个角等于已知角的步骤,即可得到答案.【详解】作法:(1)以点O 为圆心,任意长为半径画弧,分别交OA 、OB 于点P 、Q ;(2)作射线EG ,并以点E 为圆心,OP 为半径画弧交EG 于点D ;(3)以点D 为圆心,PQ 长为半径画弧交(2)步中所画弧于点F ;(4)作射线EF ,DEF ∠即为所求作的角.故选D .【点睛】本题主要考查尺规作一个角等于已知角,掌握尺规作图的基本步骤是解题的关键,注意,尺规作一个角等于已知角的原理是:SSS .10.如图,在等腰三角形ABC 中,AB AC =,AB 的垂直平分线MN 交AC 于点D ,连接BD ,45A ∠=︒,则DBC ∠的度数为( )A .22.5︒B .25︒C .27.5︒D .30【答案】A 【分析】根据等腰三角形和线段垂直平分线的性质即可得出答案.【详解】∵AB=AC ,∠A=45°∴∠ABC=∠C=67.5°又DM 是AB 的垂直平分线∴DA=DB∴∠A=∠DBA=45°∠DBC=∠ABC-∠DBA=22.5°故答案选择A.【点睛】本题考查的是等腰三角形和线段垂直平分线的性质,比较简单,需要熟练掌握相关基础知识.二、填空题11.已知关于x ,y 的方程组111222a b c a b c x y x y +=⎧⎨+=⎩的唯一解是41x y =⎧⎨=⎩,则关于m ,n 的方程组()()11112222a 2m 6b c b a 2m 6b c b n n ⎧--=+⎪⎨--=+⎪⎩的解是____________. 【答案】52m n =⎧⎨=-⎩ 【分析】变形方程组,根据整体代入的方法进行分析计算即可;【详解】方程组()()11112222a 2m 6b c b a 2m 6b c b n n ⎧--=+⎪⎨--=+⎪⎩可变形为方程组()()111222a 2m 6b (1)c a 2m 6b (1)c n n ⎧-+--=⎪⎨-+--=⎪⎩,即是当261x m y n =-⎧⎨=--⎩代入方程组111222a b c a b c x y x y +=⎧⎨+=⎩之后的方程组,则41x y =⎧⎨=⎩也是这一方程组的解,所以26411x m y n =-=⎧⎨=--=⎩,∴52m n =⎧⎨=-⎩. 故答案是52m n =⎧⎨=-⎩. 【点睛】本题主要考查了二元一次方程组的求解,准确分析计算是解题的关键.12.计算:(a-b )(a 2+ab+b 2)=_______.【答案】a 3-b 3【分析】根据多项式乘以多项式法则进行计算即可求解.【详解】3222322233()()=a a b ab a b ab b a b a b a ab b ++---=--++ 故答案为:33a b -【点睛】本题考查了多项式乘以多项式法则,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加.13.如图,在Rt△ABC中,∠ABC=90°,AB=BC=8,若点M在BC上,且BM=2,点N是AC上一动点,则BN+MN的最小值为___________.【答案】10【分析】过点B作BO⊥AC于O,延长BO到B',使OB'=OB,连接MB',交AC于N,此时MB'=MN+NB'=MN+BN的值最小【详解】解:连接CB',∵BO⊥AC,AB=BC,∠ABC=90°,∴∠CBO=1×90°=45°,2∵BO=OB',BO⊥AC,∴CB'=CB,∴∠CB'B=∠OBC=45°,∴∠B'CB=90°,∴CB'⊥BC,根据勾股定理可得MB′=1O,MB'的长度就是BN+MN的最小值.故答案为:10【点睛】本题考查轴对称-最短路线问题;勾股定理.确定动点E何位置时,使BN+MN的值最小是关键.14.如图,已知AB⊥CD,垂足为B,BC=BE,若直接应用“HL”判定△ABC≌△DBE,则需要添加的一个条件是__________.【答案】AC=DE【解析】用“HL ”判定△ABC ≌△DBE ,已知BC=BE ,再添加斜边DE=AC 即可.15.定义运算“※”:a ※b =()()a a b a b b a b b a ⎧⎪⎪-⎨⎪⎪-⎩><,若5※x =2,则x 的值为___. 【答案】2.5或1.【详解】解:当5>x 时,5※x=2可化为525x =-,解得x=2.5,经检验x=2.5是原分式方程的解; 当5<x ,5※x=2可化为25x x =-,解得x=1,经检验x=1是原分式方程的解. 故答案为:2.5或1.【点睛】本题考查了新定义运算,弄清题中的新定义是解本题的关键,解题时注意分类讨论思想.16.按如图的运算程序,请写出一组能使输出结果为3的x 、y 的值:__________.【答案】1x =,1y =-.【分析】根据运算程序列出方程,取方程的一组正整数解即可.【详解】根据题意得:23x y -=,当1x =时,1y =-.故答案为:1x =,1y =-.【点睛】此题考查了解二元一次方程,弄清题中的运算程序是解本题的关键.17.如图,在△ABC 中,∠ABC =∠ACB ,AB 的垂直平分线交AC 于点M ,交AB 于点N .连接MB ,若AB =8,△MBC 的周长是14,则BC 的长为____.【答案】1【解析】根据线段垂直平分线上的点到线段两端点的距离相等的性质可得AM=BM ,然后求出△MBC 的周长=AC+BC ,再代入数据进行计算即可得解.【详解】∵M、N 是AB 的垂直平分线∴AM=BM ,∴△MBC 的周长=BM+CM+BC=AM+CM+BC=AC+BC ,∵AB =8,△MBC 的周长是14,∴BC=14-8=1.故答案为:1.【点睛】线段垂直平分线的性质, 等腰三角形的性质.三、解答题18.先化简,再求值:22111121x x x x -⎛⎫+÷ ⎪--+⎝⎭,其中x 是满足12x -<<的整数. 【答案】1x x +;1 【分析】根据分式的运算法则进行化简,再代入使分式有意义的值求解. 【详解】22111121x x x x -⎛⎫+÷ ⎪--+⎝⎭ =()()()21111x x x x x -⋅-+- =1x x + 把x=1代入原式=1.【点睛】此题主要考查分式的化简求值,解题的关键是熟知分式的运算法则.19.阅读题:在现今“互联网+”的时代,密码与我们的生活已经紧密相连,密不可分,而诸如“123456”、生日等简单密码又容易被破解,因此利用简单方法产生一组容易记忆的密码就很有必要了。
{3套试卷汇总}2018年贵州省名校八年级上学期数学期末综合测试试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列各数中,属于无理数的是()A.17-B.1.414 C.2D.38【答案】C【分析】无理数就是无限循环小数,依据定义即可作出判断.【详解】A.17-是有理数,错误B. 1.414是有限小数,是有理数,错误C. 2是无限不循环小数,是无理数,正确D. 38=2是整数,错误故选C.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,6,0.8080080008…(每两个8之间依次多1个0)等形式.2.下列表情中,是轴对称图形的是()A.B.C.D.【答案】B【解析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:A、不是轴对称图形,故此选项错误;B、是轴对称图形,故此选项正确;C、不是轴对称图形,故此选项错误;D、不是轴对称图形,故此选项错误;故选B.【点睛】考查了轴对称图形,关键是正确找出对称轴的位置.3.如图,以两条直线l1,l2的交点坐标为解的方程组是( )A.121x yx y-=⎧⎨-=⎩B.121x yx y-=-⎧⎨-=-⎩C.121x yx y-=-⎧⎨-=⎩D.121x yx y-=⎧⎨-=-⎩【答案】C【解析】两条直线的交点坐标应该是联立两个一次函数解析式所组成的方程组的解.因此本题需先根据两直线经过的点的坐标,用待定系数法求出两直线的解析式.然后联立两函数的解析式可得出所求的方程组.【详解】直线l1经过(2,3)、(0,-1),易知其函数解析式为y=2x-1;直线l2经过(2,3)、(0,1),易知其函数解析式为y=x+1;因此以两条直线l1,l2的交点坐标为解的方程组是:1 21 x yx y-=-⎧⎨-=⎩.故选C.【点睛】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.4.如图所示.在△ABC中,∠BAC=106°,EF、MN分别是AB、AC的中垂线,E、N在BC上,则∠EAN =()A.58°B.32°C.36°D.34°【答案】B【分析】先由∠BAC=106°及三角形内角和定理求出∠B+∠C的度数,再根据线段垂直平分线的性质求出∠B=∠BAE,∠C=∠CAN,即∠B+∠C=∠BAE+∠CAN,由∠EAN=∠BAC-(∠BAE+∠CAN)解答即可. 【详解】∵△ABC中,∠BAC=106°,∴∠B+∠C=180°-∠BAC=180°-106°=74°,∵EF、MN分别是AB、AC的中垂线,∴∠B=∠BAE,∠C=∠CAN,即∠B+∠C=∠BAE+∠CAN=74°,∴∠EAN=∠BAC-(∠BAE+∠CAN)=106°-74°=32°.故选B.【点睛】本题考查的是线段垂直平分线的性质及三角形内角和定理,能根据三角形内角和定理求出∠B+∠C=∠BAE+∠CAN=74°是解答此题的关键.5. “2的平方根”可用数学式子表示为( )A .2±B .32C .22+()D .2【答案】A【分析】根据a (a≥0)的平方根是±a 求出即可.【详解】解:2的平方根是2±故选:A .【点睛】本题考查平方根的性质,正确理解平方根表示方法是解本题的关键.6.如图,如果直线m 是多边形ABCDE 的对称轴,其中∠A =130°,∠B =110°,那么∠BCD 的度数为( )A .40°B .50°C .60°D .70°【答案】C 【分析】依据轴对称图形的性质可求得E ∠、D ∠的度数,然后用五边形的内角和减去A ∠、B ∠、E ∠、D ∠的度数即可.【详解】解:直线m 是多边形ABCDE 的对称轴,130A E ∴∠=∠=,110B D ∠=∠=,5401302110260BCD ∴∠=-⨯-⨯=.故选C .【点睛】本题主要考查的是轴对称的性质、多边形的内角和公式的应用,熟练掌握相关知识是解题的关键. 7.将一块直角三角板ABC 按如图方式放置,其中∠ABC =30°,A 、B 两点分别落在直线m 、n 上,∠1=20°,添加下列哪一个条件可使直线m ∥n( )A .∠2=20°B .∠2=30°C .∠2=45°D .∠2=50°【答案】D 【分析】根据平行线的性质即可得到∠2=∠ABC+∠1,即可得出结论.【详解】∵直线EF ∥GH ,∴∠2=∠ABC+∠1=30°+20°=50°,故选D .【点睛】本题考查了平行线的性质,熟练掌握平行线的性质是解题的关键.8.下列式子:①4416333⋅=;②437(3)(3)3-⋅-=-;③223(3)81-⋅-=-;④445222+=.其中计算正确的有( )A .1个B .2个C .3个D .4个 【答案】C【解析】试题解析:①错误,②正确,③正确, ④正确.正确的有3个.故选C.点睛:同底数幂相乘,底数不变,指数相加.9.表示一次函数y mx n =+与正比例函数y mnx =(m ,n 是常数且0mn ≠)图象可能是( ) A . B . C . D .【答案】A【分析】根据一次函数的图象确定m 、n 的符号,从而得到mn 的符号,然后根据正比例函数的性质对正比例函数图象进行判断,进而得出判断.【详解】A 、由一次函数图象得m <0,n >0,所以mn <0,则正比例函数图象过第二、四象限,所以A 选项正确;B 、由一次函数图象得m <0,n >0,所以mn <0,则正比例函数图象过第二、四象限,所以B 选项错误.C 、由一次函数图象得m >0,n >0,所以mn >0,则正比例函数图象过第一、三象限,所以C 选项错误;D 、由一次函数图象得m >0,n <0,所以mn <0,则正比例函数图象过第二、四象限,所以D 选项错误; 故选A .【点睛】本题考查一次函数与正比例函数的图象与性质,正比例函数y =kx 经过原点,当k >0,图象经过第一、三象限;当k <0,图象经过第二、四象限.10.下列各式运算正确的是( )A 42=±B .3553=C 1232=D 11222=【答案】D【分析】计算出各个选项中式子的正确结果,然后对照即可得到哪个选项是正确的.2=,故选项A 错误;∵=B 错误;=,故选项C 错误;=D 正确;故选D.【点睛】本题考查二次根式的混合运算,解题的关键是明确二次根式混合运算的计算方法.二、填空题11.分解因式:x 3y ﹣4xy =_____.【答案】xy(x+2)(x -2)【解析】原式=2(4)(2)(2)xy x xy x x -=+-. 故答案为(2)(2)xy x x +-.12.若分式55y y --的值为0,则y =_______【答案】-1【分析】分式的值为0的条件是:分子为0,分母不为0,两个条件需同时具备,缺一不可. 【详解】解:若分式y 55y --的值等于0, 则|y|-1=0,y=±1.又∵1-y≠0,y≠1,∴y=-1. 若分式y 55y --的值等于0,则y=-1.故答案为-1.【点睛】本题主要考查分式的值为0的条件和绝对值的知识点,此题很容易出错,不考虑分母为0的情况. 13.如图,△ABC 的顶点都在正方形网格格点上,点A 的坐标为(-1,4).将△ABC 沿y 轴翻折到第一象限,则点C 的对应点C′的坐标是_____.【答案】(3,1)【解析】关于y 轴对称的点的坐标的特征:横坐标互为相反数,纵坐标相同.【详解】由题意得点C (-3,1)的对应点C′的坐标是(3,1).考点:关于y 轴对称的点的坐标【点睛】本题属于基础题,只需学生熟练掌握关于y 轴对称的点的坐标的特征,即可完成.14.如图,有一张长方形纸片ABCD ,4AB =,3AD =.先将长方形纸片ABCD 折叠,使边AD 落在边AB 上,点D 落在点E 处,折痕为AF ;再将AEF ∆沿EF 翻折,AF 与BC 相交于点G ,则FG 的长为___________.2【解析】根据折叠的性质可得∠DAF=∠BAF=45°,再由矩形性质可得FC=ED=1,然后由勾股定理求出FG 即可.【详解】由折叠的性质可知,∠DAF=∠BAF=45°,∴AE=AD=3,EB=AB-AD=1,∵四边形EFCB 为矩形,∴FC=BE=1,∵AB ∥FC ,∴∠GFC=∠DAF=45°,∴GC=FC=1, ∴22112FG GC FC =+=+= 2.【点睛】本题考查了折叠变换,矩形的性质是一种对称变换,理解折叠前后图形的大小不变,位置变化,对应边和对应角相等是解决此题的关键.15.阅读理解:引入新数i ,新数i 满足分配律,结合律,交换律.已知21i =-,那么(1)(1)i i +⋅-=________.【答案】2【分析】根据定义即可求出答案.【详解】由题意可知:原式=1-i 2=1-(-1)=2故答案为2【点睛】本题考查新定义型运算,解题的关键是正确理解新定义.16.如图,长方形ABCD 中AB =2,BC =4,正方形AEFG 的边长为1.正方形AEFG 绕点A 旋转的过程中,线段CF 的长的最小值为_____.【答案】25﹣2 【分析】连接AF ,CF ,AC ,利用勾股定理求出AC 、AF ,再根据三角形的三边关系得到当点A ,F ,C 在同一直线上时,CF 的长最小,最小值为25﹣2.【详解】解:如图,连接AF ,CF ,AC ,∵长方形ABCD 中AB =2,BC =4,正方形AEFG 的边长为1,∴AC =25,AF =2,∵AF+CF≥AC ,∴CF≥AC ﹣AF ,∴当点A ,F ,C 在同一直线上时,CF 的长最小,最小值为25﹣2,故答案为:25﹣2.【点睛】此题考查矩形的性质,正方形的性质,勾股定理,三角形的三边关系.17.计算-(-3a 2b 3)2的结果是_______.【答案】-9a 4b 6【分析】根据积的乘方和幂的乘方法则即可解答.【详解】解:232223246399.()()()a b a b a b --=-=-【点睛】本题考查积的乘方和幂的乘方运算,熟练掌握其法则是解题的关键.三、解答题18.如图,在平行四边形ABCD 中,点E 为AD 的中点,延长CE 交BA 的延长线于点F .(1)求证:AB =AF ;(2)若BC =2AB ,∠BCD =100°,求∠ABE 的度数.【答案】(1)证明见解析;(2)∠ABE =40°.【分析】(1)由四边形ABCD 是平行四边形,点E 为AD 的中点,易证得△DEC ≌△AEF (AAS ),继而可证得DC =AF ,又由DC =AB ,证得结论;(2)由(1)可知BF =2AB ,EF =EC ,然后由∠BCD =100°求得BE 平分∠CBF ,继而求得答案.【详解】证明:(1)∵四边形ABCD 是平行四边形,∴CD =AB ,CD ∥AB ,∴∠DCE =∠F ,∠FBC+∠BCD =180°,∵E 为AD 的中点,∴DE =AE .在△DEC 和△AEF 中,DCE F DEC AEF DE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△DEC ≌△AEF (AAS ).∴DC =AF .∴AB =AF ;(2)由(1)可知BF =2AB ,EF =EC ,∵∠BCD=100°,∴∠FBC=180°﹣100°=80°,∵BC=2AB,∴BF=BC,∴BE平分∠CBF,∴∠ABE=12∠FBC=12×80°=40°【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质以及等腰三角形的性质,证得△DEC≌△AEF和△BCF是等腰三角形是关键.19.如图,在平面直角坐标系中,直线l1:y=x+6与y轴交于点A,直线l2:y=kx+b与y轴交于点B,与l1相交于C(﹣3,3),AO=2BO.(1)求直线l2:y=kx+b的解析式;(2)求△ABC的面积.【答案】(1)y=﹣2x﹣3;(2)S△ABC272 =.【分析】(1)根据y轴上点的坐标特征可求A点坐标,再根据AO=2BO,可求B点坐标,根据待定系数法可求直线l2的解析式;(2)利用三角形面积公式即可求得.【详解】解:(1)∵直线l1:y=x+6与y轴交于点A,∴当x=0时,y=0+6=6,∴A(0,6).∵AO=2BO,∴B(0,﹣3).∵C(﹣3,3),代入直线l2:y=kx+b中得333k bb-+=⎧⎨=-⎩,解得23kb=-⎧⎨=-⎩.故直线l 2的解析式为y=﹣2x ﹣3;(2)S △ABC 12=AB •|x C |12=⨯(6+3)×3272=. 【点睛】此题主要考查了两条直线相交或平行问题,待定系数法,三角形的面积,关键是求出A 点坐标,B 点坐标.20.如图,在平面直角坐标系中,(1,5)A -、(1,0)B -、(4,3)C -(1)描点画出这个三角形(2)计算出这个三角形的面积.【答案】(1)见详解;(2)152. 【分析】(1)在平面直角坐标系中找到相应的A,B,C 点,然后顺次连接A,B,C 即可画出这个三角形; (2)直接利用三角形的面积公式12S ah =即可得出答案. 【详解】(1)如图(2)111553222S AB h ==⨯⨯= 【点睛】 本题主要考查平面直角坐标系中描点画三角形及三角形的面积,掌握三角形的面积公式及点在平面直角坐标系中的位置是解题的关键.21.如图所示,在△ABC 中,∠C=90°, AD 是 ∠BAC 的平分线,DE ⊥AB 交AB 于E ,F 在AC 上,BD=DF ,证明:CF=EB.【答案】证明见解析【分析】根据角平分线的性质“角平分线上的点到角的两边的距离相等”,可得点D到AB的距离=点D到AC的距离即DE=CD,再根据HL证明Rt△CDF≌Rt△EBD,从而得出CF=EB.【详解】解:∵AD是∠BAC的平分线,DE⊥AB于E,DC⊥AC于C,∴DE=DC.又∵BD=DF,∴Rt△CDF≌Rt△EDB,∴CF=EB.考点:1.全等三角形的判定与性质;2.角平分线的性质.22.已知ABC是等腰直角三角形,∠C=90°,点M是AC的中点,延长BM至点D,使DM=BM,连接AD.(1)如图①,求证:DAM≌BCM;(2)已知点N是BC的中点,连接AN.①如图②,求证:ACN≌BCM;②如图③,延长NA至点E,使AE=NA,连接,求证:BD⊥DE.【答案】(1)见解析;(2)①见解析;②见解析【分析】(1)由点M是AC中点知AM=CM,结合∠AMD=∠CMB和DM=BM即可得证;(2)①由点M,N分别是AC,BC的中点及AC=BC可得CM=CN,结合∠C=∠C和BC=AC即可得证;②取AD中点F,连接EF,先证△EAF≌△ANC得∠NAC=∠AEF,∠C=∠AFE=90°,据此知∠AFE=∠DFE=90°,再证△AFE≌△DFE得∠EAD=∠EDA=∠ANC,从而由∠EDB=∠EDA+∠ADB=∠EAD+∠NAC=180°-∠DAM即可得证.【详解】解:(1)∵点M是AC中点,∴AM=CM,在△DAM和△BCM中,∵AM CMAMD CMBDM BM=⎧⎪∠=∠⎨⎪=⎩,∴△DAM≌△BCM(SAS);(2)①∵点M是AC中点,点N是BC中点,∴CM=12AC,CN=12BC,∵△ABC是等腰直角三角形,∴AC=BC,∴CM=CN,在△BCM和△ACN中,∵CM CNC C BC AC=⎧⎪∠=∠⎨⎪=⎩,∴△BCM≌△ACN(SAS);②证明:取AD中点F,连接EF,则AD=2AF,∵△BCM≌△ACN,∴AN=BM,∠CBM=∠CAN,∵△DAM≌△BCM,∴∠CBM=∠ADM,AD=BC=2CN,∴AF=CN,∴∠DAC=∠C=90°,∠ADM=∠CBM=∠NAC,由(1)知,△DAM≌△BCM,∴∠DBC=∠ADB,∴AD∥BC,∴∠EAF=∠ANC,在△EAF和△ANC中,AE AN EAF ANC AF NC =⎧⎪∠=∠⎨⎪=⎩,∴△EAF ≌△ANC (SAS ),∴∠NAC=∠AEF ,∠C=∠AFE=90°,∴∠AFE=∠DFE=90°,∵F 为AD 中点,∴AF=DF ,在△AFE 和△DFE 中,AF DF AFE DFE EF EF =⎧⎪∠=∠⎨⎪=⎩,∴△AFE ≌△DFE (SAS ),∴∠EAD=∠EDA=∠ANC ,∴∠EDB=∠EDA+∠ADB=∠EAD+∠NAC=180°-∠DAM=180°-90°=90°,∴BD ⊥DE .【点睛】本题是三角形的综合问题,解题的关键是掌握中点的性质、等腰直角三角形的性质、全等三角形的判定与性质等知识点.23.已知:一次函数(0)y kx b k =+≠的图象经过(0,2),(1,3)M N 两点.求该一次函数表达式.【答案】y=x+2【分析】将点M 、N 的坐标代入解析式,求出方程组的解即可得到函数表达式.【详解】将点M 、N 的坐标代入解析式,得23b k b =⎧⎨+=⎩, 解得:21b k =⎧⎨=⎩则该函数表达式为:y x 2=+.【点睛】此题考查待定系数法求函数解析式,掌握正确的解法即可正确解答.24.如图,已知AB ⊥BC ,EC ⊥BC ,ED ⊥AC 且交AC 于F ,BC =CE ,则AC 与ED 相等吗?说明你的理由.【答案】AC=ED,理由见解析【分析】证得∠ACB=∠DEC,可证明△DEC≌△ACB,则AC=ED可证出.【详解】解:AC=ED,理由如下:∵AB⊥BC,EC⊥BC,DE⊥AC,∴∠ACB+∠FCE=90°,∠FCE+∠DEC=90°,∴∠ACB=∠DEC,∵BC=CE,∠ABC=∠DCE=90°∴△DEC≌△ACB(ASA),∴AC=ED.【点睛】本题主要考查了全等三角形的判定及性质,分析并证明全等所缺条件是解题关键.25.如图,直角坐标系中,点A的坐标为(3,0),以线段OA为边在第四象限内作等边△AOB,点C为x 轴正半轴上一动点(OC>3),连结BC,以线段BC为边在第四象限内作等边△CBD,直线DA交y轴于点E.(1)证明∠ACB=∠ADB;(2)若以A,E,C为顶点的三角形是等腰三角形,求此时C点的坐标;(3)随着点C位置的变化,OAAE的值是否会发生变化?若没有变化,求出这个值;若有变化,说明理由.【答案】(1)见解析;(2)C点的坐标为(9,0);(3)OAAE的值不变,12OAAE【分析】(1)由△AOB和△CBD是等边三角形得到条件,判断△OBC≌△ABD,即可证得∠ACB=∠ADB;(2)先判断△AEC的腰和底边的位置,利用角的和差关系可证得∠OEA=30,AE和AC是等腰三角形的腰,利用直角三角形中,30所对的边是斜边的一半可求得AE的长度,因此OC=OA+AC,即可求得点C 的坐标;(3)利用角的和差关系可求出∠OEA=30,再根据直角三角形中,30所对的边是斜边的一半即可证明.【详解】解:(1)∵△AOB和△CBD是等边三角形∴OB=AB,BC=BD,∠OBA=∠CBD=60︒,∴∠OBA+∠ABC=∠CBD+∠ABC,即∠OBC=∠ABD∴在△OBC与△ABD中,OB=AB,∠OBC=∠ABD,BC=BD∴△OBC≌△ABD(SAS)∴∠OCB=∠ADB即∠ACB=∠ADB(2)∵△OBC≌△ABD∴∠BOC=∠BAD=60︒又∵∠OAB=60︒∴∠OAE=1806060︒-︒-︒=60︒,∴∠EAC=120︒,∠OEA=30,∴在以A,E,C为顶点的等腰三角形中AE和AC是腰.∵在Rt△AOE中,OA=3,∠OEA=30∴AE=6∴AC=AE=6∴OC=3+6=9∴以A,E,C为顶点的三角形是等腰三角形时,C点的坐标为(9,0)(3)OAAE的值不变.理由:由(2)得∠OAE=180︒-∠OAB-∠BAD=60︒∴∠OEA=30∴在Rt△AOE中,EA=2OA∴OAAE=12.【点睛】本题主要考查了全等三角形的性质以及判定定理,平面直角坐标系,含30角直角三角形的性质,等腰三角形的性质,等边三角形的性质,灵活运用全等三角形的判定定理寻求全等三角形的判定条件证明三角形全等是解题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.10名初中毕业生的中考体育考试成绩如下:25 26 26 26 26 27 28 29 29 30 ,这些成绩的中位数是 ( ) A .25B .26C .26.5D .30 【答案】C【解析】试题分析:根据中位数的定义即可得到结果.根据题意,将10名考生的考试成绩从小到大排列,找第1、6人的成绩为26,27,其平均数为(26+27)÷2=26.1,故这些成绩的中位数是26.1.故选C .考点:本题考查的是中位数点评:先将该组数据按从小到大(或按从大到小)的顺序排列,然后根据数据的个数确定中位数:当数据个数为奇数时,则中间的一个数即为这组数据的中位数;当数据个数为偶数时,则最中间的两个数的算术平均数即为这组数据的中位数.2.如图,已知直线AB :y=55x+55分别交x 轴、y 轴于点B 、A 两点,C (3,0),D 、E 分别为线段AO 和线段AC 上一动点,BE 交y 轴于点H,且AD =CE ,当BD +BE 的值最小时,则H 点的坐标为( )A .(0,4)B .(0,5)C .(055)D .(055【答案】A 【分析】作EF ⊥BC 于F ,设AD=EC=x .利用勾股定理可得223(55)x +-22355(6)()88x x -+223(55)x +-229355()()44x -+BD+BE 的最小值,相当于在x 轴上找一点M (x ,0),使得点M 到G 553),K (94,3554)的距离之和最小.【详解】解:由题意A (055,B (-3,0),C (3,0),∴AB=AC=8,作EF ⊥BC 于F ,设AD=EC=x .∵EF ∥AO , ∴CE EF CF CA AO CO ==, ∴EF=55x ,CF=38x , ∵OH ∥EF ,∴OH BO EF BF=, ∴OH=55x , ∴BD+BE=223(55)x +-+22355(6)()88x x -+=223(55)x +-+229355()()44x -+, 要求BD+BE 的最小值,相当于在x 轴上找一点M (x ,0),使得点M 到K (55,3),G (94,355)的距离之和最小.设G 关于x 轴的对称点G′(94,355),直线G′K 的解析式为y=kx+b ,则有9355 44553k bk b⎧+=-⎪⎨⎪+=⎩,解得k=7555768+,b=172876855+-,∴直线G′K的解析式为y=7555768799+x172876855799+-,当y=0时,x=1728768557687555++,∴当x=1728768557687555++时,MG+MK的值最小,此时OH=55x=422401728551056043255++=4,∴当BD+BE的值最小时,则H点的坐标为(0,4),故选A.【点睛】本题考查一次函数图象上的点的特征、轴对称最短问题、勾股定理、平行线分线段成比例定理等知识,解题的关键是学会用转化的思想思考问题,属于中考选择题中的压轴题.3.把分式方程311xx x-=+化成整式方程,去分母后正确的是()A.23(1)1x x+-=B.23(1)(1)x x x x+-=+C.23(1)1x x++=D.23(1)(1)x x x x-+=+【答案】B【分析】分式方程两边乘以最简公分母()1x x+去分母即可得到结果.【详解】分式方程311xx x-=+去分母得:()()2311x x x x+-=+,故选:B.【点睛】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.4.如图,△ABC中,AB=AC,DE垂直平分AC,若△BCD的周长是14,BC=6,则AC的长是()A.6 B.8 C.10 D.14【答案】B【分析】先根据线段垂直平分线的性质得出AD =CD ,再根据等腰三角形的性质解答即可.【详解】解:∵DE 垂直平分AC ,∴AD =CD .∵△BCD 的周长是14,BC =6,∴AB =BD+CD =14﹣6=1,∵AB =AC ,∴AC =1.故答案为B .【点睛】本题考查了线段的垂直平分线的性质,掌握垂直平分线上的点到线段两端点距离相等的性质是解答本题的关键.5.点(3,1)A m m -+在第二、四象限的平分线上,则A 的坐标为( )A .(1,1)-B .(2,2)--C .(-2,2)D .(2,2)【答案】C【分析】根据第二、四象限的角平分线上的点横坐标与纵坐标互为相反数,可得关于m 的方程,求出m 值即可得到A 点坐标.【详解】解:由A (m-3,m+1)在第二、四象限的平分线上,得(m-3)+(m+1)=0,解得m=1,所以m-3=-2,m+1=2,A 的坐标为(-2,2),故选:C .【点睛】本题考查写出直角坐标系中点的坐标.理解第二、四象限的角平分线上的点横坐标与纵坐标互为相反数是解决此题的关键.6.如图,已知△ABC ,AB=5,∠ABC=60°,D 为BC 边上的点,AD=AC ,BD=2,则DC=( )A .0.5B .1C .1.5D .2【答案】B【分析】过点A 作AE ⊥BC ,得到E 是CD 的中点,在Rt △ABE 中,AB=5,∠ABC=60°,求出BE=52,进而求出DE=52-2=12,即可求CD . 【详解】过点A 作AE ⊥BC .∵AD=AC ,∴E 是CD 的中点,在Rt △ABE 中,AB=5,∠ABC=60°,∴BE=52. ∵BD=2,∴DE=52﹣2=12, ∴CD=1.故选:B .【点睛】此题考查等腰三角形与直角三角形的性质;熟练掌握等腰三角形的性质和含30°角的直角三角形的性质是解题的关键.7.如图,△ABC 中,∠C=90°,∠A=30°,AB =12,则BC =( )A .6B .2C .3D .12【答案】A 【详解】∵30°的角所对的直角边等于斜边的一半,1112622BC AB ∴==⨯= , 故选A.8.若分式()31x x x +-有意义,则x 的取值范围是 ( ) A .0x ≠ B .1x ≠ C .3x ≠ D .0x ≠且1x ≠【答案】D【解析】∵分式3(1)x x x +-有意义, ∴(1)0x x -≠,∴0x ≠且10x -≠,解得0x ≠且1x ≠.故选D.9.如图,将甲图中的阴影部分无重叠、无缝隙得拼成乙图,根据两个图形中阴影部面积关系得到的等式是( )A .a 2+b 2=(a+b)(a-b)B .a 2+2ab+b 2=(a+b)2C .a 2-2ab+b 2=(a-b)2D .(a+b)2-(a-b)2=4ab【答案】C 【分析】由图甲可知阴影部分的面积=大正方形的面积-两个长方形的面积+两个长方形重合部分的面积,由图乙可知阴影部分是边长为a -b 的正方形,从而可知其面积为(a-b)2,从而得出结论.【详解】解:由图甲可知:阴影部分的面积= a 2-2ab+b 2由图乙可知:阴影部分的面积=(a-b)2∴a 2-2ab+b 2=(a-b)2故选C .【点睛】此题考查的是完全平方公式的几何意义,掌握阴影部分面积的两种求法是解决此题的关键.10.已知AOB ∠,求作射线OC ,使OC 平分AOB ∠作法的合理顺序是( )①作射线OC ,②在OA 和OB 上分别截取OD ,OE ,使OD OE =,③分别以D ,E 为圆心,大于12DE 的长为半径作弧,AOB ∠在内,两弧交于C .A .①②③B .②①③C .②③①D .③②①【答案】C【分析】根据角平分线的作法排序即可得到答案.【详解】解:角平分线的作法是:在OA和OB上分别截取OD,OE,使OD OE=,分别以,D E为圆心,大于12DE的长为半径作弧,在AOB∠内,两弧交于C,作射线OC,故其顺序为②③①.故选:C.【点睛】本题考查尺规作图-角平分线,掌握角平分线的作图依据是解题的关键.二、填空题11.比较大小:________ (填“>”或“<”).【答案】>【分析】比较二次根式,只要把根号外面的数根据二次根式的性质移到根号里面,比较即可.【详解】解:,,∴故答案为:>.【点睛】此题主要考查二次根式的比较,运用二次根式性质,把根号外的数移到根号里面是解题的关键.12.比较大小:“>”、“<”或“=”填空).【答案】>【分析】先把4【详解】4=1615,>4∴>故填:>.【点睛】本题考查实数比较大小,属于基础题型.13.若a=b=c=a b c,,的大小关系用“<”号排列为_________.【答案】a<b<c【分析】利用平方法把三个数值平方后再比较大小即可.【详解】解:∵a 2=2000+21003997⨯,b 2=2000+21001999⨯,c 2=4004=2000+2×1002,1003×997=1000000-9=999991,1001×999=1000000-1=999999,10022=1.∴a <b <c .故答案为:a <b <c.【点睛】这里注意比较数的大小可以用平方法,两个正数,平方大的就大.此题也要求学生熟练运用完全平方公式和平方差公式.14.测得某人的头发直径为0.00000000835米,这个数据用科学记数法表示为____________ 【答案】98.3510-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00000000835= 8.35×10−1.故答案为: 8.35×10−1.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.15.已知如图所示,AB =AD =5,∠B =15°,CD ⊥AB 于C ,则CD =___.【答案】52【解析】根据等边对等角可得∠ADB=∠B ,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠DAC=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半可得CD=12AD . 【详解】∵AB=AD ,∴∠ADB=∠B=15°,∴∠DAC=∠ADB+∠B=30°,又∵CD ⊥AB ,∴CD=12AD=12×5=52. 故答案为:52.【点睛】本题考查了直角三角形30°角所对的直角边等于斜边的一半的性质,三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质是解题的关键.16.如图,已知点D ,F 分别在BAC ∠边AB 和AC 上,点E 在BAC ∠的内部,DF 平分ADE ∠.若70BAC BDE ∠=∠=︒,则AFD ∠的度数为______.【答案】1【解析】根据70BAC BDE ∠=∠=︒得到AC ∥DE ,110ADE ∠=︒,再根据DF 平分ADE ∠得到55FDE ∠=︒,根据平行的性质即可求出AFD ∠的度数.【详解】∵70BAC BDE ∠=∠=︒∴AC ∥DE ,18070110ADE ︒-︒=∠=︒,∵DF 平分ADE ∠∴55FDE ∠=︒又AC ∥DE∴AFD ∠=55FDE ∠=︒故答案为:1.【点睛】此题主要考查角度求解,解题的关键是熟知平行线的性质与判定.17.若21m +和5m +是一个正数的两个平方根,则这个正数是__________.【答案】1【分析】先根据一个正数有两个平方根且互为相反数,得出两个平方根之和为0,进而列方程求出m 的值,再将m 的值代入21m +或5m +并将结果平方即得.【详解】∵21m +和5m +是一个正数的两个平方根∴()()21+5=0m m ++解得:2m =-当2m =-时∴52+5=3m +=-∴239=∴这个正数是1.故答案为:1.【点睛】本题考查了平方根的性质,解题关键在于合理运用一个正数有两个平方根且互为相反数列出方程求解参数,求这个正数而非平方根这是易错点.三、解答题18.某中学举行“中国梦·校园好声音”歌手大赛,高、初中根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩(满分100)如下图所示:根据图示信息,整理分析数据如下表:平均数(分)中位数(分)众数(分)初中部a85 c高中部85 b100(说明:图中虚线部分的间隔距离均相等)(1)求出表格中a b c,,的值;(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差,并判断哪一个代表队选手成绩较为稳定.【答案】(1)a=85,b=80,c=85;(2)初中部成绩较好;(3)初中代表队的方差为70,高中代表队的方差为160,初中代表队选手成绩较为稳定【分析】(1)直接利用中位数、平均数、众数的定义分别分析求出答案;(2)利用平均数以及中位数的定义分析得出答案;(3)利用方差的定义得出答案.【详解】解:(1)填表:平均数(分)中位数(分)众数(分)初中部85 85 85高中部85 80 100(2)初中部成绩较好,因为两个队的平均数都相同,初中部的中位数高,所以在平均数相同的情况下中位数高的初中部成绩较好.(3)∵()()()()222221758580858585210085705s-+-+-⨯+-==,()()()()2222227085100852758580851605s -+-⨯+-+-==,∴s 12<s 22,因此初中代表队选手成绩较为稳定.【点睛】此题主要考查了平均数、众数、方差、中位数的定义和性质,正确把握相关定义是解题关键. 19.某农贸公司销售一批玉米种子,若一次购买不超过5千克,则种子价格为20元/千克,若一次购买超过5千克,则超过5千克部分的种子价格打8折.设一次购买量为x 千克,付款金额为y 元. (1)求y 关于x 的函数解析式;(2)若农户王大伯一次购买该种子花费了420元,求他购买种子的数量.【答案】(1)①当0≤x≤5时,y =20x ;②当x >5时,y =16x+20;(2)1千克【分析】(1)分情况求解:①购买量不超5千克时,付款金额=20×购买量;②购买量超过5千克时,付款金额=20×5+20×0.8×(购买量-5);(2)由于花费的钱数超过5×20=100元,所以需要把y =420代入(1)题的第二个关系式,据此解答即可.【详解】解:(1)根据题意,得:①当0≤x≤5时,y =20x ;②当x >5时,y =20×0.8(x ﹣5)+20×5=16x+20;(2)把y =420代入y =16x+20得,16x+20=420,解得:x =1.∴他购买种子的数量是1千克.【点睛】本题考查了一次函数的应用,属于常见题型,正确理解题意、熟练掌握一次函数的基本知识是解题关键. 20.小明的家离学校1600米,一天小明从家出发去上学,出发10分钟后,爸爸发现他的数学课本忘记拿了,立即带上课本去追他,正好在校门口追上他,已知爸爸的速度是小明速度的2倍,求小明的速度.【答案】小明的速度为80米/分.【解析】试题分析:设出小明和爸爸的速度,利用时间作为等量关系列方式方程解应用题. 试题解析:设小明的速度是x 米/分,爸爸的速度是2x 米/分,由题意得1600160010,2x x=+ 解得x=80,经检验,x=80是方程的根,所以小明的速度是80米/分.点睛:分式方程应用题:一设,一般题里有两个有关联的未知量,先设出一个未知量,并找出两个未知量的联系;二列,找等量关系,列方程,这个时候应该注意的是和差分倍关系:三解,正确解分式方程;四验,应用题要双检验;五答,应用题要写答.21.计算:(1)(x+3)(x ﹣3)﹣x(x ﹣2);(2)(﹣0.125)2018×(﹣2)2018×(﹣4)1.【答案】(1)2x ﹣9;(2)﹣2.【分析】(1)原式第一项利用平方差公式化简,第二项利用单项式乘以多项式法则计算,去括号合并得到最简结果;(2)根据有理数的混合运算法则解答.【详解】(1)原式=x 2﹣9﹣x 2+2x=2x ﹣9;(2)原式=[(﹣0.125)×(﹣2)×(﹣2)]2018•(﹣2)=(﹣1)2018•(﹣2)=﹣2.【点睛】此题主要考查了整式的混合运算,幂的乘方与积的乘方,熟记计算法则即可解题.22.先化简,再求值:2112111x x x x +⎛⎫-÷ ⎪-+-⎝⎭,其中x 满足240x -=. 【答案】22x ,12. 【分析】根据分式混合运算的法则把原式进行化简,再求出x 的值代入进行计算即可. 【详解】原式11(1)(1)()112x x x x x +-=-⨯-++ 1122x x x x +-=-++ 22x =+ 因为:240x -=2x =当2x =时,原式12=. 【点睛】本题考查分式的化简求值,熟练掌握计算法则是解题关键.23.已知关于x 的一元二次方程()22x 2k 1x k k 0-+++= (1)求证:方程有两个不相等的实数根;(2)若△ABC 的两边AB 、AC 的长是方程的两个实数根,第三边BC 的长为1.当△ABC 是等腰三角形时,求k 的值【答案】(5)详见解析(4)k 4=或k 5=。
(汇总3份试卷)2018年贵州省名校八年级上学期数学期末检测试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下面各组数据中是勾股数的是( )A .0.3,0.4,0.5B .5,12,13C .1,4,9D .5,11,12【答案】B【解析】根据勾股数的定义进行解答即可.【详解】A 、∵0.3,0.4,0.5是小数,∴不是勾股数,故本选项错误;B 、∵52+122=169=132,∴是勾股数,故本选项正确;C 、∵12+42≠92,∴不是勾股数,故本选项错误;D 、∵52+112≠122,∴不是勾股数,故本选项错误.故选:B .【点睛】本题考查勾股数,解题的关键是掌握勾股数的定义.2.下列四个命题中,真命题的个数有( )①数轴上的点和有理数是一一对应的;②Rt ABC ∆中,已知两边长分别是3和4,则第三条边长为5;③在平面直角坐标系中点(2,-3)关于y 轴对称的点的坐标是(-2,-3);④两条直线被第三条直线所截,内错角相等.A .1个B .2个C .3个D .4个 【答案】A【分析】根据命题的真假性进行判断即可得解.【详解】①数轴上的点和实数是一一对应的,故原命题错误,是假命题;②Rt ABC ∆中,已知两边长分别是3和4,则第三条边长为5 ③在平面直角坐标系中点(23)-,关于y 轴对称的点的坐标是(23)--,,故原命题正确,是真命题; ④两条平行直线被第三条直线所截,内错角相等,故原命题题错误,是假命题.所以真命题只有1个,故选:A.【点睛】本题主要考查了相关命题真假性的判断,熟练掌握相关命题涉及的知识点是解决本题的关键. 3.朱锦汶同学学习了全等三角形后,利用全等三角形绘制出了下面系列图案,第(1)个图案由2个全等的三角形组成,第(2)个图案由4个全等的三角形组成,(3)个图案由7个全等的三角形组成,(4)个图案由12个全等的三角形组成.则第(8)个图案中全等三角形的个数为( )A.52 B.136 C.256 D.264【答案】B【分析】仔细观察图形,结合三角形每条边上的三角形的个数与图形的序列数之间的关系发现图形的变化规律,利用发现的规律求解即可.【详解】观察发现:第一个图形有1+1=2个三角形;第二个图形有2+2=4个三角形;第三个图形有3+22=7个三角形;…第n个图形有n+2n-1个三角形;当n=8时,n+2n-1=8+27=1.故选:B.【点睛】本题考查了规律型:图形的变化类,本题是一道找规律的题目,这类题型在中考中经常出现.对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的.4.已知,如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB、AC于点D、E,若BD+CE=5,则线段DE的长为()A.5 B.6 C.7 D.8【答案】A【详解】试题分析:根据角平分线的性质可得:∠OBD=∠OBC,∠OCB=∠OCE,根据平行线的性质可得:∠OBC=∠DOB,∠OCB=∠COE,所以∠OBD=∠DOB,∠OCE=∠COE,则BD=DO,CE=OE,即DE=DO+OE=BD+CE=5.故选A【点睛】考点:等腰三角形的性质5.如图,四边形ABCD的对角线交于点O,下列哪组条件不能判断四边形ABCD是平行四边形()A .OA OC =,OB OD =B .AB CD =,AO CO =C .//AD BC ,AD BC =D .BAD BCD ∠=∠,//AB CD【答案】B 【分析】根据平行四边形的判定方法,对每个选项进行筛选可得答案.【详解】A 、∵OA=OC ,OB=OD ,∴四边形ABCD 是平行四边形,故A 选项不符合题意;B 、AB=CD ,AO=CO 不能证明四边形ABCD 是平行四边形,故本选项符合题意;C 、∵AD//BC ,AD=BC ,∴四边形ABCD 是平行四边形,故C 选项不符合题意;D 、∵AB ∥CD ,∴∠ABC+∠BCD=180°,∠BAD+∠ADC=180°,又∵∠BAD=∠BCD ,∴∠ABC=∠ADC ,∵∠BAD=∠BCD ,∠ABC=∠ADC ,∴四边形ABCD 是平行四边形,故D 选项不符合题意,故选B.【点睛】本题主要考查平行四边形的判定问题,熟练掌握平行四边形的性质,能够熟练判定一个四边形是否为平行四边形.平行四边形的判定:①两组对边分别平行的四边形是平行四边形;②两组对边分别相等的四边形是平行四边形;③两组对角分别相等的四边形是平行四边形;④对角线互相平分的四边形是平行四边形;⑤一组对边平行且相等的四边形是平行四边形.6.下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是( ) A .1,2,5B .2,2,4C .1,2,3D .2,3,4【答案】D【分析】根据三角形的两边之和大于第三边,两边之差小于第三边,逐项分析解答即可.【详解】A 、1+2<5,不能组成三角形,故此选项错误;B 、2+2=4,不能组成三角形,故此选项错误;C 、1+2=3,不能组成三角形,故此选项错误;D 、2+3>4,能组成三角形,故此选项正确;故选D .【点睛】此题主要考查了三角形的三边关系,关键是掌握三角形的三边关系定理.7.如果正多边形的一个内角是140°,则这个多边形是( )A .正十边形B .正九边形C .正八边形D .正七边形【答案】B【解析】360°÷(180°-140°)=360°÷40°=1.故选B .8.函数2y ax b =+-的图象如图所示,则函数y ax b =--的大致图象是( )A .B .C .D .【答案】B【分析】根据一次函数的图象的性质确定a 和b 的符号,进而解答即可.【详解】解:由函数y=ax+b-2的图象可得:a <0,b-2=0,∴a <0,b=2>0,所以函数y=-ax-b 的大致图象经过第一、四、三象限,故选:B .【点睛】本题考查了一次函数的性质,关键是根据一次函数的图象的性质确定a 和b 的符号.94 )A .2±B .2C .2-D .4【答案】B【分析】根据算术平方根的概念,求4的算术平方根即可. 4=2故选:B .【点睛】本题考查算术平方根,掌握概念正确理解题意是解题关键.10.如图,在ABC ∆中,AB AC =,AB 的垂直平分线交AB 于点E ,交BC 于点F ,连接AF ,若215FAC B ∠=∠,则FAB ∠的度数为( )A .25°B .30°C .35°D .50°【答案】A 【分析】根据等腰三角形的性质和线段垂直平分线的性质可得∠B=∠C=∠BAF ,设∠B=x ,则△ABC 的三个内角都可用含x 的代数式表示,然后根据三角形的内角和定理可得关于x 的方程,解方程即得答案.【详解】解:∵AB AC =,∴∠B=∠C ,∵EF 垂直平分AB ,∴FA=FB ,∴∠B=∠BAF ,设∠B=x ,则∠BAF =∠C=x ,215FAC x ∠=, 根据三角形的内角和定理,得:2131805x x +=︒,解得:25x =︒,即25FAB ∠=︒. 故选:A .【点睛】本题考查了等腰三角形的性质、线段垂直平分线的性质和三角形的内角和定理,属于常见题型,熟练掌握上述基本知识是解题的关键.二、填空题11.三个全等三角形按如图的形式摆放,则123∠+∠+∠=_______________度.【答案】180°【分析】如图所示,利用平角的定义结合三角形内角和性质以及全等三角形性质得出∠4+∠9+∠6=180°,∠5+∠7+∠8=180°,然后进一步求解即可.【详解】如图所示,由图形可得:∠1+∠4+∠5+∠8+∠6+∠2+∠3+∠9+∠7=1803︒⨯=540°,∵三个三角形全等,∴∠4+∠9+∠6=180°,∵∠5+∠7+∠8=180°,∴123∠+∠+∠=540°− 180°− 180°=180°,故答案为:180°.【点睛】本题主要考查了全等三角形性质以及三角形内角和性质,熟练掌握相关概念是解题关键.12.如图,在□ABCD 中,MN 过点D ,与BABC ,的延长线交于M N ,,NDC MDA ∠=∠,6BM =,则□ABCD 的周长为__________.【答案】1【分析】根据平行四边形性质求出DC =AB ,AD =BC ,DC ∥AB ,根据平行线性质求出∠M =∠MDA ,求出AM =AD ,根据平行四边形周长等于2BM ,即可求出答案.【详解】∵四边形ABCD 是平行四边形,∴DC =AB ,AD =BC ,DC ∥AB ,∴∠NDC =∠M ,∵∠NDC =∠MDA ,∴∠M =∠MDA ,∴AM =AD ,∵6BM =,∴平行四边形周长为2(AB+AD )=2(AB+AM )=2 BM=1故答案为:1.【点睛】本题考查了平行四边形性质,平行线性质,等腰三角形的性质和判定的应用,主要考查学生运用性质进行推理和计算的能力,题目比较好,难度也适中.13.如图,ABC DEF ∆≅∆,120,20B F ∠=︒∠=︒,则D ∠=__________°.【答案】1【分析】根据全等三角形的性质得出∠E=∠B=120°,再根据三角形的内角和定理求出∠D 的度数即可.【详解】解:∵△ABC ≌△DEF ,∴∠E=∠B=120°,∵∠F=20°,∴∠D=180°-∠E-∠F=1°,故答案为1.【点睛】本题考查了全等三角形的性质和三角形的内角和定理的应用,注意:全等三角形的对应角相等,对应边相等.14.化简:1275+的结果为_______. 【答案】73【分析】先化简二次根式,再合并同类二次根式,即可求解.【详解】1275+=235373+=,故答案是:73【点睛】本题主要考查二次根式的加法,掌握合并同类二次根式,是解题的关键.15.在平面直角坐标系中,点A (﹣1,0)、B (3,0)、C (0,2),当△ABC 与△ABD 全等时,则点D 的坐标可以是_____.【答案】(0,﹣2)或(2,﹣2)或(2,2)【分析】根据题意画出符合条件的图形,根据图形结合A 、B 、C 的坐标即可得出答案.【详解】解:∵△ABC 与△ABD 全等,如图所示:点D 坐标分别为:(0,﹣2)或(2,﹣2)或(2,2).故答案为:(0,﹣2)或(2,﹣2)或(2,2).本题考查三角形全等的判定和坐标与图形性质,注意要进行分类讨论,能求出符合条件的所有情况是解题的关键.16.12x y =⎧⎨=⎩是方程组4{6x my nx y +=-=的解,则2m n += . 【答案】1.【解析】试题分析:根据定义把12x y =⎧⎨=⎩代入方程,得:124{26m n +=-=,所以 1.5{8m n ==,那么2m n +=1.故答案为1.考点:二元一次方程组的解.17.如果多边形的每个内角都等于150︒,则它的边数为______.【答案】1【分析】先求出这个多边形的每一个外角的度数,再用360°除以外角的度数即可得到边数.【详解】∵多边形的每一个内角都等于150°,∴多边形的每一个外角都等于180°﹣150°=30°,∴边数n=360°÷30°=1.故答案为1.【点睛】本题考查了多边形的内角与外角的关系,求出每一个外角的度数是解答本题的关键.三、解答题18.如图,OE 平分AOB ∠,且,EC OA ED OB ⊥⊥,垂足分别是C D 、,连结CD 与OE 交于点F . (1)求证:OE 是线段CD 的垂直平分线;(2)若30,3ECD OC ∠==,求OCD ∆的周长和四边形OCED 的面积.【答案】(1)证明见解析;(2)333【分析】(1)根据线段垂直平分线的判定定理证明点E ,点O 都在线段CD 的垂直平分线上,即可得到OE 是线段CD 的垂直平分线;(2)先证明△OCD 是等边三角形,再根据等边三角形的性质即可得出周长及面积.【详解】(1)证明:∵OE 平分∠AOB ,EC ⊥OA ,ED ⊥OB ,∴点E 是在线段CD 的垂直平分线上.在Rt △OCE 和Rt △ODE 中,OE OE EC ED =⎧⎨=⎩, ∴Rt △OCE ≌Rt △ODE(HL),∴OC=OD ,∴点O 是在线段CD 的垂直平分线上,∴OE 是线段CD 的垂直平分线.(2)解:∵∠ECD=30°,∠OCE=90°,∴∠OCD=60°.∵OC=OD ,∴△OCD 是等边三角形.∵∴△OCD 的周长为∵∠OCD=60°,∴∠COE=30°,∴OE=2CE .设CE=x ,则OE=2x .由勾股定理,得(2x)2=x 2+)2,解得:x=1,即CE=1,∴四边形OCED 的面积=2S △OCE =2×12·OC·1 【点睛】本题考查了线段垂直平分线的判定、等边三角形的判定及性质,解题的关键是熟记垂直平分线的判定定理及等边三角形的性质.19.倡导健康生活推进全民健身,某社区去年购进A ,B 两种健身器材若干件,经了解,B 种健身器材的单价是A 种健身器材的1.5倍,用7200元购买A 种健身器材比用5400元购买B 种健身器材多10件. (1)A ,B 两种健身器材的单价分别是多少元?(2)若今年两种健身器材的单价和去年保持不变,该社区计划再购进A ,B 两种健身器材共50件,且费用不超过21000元,请问:A 种健身器材至少要购买多少件?【答案】(1) A ,B 单价分别是360元,540元;(2)34件.【分析】(1)设A 种型号健身器材的单价为x 元/套,B 种型号健身器材的单价为1.5x 元/套,根据“B种健身器材的单价是A 种健身器材的1.5倍,用7200元购买A 种健身器材比用5400元购买B 种健身器材多10件”,即可得出关于x ,y 的分式方程,解之即可得出结论;(2)设购买A 种型号健身器材m 套,则购买B 种型号的健身器材(50﹣m)套,根据总价=单价×数量结合这次购买两种健身器材的总费用不超过21000元,即可得出关于m 的一元一次不等式,解之取其最小值即可得出结论.【详解】解:(1)设A 种型号健身器材的单价为x 元/套,B 种型号健身器材的单价为1.5x 元/套, 根据题意,可得:72005400101.5x x -=, 解得:x =360,经检验x =360是原方程的根,1.5×360=540(元),因此,A ,B 两种健身器材的单价分别是360元,540元;(2)设购买A 种型号健身器材m 套,则购买B 种型号的健身器材(50﹣m)套,根据题意,可得:360m+540(50﹣m)≤21000,解得:m ≥1333,因此,A 种型号健身器材至少购买34套.【点睛】本题考查的知识点是分式方程以及一元一次不等式的实际应用,读懂题意,找出题目中的等量关系式是解此题的关键.20.如图, AB=AC, AD=AE, ∠BAD=∠CAE, 求证: BE=CD .【答案】证明见解析【解析】先根据角的和差求出BAE CAD ∠=∠,再根据三角形全等的判定定理与性质即可得证.【详解】BAD CAE ∠=∠BAD DAE CAE DAE ∴∠+∠=∠+∠,即BAE CAD ∠=∠在ABE ∆与ACD ∆中,AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩()ABE ACD SAS ∴∆≅∆BE CD ∴=.【点睛】本题考查了三角形全等的判定定理与性质,熟记判定定理与性质是解题关键.21.先化简,后计算:26435()111x x x x ++÷---,其中2x = 【答案】21x +,23. 【分析】先将分式化简,然后代入x 的值即可求出答案.【详解】原式=()64[]()1•11135x x x x x -+-+-+ =()()3164535x x x ++++ =()()()()()614351135x x x x x ++++++ =()()610135x x x +++ =21x + 当x=2时,原式=22213=+. 【点睛】此题考查分式的化简求值,解题的关键是熟练运用分式的运算法则,本题属于基础题型.22.学校开展“书香校园”活动以来,受到同学们的广泛关注,学校为了解全校学生课外阅读的情况,随机调查了部分学生在一周内借阅图书的次数,并制成如图不完整的统计表.学生借阅图书的次数统计表请你根据统计图表中的信息,解答下列问题:()1a =______,b =______.()2该调查统计数据的中位数是______,众数是______.()3请计算扇形统计图中“3次”所对应扇形的圆心角的度数;()4若该校共有2000名学生,根据调查结果,估计该校学生在一周内借阅图书“4次及以上”的人数.【答案】()117、20;()22次、2次;()372;()4120人.【分析】(1)先由借阅1次的人数及其所占百分比求得总人数,总人数减去其他次数的人数求得a的值,用3次的人数除以总人数求得b的值;(2)根据中位数和众数的定义求解;(3)用360°乘以“3次”对应的百分比即可得;(4)用总人数乘以样本中“4次及以上”的人数所占比例即可得.【详解】()1被调查的总人数为1326%50÷=人,()a5071310317∴=-+++=,10b%100%20%50=⨯=,即b20=,故答案为17、20;()2由于共有50个数据,其中位数为第25、26个数据的平均数,而第25、26个数据均为2次,所以中位数为2次,出现次数最多的是2次,所以众数为2次,故答案为2次、2次;()3扇形统计图中“3次”所对应扇形的圆心角的度数为36020%72⨯=;()4估计该校学生在一周内借阅图书“4次及以上”的人数为3200012050⨯=人.【点睛】本题考查了统计表、扇形统计图、众数、中位数等,读懂统计图、统计表,从中得到必要的信息是解决问题的关键.注意众数与中位数的求解方法.23.观察下列等式:112()(2)()(2)22⨯---=-⨯-;4422233⨯-=⨯;111123232⨯-=⨯;……根据上面等式反映的规律,解答下列问题:(1)请根据上述等式的特征,在括号内填上同一个实数:2⨯()-5=()5⨯;(2)小明将上述等式的特征用字母表示为:2x y xy-=(x、y为任意实数).①小明和同学讨论后发现:x、y的取值范围不能是任意实数.请你直接写出x、y不能取哪些实数.②是否存在x 、y 两个实数都是整数的情况?若存在,请求出x 、y 的值;若不存在,请说明理由.【答案】 (1) 53-;(2)①x 不能取-1,y 不能取2;②x=0,y=0;x=1,y=1;x=-3,y=3;x=-2,y=4; 【分析】(1)设所填数为x,则2x-5=5x ;(2)①假如2x y xy -=,则2,12x y y x x y ==+-,根据分式定义可得;②由①可知21x y x =+或2y x y =-,x≠-1,y≠2,代入尝试可得. 【详解】(1)设所填数为x,则2x-5=5x解得x=53- 所以所填数是53-(2)①假如2x y xy -= 则2,12x y y x x y==+- 所以x≠-1,y≠2即:x 不能取-1,y 不能取2;②存在, 由①可知21x y x =+或2y x y =-,x≠-1,y≠2 所以x,y 可取的整数是:x=0,y=0;x=1,y=1;x=-3,y=3;x=-2,y=4;【点睛】考核知识点:分式的值.理解分式定义是关键.24.为庆祝中华人民共和国七十周年华诞,某校举行书画大赛,准备购买甲、乙两种文具,奖励在活动中表现优秀的师生已知用300元购买甲种文具的个数是用50元购买乙种文具个数的2倍,购买1个甲种文具比购买1个乙种文具多花费10元.(1)求购买一个甲种文具、一个乙种文具各需多少元;(2)若学校计划购买这两种文具共120个,投入资金不多于1000元,且甲种文具至少购买36个,求有多少种购买方案.【答案】(1)购买一个甲种文具15元,一个乙种文具5元;(2)有5种购买方案【分析】(1)设购买一个乙种文具x 元,则一个甲种文具(x+10)元,根据“用300元购买甲种文具的个数是用50元购买乙种文具个数的2倍,”列方程解答即可;(2)设购买甲种文具a 个,则购买乙种文具(120-a )个,根据题意列不等式组,解之即可得出a 的取值范围,结合a 为正整数即可得出a 的值,进而可找出各购买方案.【详解】解:(1)设购买一个乙种文具x 元,则一个甲种文具(x+10)元,由题意得: 30050210x x=⨯+,解得x=5, 经检验,x=5是原方程的解,且符合题意,x+10=15(元),答:购买一个甲种文具15元,一个乙种文具5元;(2)设购买甲种文具a 个,则购买乙种文具(120-a )个,根据题意得:()361551201000a a a ≥⎧⎪⎨+-≤⎪⎩, 解得36≤a≤1,∵a 是正整数,∴a=36,37,38,39,1.∴有5种购买方案.【点睛】本题考查分式方程的应用、一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组.25.如图,已知∠AOB 和点C ,D .求作:点P ,使得点P 到∠AOB 两边的距离相等,且PC =PD .(要求:用直尺与圆规作图,保留作图痕迹)【答案】见解析.【分析】作∠AOB 的平分线和线段CD 的垂直平分线,它们的交点为P 点.【详解】如图,点P 为所作.【点睛】此题考查作图-复杂作图,解题关键在于掌握复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列各式:15(1﹣x ),43x π-,222x y -,25x x,其中分式共有( ) A .1个B .2个C .3个D .4个 【答案】A 【解析】分式即A B形式,且分母中要有字母,且分母不能为0. 【详解】本题中只有第五个式子为分式,所以答案选择A 项.【点睛】本题考查了分式的概念,熟悉理解定义是解决本题的关键.2.如果一个数的平方根与立方根相同,那么这个数是( ).A .0B .±1C .0和1D .0或±1 【答案】A【分析】根据平方根、立方根的定义依次分析各选项即可判断.【详解】∵1的平方根是±1,1的立方根是1,0的平方根、立方根均为0,-1没有平方根,-1的立方根是-1,∴平方根与它的立方根相同的数是0,故选A.【点睛】本题属于基础应用题,只需学生熟练掌握平方根、立方根的定义,即可完成.3.在平面直角坐标系中,点(),1A a 与点()2,B b -关于x 轴对称,则(),a b 在( )A .第一象限B .第二象限C .第三象限D .第四象限 【答案】C【分析】直接利用关于x 轴对称点的性质得出a,b 的值,进而根据a,b 的符号判断(),a b 在第几象限.【详解】解:∵点(),1A a 与点()2,B b -关于x 轴对称,∴2,1a b =-=-∴点(),a b 在第三象限,故答案选C .【点睛】本题主要考查关于x 轴对称点的坐标的特点,关键是掌握点的坐标的变化规律.4.若关于x 的分式方程11m x --=2的解为非负数,则m 的取值范围是( )A.m>﹣1 B.m≥1 C.m>﹣1且m≠1 D.m≥﹣1且m≠1【答案】D【解析】试题分析:去分母可得:m-1=2(x-1),解得:x=,根据解为非负数可得:且x≠1,即0且x≠1,解得:m≥-1且m≠1.考点:解分式方程5.若正比例函数y=kx的图象经过点A(k,9),且经过第一、三象限,则k的值是()A.﹣9 B.﹣3 C.3 D.﹣3或3【答案】C【解析】根据正比例函数的性质得k>0,再把(k,9)代入y=kx得到关于k的一元二次方程,解此方程确定满足条件的k的值.【详解】解:∵正比例函数y=kx(k≠0)的图象经过第一、三象限∴k>0,把(k,9)代入y=kx得k2=9,解得k1=﹣3,k2=3,∴k=3,故选C.【点睛】本题考查了一次函数图象上点点坐标特征及正比例函数的性质,较为简单,容易掌握.6.在下列图形中是轴对称图形的是()A.B.C.D.【答案】B【分析】根据轴对称图形的概念求解.【详解】A.不是轴对称图形,故本选项不符合题意,B.是轴对称图形,故本选项符合题意,C.不是轴对称图形,故本选项不符合题意,D.是不轴对称图形,故本选项不符合题意.故选B.【点睛】本题考查了轴对称的知识,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7.多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是()A.极差是47 B.众数是42C.中位数是58 D.每月阅读数量超过40的有4个月【答案】C【解析】根据统计图可得出最大值和最小值,即可求得极差;出现次数最多的数据是众数;将这8个数按大小顺序排列,中间两个数的平均数为中位数;每月阅读数量超过40的有2、3、4、5、7、8,共六个月.【详解】A、极差为:83-28=55,故本选项错误;B、∵58出现的次数最多,是2次,∴众数为:58,故本选项错误;C、中位数为:(58+58)÷2=58,故本选项正确;D、每月阅读数量超过40本的有2月、3月、4月、5月、7月、8月,共六个月,故本选项错误;故选C.8.如图,已知:∠MON=30°,点A1、A2、A3…在射线ON上,点B1、B2、B3…在射线OM上,△A1B1A2、△A2B2A3、△A3B3A4…均为等边三角形,若OA1=1,则△A5B5A6的边长为()A.6 B.16 C.32 D.64【答案】B【分析】根据等腰三角形的性质以及平行线的性质得出A1B1∥A2B2∥A3B3,以及A2B2=2B1A2,得出A3B3=4B1A2=4,A4B4=8B1A2=8,A5B5=1B1A2…依次类推可得出答案.【详解】如图,∵△A 1B 1A 2是等边三角形,∴A 1B 1=A 2B 1,∠3=∠4=∠12=60°,∴∠2=120°,∵∠MON=30°,∴∠1=180°-120°-30°=30°,又∵∠3=60°,∴∠5=180°-60°-30°=90°,∵∠MON=∠1=30°,∴OA 1=A 1B 1=1,∴A 2B 1=1,∵△A 2B 2A 3、△A 3B 3A 4是等边三角形,∴∠11=∠10=60°,∠13=60°,∵∠4=∠12=60°,∴A 1B 1∥A 2B 2∥A 3B 3,B 1A 2∥B 2A 3,∴∠1=∠6=∠7=30°,∠5=∠8=90°,∴A 2B 2=2B 1A 2,B 3A 3=2B 2A 3,∴A 3B 3=4B 1A 2=4,A 4B 4=8B 1A 2=8,A 5B 5=1B 1A 2=1,…∴△A n B n A n+1的边长为 2n-1,∴△A 5B 5A 6的边长为25-1=24=1.故选B .【点睛】此题主要考查了等边三角形的性质以及等腰三角形的性质,根据已知得出A 3B 3=4B 1A 2,A 4B 4=8B 1A 2,A 5B 5=1B 1A 2进而发现规律是解题关键.9.已知:将直线y kx b =+沿着y 轴向下平移2个单位长度后得到直线1y x =-,则下列关于直线y kx b =+的说法正确的是( )A .经过第一、二、四象限B .与x 轴交于(1,0)C .与y 轴交于(0,1)D .y 随x 的增大而减小【答案】C 【分析】根据直线平移的规律得到平移前的直线解析式,再根据一次函数的性质依次判断选项即可得到答案.【详解】∵直线y kx b =+沿着y 轴向下平移2个单位长度后得到直线1y x =-,∴原直线解析式为:1y x =-+2=x+1,∴函数图象经过第一、二、三象限,故A 错误,当y=0时,解得x=-1,图象与x 轴交点坐标为(-1,0),故B 错误;当x=0时,得y=1,图象与y 轴交点坐标为(0,1),故C 正确;∵k=1>0,∴y 随x 的增大而增大,故D 错误,故选:C.【点睛】此题考查一次函数的性质,函数图象平移的规律,根据图象的平移规律得到函数的解析式是解题的关键. 10.如图,//BD EF ,AE 与BD 交于点C ,3075B A ∠∠=,=,则E ∠的度数为( )A .135?B .125C .115?D .105【答案】D 【分析】直接利用三角形的外角性质得出ACD ∠度数,再利用平行线的性质分析得出答案.【详解】解:3075B A ∠︒∠︒=,=,3075105ACD ∴∠︒+︒︒==,//BD EF ,105E ACD ∴∠∠︒==.故选D .【点睛】考查了平行线的性质以及三角形的外角,正确掌握平行线的性质是解题关键.二、填空题11.如图,在△ABC 中,已知AD 是角平分线,DE⊥AC 于E ,AC=4,S △ADC =6,则点D 到AB 的距离是________.【答案】3【解析】如图,过点D 作DF ⊥AB 于点F ,∵DE ⊥AC 于点E ,∴S △ADC =12AC ⋅DE=6,即:142⨯⨯DE=6,解得DE=3. ∵在△ABC 中,已知AD 是角平分线,DE ⊥AC 于点E ,DF ⊥AB 于点F ,∴DF=DE=3,即点D 到AB 的距离为3.12.已知ABC 和一点O ,OA OB OC ==,20OAB,30OBC ∠=︒,则OCA ∠=______.【答案】40︒或80︒ 【分析】分两种情形:当点O 在△ABC 内部时或外部时分别求解.【详解】如图,当点O 在△ABC 内部时,∵OA=OB=OC ,20OAB ,30OBC ∠=︒,∴∠OAB=∠OBA=20°,∠OBC=∠OCB=30°,∴∠AOC=∠1+∠2=∠OAB+∠OBA +∠OBC+∠OCB=100°,∴∠OCA=1801002︒-︒=40°; 如图,当点O 在△ABC 外部时,∵OA=OB=OC ,20OAB ,30OBC ∠=︒,∴∠OAB=∠OBA=20°,∠OBC=∠OCB=30°,∴∠AOC=∠DOC-∠DOA=∠OBC+∠OCB-(∠OAB+∠OBA )230220=⨯︒-⨯︒20=°,∴∠OCA=180202︒-︒=80°. 故答案为:40︒或80︒.【点睛】本题考查了等腰三角形的性质,三角形的外角性质等知识,解题的关键是灵活运用所学知识解决问题. 13.如图,△ABC 是等腰直角三角形,∠C =90°,BD 平分∠CBA 交AC 于点D ,DE ⊥AB 于E .若△ADE 的周长为8cm ,则AB =_____ cm .【答案】1.【分析】根据角平分线上的点到角的两边距离相等可得CD=DE ,再利用“HL”证明Rt △BCD 和Rt △BED 全等,根据全等三角形对应边相等可得BC=BE ,然后求出△ADE 的周长=AB .【详解】∵∠C=90∘,BD 平分∠CBA ,DE ⊥AB ,∴CD=DE ,在Rt △BCD 和Rt △BED 中,∵BD BD CD ED =⎧⎨=⎩∴Rt △BCD ≌Rt △BED(HL),∴BC=BE ,∴△ADE 的周长=AE+AD+DE=AE+AD+CD=AE+AC=AE+BC=AE+BE=AB ,∵△ADE 的周长为1cm ,∴AB=1cm.故答案为1cm.【点睛】本题考查了角平分线的性质和等腰直角三角形,熟练掌握这两个知识点是本题解题的关键.14.因式分解:3x —12xy 2 =__________.【答案】()()31212x y y +-【分析】提取公因式3x 后,剩下的式子符合平方差公式的特点,可以继续分解.【详解】解:23x 12xy -=23x(14y )-=3x(12y)(12y)-+,故答案为:3x(12y)(12y)-+.【点睛】本题考查因式分解,解题的关键是掌握提取公因式和平方差公式.15.使代数式x 的取值范围是______________ .【答案】2x ≥-【分析】根据二次根式中被开方数大于等于0得到630x +≥,再解不等式即可求解.【详解】解:由二次根式中被开方数大于等于0可知:630x +≥解得:x≥-1,故答案为:x≥-1.【点睛】本题考查了二次根式有意义的条件及一元一次不等式的解法,属于基础题,熟练掌握不等式解法是解决本题的关键.16.等腰三角形的一条高与一腰的夹角为40°,则等腰三角形的一个底角为_____.【答案】50°或65°或25°【分析】分高为底边上的高和腰上的高两种情况,腰上的高再分是锐角三角形和钝角三角形两种情况讨论求解.【详解】解:如图1,高为底边上的高时,∵∠BAD =40°,∴顶角∠BAC =2∠BAD =2×40°=80°,底角为(180°﹣80°)÷2=50°;高为腰上的高时,如图2,若三角形是锐角三角形,∵∠ABD =40°,∴顶角∠A =90°﹣40°=50°,底角为(180°﹣50°)÷2=65°;如图3,若三角形是钝角三角形,∵∠ACD=40°,∴顶角∠BAC=∠ACD+∠D=40°+90°=130°,底角为(180°﹣130°)÷2=25°.综上所述,等腰三角形的一个底角为50°或65°或25°.故答案为50°或65°或25°.【点睛】此题考查等腰三角形的性质,直角三角形两锐角互余的性质,三角形的一个外角等于与它不相邻的两个内角的和,解题关键在于分情况讨论.17.如图,A、B的坐标分别为(2,0)、(0,1),若将线段AB平移至A1B1,A1、B1的坐标分别为(3,1)、(a,b),则a+b的值为_____.【答案】1【分析】根据点A、A1的坐标得到平移的规律,即可求出点B平移后的点B1的坐标,由此得到答案. 【详解】解:∵点A(2,0)先向上平移1个单位,再向右平移1个单位得到点A1(1,1),∴线段AB先向上平移1个单位,再向右平移1个单位得到线段A1B1,∴点B(0,1)先向上平移1个单位,再向右平移1个单位得到点B1,∴a=0+1=1,1+1=b,∴a+b=1+2=1.故答案为:1.【点睛】此题考查点平移的规律:纵坐标上加下减,横坐标左减右加,正确掌握规律是解题的关键.三、解答题18.如图,在△ABC中,AB=AC,AB的垂直平分线MN交AC于点D,交AB于点E.(1)若∠A=40°,求∠DBC的度数;(2)若AE=6,△CBD的周长为20,求BC的长.。
{3套试卷汇总}2018年贵阳市某达标中学八年级上学期数学期末考前验收试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.已知一个多边形的每一个外角都相等,一个内角与一个外角的度数之比是3:1,这个多边形的边数是()A.8 B.9 C.10 D.12【答案】A【解析】试题分析:设这个多边形的外角为x°,则内角为3x°,根据多边形的相邻的内角与外角互补可的方程x+3x=180,解可得外角的度数,再用外角和除以外角度数即可得到边数.解:设这个多边形的外角为x°,则内角为3x°,由题意得:x+3x=180,解得x=45,这个多边形的边数:360°÷45°=8,故选A.考点:多边形内角与外角.2.假期到了,17名女教师去外地培训,住宿时有2人间和3人间可供租住,每个房间都要住满,她们有几种租住方案A.5种B.4种C.3种D.2种【答案】C【解析】试题分析:设住3人间的需要有x间,住2人间的需要有y间,则根据题意得,3x+2y=17,∵2y是偶数,17是奇数,∴3x只能是奇数,即x必须是奇数.当x=1时,y=7,当x=3时,y=4,当x=5时,y=1,当x>5时,y<1.∴她们有3种租住方案:第一种是:1间住3人的,7间住2人的,第二种是:3间住3人的,4间住2人的,第三种是:5间住3人的,1间住2人的.故选C.3.下面的图形中对称轴最多的是( )A.B.C .D .【答案】B【分析】分别得出各选项对称轴的条数,进而得出答案.【详解】A、有1条对称轴;B、有4条对称轴;C、有1条对称轴;D、有2条对称轴;综上可得:对称轴最多的是选项B.故选:B.【点睛】本题主要考查了轴对称变换,正确得出每个图形的对称轴是解题关键.4.如图,分别以Rt△ABC的直角边AC、BC为边,在Rt△ABC外作两个等边三角形△ACE和△BCF,连接BE、AF分别交AC、BC边于H、D两点.下列结论:①AF=BE;②∠AFC=∠EBC;③∠FAE=90°;④BD=FD,其中正确结论的个数是()A.4个B.3个C.2个D.1个【答案】C【分析】由等边三角形的性质得出BC=CF,CE=AC,∠BCF=∠ACE=∠CFB=∠CBF=∠CAE=60°,∠ACB=90°,易证∠BCE=∠FCA=150°,由SAS证得△BCE≌△FCA,得出AF=BE,∠AFC=∠EBC,由∠FCA=150°,得出∠FAC<30°,则∠FAE=∠FAC+∠CAE<90°,由∠BFD<∠BFC,得出∠BFD<∠CBF,则DF>BD,即可得出结果.【详解】∵△ACE和△BCF是等边三角形,∴BC=CF,CE=AC,∠BCF=∠ACE=∠CFB=∠CBF=∠CAE=60°,∠ACB=90°,∴∠BCE=90°+60°=150°,∠FCA=60°+90°=150°,∴∠BCE=∠FCA.在△BCE和△FCA中,∵BC CFBCE FCA AC CE=⎧⎪∠=∠⎨⎪=⎩,∴△BCE≌△FCA(SAS),∴AF=BE,∠AFC=∠EBC,故①、②正确;∵∠FCA=60°+90°=150°,∴∠FAC<30°.∵∠CAE=60°,∴∠FAE=∠FAC+∠CAE<90°,故③错误;∵∠BFD<∠BFC,∴∠BFD<∠CBF,∴DF>BD,故④错误.故选:C.【点睛】本题考查了全等三角形的判定与性质、等边三角形的性质、三角形内角和定理、三角形三边关系等知识;熟练掌握等边三角形的性质,证明三角形全等是解题的关键.5.无理数﹣3在()A.2和3之间B.3和4之间C.4和5之间D.5和6之间【答案】B【分析】首先得出的取值范围进而得出答案.【详解】∵∴67,∴无理数-3在3和4之间.故选B.【点睛】此题主要考查了估算无理数的大小,正确得出无理数的取值范围是解题关键.6.在给出的一组数0.3,3.14227-, 2.13-中,是无理数的有()A.1个B.2个C.3个D.5个【答案】B【分析】分别根据无理数、有理数的定义即可判定选择项.【详解】0.3,3.14, 2.13-是有限小数,是有理数;227-,是分数,是有理数;2个,故选:B.【点睛】本题主要考查了无理数的定义.初中范围内学习的无理数有:含π的数等;开方开不尽的数;以及0.1010010001…,等有这样规律的数.7.下列说法正确的是()A .-3是-9的平方根B .1的立方根是±1C .a 是2a 的算术平方根D .4的负的平方根是-2【答案】D 【解析】各式利用平方根,立方根定义判断即可.【详解】A .﹣3是9的平方根,不符合题意;B .1的立方根是1,不符合题意;C .当a >0时,a 是2a 的算术平方根,不符合题意;D .4的负的平方根是-2,符合题意.故选D .【点睛】本题考查了立方根,平方根,以及算术平方根,熟练掌握各自的定义是解答本题的关键.8.下列说法正确的个数( )3π=- 的倒数是-3 =的平方根是-4 A .0个B .1个C .2个D .3个 【答案】B看是否等于3π-的倒数看是否等于-3的平方根是否等于-1.【详解】3π≠-π ,错误;B. =13-的倒数等于-3,正确;≠,1的平方根是2± ,错误.故答案为B .【点睛】本题考查了无理数的简单运算,掌握无理数混合运算的法则、倒数以及平方根的求解是解题的关键. 9.菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形【答案】B【解析】根据菱形的性质逐项进行判断即可得答案.【详解】菱形的四条边相等,菱形是轴对称图形,也是中心对称图形,菱形对角线垂直但不一定相等,故选B .【点睛】本题考查了菱形的性质,解题的关键是熟练掌握菱形的性质.10.如果把分式232x x y-中的x ,y 都乘以3,那么分式的值k ( ) A .变成3kB .不变C .变成3kD .变成9k【答案】B 【分析】x,y 都乘以3,再化简得233323x x y -ⅹⅹⅹ=232x x y-. 【详解】233323x x y -ⅹⅹⅹ=232x x y-=k. 所以,分式的值不变.故选B【点睛】本题考核知识点:分式的性质. 解题关键点:熟记分式基本性质.二、填空题11.如图,在△ABC 中,AB=AC ,AD 、CE 是三角形的高,垂足为D 、E ,若∠CAD=20°,则∠BCE=_____.【答案】20°.【分析】根据等腰三角形的性质得到∠BAD=∠CAD=20°,∠ABC=∠ACB ,根据三角形内角和定理求出∠ABC ,根据高线的定义以及三角形内角和定理计算即可.【详解】解:∵AB=AC ,AD 是三角形的高,∴∠BAD=∠CAD=20°,∠ABC=∠ACB ,∴∠ABC 180402︒-︒==70°. ∵CE 是三角形的高,∴∠CEB=90°,∴∠BCE=20°.故答案为:20°.【点睛】本题考查了等腰三角形的性质,三角形的高线和角平分线以及三角形内角和定理,掌握等腰三角形的三线合一是解题的关键.12.如图,AD 是ABC 的中线,DE 是ADC 的中线,若236ABD S cm =,则ADE S =_________.【答案】18cm 2【分析】根据AD 是ABC 的中线可先求到ADC S ∆的值,再根据DE 是ADC 的中线即可求到ADE S 的值.【详解】解:AD 是ABC 的中线,236ABD S cm =236ADC ABD S S cm ∆∆∴== DE 是ADC 的中线21182ADE ADC S S cm ∆∆∴== 故答案为:218cm .【点睛】本题考查的是中线的相关知识,中线将三角形的面积分为相等的两部分.13.计算:()()3121m m --=_____;【答案】2651m m -+【分析】根据多项式乘多项式的法则计算即可.【详解】解:(3m-1)(2m-1)=62m -2m-3m+1=2651m m -+.故答案为:2651m m -+.【点睛】本题考查多项式乘多项式,掌握运算法则是解题的关键.14.一个多边形的内角和是它的外角和的5倍,则这个多边形的边数为____________.【答案】1【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解即可.【详解】设这个多边形是n 边形,根据题意得,(n-2)•180°=5×360°,解得n=1.故答案为1.【点睛】本题考查了多边形的内角和公式与外角和定理,多边形的外角和与边数无关,任何多边形的外角和都是360°.15.如图所示,在ABC 中,AB AC =,40A ︒∠=,AB 的垂直平分线交AB 于点D ,交AC 于点E ,连接BE ,则CBE ∠的度数为(________)【答案】30︒【分析】利用等腰三角形的性质可得出∠ABC 的度数,再根据垂直平分线定理得出AD=BD ,40A ABE ︒∠=∠=,继而可得出答案.【详解】解:,40AB AC A ︒=∠=70ABC C ︒∴∠=∠=DE 垂直平分AB40A ABE ︒∴∠=∠=704030ABC ABE ︒︒︒∴∠-∠=-=故答案为:30︒.【点睛】本题考查的知识点是等腰三角形的性质以及垂直平分线的性质,掌握以上知识点是解此题的关键. 16.如图所示,在ABC ∆中,60B ∠=︒,2ACB A ∠=∠,将其折叠,使点B 落在AC 上的E 点处,折痕为CD ,则EDA ∠=__________度.【答案】1【分析】根据已知条件得出∠A=40°,∠ACB=80°,再由折叠的性质可得∠CED=∠B ,最后根据三角形的外角的性质即可求出∠EDA 的度数.【详解】解∵60B ∠=︒,2ACB A ∠=∠由∠B+∠ACB +∠A=180°可得:60°+2∠A +∠A=180°∴∠A=40°,∠ACB=80°,由折叠可知:∠CED=∠B=60°,又∵∠CED 是△AED 的外角,∴∠CED=∠A+∠EDA ,即6040EDA ︒=︒+∠解得:20EDA ∠=︒故答案为:1.【点睛】本题考查了三角形中的折叠问题,三角形的内角和、外角的性质,解题的关键是根据题意对角进行运算求解.17.点M (-5,−2)关于x 轴对称的点是点N ,则点N 的坐标是________.【答案】(-5,2)【分析】根据关于x 轴对称的点的横纵坐标的特点解答即可.【详解】∵点M (-5,-2)与点N 关于x 轴对称,∴点N 的横坐标为-5,纵坐标为2,故点N 的坐标是:(-5,2).故答案为:(-5,2).【点睛】本题考查了关于x 轴对称的点的特点:两点关于x 轴对称,横坐标不变,纵坐标互为相反数.三、解答题18.如图,直线l 是一次函数y=kx+4的图象,且直线l 经过点(1,2).(1)求k 的值;(2)若直线l 与x 轴、y 轴分别交于A 、B 两点,求△AOB 的面积.【答案】 (1)k=﹣2;(2)1.【解析】(1)把(1,2)代入y=kx +1,即可求出k 的值;(2)分别求出A 和B 的坐标,然后根据三角形的面积公式可求得答案.【详解】(1)把(1,2)代入y=kx+1,得k+1=2,解得k=﹣2;(2)当y=0时,﹣2x+1=0,解得x=2,则直线y=﹣2x+1与x 轴的交点坐标为A (2,0).当x=0时,y=﹣2x+1=1,则直线y=﹣2x+1与y 轴的交点坐标为B (0,1).所以△AOB 的面积为×2×1=1.【点睛】本题考查了一次函数图象上点的坐标特征,一次函数与坐标轴的交点及三角形的面积,难度不大,注意在计算时要细心.19.如图,ABC 中,90ACB ∠=︒,点F 在AC 上,点D 在AB 上,FE AB ⊥于点,E DG BC ⊥于点G ,且12∠=∠.求证:90ADC ∠=︒.【答案】见解析【分析】根据三角形内角和相等得到∠1=∠B ,再由∠1=∠2得出∠2=∠B ,推出∠2+∠BDG=90°,即∠CDB=90°,从而得出∠ADC=90°.【详解】解:如图,∵EF ⊥AB ,DG ⊥BC ,∴∠AEF=∠DGB=90°,∵∠ACB=90°,∠A=∠A,∴∠1=∠B ,又∵∠1=∠2,∴∠B=∠2,∵∠B+∠BDG=90°,∴∠2+∠BDG=90°,∴∠CDB=90°,∴∠ADC=90°.【点睛】本题考查了三角形内角和定理,余角的性质,解题的关键是找到∠B,通过∠1、∠2与∠B的关系推出结论.20.(1)如图1,在△ABC中,AB=AC,∠BAC=45°.△ABC的高AD、BE相交于点M.求证:AM=2CD;(2)如图2,在Rt△ABC中,∠C=90°,AC=BC,AD是∠CAB的平分线,过点B作BE⊥AD,交AD的延长线于点E.若AD=3,则BE=.【答案】(1)详见解析;(2)1.1.【分析】(1)根据全等三角形的判定和性质定理以及等腰三角形的性质定理,即可得到结论;(2)延长BE、AC交于F点,首先利用三角形内角和定理计算出∠F=∠ABF,进而得到AF=AB,再根据等腰三角形的性质可得BE=12BF,然后证明△ADC≌△BFC,可得BF=AD,进而得到BE=12AD,即可求解.【详解】(1)在△ABC中,∵∠BAC=41°,BE⊥AC,∴AE=BE,∵AD⊥BC,∴∠EAM=90°-∠C=∠EBC,在△AEM和△BEC中,∵EAM EBC AE BEAEM BEC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△AEM≌△BEC(ASA),∴AM=BC,∵AB=AC,AD⊥BC,∴BD=CD,∴BC=2CD,∴AM=2CD;(2)延长BE、AC交于F点,∵BE⊥EA,∴∠AEF=∠AEB=90°.∵AD平分∠BAC,∴∠FAE=∠BAE,∴∠F=∠ABE,∴AF=AB,∵BE⊥EA,∴BE=EF=12 BF,∵△ABC中,AC=BC,∠C=90°,∴∠CAB=41°,∴∠AFE=(180°﹣41°)÷2=67.1°,∠FAE=41°÷2=22.1°,∴∠CDA=67.1°,∵在△ADC和△BFC中,∵F ADCACD BCF AC BC∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ADC≌△BFC(AAS),∴BF=AD,∴BE=12AD=1.1,故答案为:1.1.【点睛】本题主要考查三角形全等的判定和性质定理以及等腰三角形的性质定理,添加辅助线,构造全等三角形,是解题的关键.21.小明的妈妈在菜市场买回3斤萝卜,2斤排骨,准备做萝卜排骨汤,妈妈说:“今天买这两样菜共花了78.7元,去年这时买3斤萝卜,2斤排骨只要43元”.爸爸说:“报纸上说了萝卜的单价下降10%,排骨单价上涨90%”,请你来算算,小明的妈妈去年买的萝卜和排骨的单价分别是多少?【答案】小明的妈妈去年买的萝卜的单价为1元/斤,排骨的单价为20元/斤.【分析】设小明的妈妈去年买的萝卜的单价为x 元/斤,排骨的单价为y 元/斤,根据总价=单价×数量结合妈妈今天和去年买3斤萝卜、2斤排骨所花钱数,即可得出关于x ,y 的二元一次方程组,解之即可得出结论.【详解】解:设小明的妈妈去年买的萝卜的单价为x 元/斤,排骨的单价为y 元/斤,依题意,得:32433(110%)2(190%)78.7x y x y +=⎧⎨⨯-+⨯+=⎩, 解得:120x y =⎧⎨=⎩. 答:小明的妈妈去年买的萝卜的单价为1元/斤,排骨的单价为20元/斤.【点睛】本题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程组,再求解.22.(1)如图①,直线m 经过正三角形ABC 的顶点A ,在直线m 上取两点D 、E ,使得60ADB ∠=,60AEC ∠=,求证:BD CE DE +=.(2)将(1)中的直线m 绕着点A 逆时针方向旋转一个角度到如图②的位置,并使120ADB ∠=,120AEC ∠=,通过观察或测量,猜想线段BD ,CE 与DE 之间满足的数量关系,并予以证明.【答案】(1)证明见解析;(2)CE BD DE -=,理由见解析.【分析】(1)通过等边三角形的性质和等量代换得出DAB ECA ∠=∠,利用AAS 可证DAB ∆≌ECA ∆,则有AD CE =,BD AE =,则结论可证;(2)通过等边三角形的性质和等量代换得出DAB ECA ∠=∠,利用AAS 可证DAB ∆≌ECA ∆,则有AD CE =,BD AE =,则可以得出CE BD DE -=;【详解】(1)∵在正三角形ABC 中,60BAC ∠=,∴,120AB CA DAB CAE =∠+∠=又∵120ECA CAE ∠+∠=∴DAB ECA ∠=∠在DAB ∆和ECA ∆中,60ADB AEC DAB ECAAB CA ⎧∠=∠=⎪∠=∠⎨⎪=⎩∴DAB ∆≌ECA ∆(AAS )∴AD CE =,BD AE =∴BD CE AE AD DE +=+=(2)猜想:CE BD DE -=证明:∵在正三角形ABC 中,60BAC ∠=∴,60AB CA DAB CAE =∠+∠=∵120AEC ∠=∴60ECA CAE ∠+∠=∴DAB ECA ∠=∠在DAB ∆和ECA ∆中120ADB AEC DAB ECAAB CA ⎧∠=∠=⎪∠=∠⎨⎪=⎩∴DAB ∆≌ECA ∆(AAS )∴AD CE =,BD AE =∴CE BD AD AE DE -=-=【点睛】本题主要考查全等三角形的判定及性质,掌握全等三角形的判定及性质是解题的关键.23.先化简,再求值:22192369x x x x x -⎛⎫+÷ ⎪+--+⎝⎭,其中x =1. 【答案】(8)(3)(2)(9)x x x x --+-,14. 【分析】直接将括号里面通分运算,进而利用分式的混合运算法则计算得出答案.【详解】解:22192369x x x x x -⎛⎫+÷ ⎪+--+⎝⎭=()()()()()22323239x x x x x x -++-⋅+--=622329x x x x x -++--⋅+- =(8)(3)(2)(9)x x x x --+-, 当x =1时,原式=(68)(63)(62)(69)-⨯-+⨯-=()()8233-⨯⨯-=14. 【点睛】本题考查分式方程的化简求值,关键在于熟练掌握运算方法.24.阅读下列材料并解答问题:数学中有很多恒等式可以用图形的面积来得到.例如,图1中阴影部分的面积可表示为22a b -;若将阴影部分剪下来,重新拼成一个矩形(如图2),它的长,宽分别是+a b ,-a b ,由图1,图2中阴影部分的面积相等,可得恒等式22()()a b a b a b -=+-.(1)观察图3,根据图形,写出一个代数恒等式:______________;(2)现有若干块长方形和正方形硬纸片如图4所示.请你仿照图3,用拼图的方法分解因式2232a ab b ++,并画出拼图验证所得的图形.【答案】(1)2323(2)()a ab b a b a b ++=++;(2)()()22322a ab b a b a b ++=++,图详见解析 【分析】(1)由题意根据面积的两种表达方式得到图3所表示的代数恒等式;(2)根据题意作长为a+2b ,宽为a+b 的长方形即可.【详解】解,(1)由图3知,等式为2323(2)()a ab b a b a b ++=++,(2)分解因式:()()22322a ab b a b a b ++=++, 如图:【点睛】本题考查完全平方公式的几何背景,根据矩形的面积公式分整体与部分两种思路表示出面积,然后再根据同一个图形的面积相等即可解答.25.如图1,△ABC 中,AD 是∠BAC 的平分线,若AB=AC+CD ,那么∠ACB 与∠ABC 有怎样的数量关系呢?(1)通过观察、实验提出猜想:∠ACB 与∠ABC 的数量关系,用等式表示为: .(2)小明把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:想法1:如图2,延长AC 到F ,使CF=CD ,连接DF .通过三角形全等、三角形的性质等知识进行推理,就可以得到∠ACB 与∠ABC 的数量关系.想法2:在AB 上取一点E ,使AE=AC ,连接ED ,通过三角形全等、三角形的性质等知识进行推理,就可以得到∠ACB 与∠ABC 的数量关系.请你参考上面的想法,帮助小明证明猜想中∠ACB 与∠ABC 的数量关系(一种方法即可).【答案】(1)∠ACB=2∠ABC ;(2)答案见解析【分析】(1)根据已知条件并通过观察、比较、测量、证明等方法即可猜想出结论;(2)根据全等三角形的性质和等腰三角形的性质及三角形的外角即可得到结论.【详解】解:(1)∠ACB=2∠ABC(2)想法1:∵ AD 是∠BAC 的平分线,∴∠BAD=∠CAD ,∵AF=AC+CF,且CD=CF,∴AF=AC+CD,又∵AB=AC+CD,∴AB=AF,又∵AD=AD,∴△ABD≌△AFD,∴∠B=∠F,∵CD=CF,∴∠F=∠CDF,又∵∠ACB=∠F+∠CDF,∴∠ACB=2∠F,∴∠ACB=2∠B.想法2:∵ AD是∠BAC的平分线,∴∠BAD=∠CAD,又∵AC=AE,AD=AD,∴△AED≌△ACD,∴ED=CD,∠C=∠AED,又∵AB=AC+CD,AB=AE+BE,AE=AC,∴CD=BE,∴DE=BE,∴∠B=∠EDB,又∵∠AED=∠B+∠EDB,∴∠AED=2∠B,又∵∠C=∠AED,∴∠C=2∠B.【点睛】本题主要考查全等三角形和等腰三角形的性质.根据题意利用辅助线构造全等是解题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列命题中是假命题的是()A.两个无理数的和是无理数B.(﹣10)2的平方根是±10C.2-=43(8)D.平方根等于本身的数是零【答案】A【分析】根据无理数的概念、平方根和立方根的概念逐一分析即可.【详解】解:A、220-+=,0不是无理数,∴两个无理数的和是无理数,是假命题;B、(﹣10)2=100,100的平方根是±10,∴(﹣10)2的平方根是±10,是真命题;C、2-=364=4,本选项说法是真命题;3(8)D、平方根等于本身的数是零,是真命题;故选:A.【点睛】本题主要考查真假命题,掌握平方根,立方根的求法和无理数的运算是解题的关键.2.如图,在△ABC中,CB=AC,DE垂直平分AC,垂足为E,交BC于点D,若∠B=70°,则∠BAD=()A.30°B.40°C.50°D.60°【答案】A【分析】根据等腰三角形的性质和线段垂直平分线的性质即可得到结论.【详解】解:∵CB=CA,∴∠B=∠BAC=70°,∴∠C=180°﹣70°﹣70°=40°.∵DE垂直平分AC,∴∠DAC=∠C=40°,∴∠BAD=30°.故选:A.【点睛】本题考查了等腰三角形的性质,线段垂直平分线的性质,熟练掌握线段垂直平分线的性质是解题的关键.3.如图,OP是∠AOB的平分线,点P到OA的距离为3,点N是OB上的任意一点,则线段PN的取值范围为()A.PN<3 B.PN>3 C.PN≥3 D.PN≤3【答案】C【分析】作PM⊥OB于M,根据角平分线的性质得到PM=PE,得到答案.【详解】解:作PM⊥OB于M,∵OP是∠AOB的平分线,PE⊥OA,PM⊥OB,∴PM=PE=3,∴PN≥3,故选C.【点睛】本题考查了角平分线的性质,属于简单题,熟悉角平分线的性质是解题关键.4.有理数-8的立方根为()A.-2 B.2 C.±2 D.±4【答案】A【分析】利用立方根定义计算即可得到结果.【详解】解:有理数-838-故选A.【点睛】此题考查了立方根,熟练掌握立方根的定义是解本题的关键.M--关于x轴的对称点的坐标为()5.点(3,5)A .(3,5)-B .(3,5)--C .(3,5)D .(3,5)-【答案】A 【分析】根据关于x 轴对称的点的特征:横坐标相同,纵坐标互为相反数即可得出答案.【详解】∵关于x 轴对称的点横坐标相同,纵坐标互为相反数,∴点(3,5)M --关于x 轴的对称点的坐标为(3,5)-.故选:A .【点睛】本题主要考查关于x 轴对称的点的特征,掌握关于x 轴对称的点的特征是解题的关键.6.计算下列各式,结果为5x 的是( )A .4x x +B .5x x ⋅C .6x x -D .6x x ÷【答案】D【分析】分别计算每个选项然后进行判断即可.【详解】解:A. 4x x +不能得到5x ,选项错误;B. 56x x x ⋅=,选项错误;C. 6x x -,不能得到5x ,选项错误;D. 65x x x ÷=,选项正确.故选:D .【点睛】本题考查了同底数幂的运算,熟练掌握运算法则是解题的关键.7.如图,△ABC 中,∠ACB=90°,沿CD 折叠△CBD ,使点B 恰好落在AC 边上的点E 处.若∠A=22°,则∠BDC 等于A .44°B .60°C .67°D .77°【答案】C 【解析】分析:△ABC 中,∠ACB=90°,∠A=22°,∴∠B=90°-∠A=68°.由折叠的性质可得:∠CED=∠B=68°,∠BDC=∠EDC ,∴∠ADE=∠CED ﹣∠A=46°.∴180ADE BDC 672︒-∠∠==︒. 故选C . 8.若代数式13x -在实数范围内有意义,则实数x 的取值范围是( ) A .x <3B .x >3C .x≠3D .x =3【答案】C 【分析】分式有意义时,分母x ﹣3≠0,据此求得x 的取值范围.【详解】依题意得:x ﹣3≠0,解得x≠3,故选C .【点睛】本题考查了分式有意义的条件.(1)分式有意义的条件是分母不等于零.(2)分式无意义的条件是分母等于零.9.下列运算正确的是( )A .a 3+a 3=a 3B .a •a 3=a 3C .(a 3)2=a 6D .(ab )3=ab 3 【答案】C【解析】根据幂的乘方和积的乘方,合并同类项,以及同底数幂的乘法的运算法则,逐项判断即可.【详解】解:A 、∵a 3+a 3=2a 3,∴选项A 不符合题意;B 、∵a•a 3=a 4,∴选项B 不符合题意;C 、∵(a 3)2=a 6,∴选项C 符合题意;D 、∵(ab )3=a 3b 3,∴选项D 不符合题意.故选:C .【点睛】本题考查幂的乘方和积的乘方,合并同类项,以及同底数幂的乘法,正确掌握相关运算法则是解题关键. 10.下列语句正确的是( )A 的立方根是2B .-3是27的立方根C .125216的立方根是56± D .2(1)-的立方根是-1 【答案】A【详解】解:8,= 8的立方根是2,选项A 符合题意.B. 3是27的立方根,选项B 不符合题意.C. 125216的立方根是56,选项C 不符合题意. D. 2(1)1-=,1的立方根是1,选项D 不符合题意.故选A.二、填空题11.如图,在△ABC 中,AB=2,BC=3.6,∠B=60°,将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上时,则CD 的长为______.【答案】1.1【分析】由将△ABC 绕点A 按顺时针旋转一定角度得到△ADE ,当点B 的对应点D 恰好落在BC 边上,可得AD=AB ,又由∠B=10°,可证得△ABD 是等边三角形,继而可得BD=AB=2,则可求得答案.【详解】由旋转的性质可得:AD=AB ,∵∠B=10°,∴△ABD 是等边三角形,∴BD=AB ,∵AB=2,BC=3.1,∴CD=BC-BD=3.1-2=1.1.故答案为1.1.【点睛】此题考查了旋转的性质以及等边三角形的判定与性质.此题比较简单,注意掌握旋转前后图形的对应关系,注意数形结合思想的应用.12.已知2m =a ,32n =b ,则23m +10n =________.【答案】a 3b 2【解析】试题解析:∵32n =b ,∴25n =b∴23m +10n =(2m )3×(25n )2= a 3b 2故答案为a 3b 213.分式1x x +有意义的条件是__________. 【答案】1x ≠-【分析】根据分式的性质即可求出. 【详解】∵1x x +是分式, ∴10x +≠∴1x ≠-【点睛】此题主要考查分式有意义的条件,解题的关键是熟知分式的性质.14.如图,ΔABC 与ΔA′B′C′关于直线l 对称,则∠B 的度数为____.【答案】100°【分析】依据轴对称的性质可得到∠C=∠C ′,然后依据三角形的内角和定理求解即可.【详解】解:∵△ABC 与△A ′B ′C ′关于直线l 对称,∴∠C=∠C ′=30°.∴∠B=180°-∠A-∠C=180°-50°-30°=100°.故答案为100°.【点睛】 本题主要考查的是轴对称的性质、三角形的内角和定理,熟练掌握相关知识是解题的关键.15.如图,一束平行太阳光线FA 、GB 照射到正五边形ABCDE 上,46ABG ∠=︒,则FAE ∠的度数是 ________ .【答案】26︒【分析】根据正五边形的性质与平行线的性质,即可求解.【详解】∵在正五边形ABCDE 中,∴∠BAE=180(52)1085︒⨯-=︒ , ∵FA ∥GB ,∴∠BAF+∠ABG=180°,∴FAE ∠=180°-108°-46°=26︒.故答案为:26︒.【点睛】本题主要考查正五边形的性质与平行线的性质,掌握正五边形的每个内角等于108°以及两直线平行,同旁内角互补,是解题的关键.16.如图,将矩形纸片ABCD 折叠,使点D 与点B 重合,点C 落在点C′处,折痕为EF ,若∠ABE=20°,那么∠EFC′的度数为______.【答案】125°【详解】解:Rt △ABE 中,∠ABE=20°,∴∠AEB=70°,由折叠的性质知:∠BEF=∠DEF ,而∠BED=180°﹣∠AEB=110°,∴∠BEF=55°,易知∠EBC=∠D=∠BC′F=∠C=90°,∴BE ∥C′F ,∴∠EFC′=180°﹣∠BEF=125°.故答案为125°.【点睛】本题考查翻折变换(折叠问题).17.面试时,某人的基本知识、表达能力、工作态度的得分分别是80分、70分、85分,若依次按30%、30%、40%的比例确定成绩,则这个人的面试成绩是____________.【答案】79分【分析】根据加权平均数定义解答即可.【详解】这个人的面试成绩是80×30%+70×30%+85×40%=79(分),故答案为:79分.【点睛】本题主要考查加权平均数的计算,掌握加权平均数的定义是解题的关键.三、解答题18.如图,ABC ∆是等边三角形,点D 是AC 的中点,//AM BC ,过点D 作DE BC ⊥,垂足为E ,DE 的反向延长线交AM 于点F .(1)求证:AF BE AB +=;(2)求证:AC 垂直平分BM .【答案】(1)见解析;(2)见解析【分析】(1)先证明ADF ∆≌CDE ∆得到AF CE =,再根据等边三角形即可求解;(2)根据//AM BC 得到ABM MBC M ∠=∠=∠,得到△ABM 是等腰三角形,根据三线合一即可求解.【详解】证明:(1)∵点D 是AC 的中点∴AD CD =∵//AM BC∴DAF C ∠=∠在ADF ∆和CDE ∆中DAF C AD CDADF CDE ∠=∠⎧⎪=⎨⎪∠=⎩∴ADF ∆≌CDE ∆∴AF CE =∴AF BE CE BE AB +=+=∴AF BE AB +=(2)∵点D 是等边ABC ∆中AC 边的中点∴BD AC ⊥且BD 平分ABC ∠∴AD BM ⊥,30ABD ∠=∵//AM BC∴ABM M ∠=∠∴AB AM =∴ABM ∆是等腰三角形又∵AD BM ⊥∴AD 是ABM ∆中BM 边的中线又AD BM ⊥∴AC 垂直平分BM .【点睛】此题主要考查等边三角形的性质与证明,解题的关键是熟知全等三角形的判定、等边三角形的性质及垂直平分线的判定.19.已知如图∠B=∠C ,∠1=∠2,∠BAD=40°,求∠EDC 度数.【答案】∠EDC=20°.【分析】三角形的外角性质知:∠EDC+∠1=∠B+40°,∠2=∠EDC+∠C ,结合∠1=∠2,∠B=∠C ,进行等量代换,即可求解.【详解】∵∠ADC 是△ABD 的一个外角,∴∠ADC=∠B+∠BAD ,即∠EDC+∠1=∠B+40°,①同理:∠2=∠EDC+∠C ,∵∠1=∠2,∠B=∠C ,∴∠1=∠EDC+∠B ,②把②代入①得:2∠EDC+∠B=∠B+40°,解得:∠EDC=20°.【点睛】本题主要考查三角形外角的性质,熟练掌握外角的性质,列出等式,是解题的关键.20.如图,在68⨯的网格纸中,每个小正方形的边长都为1,动点P ,Q 分别从点D ,点A 同时出发向右移动,点P 的运动速度为每秒2个单位,点Q 的运动速度为每秒1个单位,当点P 运动到点C 时,两个点同时停止运动.(1)当运动时间t 为3秒时,请在网格纸图中画出线段PQ ,并求其长度.(2)在动点P ,Q 运动的过程中,若BPQ ∆是以PQ 为腰的等腰三角形,求相应的时刻t 的值.【答案】(1)图见解析,35;(2)8t =或74t = 【分析】(1)因为已知P ,Q 的速度,根据时间即可求出各自运动路程,从而画出PQ ;(2)①当PB PQ =时,2226QP t =+,2226(82)PB t =+-;②当QB QP =时,2226QP t =+,8QB t =-;分别列出方程求出t 后根据4t 取舍即可得.【详解】解:(1)∵点Q 的运动速度为每秒1个单位和运动时间为3秒,∴由图中可知PQ 的位置如图1,则由已知条件可得6PD =,3AQ =,3QE =,6PE =, ∴22223635PQ PE QE =+=+=.(2)作PM AB ⊥于点M ,由题意知2PD t =、AQ t =,则82CP t =-、8BQ t =-,∵2AM DP t ==,∴QM AM AQ t =-=,则222PQ PM QM =+,即2226PQ t =+,∵22(8)BQ t =-,22222(82)6PB PC BC t =+=-+,∴当PQ PB =时,22226(82)6t t +=-+,解得83t =或84t =>(舍去); 当PQ BQ =时,2226(8)t t +=-,解得:74t =; 综上,当8t =或74t =时,PQB ∆能成为以PQ 为腰的等腰三角形. 【点睛】本题主要考查了勾股定理,作图-平移变换及等腰三角形,解题的关键是熟练掌握勾股定理及等腰三角形的判定.21.已知:如图,点A是线段CB上一点,△ABD、△ACE都是等边三角形,AD与BE相交于点G,AE与CD相交于点F.求证:△AGF是等边三角形.【答案】见解析【分析】由等边三角形可得AD=AB,AE=AC,∠BAE=∠DAC=120°,再由两边夹一角即可判定△BAE≌△DAC,可得∠1=∠2,进而可得出△BAG≌△DAF,AG=AF,则可得△AGF是等边三角形.【详解】证明:∵△ABD,△ACE都是等边三角形,∴AD=AB,AE=AC,∴∠DAE=∠BAD=∠CAE=60°∴∠BAE=∠DAC=120°,在△BAE和△DAC中AD=AB,∠BAE=∠DAC,AE=AC,∴△BAE≌△DAC.∴∠1=∠2在△BAG和△DAF中∠1=∠2,AB=AD,∠BAD=∠DAE,∴△BAG≌△DAF,∴AG=AF,又∠DAE=60°,∴△AGF是等边三角形.【点睛】本题主要考查了全等三角形的判定及性质,以及等边三角形的性质和判定,解答本题的关键是明确题意,利用数形结合的思想解答.22.计算:(1)3a3b•(﹣1ab)+(﹣3a1b)1(1)(1x+3)(1x﹣3)﹣4x(x﹣1)+(x﹣1)1.【答案】(1)3a4b1; (1)x1﹣5.【解析】(1)首先计算乘方、乘法,然后计算加法,求出算式的值是多少即可.(1)首先计算乘方、乘法,然后从左向右依次计算,求出算式的值是多少即可.【详解】解:(1)3a3b•(﹣1ab)+(﹣3a1b)1=﹣6a4b1+9a4b1=3a4b1(1)(1x+3)(1x﹣3)﹣4x(x﹣1)+(x﹣1)1=4x1﹣9﹣4x1+4x+x1﹣4x+4=x1﹣5【点睛】考查了整式的混合运算,要熟练掌握,解答此题的关键是要明确:有乘方、乘除的混合运算中,要按照先乘方后乘除的顺序运算,其运算顺序和有理数的混合运算顺序相似.23.在如图的正方形网格中,每一个小正方形的边长为1;格点三角形ABC(顶点是网格线交点的三角形)的顶点A、C的坐标分别是(-4,6)、(-1,4);(1)请在图中的网格平面内建立平面直角坐标系;(2)请画出△ABC关于x轴对称的△A1B1C1;(3)请在y轴上求作一点P,使△PB1C的周长最小,并直接写出点P的坐标.【答案】(1)(2)见解析;(3)P(0,2).【解析】分析:(1)根据A,C两点的坐标即可建立平面直角坐标系.(2)分别作各点关于x轴的对称点,依次连接即可.(3)作点C关于y轴的对称点C′,连接B1C′交y轴于点P,即为所求.详解:(1)(2)如图所示:(3)作点C关于y轴的对称点C′,连接B1C′交y轴于点P,则点P即为所求.设直线B1C′的解析式为y=kx+b(k≠0),∵B1(﹣2,-2),C′(1,4),∴224k bk b-+=-⎧⎨+=⎩,解得:22kb=⎧⎨=⎩,∴直线AB2的解析式为:y=2x+2,∴当x=0时,y=2,∴P(0,2).点睛:本题主要考查轴对称图形的绘制和轴对称的应用.24.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.(1)当直线MN绕点C旋转到图1的位置时,△ADC和△CEB全等吗?请说明理由;(2)聪明的小亮发现,当直线MN绕点C旋转到图1的位置时,可得DE=AD+BE,请你说明其中的理由;(3)小亮将直线MN绕点C旋转到图2的位置,发现DE、AD、BE之间存在着一个新的数量关系,请直接写出这一数量关系。
<合集试卷3套>2018年贵阳市某达标中学八年级上学期数学期末监测试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.若一个等腰三角形的两边长分别是2和5,则该等腰三角形的周长是()A.9 B.12 C.13 D.12或9【答案】B【分析】根据等腰三角形的定义,即可得到答案.【详解】∵一个等腰三角形的两边长分别是2和5,∴等腰三角形的三边长分别为:5,5,2,即:该等腰三角形的周长是1.故选B.【点睛】本题主要考查等腰三角形的定义以及三角形三边之间的关系,掌握等腰三角形的定义,是解题的关键.2.如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若AEAB=23,则3S△EDH=13S△DHC,其中结论正确的有( )A.1个B.2个C.3个D.4个【答案】D【分析】根据题意可知∠ACD=45°,则GF=FC,继而可得EG=DF,由此可判断①;由SAS证明△EHF≌△DHC,得到∠HEF=∠HDC,继而有∠AEH+∠ADH=180°,由此可判断②;同②证明△EHF≌△DHC,可判断③;若AE:AB=2:3,则AE=2BE,可以证明△EGH≌△DFH,则∠EHG=∠DHF且EH=DH,则∠DHE=90°,△EHD为等腰直角三角形,过点H作HM⊥CD于点M,设HM=x,则DM=5x,26x,CD=6x,根据三角形面积公式即可判断④.【详解】①∵四边形ABCD为正方形,EF∥AD,∴EF=AD=CD,∠ACD=45°,∠GFC=90°,∴△CFG为等腰直角三角形,∴GF=FC,∵EG=EF-GF,DF=CD-FC,∴EG=DF,故①正确;②∵△CFG 为等腰直角三角形,H 为CG 的中点,∴FH=CH ,∠GFH=12∠GFC=45°=∠HCD , 在△EHF 和△DHC 中,EF CD EFH DCH FH CH =⎧⎪∠=∠⎨⎪=⎩,∴△EHF ≌△DHC(SAS),∴∠HEF=∠HDC ,∴∠AEH+∠ADH=∠AEF+∠HEF+∠ADF-∠HDC=∠AEF+∠ADF=180°,故②正确;③∵△CFG 为等腰直角三角形,H 为CG 的中点,∴FH=CH ,∠GFH=12∠GFC=45°=∠HCD , 在△EHF 和△DHC 中,EF CD EFH DCH FH CH =⎧⎪∠=∠⎨⎪=⎩,∴△EHF ≌△DHC(SAS),故③正确;④∵AE:AB=2:3,∴AE=2BE ,∵△CFG 为等腰直角三角形,H 为CG 的中点,∴FH=GH ,∠FHG=90°,∵∠EGH=∠FHG+∠HFG=90°+∠HFG=∠HFD ,在△EGH 和△DFH 中,ED DF EGH HFD GH FH =⎧⎪∠=∠⎨⎪=⎩,∴△EGH ≌△DFH(SAS),∴∠EHG=∠DHF ,EH=DH ,∠DHE=∠EHG+∠DHG=∠DHF+∠DHG=∠FHG=90°,∴△EHD 为等腰直角三角形,过H 点作HM 垂直于CD 于M 点,如图所示:设HM=x ,则DM=5x ,,CD=6x ,则S △DHC =12×CD ×HM=3x 2,S △EDH =12×DH 2=13x 2, ∴3S △EDH=13S △DHC ,故④正确,所以正确的有4个,故选D.【点睛】本题考查了正方形的性质、全等三角形的判定与性质、等腰直角三角形的判定与性质、勾股定理、三角形面积的计算等知识;熟练掌握正方形的性质,证明三角形全等是解决问题的关键.3.下列四个命题中,真命题有( )①两条直线被第三条直线所截,内错角相等.②如果1=2∠∠ ,那么1∠ 与2∠ 是对顶角.③三角形的一个内角大于任何一个外角.④如果0x > ,那么20x > .A .1 个B .2 个C .3 个D .4 个【答案】A【分析】正确的命题是真命题,根据定义解答即可.【详解】①两条直线被第三条直线所截,内错角相等,是假命题;②如果1=2∠∠ ,那么1∠ 与2∠ 是对顶角,是假命题;③三角形的一个内角大于任何一个外角,是假命题;④如果0x > ,那么20x > ,是真命题,故选:A.【点睛】此题考查真命题,熟记真命题的定义,并熟练掌握平行线的性质,对顶角的性质,三角形外角性质,不等式的性质是解题的关键. 4.已知112a b -=,则代数式232a ab b a ab b+---的值是( ) A .12 B .12- C .13 D .13- 【答案】C 【分析】先将112a b-=化简得到a-b=-2ab ,再代入代数式进行计算. 【详解】∵112a b -=, ∴a-b=-2ab ,∴2322()3432a ab b a b ab ab aba ab b a b ab ab ab+--+-+=== ------13,故选:C.【点睛】此题考查分式的化简计算,将代数式的值整体代入计算是求分式值的方法. 5.对于函数y=-3x+1,下列说法不正确的是()A.它的图象必经过点(1,-2) B.它的图象经过第一、二、四象限C.当x>13时,y>0 D.它的图象与直线y=-3x平行【答案】C【分析】根据一次函数图象上点的坐标特征对A进行判断;根据一次函数的性质对B、D进行判断;令y>0,得到x<13,则可对C进行判断.【详解】解:A.当x=1时,y=-2,正确;B.函数经过一、二、四象限,正确;C.令y>0,即-3x+1>0,解得x<13,错误;D.∵两个直线的斜率相等,∴图象与直线平行,正确.故答案为:C.【点睛】此题考查一次函数的性质,解题关键在于掌握k>0,y随x的增大而增大,函数从左到右上升;k<0,y 随x的增大而减小,函数从左到右下降.由于y=kx+b与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.6.下列长度的三条线段,哪一组能构成三角形()A.2,2,5B.3,4,5C.2,6,10D.4,5,9【答案】B【解析】由题意直接根据三角形的三边关系进行分析判断即可.【详解】解:根据三角形任意两边的和大于第三边,得A、2+2=4<5,不能组成三角形;B、3+4=7>5,能组成三角形;C、2+6=8<10,不能组成三角形;D、4+5=9,不能组成三角形.故选:B.【点睛】本题考查能够组成三角形三边的条件,用两条较短的线段相加,如果大于最长的那条线段就能够组成三角形.7.如图,若圆盘的半径为2,中间有一边长为1的正方形,向圆盘内随机投掷一枚飞镖,则飞镖落在中间正方形内的概率是( )A .1πB .2πC .12πD .14π【答案】D【分析】根据几何概率的公式,分别求解出圆形的面积和正方形的面积即可.【详解】由题:4S π=圆,1S =正方形∴()14P π=落在正方形内, 故选:D .【点睛】本题考查几何概率的计算,准确计算各部分面积是解题关键.8.在平面直角坐标系xOy 中,点P 在由直线y=-x+3,直线y=4和直线x=1所围成的区域内或其边界上,点Q 在x 轴上,若点R 的坐标为R (2,2),则QP+QR 的最小值为( )A .17B .5+2C .35D .4 【答案】A【解析】试题分析:本题需先根据题意画出图形,再确定出使QP+QR 最小时点Q 所在的位置,然后求出QP+QR 的值即可.试题解析:当点P 在直线y=-x+3和x=1的交点上时,作P 关于x 轴的对称点P′,连接P′R ,交x 轴于点Q ,此时PQ+QR 最小,连接PR ,∵PR=1,PP′=4∴P′R=221417+=∴PQ+QR 的最小值为17故选A .考点:一次函数综合题.9.在ABC ∆中,按一下步骤作图:①分别以A B 、为圆心,大于12AB 的长为半径画弧,相交于两点M N ,;②作直线MN 交AC 于点D ,连接BD .若CD BC =,40C ∠=,则DBA ∠=( )A .30°B .35°C .40°D .45°【答案】B 【分析】利用线段垂直平分线的性质得出∠DAB=∠ABD ,由等腰三角形的性质求出∠CDB=∠CBD=70°,进而结合三角形外角的性质进而得出答案.【详解】解:由题意可得:MN 垂直平分AB ,∴AD=BD ,∴∠DAB=∠ABD ,∵DC=BC ,∴∠CDB=∠CBD ,∵CD BC =,∠C=40°,∴∠CDB=∠CBD=70°,∴∠A=∠ABD=35°.故选:B .【点睛】此题主要考查了等腰三角形的性质,三角形外角的性质,以及线段垂直平分线的作法与性质,正确得出∠DAB=∠ABD 是解题关键.10.下列计算中,正确的是( )A .21(3)9--=-B .428x x x ⋅=C .2339()a a a ⋅=D .0(2)1a -= 【答案】C【详解】选项A , ()23--=21193()=-; 选项B ,426x x x ⋅=;选项C , ()323639 a a a a a ⋅=⋅=;选项D ,()021a -=,必须满足a-2≠0.故选C.二、填空题11.函数y =x 的取值范围是______. 【答案】23x -<≤【分析】根据二次根式及分式有意义的条件,结合所给式子得到关于x 的不等式组,解不等式组即可求出x 的取值范围.【详解】由题意得,30200x x ⎧-≥⎪+≥⎨≠,解得:-2<x≤3,故答案为-2<x≤3.【点睛】本题考查了二次根式及分式有意义的条件,注意掌握二次根式有意义:被开方数为非负数,分式有意义分母不为零.12.分式1ab 与21ab的最简公分母为_______________ 【答案】ab 1 【分析】最简公分母是按照相同字母取最高 次幂,所有不同字母都写在积里,则易得分式1ab 与21ab 的最简公分母为ab 1.【详解】∵1ab 和21ab中,字母a 的最高次幂是1,字母b 的最高次幂是1, ∴分式1ab 与21ab 的最简公分母为ab 1, 故答案为ab 1【点睛】本题考查了最简公分母:通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.13.在平面直角坐标系xOy 中,二元一次方程ax+by=c 的图象如图所示.则当x=3时,y 的值为_______.【答案】12- 【分析】从给出图象中得到二元一次方程的两组解,进而确定具体的二元一次方程为x +2y =2,再代入x=3即可求出y 的值.【详解】解:从图象可以得到,20x y =⎧⎨=⎩和01x y =⎧⎨=⎩是二元一次方程ax +by =c 的两组解, ∴2a =c ,b =c ,∴x +2y =2,当x =3时,y =12-, 故答案为12-. 【点睛】本题考查二元一次方程的解与一次函数图象的关系;能够从一次函数图象上获取二元一次方程的解,代入求出具体的二元一次方程是解题的关键.14.如图,如果图中的两个三角形全等,根据图中所标数据,可以推理得到∠α=____.【答案】67°【解析】根据全等三角形的性质,两三角形全等,对应角相等,因为角α 与67°的角是对应角,因此α67=︒,故答案为67°.15.已知12x y +=,6-=x y ,则22x y -=__________.【答案】72【分析】利用平方差公式对22x y -变形为()()x y x y +-,即可求解. 【详解】∵12x y +=,6-=x y ,∴()()2212672x y x y x y -=+-=⨯=. 故答案为:72.【点睛】本题主要考查了平方差公式的应用,解题的关键是牢记公式的结构特征和形式.16. “宝剑锋从磨砺出,梅花香自苦寒来” 喻义要想拥有珍贵品质或美好才华等是需要不断的努力、修炼、克服一定的困难才能达到的据有关资料显示,梅花的花粉直径大约是0.00002米,数字0.00002用科学记数法表示为______【答案】2×10-5【解析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00002=2×10-5,故答案为:2×10-5【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.17.当1x =时,分式x b x a -+无意义,则a =_________. 【答案】-1【分析】根据分式无意义的条件是分母为零即可解答.【详解】解:∵当1x =时,分式x b x a-+无意义, ∴当1x =时,分母为零,即10a +=,解得a=-1,故答案为:-1.【点睛】本题考查了分式无意义的条件,解题的关键是熟知分式无意义的条件是分母为零.三、解答题18.(12(2)解方程组:4,2 5.x y x y -=⎧⎨+=⎩①②【答案】(1(2)31x y =⎧⎨=-⎩【分析】(1)根据二次根式混合运算法则即可求解(2)将两个方程相加即可消去y ,求得x 的值,再代入任一方程求解y 的值.【详解】(1(2)解方程组:425x y x y -=⎧⎨+=⎩①② 由①+②得,3x = 9 ③得 x=3把x=3代入①得,y= -1∴原方程组的解是31x y =⎧⎨=-⎩故答案为:31x y =⎧⎨=-⎩ 【点睛】本题考查了二次根式的混合运算和二元一次方程组的解法,本题主要应用加减消元法解二元一次方程组. 19.先化简再求值:()()()()222222a b b a a b a a b ---+--,其中1a =,2b =-.【答案】222a ab --;1.【分析】先根据完全平方公式、平方差公式、单项式与多项式的乘法法则计算,再合并同类项化简,然后把1a =,2b =-代入计算即可.【详解】解:原式2222244442a ab b a b a ab =-++--+ 222a ab =--当1a =,2b =-时原式()221212=-⨯-⨯⨯- 242=-+=.【点睛】本题主要考查了整式的化简求值,涉及到的知识有:平方差公式,完全平方公式,单项式乘以多项式,合并同类项等知识.在求代数式的值时,一般先化简,再把各字母的取值代入求值.20.材料一:我们可以将任意三位数记为abc ,(其中a 、b 、c 分别表示该数的百位数字,十位数字和个位数字,且0a ≠),显然10010abc a b c =++.材料二:若一个三位数的百位数字,十位数字和个位数字均不为0,则称之为初始数,比如123就是一个初始数,将初始数的三个数位上的数字交换顺序,可产生出5个新的初始数,比如由123可以产生出132,213,231,312,321这5个新初始数,这6个初始数的和成为终止数.(1)求初始数125生成的终止数;(2)若一个初始数abc ,满足a b c >>,且10a b c ++<,记2()x abc acb =-,2()y bca bac =-,2()z cab cba =-,若324x y z +-=,求满足条件的初始数的值.【答案】(1)1776(2)432或321.【分析】(1)根据终止数的定义即可求解;(2)根据根据三位数的构成及x ,y,z 的特点表示出a,b,c 的关系,再根据a b c >>,且10a b c ++<即可求出a,b,c 的值.【详解】(1)初始数125可以产生出152,215,251,512,521这5个新初始数,这6个初始数的和为1776,故初始数125生成的终止数为1776(2)∵2()x abc acb =-=()()21001010010a b c a c b ++-++⎡⎤⎣⎦=()299b c -=81()2b c -, 同理:2()y bca bac =-=81()2c a -,2()z cab cba =-=81()2a b -∵324x y z +-=∴81()2b c -+81()2c a --81()2a b -=324化简得22c bc ac ab --+=则c (c-b )+a(b-c)=2∴(b-c) (a-c)=2∵a,b,c 为正整数,故21b c a c -=⎧⎨-=⎩或12b c a c -=⎧⎨-=⎩又a b c >>,且10a b c ++<解得a=4,b=3,c=2或a=3,b=2,c=1 故满足条件的初始数的值为432或321.【点睛】此题主要考查新定义运算的应用,解题的关键是熟知完全平方公式的应用及方程组的求解.21.利用我们学过的知识,可以推导出下面这个形式优美的等式:()()()22222212a b c ab bc ac a b b c c a ⎡⎤+++++=+++++⎣⎦. 该等式从左到右的变形,不仅保持了结构的对称性,还体现了数学的和谐美、简洁美.(1)请你检验这个等式的正确性;(2)猜想:222a b c ab bc ac ++---=12[ ]. (3)灵活运用上面发现的规律计算:若2018a =-,2016b =,2017c =-,求222a b c ab bc ac ++++-的值.【答案】 (1)证明见解析;(2)222 ()()()a b b c c a -+-+-;(3) 3【分析】(1)右边利用完全平方公式化简,去括号合并即可验证;(2)猜想:(2222221[()())2a b c ab bc ac a b b c c a ⎤++---=-+-+-⎦; (3)根据 201820162017a b c =-==-,,,将原式变形,计算即可得到结果.【详解】(1)右边(2221[()())2a b b c c a ⎤=+++++⎦ ()22222212222a ab b b bc c c ac a =++++++++ 22212222ab 2bc 2ac 2a b c =+++++ 222a b c ab bc ac =+++++=左边,故等式成立; (2)(2222221[()())2a b c ab bc ac a b b c c a ⎤++---=-+-+-⎦ 右边(2221[()())2a b b c c a ⎤=-+-+-⎦ ()22222212222a ab b b bc c c ac a =-++-++-+ 22212222ab 2bc 2ac 2a b c =++--- 222a b c ab bc ac =++---=左边,∴猜想成立,故答案为:(222[()())a b b c c a ⎤-+-+-⎦; (3)根据(1) (2)的规律,猜想:(2222221[()())2a b c ab bc ac a b b c c a ⎤++++-=++++-⎦, 右边()22222212222a ab b b bc c c ac a =++++++-+ 22212222ab 2bc 2ac 2a b c =++++- 222a b c ab bc ac =++++-=左边,∴猜想成立;∵ 201820162017a b c =-==-,,, ∴(2222221[()())2a b c ab bc ac a b b c c a ⎤++++-=++++-⎦ (2221[(20182016)(20162017)20172018)2⎤=-++-+-+⎦ (2221[(2)1)12⎤=-+-+⎦()14112=++ 3=.【点睛】本题考查了完全平方公式,熟练掌握题中已知等式的灵活运用是解本题的关键.22.计算或因式分解:(1)计算:(a 2-4)÷2a a+;(2)因式分解:a(n -1)2-2a(n -1)+a. 【答案】(1)原式=a 2-2a ;(2)原式=a(n -2)2.【解析】试题分析:(1)先把括号内的进行因式分解,然后把除法转化成乘法进行约分即可得解; (2)首先提取公因式a ,再利用完全平方公式分解因式得出答案.试题解析:(1)原式=(a +2)(a -2)2a a +=a(a -2)=a 2-2a ; (2)原式=a[(n -1)2-2(n -1)+1]=a(n -1-1)2=a(n -2)2.23.如图,锐角ABC ∆的两条高BD 、CE 相交于点O ,且BD CE =.(1)证明:CD BE =.(2)判断点O 是否在BAC ∠的角平分线上,并说明理由.(3)连接DE ,DE 与BC 是否平行?为什么?【答案】(1)见解析(2)点O 在∠BAC 的角平分线上,理由见解析(3)平行,理由见解析【分析】(1)根据题意证明△BCE ≌△CBD 即可求解;(2)由(1)得到△ABC 为等腰三角形,连接AO 并延长交BC 于F ,通过证△AOE ≌△AOD ,得到∠BAF =∠CAF ,即点O 在∠BAC 的角平分线上.(3)连接DE ,根据等腰三角形三线合一即可求解.【详解】(1)∵锐角ABC ∆的两条高BD 、CE 相交于点O ,且BD CE =BC=CB ,∴△BCE ≌△CBD (HL )∴CD BE =(2)解:点O 在∠BAC 的角平分线上.理由:∵△BCE ≌△CBD∴∠EBC =∠DCB,BE=CD∴△ABC 为等腰三角形,∴AB=AC,则AB-BE=AC-CD∴AE=AD连接AO 并延长交BC 于F ,在Rt △AOE 和Rt △AOD 中,AE AD AO AO⎧⎨=⎩= ∴Rt △AOE ≌Rt △AOD .∴∠BAF =∠CAF ,∴点O 在∠BAC 的角平分线上.(3)平行,理由如下:如图,连接DE ,交AF 于G 点,∵AE=AD∴△ADE 为等腰三角形,由(2)得到AF 为∠BAC 的角平分线∴AG ⊥DE ,又AF ⊥BC ,∴DE ∥BC.【点睛】此题考查了等腰三角形的性质与判定,以及角平分线的判定等知识.此题难度不大,注意等角对等边与三线合一定理的应用.24. “太原市批发市场”与“西安市批发市场”之间的商业往来频繁, 如图,“太原市批发市场”“西安市批发市场”与“长途汽车站”在同一线路上,每天中午12:00一辆客车由“太原市批发市场”驶往“长途汽车站”,一辆货车由“西安市批发市场”驶往“太原市批发市场”,假设两车同时出发,匀速行驶,图2分别是客车、货车到“长途汽车站”的距离12(),()y km y km 与行驶时间(h)x 之间的函数图像.请你根据图象信息解决下列问题:(1)由图 2 可知客车的速度为 km/h ,货车的速度为 km/h ;(2)根据图 2 直接写出直线 BC 的函数关系式为 ,直线 AD 的函数关系式为 ; (3)求点B 的坐标,并解释点B 的实际意义.【答案】(1)60,30;(2)60360y x =+-, 3060y x =-;(3)点B 的坐标为14,803⎛⎫ ⎪⎝⎭,点B 代表的实际意义是此时客车和货车相遇.【分析】(1)由图象可知客车6小时行驶的路程是360千米,货车2小时行驶的路程为60千米,从而可以求得客车和货车的速度;(2)先求出点D 的横坐标,然后利用待定系数法,利用点(0,360)和(6,0)求出直线BC 的解析式,利用点A 和点D 坐标求出直线AD 的解析式,即可得到答案.(3)把直线BC 和直线AD 联合,组成方程组,即可求出点B 的坐标,然后得到答案.【详解】解:()1由图象可得,客车的速度是:360÷6=60 km/h ,货车的速度是:602=30÷km/h ,故答案为:60;30.()2根据题意,货车行驶全程所用的时间为:360302=14÷+小时;∴点D 的坐标为(14,360);设直线BC 为y ax b =+,把点(0,360)和(6,0)代入,得36060b a b =⎧⎨+=⎩,解得:60360a b =-⎧⎨=⎩, ∴直线BC 为:60360y x =+-;设直线AD 为y mx n =+,把点A (2,0)和点D (14,360)代入,得2014360m n m n +=⎧⎨+=⎩,解得:3060m n =⎧⎨=-⎩, ∴直线AD 为: 3060y x =-;故答案为:60360y x =+-, 3060y x =-;()3由()2知,客车由“太原市批发市场”到“长途汽车站”对应的函数关系式为:60360,y x =+-货车由“长途汽车站”到“太原市批发市场”对应的函数关系式为: 3060y x =-,603603060.y x y x =-+⎧∴⎨=-⎩, 解得:14380x y ⎧=⎪⎨⎪=⎩;∴点B 的坐标为:14,803⎛⎫ ⎪⎝⎭; ∴点B 代表的实际意义是此时客车和货车相遇.【点睛】本题考查一次函数的应用,以及根据函数图像获取信息,解答此类问题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.25.解方程组3549x y x y +=⎧⎨-=⎩【答案】21x y =⎧⎨=-⎩ 【分析】利用加减消元法求出解即可;【详解】解:3549x y x y +=⎧⎨-=⎩①②, ①+②得:7x=14,解得:x=2,把x=2代入①得:6+y=5,解得:y=-1,则方程组的解为21x y =⎧⎨=-⎩【点睛】此题考查了解二元一次方程组,熟练掌握运算法则是解本题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.若x ,y 的值均扩大为原来的3倍,则下列分式的值保持不变的是( )A .3+-x x yB .22y xC .3223y xD .()222y x y -【答案】D 【分析】分别写出x 、y 都扩大3倍后的分式,再化简与原式比较,即可选择.【详解】当x 、y 都扩大3倍时,A 、()()313313333++++==≠----x x x x x y x y x y x y,故A 错误. B 、()222223622933⨯==≠y y y y x x x x ,故B 错误. C 、()()33332222232272227333⨯==≠y y y y x x xx ,故C 错误. D 、()()()()22222223292339y y y x y x y x y ⨯==---,故D 正确.故选D .【点睛】本题考查分式的基本性质,解题关键是熟练化简分式.2.如图,AD 是△ABC 的中线,E ,F 分别是AD 和AD 延长线上点,且DE =DF ,连接BF ,CE .①△ABD 和△ACD 面积相等;②∠BAD =∠CAD ;③△BDF ≌△CDE ;④BF ∥CE ;⑤CE =AE .上述结论中,正确的个数有( )A .2个B .3个C .4个D .5个【答案】B 【分析】①△ABD 和△ACD 是等底同高的两个三角形,其面积相等,故①正确;②若AB≠AC ,则AD 不是∠BAC 的平分线,故②错误;③由全等三角形的判定定理SAS 可证得结论,故③正确;④、⑤由③中的全等三角形的性质得到.【详解】解:①∵AD 是△ABC 的中线,∴BD =CD ,∴△ABD和△ACD面积相等,故①正确;②若在△ABC中,AB≠AC时,AD不是∠BAC的平分线,即∠BAD≠∠CAD,故②错误;③∵AD是△ABC的中线,∴BD=CD,在△BDF和△CDE中,BD CDBDF CDE DF DE=⎧⎪∠=∠⎨⎪=⎩,∴△BDF≌△CDE(SAS),故③正确;④∵△BDF≌△CDE,∴∠CED=∠BFD,∴BF∥CE,故④正确;⑤∵△BDF≌△CDE,∴CE=BF,∴只有当AE=BF时,CE=AE,故⑤错误,综上所述,正确的结论是:①③④,共有3个.故选:B.【点睛】本题考查了三角形中线的性质,等腰三角形的性质,全等三角形的判定和性质,解题的关键是证明△BDF≌△CDE.3.某种细菌的半径是0.00000618米,用科学记数法把半径表示为()A.618×10﹣6B.6.18×10﹣7C.6.18×106D.6.18×10﹣6【答案】D【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,n的值由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】0.00000118=1.18×10﹣1.故选D.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.如图,在△ABC中,∠C=90°,AD是△ABC的一条角平分线.若AC=6,AB=10,则点D到AB边的距离为()A .2B .2.5C .3D .4【答案】C 【分析】作DE ⊥AB 于E ,由勾股定理计算出可求BC=8,再利用角平分线的性质得到DE=DC ,设DE=DC=x ,利用等等面积法列方程、解方程即可解答.【详解】解:作DE ⊥AB 于E ,如图,在Rt △ABC 中,BC 22106-=8,∵AD 是△ABC 的一条角平分线,DC ⊥AC ,DE ⊥AB ,∴DE =DC ,设DE =DC =x ,S △ABD =12DE•AB =12AC•BD , 即10x =6(8﹣x ),解得x =1,即点D 到AB 边的距离为1.故答案为C .【点睛】本题考查了角平分线的性质和勾股定理的相关知识,理解角的平分线上的点到角的两边的距离相等是解答本题的关键..5.计算33m m ÷结果是( )A .1B .0C .mD .6m 【答案】A【分析】由题意直接利用同底数幂的除法运算法则进行计算,即可得出答案.【详解】解:333301m m m m -÷===.故选:A.【点睛】本题主要考查同底数幂的除法运算,正确掌握同底数幂的除法运算法则即同底数幂相除指数相减是解题关键.6.若点(),P a b 在第二象限,则点()5,1Q b a +-所在象限应该是( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【分析】根据平面直角坐标系中,点的坐标特征与所在象限的关系,即可得到答案.【详解】∵点(),P a b 在第二象限,∴ a <0,b >0,∴b+5>0,1-a >0,∴点()5,1Q b a +-在第一象限,故选A .【点睛】本题主要考查平面直角坐标系中,点的坐标特征与所在象限的关系,掌握各个象限内点的横纵坐标的正负性,是解题的关键.7. “绿水青山就是金山银山”,为了加大深圳城市森林覆盖率,市政府决定在2019年3月12日植树节前植树2000棵,在植树400棵后,为了加快任务进程,采用新设备,植树效率比原来提升了25%,结果比原计划提前5天完成所有计划,设原计划每天植树x 棵,依题意可列方程( ) A .()200020005125%x x -=+ B .()200040020004005125%x x ---=+ C .()200020004005125%x x --=+ D .()200040020004005125%xx ---=+ 【答案】D【分析】根据题目中的数量关系,可以列出相应的分式方程,从而可以解答本题.【详解】解:根据“结果比原计划提前5天完成所有计划” 可得:20004002000400(125%)x x ---+=5, 故选:D .【点睛】本题考查由实际问题抽象出分式方程,解答本题的关键是明确题意,列出相应的分式方程.8.一次函数y =x +3的图象不经过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】试题分析:一次函数y=x+3的图象过一、二、三象限,故选D.考点:一次函数的图象.9.若分式33xx-+的值为0,则x的值为()A.3B.3-C.3或3-D.0【答案】A【分析】根据分式的值为零的条件可以求出x的值.【详解】由分式的值为零的条件得x-1=2,且x+1≠2,解得x=1.故选A.【点睛】本题考查了分式值为2的条件,具备两个条件:(1)分子为2;(2)分母不为2.这两个条件缺一不可.10.点D在△ABC的边BC上,△ABD和△ACD的面积相等,则AD是()A.中线B.高线C.角平分线D.中垂线【答案】A【分析】过A作AH⊥BC于H,根据三角形的面积公式得到S△ACD=12CD•AH,S△ABD=12BD•AH,由于△ACD和△ABD面积相等,于是得到12CD•AH=12BD•AH,即可得到结论.【详解】过A作AH⊥BC于H,∵S△ACD=12CD⋅AH,S△ABD=12BD⋅AH,∵△ACD和△ABD面积相等,∴12CD⋅AH=12BD⋅AH,∴CD=BD,∴线段AD是三角形ABC的中线故选A.【点睛】此题考查三角形的角平分线、中线和高,解题关键在于画出图形.二、填空题11.36的平方根是_______,___.【答案】±6【分析】根据平方根、算术平方根、绝对值的定义求解即可.【详解】由题意,得36的平方根是±6;;;故答案为:±6;.【点睛】此题主要考查对平方根、算术平方根、绝对值的应用,熟练掌握,即可解题.12.关于x 的分式方程223242mx x x x +=--+无解,则m 的值为_______. 【答案】1或6或4-【分析】方程两边都乘以()()22x x +-,把方程化为整式方程,再分两种情况讨论即可得到结论. 【详解】解:223242mx x x x +=--+ ()()232222mx x x x x ∴+=-+-+ ()()2232x mx x ∴++=-()110,m x ∴-=-当1m =时,显然方程无解,又原方程的增根为:2,x =±当2x =时,15,m -=-4,m ∴=-当2x =-时,15,m -=6,m ∴=综上当1m =或4m =-或6m =时,原方程无解.故答案为:1或6或4-.【点睛】本题考查的是分式方程无解的知识,掌握分式方程无解时的分类讨论是解题的关键.13.己知点(01)P ,,4(5)Q ,,点M 在x 轴上运动,当MP MQ +的值最小时,点M 的坐标为___________.【答案】(1,0)【分析】作P 点关于x 轴对称点P ₁,根据轴对称的性质PM =P ₁M ,MP +MQ 的最小值可以转化为QP ₁的最小值,再求出QP ₁所在的直线的解析式,即可求出直线与x 轴的交点,即为M 点.【详解】如图所示,作P 点关于x 轴对称点P ₁,∵P 点坐标为(0,1)∴P ₁点坐标(0,﹣1),PM =P ₁M连接P ₁Q ,则P ₁Q 与x 轴的交点应满足QM +PM 的最小值,即为点M设P ₁Q 所在的直线的解析式为y =kx +b把P ₁(0,﹣1),Q (5,4)代入解析式得:145b k b ⎧⎨+⎩-== 解得: 11k b ⎧⎨⎩==-∴y =x -1当y =0时,x =1∴点M 坐标是(1,0)故答案为(1,0)【点睛】本题主要考查轴对称-最短路线问题,关键是运用轴对称变换将处于同侧的点转换为直线异侧的点,从而把两条线段的位置关系转换,再根据两点之间线段最短或垂线段最短来确定方案,使两条线段之和转化为一条线段.14.已知:点A(a-3,2b-1)在y轴上,点B(3a+2,b+5)在x轴上,则点C(a,b)向左平移3个单位,再向上平移2个单位后的坐标为________.【答案】(0,-3).【分析】根据横轴上的点,纵坐标为零,纵轴上的点,横坐标为零可得a、b的值,然后再根据点的平移方法可得C平移后的坐标.【详解】∵A(a-3,2b-1)在y轴上,∴a-3=0,解得:a=3,∵B(3a+2,b+5)在x轴上,∴b+5=0,解得:b=-5,∴C点坐标为(3,-5),∵C向左平移3个单位长度再向上平移2个单位长度,∴所的对应点坐标为(3-3,-5+2),即(0,-3),故答案为:(0,-3).【点睛】此题主要考查了坐标与图形的变化--平移,以及坐标轴上点的坐标特点,关键是掌握点的坐标的变化规律:横坐标,右移加,左移减;纵坐标,上移加,下移减.15.已知x ay b=⎧⎨=⎩是方程组23327x yx y+=-⎧⎨-=⎩的解,则5a﹣b的值是_____.【答案】1【分析】把x ay b=⎧⎨=⎩代入方程组,得23327a ba b+=-⎧⎨-=⎩①②,两个方程相加,即可求解.【详解】把x ay b=⎧⎨=⎩代入方程组23327x yx y+=-⎧⎨-=⎩,得:23327a ba b+=-⎧⎨-=⎩①②,①+②得:5a﹣b=1.故答案为:1.【点睛】本题主要考查二元一次方程组的解的定义,掌握方程的解的定义和加减消元法,是解题的关键.16.用四舍五入法把1.23536精确到百分位,得到的近似值是_____.【答案】1.1【分析】把千分位上的数字5进行四舍五入即可.【详解】解:1.23536精确到百分位,得到的近似值是1.1.故答案为1.1.【点睛】本题考查了近似数和有效数字:近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.17.一组数据5,7,7,x 的众数与平均数相等,则这组数据的方差为_____.【答案】2【分析】根据众数的定义先求出x 的值,再根据方差公式进行计算即可得出答案.【详解】解:根据题意得:众数为7,则:5+7+7+x =4×7,解得x =1. 则这组数据的方差为14[(5﹣7)2+(7﹣7)2+(7﹣7)2+(1﹣7)2]=2; 故答案为:2.【点睛】本题考查众数的定义、平均数和方差,解题的关键是掌握众数的定义、平均数和方差的计算.三、解答题 18.解不等式组:351123x x x ->+⎧⎪⎨<⎪⎩. 【答案】3<x <1.【分析】按照解不等式组的步骤求解即可.【详解】解不等式3x ﹣5>x+1移项、合并同类项,得:x >3, 解不能等式13x <2得:x <1, 所以不等式组的解集为3<x <1.【点睛】此题主要考查不等式组的求解,熟练掌握,即可解题.19.(1)分解因式:()()22 4?a x yb x y ---; (2)计算:()()222322a a b ab b a a b a b ⎡⎤---÷⎣⎦. 【答案】(1)()()() 22x y a b a b -+-;(2)1ab -.【分析】(1)提取公因式()x y -后,再利用平方差公式分解即可; (2)中括号内先利用单项式乘多项式展开,再合并同类项,然后利用多项式除以单项式法则计算即可.【详解】(1)()()224?a x y b x y --- ()()22 4x y a b =-- ()()() 2?2x y a b a b =-+-;(2)()()222322a a b ab b a a b a b ⎡⎤---÷⎣⎦ ()3222322 2a b a b a b a b a b =--+÷()32222?2?2a b a b a b =-÷ 1?ab =-.【点睛】本题考查了因式分解以及整式的混合运算,涉及的知识有:平方差公式,单项式乘多项式法则,多项式除以单项式法则以及合并同类项法则,熟练掌握运算法则是解本题的关键.20.小红家有一个小口瓶(如图5所示),她很想知道它的内径是多少?但是尺子不能伸在里边直接测,于是她想了想,唉!有办法了.她拿来了两根长度相同的细木条,并且把两根长木条的中点固定在一起,木条可以绕中点转动,这样只要量出AB 的长,就可以知道玻璃瓶的内径是多少,你知道这是为什么吗?请说明理由.(木条的厚度不计)【答案】见解析.【分析】连接AB 、CD ,由条件可以证明△AOB ≌△DOC ,从而可以得出AB=CD ,故只要量出AB 的长,就可以知道玻璃瓶的内径.【详解】解:连接AB 、CD ,∵O 为AD 、BC 的中点,∴AO=DO ,BO=CO .在△AOB 和△DOC 中,AO DO AOB DOC BO CO =⎧⎪∠=∠⎨⎪=⎩,∴△AOB ≌△DOC .。
∥3套精选试卷∥2018年贵阳市八年级上学期数学期末质量检测试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.根据下列表述,能确定具体位置的是( )A .实验中学东B .南偏西30°C .东经120°D .会议室第7排,第5座 【答案】D【分析】根据确定位置的方法,逐一判断选项,即可.【详解】A. 实验中学东,位置不明确,不能确定具体位置,不符合题意,B. 南偏西30°,只有方向,没有距离,不能确定具体位置,不符合题意,C. 东经120°,只有经度,没有纬度,不能确定具体位置,不符合题意,D. 会议室第7排,第5座,能确定具体位置,符合题意.故选:D .【点睛】本题主要考查确定位置的方法,掌握确定位置的方法,是解题的关键.2.下列各式计算正确..的是 ( ) A .()257a a = B .22122x x -= C .326428a a a = D .826a a a ÷=【答案】D【解析】试题解析:A. ()2510a a =,故原选项错误; B. 2222x x-=,故原选项错误; C. 3254?28a a a =,故原选项错误;D. 826a a a ÷=,正确.故选D.3.若方程组4314(1)6x y kx k y +=⎧⎨+-=⎩的解中x 与y 的值相等,则k 为( ) A .4B .3C .2D .1【答案】C【解析】由题意得:x=y ,∴4x+3x=14,∴x=1,y=1,把它代入方程kx+(k-1)y=6得1k+1(k-1)=6,解得k=1.故选C .4.下列各组数,能够作为直角三角形的三边长的是()A.2,3,4 B.4,5,7 C.0.5,1.2,1.3 D.12,36,39【答案】C【解析】试题分析:欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.解:A、32+22≠42,不能构成直角三角形,故选项错误;B、42+52≠72,不能构成直角三角形,故选项错误;C、0.52+1.22=1.32,能构成直角三角形,故选项正确;D、122+362≠392,不能构成直角三角形,故选项错误.故选C.考点:勾股定理的逆定理.5.低碳环保理念深入人心,共享单车已成为出行新方式.下列共享单车图标,是轴对称图形的是()A.B.C.D.【答案】A【分析】根据轴对称图形的概念求解.【详解】A、是轴对称图形.故选项正确;B、不是轴对称图形.故选项错误;C、不是轴对称图形.故选项错误;D、不是轴对称图形.故选项错误.故选:A.【点睛】此题主要考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,折叠后两边可重合.6.下列各组数可能是一个三角形的边长的是()A.5,7,12 B.5,6,7 C.5,5,12 D.1,2,6【答案】B【解析】在运用三角形三边关系判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】A、5+7=12,不能构成三角形;B 、5+6>7,能构成三角形;C 、5+5<12,不能构成三角形;D 、1+2<6,不能构成三角形.故选:B .【点睛】本题主要考查了三角形的三边关系定理:任意两边之和大于第三边,只要满足两短边的和大于最长的边,就可以构成三角形.7.如图,△ABC 中,AB AC =,D 是BC 中点,下列结论,不一定正确的是( )A .AD BC ⊥B .AD 平分BAC ∠ C .2AB BD = D .B C ∠=∠【答案】C 【分析】根据等边对等角和等腰三角形三线合一的性质解答.【详解】解:∵AB=AC ,∴∠B=∠C ,∵AB=AC ,D 是BC 中点,∴AD 平分∠BAC ,AD ⊥BC ,所以,结论不一定正确的是AB=2BD .故选:C .【点睛】本题考查了等腰三角形的性质,主要利用了等边对等角的性质以及等腰三角形三线合一的性质,熟记性质并准确识图是解题的关键.8.下列各组中,没有公因式的一组是( )A .ax -bx 与by -ayB .6xy -8x 2y 与-4x+3C .ab -ac 与ab -bcD .(a -b )3与(b -a )2y【答案】C【分析】将每一组因式分解,找到公因式即可.【详解】解:A 、ax-bx=(a-b )x ,by-ay=(b-a )y ,有公因式(a-b ),故本选项错误;B 、6xy-8x 2y=2xy (3-4x )与-4x+3=-(4x-3)有公因式(4x-3),故本选项错误;C 、ab-ac=a (b-c )与ab-bc=b (a-c )没有公因式,故本选项正确;D 、(a-b )3x 与(b-a )2y 有公因式(a-b )2,故本选项错误.【点睛】本题考查公因式,熟悉因式分解是解题关键.9.不能使两个直角三角形全等的条件是( ).A .一条直角边及其对角对应相等B .斜边和两条直角边对应相等C .斜边和一条直角边对应相等D .两个锐角对应相等【答案】D【解析】根据各选项的已知条件,结合直角三角形全等的判定方法,对选项逐一验证即可得出答案.【详解】解:A 、符合AAS ,正确;B 、符合SSS ,正确;C 、符合HL ,正确;D 、因为判定三角形全等必须有边的参与,错误.故选:D .【点睛】本题考查直角三角形全等的判定方法,判定两个直角三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.10.如图,C 3∠=∠,280∠=︒,13140∠+∠=︒,A D ∠=∠,则B 的度数是( )A .80°B .40°C .60°D .无法确定【答案】B 【解析】首先证明EF BC ∥,求出340C ∠=∠=︒,然后证明AB CD ∥,根据平行线的性质即可得解.【详解】解:∵C 3∠=∠,∴EF BC ∥,∴12180∠+∠=︒.∵280∠=︒.∴1100∠=︒,∵13140∠+∠=︒,∴340C ∠=∠=︒.∴AB CD ∥.∴40B C ∠=∠=︒.故选B.【点睛】本题主要考查平行线的判定与性质,解题的关键是掌握平行线的判定与性质及角的和差计算.二、填空题11.如图,已知30A ∠=︒,AB=BC ,点D 是射线AE 上的一动点,当BD+CD 最短时,ABD ∠的度数是_________.【答案】90︒【分析】作CO ⊥AE 于点O ,并延长CO ,使'OC OC =,通过含30°直角三角形的性质可知'ACC 是等边三角形,又因为AB=BC ,根据等腰三角形三线合一即可得出'C B AC ⊥,则答案可求.【详解】作CO ⊥AE 于点O ,并延长CO ,使'OC OC =,则AE 是'CC 的垂直平分线,此时BD+CD 最短30,90A COA ∠=︒∠=︒1,602CO AC ACO ∴=∠=︒ 2'CO CC AB ∴==∴'ACC 是等边三角形∵AB=BC'C B AC ∴⊥90ABD ∴=︒故答案为:90°.【点睛】本题主要考查含30°直角三角形的性质及等腰三角形三线合一,掌握含30°直角三角形的性质及等腰三角形三线合一是解题的关键.12.△ABC 中,AB =5,AC =3,AD 是△ABC 的中线,设AD 长为m ,则m 的取值范围是____.【答案】1<m<1【详解】解:延长AD至E,使AD=DE,连接CE,则AE=2m,∵AD是△ABC的中线,∴BD=CD,在△ADB 和△EDC中,∵AD=DE,∠ADB=∠EDC,BD=CD,∴△ADB≌△EDC,∴EC=AB=5,在△AEC中,EC﹣AC<AE<AC+EC,即5﹣3<2m<5+3,∴1<m<1,故答案为1<m<1.考点:全等三角形的判定与性质;三角形三边关系.13.若分式242aa-+的值为0,则a的值为____.【答案】2【分析】先进行因式分解和约分,然后求值确定a【详解】原式=(2)(2)22a aaa=-++-∵值为0∴a-2=0,解得:a=2故答案为:2【点睛】本题考查解分式方程,需要注意,此题a不能为-2,-2为分式方程的增根,不成立14.已知等腰三角形的一个内角是80,则它的底角是__________.【答案】50°或80°.【分析】等腰三角形一内角为80°,没说明是顶角还是底角,所以分两种情况讨论.【详解】(1)当80°角为底角时,其底角为80°;(2)当80°为顶角时,底角=(180°﹣80°)÷2=50°.故答案为:50°或80°.【点睛】本题考查了等腰三角形的性质及三角形的内角和定理;涉及到等腰三角形的角的计算,若没有明确哪个是底角哪个是顶角时,要分情况进行讨论.15.分解因式:229x y -=______________【答案】(3)(3)x y x y -+.【分析】根据平方差公式分解即可.【详解】解:229(3)(3)x y x y x y -=-+.故答案为(3)(3)x y x y -+.【点睛】本题考查了多项式的因式分解,熟练掌握分解因式的方法是关键.16.如图,点,,,A B C D 在同一直线上,BF 平分EBD ∠,CG BF ,若EBA α∠=︒,则GCD ∠=__________︒(用关于α的代数式表示).【答案】 (90-12α) 【解析】根据∠EBA α=︒,可以得到∠EBD ,再根据BF 平分∠EBD ,CG ∥BF ,即可得到∠GCD ,本题得以解决.【详解】∵∠EBA=α︒,∠EBA+∠EBD=180︒,∴∠EBD 180α=︒-︒,∵BF 平分∠EBD ,∴∠FBD=12∠EBD=12(180 α︒-︒)=901 2α︒-︒, ∵CG ∥BF ,∴∠FBD=∠GCD ,∴∠GCD=901 2α︒-︒=190?2α⎛⎫-︒ ⎪⎝⎭, 故答案为:(90-1 2α). 【点睛】本题考查平行线的性质、角平分线的性质,解答本题的关键是明确题意,利用数形结合的思想解答. 17.用科学记数法表示下列各数:0.000 04=_____.【答案】4×10﹣1【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000 04=4×10﹣1;故答案为:4×10﹣1.【点睛】此题考查了用科学记数法表示较小的数,一般形式为a×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.三、解答题18.因式分解:(1)()()222x x x -+-.(2)()24343m n m n --.【答案】 (1)()()()112x x x +--;(2)()223m n - 【分析】(1)先提公因式,再运用平方差公式;(2)先去括号,再运用完全平方公式.【详解】(1)()()222xx x -+- =()()222x x x ---=()()212x x --=()()()112x x x +--(2)()24343m n m n -- =224129m mn n -+=()223m n -【点睛】考核知识点:因式分解.掌握各种因式分解基本方法是关键.19.如图1,已知线段AB 、CD 相交于点O ,连接AC 、BD ,则我们把形如这样的图形称为“8字型”.(1)求证:∠A+∠C =∠B+D ;(2)如图2,若∠CAB 和∠BDC 的平分线AP 和DP 相交于点P ,且与CD 、AB 分别相交于点M 、N . ①以线段AC 为边的“8字型”有 个,以点O 为交点的“8字型”有 个;②若∠B =100°,∠C =120°,求∠P 的度数;③若角平分线中角的关系改为“∠CAP =13∠CAB ,∠CDP =13∠CDB ”,试探究∠P 与∠B 、∠C 之间存在的数量关系,并证明理由.【答案】 (1)证明见解析;(2)①3, 4;②∠P =110°;③3∠P =∠B+2∠C ,理由见解析.【解析】(1)由三角形内角和得到∠A+∠C=180°﹣∠AOC,∠B+∠D=180°﹣∠BOD,由对顶角相等,得到∠AOC=∠BOD,因而∠A+∠C=∠B+∠D;(2)①以线段AC为边的“8字形”有3个,以O为交点的“8字形”有4个;②根据(1)的结论,以M为交点“8字型”中,∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,∠P+∠BAP =∠B+∠BDP,两等式相加得到2∠P+∠BAP+∠CDP=∠B+∠C+∠CAP+∠BDP,由AP和DP是角平分线,得到∠BAP=∠CAP,∠CDP=∠BDP,从而∠P=12(∠B+∠C),然后将∠B=100º,∠C=120º代入计算即可;③与②的证明方法一样得到3∠P=∠B+2∠C.【详解】解:(1)在图1中,有∠A+∠C=180°﹣∠AOC,∠B+∠D=180°﹣∠BOD,∵∠AOC=∠BOD,∴∠A+∠C=∠B+∠D;(2)解:①以线段AC为边的“8字型”有3个:以点O为交点的“8字型”有4个:②以M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP∴2∠P+∠BAP+∠CDP=∠B+∠C+∠CAP+∠BDP,∵AP、DP分别平分∠CAB和∠BDC,∴∠BAP=∠CAP,∠CDP=∠BDP,∴2∠P=∠B+∠C,∵∠B=100°,∠C=120°,∴∠P=12(∠B+∠C)=12(100°+120°)=110°;③3∠P=∠B+2∠C,其理由是:∵∠CAP=13∠CAB,∠CDP=13∠CDB,∴∠BAP=23∠CAB,∠BDP=23∠CDB,以M为交点“8字型”中,有∠P+∠CDP=∠C+∠CAP,以N为交点“8字型”中,有∠P+∠BAP=∠B+∠BDP ∴∠C﹣∠P=∠CDP﹣∠CAP=13(∠CDB﹣∠CAB),∠P﹣∠B=∠BDP﹣∠BAP=23(∠CDB﹣∠CAB).∴2(∠C﹣∠P)=∠P﹣∠B,∴3∠P=∠B+2∠C.故答案为:(1)证明见解析;(2)①3,4;②∠P=110°;③3∠P=∠B+2∠C,理由见解析.【点睛】本题考查了三角形内角和定理:三角形内角和是180°.也考查了角平分线的定义.20.小强骑车从家到学校要经过一段先上坡后下坡的路,在这段路上小强骑车的距离s(千米)与骑车的时间t(分钟)之间的函数关系如图所示,请根据图中信息回答下列问题:(1)小强去学校时下坡路长千米;(2)小强下坡的速度为千米/分钟;(3)若小强回家时按原路返回,且上坡的速度不变,下坡的速度也不变,那么回家骑车走这段路的时间是分钟.【答案】(1)2(2)0.5(3)1【分析】(1)根据题意和函数图象可以得到下坡路的长度;(2)根据函数图象中的数据可以求的小强下坡的速度;(3)根据题意可以求得小强上坡的速度,进而求得小强返回时需要的时间.【详解】(1)由题意和图象可得:小强去学校时下坡路为:3﹣1=2(千米).故答案为:2;(2)小强下坡的速度为:2÷(10﹣6)=0.5千米/分钟.故答案为:0.5;(3)小强上坡时的速度为:1÷6=16千米/分钟,故小强回家骑车走这段路的时间是:2110.56+=1(分钟).故答案为:1.【点睛】本题考查了函数图象,解题的关键是明确题意,找出所求问题需要的条件.21.先化简分式221221x x x xx x x x-⎛⎫-÷⎪---+⎝⎭,然后从13x-≤≤中选取一个你认为合适的整数x代入求值.【答案】12x--,1x=-,13(或x=3,-1)【分析】先化简分式,再代入满足条件的x值,算出即可.【详解】化简221221x x x xx x x x-⎛⎫-÷⎪---+⎝⎭=()()()()()()2211121x x x x xx x x x-------·=12x--,由题意得012x x x≠≠≠且且,当1x=-时,原式=13当x=3时,原式=-1(求一个值即可)【点睛】本题是对分式化简的考查,熟练掌握分式化简是解决本题的关键.22.甲、乙两班参加植树活动.乙班先植树30棵,然后甲班才开始与乙班一起植树.设甲班植树的总量为y甲(棵),乙班植树的总量为y乙(棵),y甲、y乙与甲班植树的时间x(时),之间的部分函数图象如图所示.(1)当06x≤≤时,分别求y甲、y乙与x之间的函数关系式;(2)若甲班植树6个小时后,该班仍保持原来的工作效率,乙班则通过加人数提高了工作效率,这样又植树2小时后,两班植树的总量相差20棵,求乙班增加人数后平均每小时植树多少棵?【答案】(1)y甲=1x,y乙=10x+30;(2)乙班增加人数后平均每小时植树45棵或2棵.【分析】(1)通过看图,分析各数据,利用待定系数法即可求得函数关系式;(2)相差1棵有两种情况,可以是甲比乙多,也可以是乙比甲多,据此分别列出方程求解即可.【详解】解:(1)设y甲=k1x,将(6,11)代入,得k1=1;∴y甲=1x;当x=3时,y甲=60,设y乙=k2x+b,分别将(0,30),(3,60),230360bk b=⎧⎨+=⎩解得:21030kb=⎧⎨=⎩,故y乙=10x+30;(2)设乙班增加人数后平均每小时植树a棵.当乙班比甲班多植树1棵时,有(6×10+30+2a)-1×8=1.解得a=45;当甲班比乙班多植树1棵时,有1×8-(6×10+30+2a)=1.解得a=2.所以乙班增加人数后平均每小时植树45棵或2棵.【点睛】本题考查一次函数的应用.(1)读懂图象信息,用待定系数法求函数解析式.(2)植树总量相差1棵要分:甲比乙多和乙比甲多两种情况讨论.此问学生可能考虑不全.23.在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于点D,BE⊥MN于点E.(1)当直线MN绕点C旋转到图(1)的位置时,求证:DE=AD+BE;(2)当直线MN绕点C旋转到图(2)的位置时,求证:DE=AD-BE;(3)当直线MN绕点C旋转到图(3)的位置时,试问:DE,AD,BE有怎样的等量关系?请写出这个等量关系,并加以证明.【答案】(1)见解析;(2)见解析;(3)DE=BE-AD,证明见解析【分析】(1)利用垂直的定义得∠ADC=∠CEB=90°,则根据互余得∠DAC+∠ACD=90°,再根据等角的余角相等得到∠DAC=∠BCE,然后根据“AAS”可判断△ADC≌△CEB,所以CD=BE,AD=CE,再利用等量代换得到DE=AD+BE;(2)与(1)证法类似可证出∠DAC=∠BCE,能推出△ADC≌△CEB,得到AD=CE,CD=BE,从而有DE=CE-CD=AD-BE;(3)与(1)证法类似可证出∠DAC=∠BCE,能推出△ADC≌△CEB,得到AD=CE,CD=BE,于是有DE=CD-CE=BE-AD.【详解】(1)证明:∵AD⊥MN,BE⊥MN∴∠ADC=∠CEB=90°∴∠DAC+∠DCA=90°∵∠ACB=90°∴∠ECB+∠DCA=90°∴∠DAC=∠ECB在△ACD 和△CBE 中,∵DAC ECB ADC CEB AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△CBE(AAS)∴CE =AD, CD =BE∵DE =CE +CD∴DE =AD +BE(2)证明:与(1)一样可证明△ADC ≌△CEB ,∴CD=BE ,AD=CE ,∴DE=CE-CD=AD-BE ;(3)DE =BE -AD .证明如下:证明:证明:∵AD ⊥MN,BE ⊥MN∴∠ADC =∠CEB =90°∴∠DAC +∠DCA =90°∵∠ACB =90°∴∠ECB +∠DCA =90°∴∠DAC =∠ECB在△ACD 和△CBE 中,∵DAC ECB ADC CEB AC CB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△ACD ≌△CBE(AAS)∴CE =AD, CD =BE∴DE=CD-CE= BE-AD ;【点睛】本题考查了全等三角形的判定与性质:判定三角形全等的方法有“SSS ”、“SAS ”、“ASA ”、“AAS ”;全等三角形的对应边相等.24.如图,在Rt ABC 中,90,16,12ABC AB BC ∠=︒==,点D 为AC 边上的动点,点D 从点C 出发,沿边CA 向点A 运动,当运动到点A 时停止,若设点D 运动的时间为t 秒,点D 运动的速度为每秒2个单位长度.(1)当2t=时,CD= ,AD= ;(2)求当t为何值时,CBD是直角三角形,说明理由;(3)求当t为何值时,BC BD=,并说明理由.【答案】(1)CD=4,AD=16;(2)当t=3.6或10秒时,CBD是直角三角形,理由见解析;(3)当t=7.2秒时,BC BD=,理由见解析【分析】(1)根据CD=速度×时间列式计算即可得解,利用勾股定理列式求出AC,再根据AD=AC-CD代入数据进行计算即可得解;(2)分①∠CDB=90°时,利用△ABC的面积列式计算即可求出BD,然后利用勾股定理列式求解得到CD,再根据时间=路程÷速度计算;②∠CBD=90°时,点D和点A重合,然后根据时间=路程÷速度计算即可得解;(3)过点B作BF⊥AC于F,根据等腰三角形三线合一的性质可得CD=2CF,再由(2)的结论解答.【详解】解:(1)t=2时,CD=2×2=4,∵∠ABC=90°,AB=16,BC=12,2222161220AC AB BC∴=+=+=∴AD=AC-CD=20-4=16;(2)①∠CDB=90°时,1122ABCS AC BD AB BC =⋅=⋅∴1120161222BD⨯⋅=⨯⨯解得BD=9.6,∴222212967.2CD BC BD=-=-⋅=t=7.2÷2=3.6秒;②∠CBD=90°时,点D和点A重合,t=20÷2=10秒,综上所述,当t=3.6或10秒时,CBD是直角三角形;(3)如图,过点B作BF⊥AC于F,由(2)①得:CF=7.2,∵BD=BC,∴CD=2CF=7.2×2=14.4,∴t=14.4÷2=7.2,∴当t=7.2秒时,BC BD =,【点睛】本题考查了勾股定理,等腰三角形的判定与性质,三角形的面积,熟练掌握相关的知识是解题的关键25.先化简,再求值:259123x x x -⎛⎫-÷ ⎪++⎝⎭,其中2x =,再选取一个合适的数,代入求值.【答案】12x +,3,13 【分析】把分式的除法化为乘法运算,再通过通分和约分,进行化简,再代入求值,即可.【详解】原式=332(3)(3)x x x x x -+⋅++- =12x +,当2x =时,原式当x=1时,原式=11123=+. 【点睛】 本题主要考查分式的化简求值,熟练掌握分式的通分和约分,是解题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.一次函数y kx b =+满足0kb <,且y 随x 的增大而减小,则此函数的图像一定不经过( ) A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】y 随x 的增大而减小,可得一次函数y=kx+b 单调递减,k <0,又满足kb<0,可得b>0,由此即可得出答案.【详解】∵y 随x 的增大而减小,∴一次函数y=kx+b 单调递减,∴k <0,∵kb<0,∴b>0,∴直线经过第二、一、四象限,不经过第三象限,故选C .【点睛】本题考查了一次函数的图象和性质,熟练掌握一次函数y=kx+b(k≠0,k 、b 是常数)的图象和性质是解题的关键.2.如图,在ABC ∆中,90ACB ∠=︒,15B ∠=︒,DE 垂直平分AB ,交BC 于点E 若6BE =,则AC 等于( )A .3B .4C .5D .6【答案】A 【分析】根据垂直平分线的性质,得出AE=BE=6,再由三角形外角的性质得出∠AEC=∠ABE+∠BAE=30°,最后由含30°的直角三角形的性质得出AC 的值即可.【详解】解:∵DE 垂直平分AB ,6BE =∴AE=BE=6,又15B ∠=︒∴∠ABE=∠BAE=15°,∴∠AEC=∠ABE+∠BAE=30°,又∵90ACB ∠=︒∴在RT △AEC 中,132AC AE ==故答案为:A .【点睛】本题考查了垂直平分线的性质、三角形的外角的性质、含30°的直角三角形的性质,熟知上述几何性质是解题的关键.3.如图,在ABC ∆中,90C ∠=︒,AC BC =,AD 是BAC ∠的平分线,DE AB ⊥,垂足为E ,若10AC cm =,则DBE ∆的周长为( )A .10B .15C .2D .20【答案】C 【分析】根据勾股定理即可求出AB ,然后根据角平分线的性质和定义DC=DE ,∠CAD=∠EAD ,利用直角三角形的性质即可求出∠ADC=∠ADE ,再根据角平分线的性质可得AE=AC ,从而求出BE ,即可求出DBE ∆的周长.【详解】解:∵在ABC ∆中,90C ∠=︒,10AC BC cm ==,∴22102AC BC cm +=∵AD 是BAC ∠的平分线,DE AB ⊥∴DC=DE ,∠CAD=∠EAD ,∠DEA=90°∴∠ADC=90°-∠CAD=90°-∠EAD=∠ADE即DA 平分∠CDE∴AE=AC=10cm∴BE=AB -AE=()10210cm -∴DBE ∆的周长=DE +DB +BE=DC +DB +BE=BC +BE=10+()10210102cm =故选C .【点睛】此题考查的是勾股定理、角平分线的性质和直角三角形的性质,掌握用勾股定理解直角三角形、角平分线的性质和直角三角形的两个锐角互余是解决此题的关键.4.如图,在△ABC 中,AB =AC ,AD ,BE 是△ABC 的两条中线,P 是AD 上的一个动点,则下列线段的长等于CP+EP 最小值的是( )A .ACB .ADC .BED .BC【答案】C 【分析】如图连接PB ,只要证明PB=PC ,即可推出PC+PE=PB+PE ,由PE+PB≥BE ,可得P 、B 、E 共线时,PB+PE 的值最小,最小值为BE 的长度.【详解】解:如图,连接PB ,∵AB=AC ,BD=CD ,∴AD ⊥BC ,∴PB=PC ,∴PC+PE=PB+PE ,∵PE+PB≥BE ,∴P 、B 、E 共线时,PB+PE 的值最小,最小值为BE 的长度,故选:C .【点睛】本题考查轴对称-最短路线问题,等腰三角形的性质、线段的垂直平分线的性质,解题的关键是灵活运用所学知识解决问题.5.如果分式11x +在实数范围内有意义,则x 的取值范围是( ) A .1x ≠-B .1x >-C .全体实数D .1x =-【答案】A【分析】根据分式有意义的条件即可求出答案.【详解】解:由题意可知:10x +≠, 1x ≠-,故选A .【点睛】本题考查分式的有意义的条件,解题的关键是熟练运用分式有意义的条件,本题属于基础题型. 6.若ABC 中刚好有2B C ∠=∠ ,则称此三角形为“可爱三角形”,并且A ∠ 称作“可爱角”.现有 一个“可爱且等腰的三角形”,那么聪明的同学们知道这个三角形的“可爱角”应该是( ).A .45︒或 36︒B .72或 36C .45︒或72︒D .36︒或72︒或45︒【答案】C【分析】根据三角形内角和为180°且等腰三角形的两个底角相等,再结合题中一个角是另一个角的2倍即可求解.【详解】解:由题意可知:设这个等腰三角形为△ABC ,且2B C ∠=∠,情况一:当∠B 是底角时,则另一底角为∠A ,且∠A=∠B=2∠C ,由三角形内角和为180°可知:∠A+∠B+∠C=180°,∴5∠C=180°,∴∠C=36°,∠A=∠B=72°,此时可爱角为∠A=72°,情况二:当∠C 是底角,则另一底角为∠A ,且∠B=2∠A=2∠C ,由三角形内角和为180°可知:∠A+∠B+∠C=180°,∴4∠C=180°,即∠C=45°,此时可爱角为∠A=45°,故选:C .【点睛】本题借助三角形内角和考查了新定义题型,关键是读懂题目意思,熟练掌握等腰三角形的两底角相等及三角形内角和为180°.7.如图,在△ABC 中,点 D 是边 BC 上的点(与 B 、C 两点不重合),过点 D 作 DE ∥AC ,DF ∥AB ,分别交 AB 、AC 于 E 、F 两点,下列说法正确的是( )A .若 AD 平分∠BAC ,则四边形 AEDF 是菱形B .若 BD =CD ,则四边形 AEDF 是菱形C .若 AD 垂直平分 BC ,则四边形 AEDF 是矩形D .若 AD ⊥BC ,则四边形 AEDF 是矩形【答案】A【分析】由矩形的判定和菱形的判定即可得出结论.【详解】解:A 选项:若AD 平分∠BAC ,则四边形AEDF 是菱形;正确;B 选项:若BD=CD ,则四边形AEDF 是平行四边形,不一定是菱形;错误;C 选项:若AD 垂直平分BC ,则四边形AEDF 是菱形,不一定是矩形;错误;D 选项:若AD ⊥BC ,则四边形AEDF 是平行四边形,不一定是矩形;错误;【点睛】本题考查了矩形的判定、菱形的判定;熟记菱形和矩形的判定方法是解决问题的关键.8.下列二次根式,最简二次根式是( )A.B.C.D.【答案】C【分析】检查最简二次根式的两个条件是否同时满足,同时满足的就是最简二次根式,否则就不是.【详解】A、被开方数含开的尽的因数,故A不符合题意;B、被开方数含分母,故B不符合题意;C、被开方数不含分母;被开方数不含能开得尽方的因数或因式,故C符合题意;D、被开方数含能开得尽方的因数或因式,故D不符合题意.故选C.【点睛】本题考查最简二次根式的定义,最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式.9.如图,△DEF为直角三角形,∠EDF =90°,△ABC的顶点B,C分别落在Rt△DEF两直角边DE和DF 上,若∠ABD+∠ACD=55°,则∠A的度数是()A.30°B.35°C.40°D.55°【答案】B【分析】由∠EDF =90°,则∠DBC+∠DCB=90°,则得到∠ABC+∠ACB=145°,根据三角形内角和定理,即可得到∠A的度数.【详解】解:∵∠EDF =90°,∴∠DBC+∠DCB=90°,∵∠ABD+∠ACD=55°,∴∠ABC+∠ACB=90°+55°=145°,︒-︒=︒;∴∠A=18014535故选:B.本题考查了三角形的内角和定理,解题的关键是熟练掌握三角形的内角和定理进行解题. 10.下列运算中,正确的是( ) A .(x 3)2=x 5 B .(﹣x 2)2=x 6 C .x 3•x 2=x 5 D .x 8÷x 4=x 2【答案】C【分析】直接利用积的乘方运算法则以及同底数幂的乘除运算法则分别化简得出答案. 【详解】A .(x 3)2=x 6,故此选项错误; B .(﹣x 2)2=x 4,故此选项错误; C .x 3•x 2=x 5,正确;D .x 8÷x 4=x 4,故此选项错误. 故选:C . 【点睛】此题考查积的乘方运算,同底数幂的乘除运算,正确掌握相关运算法则是解题关键. 二、填空题11.已知,方程2x 3﹣m +3y 2n ﹣1=5是二元一次方程,则m+n =_____. 【答案】2.【分析】根据二元一次方程的定义,从二元一次方程的未知数次数为2这一方面考虑,先求出m 、n 的值,再进一步计算. 【详解】解:由2x 2﹣m+2y 2n ﹣2=5是二元一次方程,得2-m =2,2n ﹣2=2. 解得m =2,n =2, m+n =2, 故答案为:2. 【点睛】题考查了二元一次方程的定义,熟练掌握二元一次方程组的定义是解答本题的关键. 方程的两边都是整式,含有两个未知数,并且未知数的项的次数都是2次的方程叫做二元一次方程.12.如图,在四边形ABCD 中, //,5,18,AD BC AD BC E ==是BC 的中点.点P 以每秒1个单位长度的速度从点A 出发,沿AD 向点D 运动;点Q 同时以每秒3个单位长度的速度从点C 出发,沿CB 向点B 运动.点P 停止运动时,点Q 也随之停止运动,当运动时间为t 秒时,以点,,,P Q E D 为顶点的四边形是平行四边形,则t 的值等于_______.【答案】2或3.5【分析】分别从当Q 运动到E 和B 之间、当Q 运动到E 和C 之间去分析求解即可求得答案. 【详解】如图,∵E 是BC 的中点, ∴BE=CE=12BC=9, ①当Q 运动到E 和B 之间,则得: 3t ﹣9=5﹣t , 解得:t=3.5;②当Q 运动到E 和C 之间,则得: 9﹣3t=5﹣t , 解得:t=2,∴当运动时间t 为2秒或3.5秒时,以点P ,Q ,E ,D 为顶点的四边形是平行四边形. 【点睛】“点睛”此题考查了梯形的性质以及平行四边形的判定与性质.解题时注意掌握辅助线的作法,注意掌握数形结合思想、分类讨论思想与方程思想的应用. 13.因式分解:x 3﹣2x 2+x= .【答案】2(1)x x -【解析】试题分析:先提公因式x ,再用完全平方公式分解即可,所以32222(21)(1)x x x x x x x x ﹣+=-+=-.考点:因式分解.14.已知:在ABC ∆中,AH BC ⊥,垂足为点H ,若AB BH CH +=,70ABH ∠=︒,则BAC ∠=______. 【答案】75°或35°【分析】分两种情况:当ABC ∠为锐角时,过点A 作AD=AB ,交BC 于点D ,通过等量代换得出CD AB AD ==,从而利用三角形外角的性质求出C ∠,最后利用三角形内角和即可求解;当ABC ∠为钝角时,直接利用等腰三角形的性质和外角的性质即可求解.【详解】当ABC ∠为锐角时,过点A 作AD=AB ,交BC 于点D ,如图1AB AD =70,ADB ABH BH DH ∴∠=∠=︒= ,AB BH CH CH CD DH +==+CD AB AD ∴==1352C ADB ∴∠=∠=︒18075BAC ABH C ∴∠=︒-∠-∠=︒当ABC ∠为钝角时,如图2,AB BH CH +=AB BC ∴=1352BAC ACB ABH ∴∠=∠=∠=︒故答案为:75°或35°. 【点睛】本题主要考查等腰三角形的性质和三角形外角的性质,分情况讨论是解题的关键.15.如图,有一块直角三角形纸片,两直角边AC=6cm ,BC=8cm ,现直角边沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 的长为________.【答案】3cm【分析】先根据勾股定理求出AB 的长,设CD =xcm ,则()28BD x =-cm,再由图形翻折变换的性质可知AE =AC =6cm,DE =CD =xcm,进而可得出BE 的长,在t BDE R ∆中利用勾股定理即可求出x 的值,进而得出CD 的长. 【详解】ABC ∆是直角三角形,AC =6cm,BC =8cm,22226810AB AC BC ∴=+=+=cm,AED ∆是ACD ∆翻折而成,6cm AE AC ∴==,设DE =CD =xcm, 90AED ∠=︒,1064cm BE AB AE ∴=-=-=,在t BDE R ∆中, 222BD DE BE =+, 即()22284x x -=+, 解得x =3. 故CD 的长为3cm. 【点睛】本题考查的是翻折变换及勾股定理,解答此类题目时常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x 的代数式表示其它线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案. 16.如图,在ABE △中,AE 的垂直平分线MN 交BE 于点C ,30E ∠=︒,且AB CE =,则BAE ∠的度数为__________【答案】90°【分析】根据题意利用线段的垂直平分线的性质,推出CE=CA ,进而分析证明△CAB 是等边三角形即可求解.【详解】解:∵MN 垂直平分线段AE , ∴CE=CA ,∴∠E=∠CAE=30°, ∴∠ACB=∠E+∠CAE=60°, ∵AB=CE=AC ,∴△ACB 是等边三角形, ∴∠CAB=60°,∴∠BAE=∠CAB+∠CAE=90°, 故答案为:90°. 【点睛】本题考查等腰三角形的性质以及线段的垂直平分线的性质等知识,解题的关键是熟练掌握相关基本知识. 17.如图,在△ABC 中,AD ⊥BC 于D 点,BD=CD,若BC=6,AD=5,则图中阴影部分的面积为__________ .【答案】7.5【解析】试题解析:根据题意,阴影部分的面积为三角形面积的一半,116515,22ABCSBC AD =⋅=⨯⨯= 阴影部分面积为:1157.5.2⨯=故答案为:7.5. 三、解答题18.对于一个图形,通过两种不同的方法计算它的面积,可以得到一个数学等式,例如图1可以得到222()2a b a ab b +=++,请解答下列问题:(1)写出图2中所表示的数学等式____________________________________ (2)根据整式乘法的运算法则,通过计算验证上述等式. (3)利用(1)中得到的结论,解决下面的问题:若10a b c ++=,35ab ac bc ++=,则222a b c ++=_________.【答案】(1)(a +b +c )2=a 2+b 2+c 2+2ab +2ac +2bc ;(2)见解析;(3)1【分析】(1)图2的面积一方面可以看作是边长为(a +b +c )的正方形的面积,另一方面还可以看成是3。
[试卷合集3套]贵阳市某达标中学2018年八年级上学期数学期末考前验收试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,ABC ∆≌DEF ∆,下列结论正确的是( )A .AB DF =B .BE CF =C .B F ∠=∠D .ACB DEF ∠=∠【答案】B 【分析】全等三角形的性质:对应边相等,对应角相等,据此逐一判断即可的答案.【详解】∵△ABC ≌△DEF ,∴AB=DE ,∠B=∠DEF ,∠ACB=∠F ,故A 、C 、D 选项错误,不符合题意,∵△ABC ≌△DEF ,∴BC=EF ,∴BC-CE=EF-CE ,∴BE=CF ,故B 选项正确,符合题意,故选:B .【点睛】本题考查全等三角形的性质,正确找出对应边与对应角是解题关键.2.函数3y x =-中自变量x 的取值范围是( ) A .3x <B .3x ≤C .3x >D .3x ≥【答案】B【解析】试题分析:根据二次根式的意义,被开方数是非负数.所以1﹣x≥0,解得x≤1.故选B .考点:函数自变量的取值范围.3.如图,△ABC ≌△DCB ,若AC =7,BE =5,则DE 的长为()A .2B .3C .4D .5【答案】A 【解析】试题分析:根据三角形全等可以得出BD=AC=7,则DE=BD-BE=7-5=2.4.在△ABC 中和△DEF 中,已知BC=EF ,∠C=∠F ,增加下列条件后还不能判定△ABC ≌△DEF 的是( ) A .AC=DFB .∠B=∠EC .∠A=∠D D .AB=DE【答案】D【解析】全等三角形的判定定理有SAS,ASA,AAS,SSS,根据定理进行判断即可. 【详解】解:如图:A, 根据SAS 即可推出△ABC ≌△DEF,;B. 根据ASA 即可推出△ABC ≌△DEFC.根据AAS 即可推出△ABC ≌△DEF;D, 不能推出△ABC ≌△DEF;故选D.【点睛】本题考查了全等三角形的判定的应用, 注意: 全等三角形的判定定理有SAS,ASA,AAS,SSS.5.如图,ABC ∆的周长为26cm ,分别以A B 、为圆心,以大于12AB 的长为半径画圆弧,两弧交于点D E 、,直线DE 与AB 边交于点F ,与AC 边交于点G ,连接BG ,GBC ∆的周长为14cm ,则BF 的长为 ( )A .6cmB .7cmC .8cmD .12cm【答案】A 【分析】将△GBC 的周长转化为BC+AC ,再根据△ABC 的周长得出AB 的长,由作图过程可知DE 为AB 的垂直平分线,即可得出BF 的长.【详解】解:由作图过程可知:DE 垂直平分AB ,∴BF=12AB ,BG=AG , 又∵△GBC 的周长为14,则BC+BG+GC=BC+AC=14,∴AB=26- BC-AC=12,∴BF=12AB=6.故选A.【点睛】本题考查了作图-垂直平分线,垂直平分线的性质,三角形的周长,解题的关键是△GBC的周长转化为BC+AC 的长,突出了“转化思想”.6.如图,在等边△ABC中,AB=15,BD=6,BE=3,点P从点E出发沿EA方向运动,连结PD,以PD为边,在PD右侧按如图方式作等边△DPF,当点P从点E运动到点A时,点F运动的路径长是()A.8 B.10 C.43D.12【答案】D【分析】首先利用等边三角形的性质和含30°直角三角形的运用,判定△DPE≌△FDH,△DF2Q≌△ADE,然后利用全等三角形的性质,得出点F运动的路径长.【详解】∵△ABC为等边三角形,∴∠B=60°,过D点作DE′⊥AB,过点F作FH⊥BC于H,如图所示:则BE′=12BD=3,∴点E′与点E重合,∴∠BDE=30°,33∵△DPF为等边三角形,∴∠PDF=60°,DP=DF,∴∠EDP+∠HDF=90°∵∠HDF+∠DFH=90°,∴∠EDP=∠DFH,在△DPE和△FDH中,90PED DHFEDP DFHDP FD︒⎧∠=∠=⎪∠=∠⎨⎪=⎩,∴△DPE≌△FDH(AAS),∴∴点P从点E运动到点A时,点F运动的路径为一条线段,此线段到BC的距离为,当点P在E点时,作等边三角形DEF1,∠BDF1=30°+60°=90°,则DF1⊥BC,当点P在A点时,作等边三角形DAF2,作F2Q⊥BC于Q,则四边形DF1F2Q是矩形,∵∠BDE=30°,∠ADF2=60°,∴∠ADE+∠F2DQ=180°﹣30°﹣60°=90°,∵∠ADE+∠DAE=90°,∴∠F2DQ=∠DAE,在△DF2Q和△ADE中,222F QD DEA90F DQ DAEDF AD︒⎧∠=∠=⎪∠=∠⎨⎪=⎩,∴△DF2Q≌△ADE(AAS),∴DQ=AE=AB﹣BE=15﹣3=12,∴F1F2=DQ=12,∴当点P从点E运动到点A时,点F运动的路径长为12,故选:D.【点睛】此题主要考查等边三角形的性质以及全等三角形的判定与性质,解题关键是作好辅助线.7.计算22222a b a b a ba b a b ab⎛⎫+---⨯⎪-+⎝⎭的结果是( )A.1a b-B.1a b+C.a-b D.a+b【答案】B【分析】先算小括号里的,再算乘法,约分化简即可.【详解】解:2222a b a b a ba b a b ab⎛⎫+---⨯⎪-+⎝⎭=()()()2222a b a b a ba b a b ab+---⨯+-=1a b+故选B.【点睛】本题考查分式的混合运算.8.下列交通标志是轴对称图形的是()A .B .C .D .【答案】C【分析】根据轴对称图形的概念求解.【详解】A 、不是轴对称图形,故错误;B 、不是轴对称图形,故错误;C 、是轴对称图形,故正确;D 、不是轴对称图形,故错误.故选:C .【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合. 9.全球芯片制造已经进入10纳米到7纳米器件的量产时代.中国自主研发的第一台7纳米刻蚀机,是芯片制造和微观加工最核心的设备之一.华为Mate20手机搭载了全球首款7纳米制程芯片,7纳米就是0.000000007米.数据0.000000007用科学记数法表示为( )A .80.710-⨯B .9710-⨯C .8710-⨯D .10710-⨯ 【答案】B【分析】由题意根据绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10-n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:数据0.000000007用科学记数法表示为7×10-1.故选:B .【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10-n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.10.丽丽同学在参加演讲比赛时,七位评委的评分如下表:她得分的众数是( ) 评委代号A B C D E F G 评分85 90 95 90 90 85 90 A .95分B .90分C .85分D .10分 【答案】B【分析】一组数据中出现次数最多的数据叫做众数.【详解】这组数据出现次数最多的是1,故这组数据的众数是1.故选:B .【点睛】本题考查了众数的定义,解题时牢记定义是关键.二、填空题11.如图,AB=AC ,BD=BC,若∠A=40°,则∠ABD 的度数是_________.【答案】30°;【分析】利用三角形的内角和、外角性质与等腰三角形的“等边对等角”定理计算.【详解】由AB=AC 、BD=BC 得∠ABC=∠ACB 、∠C=∠BDC ,在△ABC 中,∠A=40°,∠C=∠ABC ,∴∠C=∠ABC=12 (180°−∠A)= 12(180°−40°)=70°; 在△ABD 中,由∠BDC=∠A+∠ABD 得∠ABD=∠BDC−∠A=70°−40°=30°故答案为30°【点睛】此题考查三角形内角和定理,等腰三角形的性质,三角形的外角性质,解题关键在于利用等边对等角 12.计算:2(23)-=___________.【答案】3.【分析】依据完全平方公式222()2a b a ab b -=-+进行计算. 【详解】2443(37233)=-=--【点睛】此题考查完全平方公式以及二次根式的混合运算,熟记公式即可正确解答.13.已知,在Rt ABC 中,90C ∠=︒,12AB =,D 为AB 中点,则CD =__________.【答案】1【分析】先画出图形,再根据直角三角形的性质求解即可.【详解】依题意,画出图形如图所示: 12AB =,点D 是斜边AB 的中点1112622CD AB ∴==⨯=(直角三角形中,斜边上的中线等于斜边的一半) 故答案为:1.【点睛】本题考查了直角三角形的性质:直角三角形中,斜边上的中线等于斜边的一半,这是常考知识点,需重点掌握,做这类题时,依据题意正确图形往往是关键.14.在平面直角坐标系中,O为坐标原点,已知点A的坐标是(-2,0),点B在y轴上,若OA=2OB,则点B的坐标是______.【答案】(0,1)或(0,-1)【分析】先得出OA的长度,再结合OA=2OB且点B在y轴上,从而得出答案.【详解】∵点A的坐标是(-2,0),∴OA=2,又∵OA=2OB,∴OB=1,∵点B在y轴上,∴点B的坐标为(0,1)或(0,-1),故答案为:(0,1)或(0,-1).【点睛】本题主要考查了坐标与图形的性质,点到坐标轴的距离与这个点的坐标是有区别的,表现在两个方面:①到x轴的距离与纵坐标有关,到y轴的距离与横坐标有关;②距离都是非负数,而坐标可以是负数,在由距离求坐标时,需要加上恰当的符号.15.三角形三个内角的度数之比是1:2:3,它的最大边长是6cm,则它最短边长为________.【答案】3cm【分析】先根据三角形三个内角之比为1:2:3求出各角的度数判断出三角形的形状,再根据含30度角的直角三角形的性质求解.【详解】解:∵三角形三个内角之比为1:2:3,∴设三角形最小的内角为x,则另外两个内角分别为2x,3x,∴x+2x+3x=180°,∴x=30°,3x=90°,∴此三角形是直角三角形.∴它的最小的边长,即30度角所对的直角边长为:12×6=3cm.故答案为:3cm.【点睛】本题考查的是含30度角的直角三角形的性质:在直角三角形中,30°角所对的直角边等于斜边的一半,解答此题的关键是根据三角形三个内角度数的比值判断出三角形的形状.16.如图,长方体的长为15厘米,宽为10厘米,高为20厘米,点B到点C的距离是5厘米.一只小虫在长方体表面从A爬到B的最短路程是__________【答案】25【解析】分析:求长方体中两点之间的最短路径,最直接的作法,就是将长方体侧面展开,然后利用两点之间线段最短解答.详解:只要把长方体的右侧表面剪开与前面这个侧面所在的平面形成一个长方形,如图1:∵长方体的宽为10cm,高为20cm,点B离点C的距离是5,∴BD=CD+BC=10+5=15cm,AD=20cm,在直角三角形ABD中,根据勾股定理得:∴AB=2222AD BD++=25cm;=1520只要把长方体的右侧表面剪开与上面这个侧面所在的平面形成一个长方形,如图2:∵长方体的宽为10cm,高为20cm,点B离点C的距离是5,∴BD=CD+BC=20+5=25cm,AD=10cm,在直角三角形ABD中,根据勾股定理得:∴AB=2222=1025=529AD BD ++cm ;只要把长方体的右侧表面剪开与后面这个侧面所在的平面形成一个长方形,如图3:∵长方体的宽为10cm ,高为20cm ,点B 离点C 的距离是5cm ,∴AC=CD+AD=20+10=30cm ,在直角三角形ABC 中,根据勾股定理得:∴2222=305=537AC BC ++cm ;∵25<29<37, ∴自A 至B 在长方体表面的连线距离最短是25cm .故答案为25厘米【点评】此题主要考查平面展开图的最短距离,注意长方体展开图的不同情况,正确利用勾股定理解决问题.1722(3)0a b -++=,则2()a b -=______.【答案】25【分析】先根据非负数的性质求出a 、b 的值,再代入代数式进行计算即可.22(3)0a b -++=,∴20a -=,30b +=,解得2a =,3b =-.∴2()a b -=2(23)25+=. 故答案为25.【点睛】本题考查了非负数的性质,几个非负数的和为0时,这几个非负数都为0.三、解答题18.请你观察下列等式,再回答问题.2211111111121112+++-+==; 2211111111232216+++-+==; 2211111111.3433112++=+-=+(1)(2)请按照上面各等式反映的规律,试写出用n(n为正整数)表示的等式,并加以验证.【答案】(11120,验证见解析;(21111n n=+-+,验证见解析.【解析】(1)从三个式子中可以发现,第一个加数都是1,第二个加数是个分数,设分母为n,第三个分数的分母就是n+1,结果是一个带分数,整数部分是1,分数部分的分子也是1,分母是前项分数的分母的积.所以由此可计算给的式子;(2)根据(1)找的规律写出表示这个规律的式子.【详解】(11111144120+-+=,验证略.(21111n n=+-+.验证如下:1111111nn n n n==+==-=+-++【点睛】本题考查了算术平方根,解题的关键是掌握算是平方根的概念.19.请你先化简:2344111x xxx x⎛⎫-+⎛⎫-+÷ ⎪⎪++⎝⎭⎝⎭,然后从12x-≤≤中选一个合适的整数作为x的值代入求值.【答案】22xx+-,当0x=时,原式1=.【分析】先根据分式混合运算的法则把原式进行化简,再选取合适的x的值(使分式的分母和除式不为0)代入进行计算即可(答案不唯一).【详解】2344111x xxx x⎛⎫-+⎛⎫-+÷ ⎪⎪++⎝⎭⎝⎭=()22231111xxx x x-⎛⎫--÷⎪+++⎝⎭=()()()222112x x xx x+-++-=22xx+-,当0x=时,原式1=.20.已知:如图,一次函数y=34x+3的图象分别与x轴、y轴相交于点A、B,且与经过点C(2,0)的一次函数y=kx+b的图象相交于点D,点D的横坐标为4,直线CD与y轴相交于点E.(1)直线CD的函数表达式为______;(直接写出结果)(2)在x轴上求一点P使△PAD为等腰三角形,直接写出所有满足条件的点P的坐标.(3)若点Q为线段DE上的一个动点,连接BQ.点Q是否存在某个位置,将△BQD沿着直线BQ翻折,使得点D恰好落在直线AB下方的y轴上?若存在,求点Q的坐标;若不存在,请说明理由.【答案】(1)y=3x-6;(2)点P的坐标为(94,0)或(6,0)或(-14,0)或(12,0);(3)存在,点Q的坐标为(187,117)【分析】(1)求出D的坐标,即可求解;(2)分PA=PD、当PA=AD、DP=AD三种情况,分别求解即可;(3)利用BD=BD′,DQ=D′Q,即可求解.【详解】解:(1)将点D的横坐标为4代入一次函数y=34x+3表达式,解得:y=6,即点D的坐标为(4,6),将点C、D的坐标代入一次函数表达式y=kx+b得:64 02,k bk b=+⎧⎨=+⎩解得:36, kb=⎧⎨=-⎩故答案为y=3x-6;(2)①当PA=PD时,点B是AD的中点,故:过点B且垂直于AD的直线方程为:y=-43x+3,令y=0,则x=94,即点P的坐标为(94,0);②当PA=AD时,()22446--+=10,故点P的坐标为(6,0)或(-14,0);③当DP=AD 时,同理可得:点P 的坐标为(12,0);故点P 的坐标为(94,0)或(6,0)或(-14,0)或(12,0); (3)设翻转后点D 落在y 轴上的点为D′,设点Q 的坐标为(x ,3x-6),则:BD=BD′,DQ=D′Q ,BD′=BD=()22436+- =5,故点D′的坐标为(0,-2),DQ 2=D′Q 2,即:x 2+(3x-6+2)2=(x-4)2+(3x-6-6)2,解得:x=187, 故点Q 的坐标为(187,117). 【点睛】本题考查的是一次函数的综合运用,涉及到图象翻折、勾股定理运用等知识点,其中(2)要分类讨论,避免遗漏.21.甲仓库和乙仓库共存粮450吨,现从甲仓库运出存量的60%,从乙仓库运出存粮的40%,结果乙仓库所余的粮食比甲仓库所余的粮食多30吨.求甲、乙仓库原来各存粮多少吨?【答案】甲仓库原来存粮240吨,乙仓库原来存粮210吨.【分析】设甲仓库原来存粮x 吨,乙仓库原来存粮y 吨,根据“甲仓库和乙仓库共存粮450吨,现从甲仓库运出存量的60%,从乙仓库运出存粮的40%,结果乙仓库所余的粮食比甲仓库所余的粮食多30吨”,即可得出关于x ,y 的二元一次方程组,解方程组即可得出结论.【详解】解:设甲仓库原来存粮x 吨,乙仓库原来存粮y 吨,根据题意得:,解得:. 答:甲仓库原来存粮240吨,乙仓库原来存粮210吨.【点睛】本题考查了二元一次方程组的应用,设出未知数,找准等量关系,正确列出二元一次方程组是解题的关键. 22.有一张边长为a 厘米的正方形桌面,因为实际需要,需将正方形边长增加b 厘米,木工师傅设计了如图所示的三种方案:小明发现这三种方案都能验证公式:a 2+2ab+b 2=(a+b )2,对于方案一,小明是这样验证的:a2+ab+ab+b2=a2+2ab+b2=(a+b)2请你根据方案二、方案三,写出公式的验证过程.方案二:方案三:【答案】见解析.【解析】分析:根据题目中的图形可以分别写出方案二和方案三的推导过程,本题得以解决.详解:由题意可得:方案二:a1+ab+(a+b)b=a1+ab+ab+b1=a1+1ab+b1=(a+b)1,方案三:a1+[()]2a ab b+++[()]2a ab b++=2221122a ab b ab b++++=a1+1ab+b1=(a+b)1.点睛:本题考查了完全平方公式的几何背景,解答本题的关键是明确题意,写出相应的推导过程.23.如图,已知△ABC,利用尺规..,根据下列要求作图(保留作图痕迹,不写作法),并根据要求填空:(1)作∠ABC的平分线BD交AC于点D;(2)作BD的垂直平分线交AB于E,交BC于F;(3)在(1)、(2)条件下,连接DE,线段DE与线段BF的关系为.【答案】(1)详见解析;(2)详见解析;(3)平行且相等.【解析】(1)先BD平分∠ABC交AC于D;(2)作EF垂直平分BD,交AB于点E,交BC于点F;(3)由于EF垂直平分BD,则EB=ED,而BD平分∠EBF,则可判断△BEF为等腰三,角形,所以BE=BF,所以有DE=BF.设EF与BD交点为M,因为EF垂直平方BD,所以BM=DM,∠BMF和∠EMD=90°,DE=BF所以三角形MED≌△BFM,∠DBF=∠EDB,所以DE和BF平行且相等.【详解】解:(1)如图,BD为所作;(2)如图,EF为所作;(3)DE和BF平行且相等.【点睛】本题考查了作图-复杂作图,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.24.如图,图中数字代表正方形的面积,120ACB ∠=︒,求正方形P 的面积.(提示:直角三角形中,30角所对的直角边等于斜边的一半)【答案】1【分析】作AD ⊥BC ,交BC 延长线于D ,已知∠ACB=120°,可得∠ACD=60°,∠DAC=30°;即可求出AD ,进而求出BD ,由勾股定理AB 2=AD 2+BD 2,即可求得AB 2即为正方形P 的面积. 【详解】如图,作AD ⊥BC ,交BC 延长线于D ,∵∠ACB=120°,∴∠ACD=60°,∠DAC=30°;∴CD=12AC =1, ∴3,在Rt △ADB 中,BD=BC+CD=3+1=4,3,根据勾股定理得:AB 2=AD 2+BD 2=3+16=1;∴正方形P 的面积=AB 2=1.【点睛】本题考查了特殊角三角函数解直角三角形和利用勾股定理解直角三角形.25.先化简,再求值:2(2)(2)(2)(32)x y y x y x y x y -----+-,其中x ,y 满足370x y ++=.【答案】xy -,6【分析】根据整式的四则混合运算先化简代数式,再根据370x y ++=确定x 和y 的值,代入求值即可.【详解】解:2(2)(2)(2)(32)x y y x y x y x y -----+-=4x 2-4xy+y 2-4x 2+y 2+3xy-2y 2=xy -.∵370x y ++=∴370x y ++=,380x -=∴2x =,3y =-∴原式=2(3)6-⨯-=.【点睛】本题考查代数式的化简求值.熟练掌握整式的乘法、平方差公式、完全平方公式、绝对值及算术平方根的非负性是解题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.若+1x 有意义,则x 的取值范围是( ). A .x >﹣1B .x≥0C .x≥﹣1D .任意实数 【答案】C【分析】根据二次根式的意义可得出x+1≥0,即可得到结果.【详解】解:由题意得:x+1≥0,解得:x≥﹣1,故选:C .【点睛】本题主要是考查了二次根式有意义的条件应用,计算得出的不等式是关键.2.如图所示,AC ①平分BAD ∠,AB AD =②,AB BC ⊥③,AD DC.⊥以此三个中的两个为条件,另一个为结论,可构成三个命题,即⇒①②③,⇒①③②,⇒②③①.其中正确的命题的个数是( )A .0B .1C .2D .3【答案】C 【解析】根据全等三角形的性质解答.【详解】解:⇒①②③错误,两个全等三角形的对应角相等,但不一定是直角;⇒①③②正确,两个全等三角形的对应边相等;⇒②③①正确,两个全等三角形的对应角相等,即AC 平分BAD ∠;故选:C .【点睛】考查命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.3.计算(-a)2n •(-a n )3的结果是( )A .a 5nB .-a 5nC .26n aD .266n a - 【答案】B【分析】先算幂的乘方,再算同底数幂的乘法,即可求解.【详解】(-a)2n •(-a n )3=a 2n •(-a 3n )=-a 5n .故选:B .【点睛】本题主要考查幂的乘方以及同底数幂的乘法法则,掌握上述运算法则,是解题的关键.4.下列因式分解正确的是( )A .256(5)6m m m m -+=-+B .2241(21)m m -=-C .2244(2)m m m +-=+D .241(21)(21)m m m -=+-【答案】D【分析】因式分解:把一个整式化为几个因式的积的形式.从而可以得到答案.【详解】A 没有把256m m -+化为因式积的形式,所以A 错误,B 从左往右的变形不是恒等变形,因式分解是恒等变形,所以B 错误,C 变形也不是恒等变形所以错误,D 化为几个因式的积的形式,是因式分解,所以D 正确.故选D .【点睛】本题考查的是多项式的因式分解,掌握因式分解的定义是解题关键.5.下列命题与其逆命题都是真命题的是( )A .全等三角形对应角相等B .对顶角相等C .角平分线上的点到角的两边的距离相等D .若a 2>b 2,则a>b【答案】C【解析】对每个选项的命题与逆命题都进行判定即可.【详解】解:A.对应角相等的三角形不一定是全等三角形,该选项的逆命题不是真命题,故选项错误;B.两个角相等,它们不一定是对顶角,该选项的逆命题不是真命题,故选项错误;C.根据角平分线的性质与判定可得,该选项命题与其逆命题都是真命题,故选项正确;D. 若a 2>b 2,a 不一定大于b ,该选项命题不是真命题,故选错误.故选:C.【点睛】本题主要考查命题与逆命题是否为真命题,解此题的关键在于一是能准确写出命题的逆命题,二是熟练掌握各个基本知识点.6.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别一点M N 、为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P . 若点P 的坐标为11,423a a ⎛⎫ ⎪-+⎝⎭,则a 的值为( )A .1a =-B .7a =-C .1a =D .13a = 【答案】D 【分析】根据作图过程可得P 在第二象限角平分线上,有角平分线的性质:角的平分线上的点到角的两边的距离相等可得11=423a a -+,再根据P 点所在象限可得横纵坐标的和为0,进而得到a 的数量关系.【详解】根据作图方法可得点P 在第二象限角平分线上,则P 点横纵坐标的和为0,故11+423a a -+=0, 解得:a=13. 故答案选:D.【点睛】本题考查的知识点是作图—基本作图, 坐标与图形性质, 角平分线的性质,解题的关键是熟练的掌握作图—基本作图, 坐标与图形性质, 角平分线的性质作图—基本作图, 坐标与图形性质, 角平分线的性质. 7.说明命题“若a 2>b 2,则a >b .”是假命题,举反例正确的是( )A .a =2,b =3B .a =﹣2,b =3C .a =3,b =﹣2D .a =﹣3,b =2【答案】D【分析】反例就是满足命题的题设,但不能由它得到结论.【详解】解:当a =﹣3,b =2时,满足a 2>b 2,而不满足a >b ,所以a =﹣3,b =2可作为命题“若a >b ,则a 2>b 2”是假命题的反例.故选:D .【点睛】本题考查命题题意定理:命题的“真”“假”是就命题的内容而言.任何一个命题非真即假.要说明一个命题的正确性,一般需要推理、论证,而判断一个命题是假命题,只需举出一个反例即可.8.下列多项式中,能分解因式的是( )A .m 2+n 2B .-m 2-n 2C .m 2-4m+4D .m 2+mn+n 2【答案】C【分析】观察四个选项,都不能用提公因式法分解,再根据平方差公式和完全平方公式的特点对各项进行判断即可.【详解】解:A 、m 2+n 2不能分解因式,本选项不符合题意;B 、-m 2-n 2不能分解因式,本选项不符合题意;C 、()22442m m m -+=-,能分解因式,所以本选项符合题意;D 、m 2+mn+n 2不能分解因式,本选项不符合题意.故选:C.【点睛】本题考查了多项式的因式分解,熟知平方差公式和完全平方公式的结构特征是解此题的关键.9.如图,直线1l 、2l 的交点坐标可以看做下列方程组( )的解.A .121y x y x =+⎧⎨=-⎩B .121y x y x =+⎧⎨=+⎩C .121y x y x =-⎧⎨=-⎩D .121y x y x =-⎧⎨=+⎩【答案】A 【分析】首先根据图象判定交点坐标,然后代入方程组即可.【详解】由图象,得直线1l 、2l 的交点坐标是(2,3),将其代入,得A 选项,满足方程组,符合题意;B 选项,不满足方程组,不符合题意;C 选项,不满足方程组,不符合题意;D 选项,不满足方程组,不符合题意;故选:A.【点睛】此题主要考查一次函数图象和二元一次方程组的综合应用,熟练掌握,即可解题.10.如图,在四边形ABCD 中,∠A =90°,AD ∥BC ,AB =4,点P 是线段AD 上的动点,连接BP ,CP ,若△BPC周长的最小值为16,则BC的长为()A.5 B.6 C.8 D.10【答案】B【分析】作点B关于AD的对称点E,连接CE交AD于P,则AE=AB=4,EP=BP,设BC=x,则CP+BP =16﹣x=CE,依据Rt△BCE中,EB2+BC2=CE2,即可得到82+x2=(16﹣x)2,进而得出BC的长.【详解】解:如图所示,作点B关于AD的对称点E,连接CE交AD于P,则AE=AB=4,EP=BP,设BC=x,则CP+BP=16﹣x=CE,∵∠BAD=90°,AD∥BC,∴∠ABC=90°,∴Rt△BCE中,EB2+BC2=CE2,∴82+x2=(16﹣x)2,解得x=6,∴BC=6,故选B.【点睛】本题考查勾股定理的应用和三角形的周长,解题的关键是掌握勾股定理的应用和三角形的周长的计算. 二、填空题11.如图,在矩形ABCD中,AB=3,点E为边CD上一点,将△ADE沿AE所在直线翻折,得到△AFE,点F恰好是BC的中点,M为AF上一动点,作MN⊥AD于N,则BM+AN的最小值为____.53.【分析】根据矩形的性质得到∠BAD=∠ABC=90°,BC=AD,由折叠的性质得到AF=AD,∠FAE=∠DAE,求得∠BAF=30°,∠DAF=60°,得到∠BAF=∠FAE,过B作BG⊥AF交AE于G,则点B与点G关于AF对称,过G作GH⊥AB于H交AF于M,则此时,BM+MH的值最小,推出△ABG是等边三角形,得到AG=BG=AB=5,根据勾股定理即可得到结论.【详解】解:∵四边形ABCD是矩形,∴∠BAD=∠ABC=90°,BC=AD.∵将△ADE沿AE所在直线翻折,得到△AFE,∴AF=AD,∠FAE=∠DAE.∵点F恰好是BC的中点,∴BF1122BC AF ==,∴∠BAF=30°,∴∠DAF=60°,∴∠FAE1302DAF=∠=︒,∴∠BAF=∠FAE,过B作BG⊥AF交AE于G,则点B与点G关于AF对称,过G作GH⊥AB于H交AF于M,则此时,BM+MH的值最小.∵MN⊥AD,∴四边形AHMN是矩形,∴AN=HM,∴BM+MH=BM+AN=HG.∵AB=AG,∠BAG=60°,∴△ABG是等边三角形,∴AG=BG=AB=5,∴52 AH BH==,∴HG2253 2AG AH=-=,∴BM+AN 53.故答案为:53. 【点睛】 本题考查了翻折变换((折叠问题)),矩形的性质,等边三角形的判定和性质,正确的作出辅助线是解题的关键.12.已知三角形三边长分别为6,8,9,则此三角形的面积为__________.【答案】188554【分析】由海伦公式:S=()()()p p a p b p c ---,其中()12p a b c =++可计算三角形的面积.【详解】由题意知a=6,b=8,c=9,p=123689=22⨯++(); ∴由海伦公式计算S=()()()p p a p b p c ---23232323=-6-8-92222⎛⎫⎛⎫⎛⎫⨯⨯⨯ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭231175=2222⨯⨯⨯ 1=88554故答案为:188554 【点睛】本题考查了利用三边长求三角形面积的应用问题,也考查了二次根式的化简.解题的关键是掌握海伦公式求三角形的面积.13.如图AB ∥CD ,AB 与DE 交于点F ,∠B=40°,∠D=70°,则∠E=______.【答案】30°【详解】解∵AB ∥CD ,∴∠D=∠AFE ,∵∠D=70°,∴∠AFE=70°,∵∠B=40°,∠E=∠AFE-∠B=30°.故答案为:30°.【点睛】本题考查了平行线性质定理;三角形外角性质,了解三角形一个外角等于和它不相邻的两个内角的和是解题的关键.14.近似数2.019精确到百分位的结果是_____.【答案】2.1【分析】根据四舍五入法可以解答本题.【详解】2.019≈2.1(精确到百分位),故答案为2.1.【点睛】本题考查近似数和有效数字,解答本题的关键是明确近似数和有效数字的含义.15.如图,已知ABC ∆中,4BC =,AB 的垂直平分线交AC 于点D ,若6AC =,则BCD ∆的周长=__________.【答案】1【分析】根据线段垂直平分线的性质得到DA=DB ,根据三角形的周长公式计算即可.【详解】∵DE 是AB 的垂直平分线,∴DA=DB ,∴△BCD 的周长=BD+CD+BC=AD+CD+BC=AC+BC=6+4=1,故答案为:1.【点睛】本题考查的是线段垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.16.某种病毒近似于球体,它的半径约为0.00000000234米,用科学记数法表示为_____米.【答案】2.34×11﹣2【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×11﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的1的个数所决定.【详解】1.11111111234米=2.34×11﹣2米.故答案为:2.34×11﹣2.【点睛】本题考查了用科学记数法表示较小的数,一般形式为a ×11﹣n ,其中1≤|a|<11,n 为由原数左边起第一个不为零的数字前面的1的个数所决定.17.如图,在平面直角坐标系中,矩形ABCO 的边CO 、OA 分别在x 轴、y 轴上,点E 在边BC 上,将该矩形沿AE 折叠,点B 恰好落在边OC 上的F 处.若8OA =,4CF =,则点E 的坐标是__________.【答案】(10,3)-【分析】由勾股定理可以得到CE 、OF 的长度,根据点E 在第二象限,从而可以得到点E 的坐标.【详解】设CE=a ,则BE=8-a ,由题意可得,EF=BE=8-a ,∵∠ECF=90°,CF=4,∴a 2+42=(8-a )2,解得,a=3,设OF=b ,则OC=b+4,由题意可得,AF=AB=OC= b+4,∵∠AOF=90°,OA=8,∴b 2+82=(b+4)2,解得,b=6,∴CO=CF+OF=10,∴点E 的坐标为(-10,3),故答案为(-10,3).【点睛】本题考查勾股定理的应用,矩形的性质、翻折变化、坐标与图形变化-对称,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.三、解答题18.如图,已知1∠与2∠互为补角,且3B ∠=∠,(1)求证:EF BC ∥;(2)若AC BC =,CE 平分ACB ∠,求证:AF CF =.【答案】(1)详见解析;(2)详见解析.【分析】(1)由1∠与2∠互为补角,则2FDE ∠=∠,然后得到B AEF ∠=∠,即可得到结论成立; (2)由平行线的性质和角平分线的性质,得到FEC ACE ∠=∠,则FC FE =,然后得到AF FE =,即可得到结论成立.【详解】(1)证明:∵1180FDE ∠+∠=︒,1∠,2∠互为补角,∴2FDE ∠=∠,∴//DF AB ,∴3AEF ∠=∠,∵3B ∠=∠,∴B AEF ∠=∠,∴//FE BC .(2)解:∵//EF BC ,∴BCE FEC ∠=∠,∵CE 平分ACB ∠,∴ACE BCE ∠=∠,∴FEC ACE ∠=∠.∴FC FE =,∵AC BC =,∴A B ∠=∠,又∴B AEF ∠=∠,∴A AEF ∠=∠,∴AF FE =,∴AF CF =,【点睛】本题考查了平行线的判定和性质,角平分线的性质,等边对等角,三角形内角和定理,解题的关键是熟练掌握平行线的判定和性质,熟练运用所学知识进行解题.19.将分别标有数字1、2、3的三张硬纸片,反面一样,现把三张硬纸片搅均反面朝上。
<合集试卷3套>2018年贵州省名校八年级上学期数学期末经典试题
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.下列图标中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【答案】D【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】解:A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、不是轴对称图形,是中心对称图形,故本选项错误;C、是轴对称图形,不是中心对称图形,故本选项错误;D、既是轴对称图形,又是中心对称图形,故本选项正确.故选:D.【点睛】本题考查了轴对称图形与中心对称的概念,熟悉基本概念及判断方法是解题的关键.25622x y+0.523x)A.1个B.2个C.3个D.4个【答案】A【分析】根据最简二次根式必须满足两个条件:被开方数不含分母;被开方数不含能开得尽方的因数或因式进行解答.56214=120.52==233x=都不是最简二次根式;22x y+综上,最简二次根式的个数是1个,故选:A.【点睛】本题考查了最简二次根式,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.3.9的平方根是()A.±B.3 C.±81 D.±3【答案】D【解析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【详解】∵(±3)2=9,∴9的平方根是±3,故选D.【点睛】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.4.下列说法正确的是()A.对角线互相垂直且相等的四边形是菱形B.对角线相等的四边形是矩形C.对角线互相垂直的四边形是平行四边形D.对角线相等且互相平分的四边形是矩形【答案】D【分析】利用菱形的判定、矩形的判定定理、平行四边形的判定定理分别判断后即可确定正确的选项.【详解】A、对角线互相垂直且相等的四边形可能是等腰梯形,故错误;B、对角线相等的平行四边形才是矩形,故错误;C、对角线互相垂直的四边形不一定是平行四边形,故错误;D、对角线相等且互相平分的四边形是矩形,正确.故选:D.【点睛】此题考查菱形的判定、矩形的判定定理、平行四边形的判定,了解各个图形的判定定理是解题的关键,难度不大.5.若(x+a)(x﹣2)=x2+bx﹣6,则a、b的值是()A.a=3,b=5 B.a=3,b=1 C.a=﹣3,b=﹣1 D.a=﹣3,b=﹣5【答案】B【分析】先把方程的左边化为与右边相同的形式,再分别令其一次项系数与常数项分别相等即可求出a、b的值.【详解】解:原方程可化为:x2+(a﹣2)x﹣2a=x2+bx﹣6,故226a ba-=⎧⎨-=-⎩,解得31ab=⎧⎨=⎩.故选:B.【点睛】本题考查多项式乘法,掌握多项式乘多项式的计算法则是本题的解题关键.6.如图,AD 是ABC ∆的角平分线,DE ,DF 分别是ABD ∆和ACD ∆的高,连接EF 交AD 于G .下列结论:①AD 垂直平分EF ;②EF 垂直平分AD ;③AD 平分EDF ∠;④当BAC ∠为60︒时,3AG DG =,其中不正确的结论的个数为( )A .1B .2C .3D .4【答案】A 【分析】根据角平分线性质求出DE=DF,根据HL 可证△AED ≌△AFD,即可推出AE=AF,再逐个判断即可.【详解】解:∵AD 是△ABC 的角平分线,DE,DF 分别是△ABD 和△ACD 的高,∴DE=DF,∠AED=∠AFD=90° ,在Rt △AED 和Rt △AFD 中,AD AD DE DF =⎧⎨=⎩∴Rt △AED ≌Rt △AFD(HL),∴AE=AF,∠ADE=∠ADF,∴AD 平分∠EDF;③正确;∵AE=AF ,DE=DF,∴AD 垂直平分EF,①正确;②错误,∵∠BAC=60°,∴∠DAE=30°, ∴323,,AG AE AD AE == ∴233313133DG AD AG AE AE AE AE AG =-=-===, ∴AG=3DG ,④正确.故选:A【点睛】本题考查了全等三角形的性质和判定,角平分线性质的应用,垂直平分线的判定,解直角三角形,能求出Rt △AED ≌Rt △AFD 是解此题的关键.7.若一次函数36y x =+与24y x =-的图象交点坐标为(),m n ,则解为x m y n=⎧⎨=⎩的方程组是( ) A .3624y x x y -=⎧⎨+=-⎩B .3624x y x y +=-⎧⎨-=⎩C .3624x y x y -=-⎧⎨-=⎩D .3624x y x y -=⎧⎨-=⎩【答案】C 【分析】由于函数图象交点坐标为两函数解析式组成的方程组的解.因此x m y n =⎧⎨=⎩是联立两直线函数解析式所组方程组的解.由此可判断出正确的选项. 【详解】解:一次函数36y x =+与24y x =-的图象交点坐标为(),m n ,则x m y n =⎧⎨=⎩是方程组3624y x y x =+⎧⎨=-⎩的解,即3624x y x y -=-⎧⎨-=⎩的解. 故选:C【点睛】方程组的解就是使方程组中两个方程同时成立的一对未知数的值,而这一对未知数的值也同时满足两个相应的一次函数式,因此方程组的解就是两个相应的一次函数图象的交点坐标.8.如图,点D 在△ABC 内,且∠BDC=120°,∠1+∠2=55°,则∠A 的度数为( )A .50°B .60°C .65°D .75°【答案】C 【解析】根据三角形的内角和即可求出.【详解】在△BCD 中,∠BDC=120°,∴∠DBC+∠DCB=180°-∠BDC=60°,∵∠1+∠2=55°,∴∠ABC+∠ACB=∠1+∠2+∠DBC+∠DCB=115°,∴∠A=180°-(∠ABC+∠ACB )=65°.故选C.【点睛】此题主要考查三角形的内角和,解题的关键是熟知三角形的内角和的性质.9.如图,ABC 是一钢架的一部分,为使钢架更加坚固,在其内部添加了一些钢管DE 、EF 、FG ……添加的这些钢管的长度都与BD 的长度相等.如果10ABC ∠=︒,那么添加这样的钢管的根数最多是( )A .7根B .8根C .9根D .10根【答案】B 【分析】根据已知利用等腰三角形的性质及三角形外角的性质,找出图中存在的规律,根据规律及三角形的内角和定理不难求解.【详解】∵添加的钢管长度都与BD 相等, 10ABC ∠=︒,∴∠FDE=∠DFE=20︒,…从图中我们会发现有好几个等腰三角形,即第一个等腰三角形的底角是10︒,第二个是20︒,第三个是30︒,四个是40︒,五个是50︒,六个是60︒,七个是70︒,八个是80︒,九个是90︒就不存在了,所以一共有8个,故添加这样的钢管的根数最多8根故选B.【点睛】此题主要考查等腰三角形的性质,解题的关键是根据等边对等角求出角度,发现规律进行求解. 10.点A(-2,5)关于x 轴对称的点的坐标是( )A .(2,5)B .(-2,-5)C .(2,-5)D .(5,-2)【答案】B【解析】分析:关于x 轴对称的两点的横坐标相等,纵坐标互为相反数.详解:根据题意可得:点A(-2,5)关于x 轴对称的点的坐标为(-2,-5),故选B.点睛:本题主要考查的是关于x 轴对称的点的性质,属于基础题型.关于x 轴对称的两个点横坐标相等,纵坐标互为相反数;关于y 轴对称的两个点纵坐标相等,横坐标互为相反数;关于原点对称的两个点横坐标和纵坐标都互为相反数.二、填空题11.如图,∠BAC =30°,点 D 为∠BAC 内一点,点 E ,F 分别是AB ,AC 上的动点.若AD =9,则△DEF 周长的最小值为____.【答案】1;【分析】由对称的性质可得:DE=EM,DF=FN,AM=AD=AN=1,∠MAE=∠DAE,∠NAF=∠DAF,然后根据两点之间线段最短可得此时MN即为△DEF的周长的最小值,然后根据等边三角形的判定定理及定义即可求出结论.【详解】解:过点D分别作AB、AC的对称点M、N,连接MN分别交AB、AC于点E、F,连接DE、DF、AD、AM和AN由对称的性质可得:DE=EM,DF=FN,AM=AD=AN=1,∠MAE=∠DAE,∠NAF=∠DAF∴△DEF的周长=DE+EF+DF= EM+EF+FN=MN,∠MAE+∠NAF=∠DAE+∠DAF=∠BAC=30°∴根据两点之间线段最短,此时MN即为△DEF的周长的最小值,∠MAN=∠MAE+∠NAF+∠BAC=60°∴△MAN为等边三角形∴MN=AM=AN=1即△DEF周长的最小值为1故答案为:1.【点睛】此题考查的是对称的性质、等边三角形的判定及定义和两点之间线段最短的应用,掌握对称的性质、等边三角形的判定及定义和两点之间线段最短是解决此题的关键.12.如图,△ABC≌△DEC,其中AB与DE是对应边,AC与DC是对应边,若∠A=∠30°,∠CEB=70°,则∠ACD=_____°.【答案】40【分析】根据全等三角形的性质可得CE=BC,∠ACB=∠DCE,根据等腰三角形的性质可得∠B的度数,进而可得∠ECB的度数,根据等量代换可证明∠ACD=∠ECB,即可得答案.【详解】∵△ABC≌△DEC,其中AB与DE是对应边,AC与DC是对应边,∴∠ACB=∠DCE,CE与BC是对应边,即CE=BC,∴∠B=∠CEB=70°,∴∠ECB=180°-2×70°=40°,∵∠ACD+∠ACE=∠ECB+∠ACE,∴∠ACD=∠ECB=40°.故答案为40【点睛】本题考查了全等三角形的性质及等腰三角形的性质,熟练掌握相关性质是解题关键.13.如图,将平行四边形ABCD 的边DC 延长到E ,使CE CD =,连接AE 交BC 于F ,AFC n D ∠∠=,当n =______时,四边形ABEC 是矩形.【答案】1【分析】首先根据四边形ABCD 是平行四边形,得到四边形ABEC 是平行四边形,然后证得FC=FE ,利用对角线互相相等的四边形是矩形判定四边形ABEC 是矩形.【详解】解:当∠AFC=1∠D 时,四边形ABEC 是矩形.∵四边形ABCD 是平行四边形,∴BC ∥AD ,∠BCE=∠D ,由题意易得AB ∥EC ,AB ∥EC ,∴四边形ABEC 是平行四边形.∵∠AFC=∠FEC+∠BCE ,∴当∠AFC=1∠D 时,则有∠FEC=∠FCE ,∴FC=FE ,∴四边形ABEC 是矩形,故答案为1.【点睛】此题考查了平行四边形的性质以及矩形的判定.此题难度适中,注意掌握数形结合思想的应用,解题的关键是了解矩形的判定定理.14.计算2201920172018⨯-=____.【答案】1-【分析】设2018,a =把原式化为()()2220192017201811a a a ⨯-=+--,从而可得答案. 【详解】解:设2018,a =()()2220192017201811a a a ∴⨯-=+--221a a =--1,=-故答案为: 1.-【点睛】本题考查的是利用平方差公式进行简便运算,掌握平方差公式是解题的关键.15.已知2249x kxy y ++是一个完全平方式,则k 的值是_________________.【答案】12或-12.【分析】利用完全平方式的特征(形如222a ab b ±+的式子即为完全平方式)即可确定k 的值.【详解】解:因为2249x kxy y ++是一个完全平方式,所以①2222249(23)4129x kxy y x y x xy y ++=+=++,即12k =;②2222249(23)4129x kxy y x y x xy y ++=-=-+,即12k =-,所以k 的值是12或-12.故答案为:12或-12.【点睛】本题考查了完全平方式,熟练掌握完全平方式的概念是解题的关键,解题时注意分类讨论.16.分解因式:2288a a -+=_______【答案】22(2)a - 【解析】22a 8a 8-+=2(2a 4a 4-+)=()22a 2-.故答案为()22a 2-.17.分解因式:m 2+4m =_____.【答案】m(m+4)【解析】直接提取公式因进行因式分解即可【详解】m 2+4m =m(m+4).故答案为:m(m+4).【点睛】本题考查提取公因式方法进行因式分解,找到公因式是解题关键三、解答题18.如图,在平面直角坐标系中,过点B (6,0)的直线AB 与直线OA 相交于点A (4,2),动点N 沿路线O→A→C 运动.(1)求直线AB的解析式.(2)求△OAC的面积.(3)当△ONC的面积是△OAC面积的14时,求出这时点N的坐标.【答案】(1)y=-x+6;(2)12;(3)11 (1,)2N或2(1,5)N.【分析】(1)利用待定系数法,即可求得函数的解析式;(2)由一次函数的解析式,求出点C的坐标,即OC的长,利用三角形的面积公式,即可求解;(3)当△ONC的面积是△OAC面积的14时,根据三角形的面积公式,即可求得N的横坐标,然后分别代入直线OA的解析式,即可求得N的坐标.【详解】(1)设直线AB的函数解析式是y=kx+b,根据题意得:4260k bk b+=⎧⎨+=⎩,解得:16kb=-⎧⎨=⎩,∴直线AB的解析式是:y=-x+6;(2)在y=-x+6中,令x=0,解得:y=6,∴164122OACS∆=⨯⨯=;(3)设直线OA的解析式y=mx,把A(4,2)代入y=mx,得:4m=2,解得:12m=,即直线OA的解析式是:12y x=,∵△ONC的面积是△OAC面积的14,∴点N的横坐标是1414⨯=,当点N在OA上时,x=1,y=12,即N的坐标为(1,12),当点N在AC上时,x=1,y=5,即N的坐标为(1,5),综上所述,11 (1,)2N或2(1,5)N.【点睛】本题主要考查用待定系数法求函数解析式,根据平面直角坐标系中几何图形的特征,求三角形的面积和点的坐标,数形结合思想和分类讨论思想的应用,是解题的关键.19.已知某种商品去年售价为每件a元,可售出b件.今年涨价x成(1成10%=),则售出的数量减少mx 成(m是正数).试问:如果涨价1.25成价格,营业额将达到2(1)4ab m m+,求m . 【答案】0.8m = 【分析】今年该商品售价为每件110x a ⎛⎫+ ⎪⎝⎭,售出的数量是110mx b ⎛⎫- ⎪⎝⎭,然后根据题意列方程求解即可. 【详解】解:由题意知今年该商品售价为每件(110%)a x +⨯,售出的数量是(110%)b mx -⨯, 则销售额是111010x mx a b ⎛⎫⎛⎫+⨯- ⎪ ⎪⎝⎭⎝⎭, 如果售价每件涨价1.25成,营业额将达到2(1)4ab m m+, 则可列21.25 1.125(1)1110104m ab m a b m ⨯+⎛⎫⎛⎫+⨯-= ⎪ ⎪⎝⎭⎝⎭, 化简得22540160m m -+=,∴(5m-4)2=0,∴5m=4,∴0.8m =.【点睛】本题考查了方程的应用,完全平方公式,正确列出方程是解答本题的关键.20.为加快“智慧校园”建设,某市准备为试点学校采购一批,A B 两种型号的一体机,经过市场调查发现,每套B 型一体机的价格比每套A 型一体机的价格多0.6万元,且用960万元恰好能购买500套A 型一体机和200套B 型一体机.(1)列二元一次方程组解决问题:求每套A 型和B 型一体机的价格各是多少万元?(2)由于需要,决定再次采购A 型和B 型一体机共1100套,此时每套A 型体机的价格比原来上涨25%,每套B 型一体机的价格不变.设再次采购A 型一体机()600m m ≤套,那么该市至少还需要投入多少万元?【答案】(1)A 型一体机的价格是1.2万元,B 型一体机的价格是1.8万元;(2)1800万元【分析】(1)直接利用今年每套B 型一体机的价格比每套A 型一体机的价格多0.6万元,且用960万元恰好能购买500套A 型一体机和200套B 型一体机,分别得出方程求出答案;(2)根据题意表示出总费用进而利用一次函数增减性得出答案.【详解】解:(1)设每套A 型一体机的价格为x 万元,每套B 型一体机的价格为y 万元.由题意可得0.6500200960y x x y -=⎧⎨+=⎩,解得 1.21.8x y =⎧⎨=⎩, 答:每套A 型一体机的价格是1.2万元,B 型一体机的价格是1.8万元;(2)设该市还需要投入W 万元,()1.2125%W m =⨯+()1.81100m +⨯-0.31980m =-+,0.30-<,W ∴随m 的增大而减小.600m ≤,∴当600m =时,W 有最小值,0.360019801800W =-⨯+=最小,答:该市至少还需要投入1800万元.【点睛】此题主要考查了二元一次方程组的应用以及一元一次不等式的应用、一次函数的应用,正确找出等量关系是解题关键.21.已知:如图,在△ABC 中,∠BAC=100°,AD⊥BC 于D 点,AE 平分∠BAC 交BC 于点E .若∠C=28°,求∠DAE 的度数.【答案】12°【解析】先根据角平分线的定义求得∠EAC 的度数,再由三角形外角的性质得出∠AED 的度数,最后由直角三角形的性质可得结论.【详解】解:∵AE 平分∠BAC ,∴∠EAC =1BAC 2∠=11002⨯︒=50°, ∵∠C =28°,∴∠AED =∠C+∠EAC =28°+50°=78°,∵AD ⊥BC ,∴∠ADE =90°,∴∠DAE =90°﹣78°=12°.故答案为:12°.【点睛】本题考查三角形内角和定理,角平分线的定义,关键是掌握三角形内角和为180°,直角三角形两锐角互余.22.(1)计算: +(2)计算: 1123【答案】(1;(2)1【分析】(1)依次将各式化成最简二次根式,合并即可;(2)按照二次根式性质进行化简,再计算即可.【详解】解:(1(2)原式=2×12﹣3+23×3 =1﹣3+2=1.【点睛】本题考查了二次根式的混合加减运算以及实数的混合计算,解答关键是根据法则进行计算.23.两个工程队共同参与一项筑路工程,若先由甲、乙两队合作30天,剩下的工程再由乙队单独做15天可以完成,共需施工费810万元;若由甲、乙合作完成此项工程共需36天,共需施工费828万元. (1)求乙队单独完成这项工程需多少天?(2)甲、乙两队每天的施工费各为多少万元?(3)若工程预算的总费用不超过840万元,则乙队最少施工多少天?【答案】(1)乙队单独完成这项工程需90天;(2)甲队每天的施工费为15万元,乙队每天的施工费为8万元;(3)乙队最少施工30天【分析】(1)设乙队单独完成这项工程需x 天,根据“甲、乙合作30天的工作量+乙队15天的工作量=1”列分式方程即可;(2)设甲队每天的施工费为a 万元,乙队每天的施工费为b 万元,根据题意列二元一次方程组即可求出a 、b 的值;(3)先求出甲的效率,设乙队施工y 天,则甲队还需施工119060y ⎛⎫-÷ ⎪⎝⎭天完成任务,然后根据“总费用不超过840万元”列出不等式即可得出结论.【详解】解:(1)设乙队单独完成这项工程需x 天 由题意可得:11×30+15136x⨯= 解得:x=90经检验:x=90是原方程的解答:乙队单独完成这项工程需90天.(2)设甲队每天的施工费为a万元,乙队每天的施工费为b万元由题意可知:()() 3015810 36828a b ba b⎧++=⎪⎨+=⎪⎩解得:158 ab=⎧⎨=⎩答:甲队每天的施工费为15万元,乙队每天的施工费为8万元.(3)甲的效率为111 369060-=设乙队施工y天,则甲队还需施工119060y⎛⎫-÷⎪⎝⎭天完成任务根据题意可得15×119060y⎡⎤⎛⎫-÷⎪⎢⎥⎝⎭⎣⎦+8y≤840解得:y≥30答:乙队最少施工30天.【点睛】此题考查的是分式方程的应用、二元一次方程组的应用和不等式的应用,掌握实际问题中的等量关系和不等关系是解决此题的关键.24.如图,,AB AD BC DC==,点E在AC上.(1)求证:AC平分BAD∠;(2)求证:BE DE=.【答案】(1)见解析;(2)见解析.【分析】(1)由题中条件易知:△ABC≌△ADC,可得AC平分∠BAD;(2)利用(1)的结论,可得△BAE≌△DAE,得出BE=DE.【详解】解:(1)在ABC∆与ADC∆中,AB ADAC ACBC DC=⎧⎪=⎨⎪=⎩∴()ABC ADC SSS∆∆≌∴BAC DAC∠=∠即AC 平分BAD ∠;(2)由(1)BAE DAE ∠=∠在BAE ∆与DAE ∆中,得BA DA BAE DAE AE AE =⎧⎪∠=∠⎨⎪=⎩∴()BAE DAE SAS ∆∆≌∴BE DE =【点睛】熟练运用三角形全等的判定,得出三角形全等,转化边角关系是解题关键.25.计算:(12(2)(1﹣(﹣1)2【答案】(1)6;(2)﹣.【分析】(1)根据二次根式的性质、绝对值的性质、立方根的概念解答;(2)根据平方差公式、完全平方公式计算.【详解】(1)原式=5﹣+3=6;(2)原式=1﹣(2﹣(3﹣+1)=1﹣12﹣=﹣【点睛】本题考查了实数的混合运算,掌握实数混合运算的法则是解题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.计算12a 2b 4•(﹣332a b )÷(﹣22a b )的结果等于( ) A .﹣9aB .9aC .﹣36aD .36a【答案】D 【分析】通过约分化简进行计算即可.【详解】原式=12a 2b 4•(﹣332a b )·(﹣22a b) =36a.故选D.【点睛】本题考点:分式的化简.2.以下是某校九年级10名同学参加学校演讲比赛的统计表:则这组数据的中位数和平均数分别为( )A .90,90B .90,89C .85,89D .85,90 【答案】B【解析】∵共有10名同学,中位数是第5和6的平均数,∴这组数据的中位数是(90+90)÷2=90;这组数据的平均数是:(80+85×2+90×5+95×2)÷10=89;故选B.3.ABC ∆中A ∠、B 、C ∠的对边分别是a 、b 、c ,下列命题为真命题的( )A .如果23ABC ∠=∠=∠,则ABC ∆是直角三角形B .如果::3:4:5A BC ∠∠∠=,则ABC ∆是直角三角形C .如果::1:2:2a b c =,则ABC ∆是直角三角形D .如果::3:4:a b c =ABC ∆是直角三角形【答案】D【分析】根据三角形内角和可判断A 和B ,根据勾股定理逆定理可判断C 和D.【详解】解:A 、∵∠A=2∠B=3∠C ,∴12B A ∠=∠,13C A ∠=∠,∵∠A+∠B+∠C=180°,∴1118023A A A ∠+∠+∠=, ∴∠A≈98°,故不符合题意;B 、如果∠A :∠B :∠C=3:4:5,∠A+∠B+∠C=180°,∴∠C=518012⨯=75°,故不符合题意;C 、如果a :b :c=1:2:2,∵12+22≠22,∴不是直角三角形,故不符合题意;D 、如果a :b ;c=3:4:7,∵2223(7)4+=,∴△ABC 是直角三角形,符合题意;故选:D .【点睛】本题主要考查命题与定理,三角形的内角和以及勾股定理的逆定理,解题的关键是熟练掌握勾股定理的逆定理和直角三角形的判定.4.如图,已知ABC ∆中,AB AC =,90BAC ∠=︒,直角EPF ∠的顶点P 是BC 的中点,两边PE PF 、分别交AB AC 、于点E F 、,当EPF ∠在ABC ∆内绕顶点P 旋转时(点E 不与A 、B 重合),给出以下五个结论:①AE CF =;②APE CPF ∠=∠;③EPF ∆是等腰直角三角形;④EF AP =;⑤ 12ABC AEPF S S ∆=四边形;始终正确的有( )A .2个B .3个C .4个D .5个【答案】C 【分析】根据等腰直角三角形的性质可得⊥AP BC ,AP AC =,==45EAP C ︒∠∠,根据同角的余角相等求出=APE CPF ∠∠,判定②正确,然后证明APE CPF ≌,因此AE CF =,判定①正确,再根据等腰直角三角形的定义得到EFP △是等腰直角三角形,判定③正确,根据等腰直角三角形的斜边等于2倍表示出EF ,可知EF 随着点E 的变化而变化,判定④错误,根据全等三角形的面积相等可得APE CPF S S =△△,因此12ABC AEPF S S =四边形△,判定⑤正确. 【详解】∵AB AC =,90BAC ∠=︒,点P 是BC 的中点∴⊥AP BC ,==45EAP C ︒∠∠,AP PC PB ==∴=90APF CPF +︒∠∠∵=90EPF ︒∠∴90APF APE +=︒∠∠∴APE CPF ∠=∠,故②正确∴APE CPF ≌(ASA )∴AE CF =,故①正确∴EFP △是等腰直角三角形,故③正确∵根据等腰直角三角形的性质,2EF PE =∴EF 随着点E 的变化而变化,只有当点E 为AB 的中点时,EF AP ==,在其他位置时EF AP ≠,故④错误∵APE CPF ≌∴APE CPF S S =△△ ∴1=+2APF APE APF CPF APC ABC AEPF S S S S S S S +===△△△△△△四边形,故⑤正确 综合所述,正确的结论有①②③⑤共4个故选C【点睛】本题主要考查了旋转的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质,证出APE CPF ≌是解题的关键.5.下列各式中,是最简二次根式的是( )A B C D 【答案】D【分析】根据最简二次根式的概念对每个选项进行判断即可.【详解】A 5==,不是最简二次根式,此选项不正确;B =C 23,不是最简二次根式,此选项不正确;D ,不能再进行化简,是最简二次根式,此选项正确;故选:D .【点睛】本题考查了最简二次根式,熟练掌握概念是解题的关键.6.某一次函数的图象过点(1,-2),且y 随x 的增大而减小,则这个函数的表达式可能是( ) A .y=2x-4B .y=3x-1C .y=-3x+1D .y=-2x+4【答案】C【分析】根据一次函数的增减性可得k <0,排除A ,B ,然后将点(1,-2)代入C ,D 选项的解析式验证即可.【详解】解:根据一次函数y 随x 的增大而减小可得:k <0,排除A ,B ,把x=1代入y=-3x+1得y=-2,即该函数图象过点(1,-2),符合题意,把x=1代入y=-2x+4得y=2,即该函数图象过点(1,2),不符合题意,故选:C.【点睛】本题考查了一次函数图象上点的坐标特征以及一次函数的性质,熟知函数图象上的点满足函数解析式是解题关键..7.在平面直角坐标系中,将函数3y x =的图象向上平移6个单位长度,则平移后的图象与x 轴的交点坐标为( )A .(2,0)B .(-2,0)C .(6,0)D .(-6,0) 【答案】B【分析】先求出平移后的解析式,继而令y=0,可得关于x 的方程,解方程即可求得答案.【详解】根据函数图象平移规律,可知3y x =向上平移6个单位后得函数解析式应为36y x =+, 此时与x 轴相交,则0y =,∴360x +=,即2x =-,∴点坐标为(-2,0),故选B.【点睛】本题考查了一次函数图象的平移,一次函数图象与坐标轴的交点坐标,先出平移后的解析式是解题的关键. 8.已知23a b =且2a ≠,那么15a b a b -++-等于( ) A .0 B .15- C .15 D .没有意义【答案】B【分析】根据a 、b 的比例关系式,用未知数表示出a 、b 的值,然后根据分式的基本性质把a 、b 的值代入化简即可.【详解】解:设()2, 30,1 a k b k k ==≠,则原式231235k k k k -++-()()11515k k --==--, 故选:B .【点睛】本题考查了分式的基本性质,利用分式的性质进行化简时必须注意所乘的(或所除的)整式不为零. 9.不等式x ﹣3≤3x+1的解集在数轴上表示如下,其中正确的是( )A .B .C .D .【答案】B【详解】x ﹣3≤3x+1,移项,得x-3x ≤1+3, 合并同类项,得-2x ≤4,系数化为1,得x≥﹣2,其数轴上表示为:.故选B.10.若2x y -=,3xy =,则22x y xy -的值为( )A .1B .1-C .6D .6-【答案】C【分析】原式首先提公因式xy ,分解后,再代入求值即可.【详解】∵2x y -=,3xy =,∴22()326xy x x x y y y =-=⨯=-.故选:C .【点睛】本题主要考查了提公因式分解因式,关键是正确确定公因式.二、填空题11.如图,BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,如果∠ABP=20°,∠ACP=50°,则∠A+∠P= .【答案】90°.【解析】试题解析:∵BP 是△ABC 中∠ABC 的平分线,CP 是∠ACB 的外角的平分线,∵∠ABP=20°,∠ACP=50°,∴∠ABC=2∠ABP=40°,∠ACM=2∠ACP=100°,∴∠A=∠ACM-∠ABC=60°,∠ACB=180°-∠ACM=80°,∴∠BCP=∠ACB+∠ACP=130°,∵∠PBC=20°,∴∠P=180°-∠PBC-∠BCP=30°,∴∠A+∠P=90°.考点:1.三角形内角和定理;2.三角形的角平分线、中线和高;3.三角形的外角性质.12.在实数范围内分解因式:2225x x --=____. 【答案】1111112()()22x x ---+ 【分析】将原式变形为21112()22x --,再利用平方差公式分解即可得. 【详解】2225x x -- =21112()42x x -+- =21112()22x -- =21112()24x ⎡⎤--⎢⎥⎣⎦111111=2()()2222x x ---+, 故答案为:1111112()()2222x x ---+. 【点睛】本题主要考查实数范围内分解因式,解题的关键是熟练掌握完全平方公式和平方差公式.13.如图,已知//AE BD ,1130∠=︒,230∠=︒,则C ∠=__________.【答案】20°【分析】由//AE BD ,得∠AEC =230∠=︒,结合1130∠=︒,即可得到答案.【详解】∵//AE BD ,230∠=︒,∴∠AEC =230∠=︒,∵∠1+∠AEC+∠C=180°,∴∠C=180°-130°-30°=20°.故答案是:20°.【点睛】本题主要考查平行线的性质定理和三角形内角和定理,掌握平行线的性质定理和三角形内角和定理是解题的关键.14.如图,在△ABC中,AB=10,∠B=60°,点D、E分别在AB、BC上,且BD=BE=4,将△BDE沿DE所在直线折叠得到△B′DE(点B′在四边形ADEC内),连接AB′,则AB′的长为______.【答案】2.【详解】过点D作DF⊥B′E于点F,过点B′作B′G⊥AD于点G,∵∠B=60°,BE=BD=4,∴△BDE是等边三角形,∵△B′DE≌△BDE,∴B′F=1B′E=BE=2,DF=23,2∴GD=B′F=2,∴B′G=DF=23,∵AB=10,∴AG=10﹣6=4,∴AB′=27.考点:1轴对称;2等边三角形.15.计算331)的结果等于_____________.【答案】1【解析】根据平方差公式计算即可.【详解】解:原式=3﹣1=1.故答案为1.【点睛】本题考查了二次根式的混合运算,熟记平方差公式是解题的关键.16.如图,四边形ABCD中,AB=AD,AC=5,∠DAB=∠DCB=90°,则四边形ABCD的面积为_____.【答案】12.1【分析】过A作AE⊥AC,交CB的延长线于E,判定△ACD≌△AEB,即可得到△ACE是等腰直角三角形,四边形ABCD的面积与△ACE的面积相等,根据S△ACE=12×1×1=12.1,即可得出结论.【详解】如图,过A作AE⊥AC,交CB的延长线于E,∵∠DAB=∠DCB=90°,∴∠D+∠ABC=180°=∠ABE+∠ABC,∴∠D=∠ABE,又∵∠DAB=∠CAE=90°,∴∠CAD=∠EAB,又∵AD=AB,∴△ACD≌△AEB(ASA),∴AC=AE,即△ACE是等腰直角三角形,∴四边形ABCD的面积与△ACE的面积相等,∵S△ACE=12×1×1=12.1,∴四边形ABCD的面积为12.1,故答案为12.1.【点睛】本题主要考查了全等三角形的判定与性质,解题的关键是学会添加常用辅助线,构造全等三角形解决问题1723______.【答案】6.【解析】解:23⨯=6;故答案为:6.点睛:此题考查了二次根式的乘法,掌握二次根式的运算法则:乘法法则a b ab⋅=是本题的关键.三、解答题18.已知:如图,AE=CF,AD∥BC,AD=CB.求证:∠B=∠D.【答案】见解析【分析】根据两直线平行内错角相等即可得出∠A=∠C,再结合题意,根据全等三角形的判定(SAS)即可判断出△ADF≌△CBE,根据全等三角形的的性质得出结论.【详解】证明:∵AD∥CB,∴∠A=∠C,∵AE=CF,∴AE﹣EF=CF﹣EF,即AF=CE,在△ADF和△CBE中,∵AD CBA CAF CF=⎧⎪∠=∠⎨⎪=⎩,∴△ADF≌△CBE(SAS),∴∠B=∠D.【点睛】本题考查平行线的性质、全等三角形的判定(SAS)和性质,解题的关键是掌握平行线的性质、全等三角形的判定(SAS)和性质.19.计算:[xy(3x—2)—y(x2—2x)]÷xy.【答案】2x.【分析】根据整式的除法和加减法法则即可得.【详解】原式()()2322xyy x yx xx y x÷--÷=-,()322x y x xyx--÷=-,()322x x =---,322x x =--+,2x =.【点睛】本题考查了整式的除法和加减法,熟记整式的运算法则是解题关键.20.某商店两次购进一批同型号的热水壶和保温杯,第一次购进12个热水壶和15个保温杯,共用去资金2850元,第二次购进20个热水壶和30个保温杯,用去资金4900元(购买同一商品的价格不变) (1)求每个热水壶和保温杯的采购单价各是多少元?(2)若商场计划再购进同种型号的热水壶和保温杯共80个,求所需购货资金ω(元)与购买热水壶的数量m (个)的函数表达式.【答案】(1)每个热水壶的采购单价是200元,每个保温杯的采购单价是30元;(2)w =200m +30(80−m )=170m +2400【分析】(1)设每个热水壶的采购单价是x 元,每个保温杯的采购单价是y 元,根据“第一次购进12个热水壶和15个保温杯,共用去资金2850元,第二次购进20个热水壶和30个保温杯,用去资金4900元”列方程组解答即可;(2)根据题意和(1)的结论即可得出所需购货资金w (元)与购买热水壶的数量m (个)的函数表达式.【详解】解:(1)设每个热水壶的采购单价是x 元,的采购单价保温杯的采购单价是y 元,根据题意得1215285020304900x y x y +⎧⎨+⎩== , 解得20030x y ⎧⎨⎩==, 答:每个热水壶的采购单价是200元,每个保温杯的采购单价是30元;(2)根据题意得:w =200m +30(80−m )=170m +2400;【点睛】本题考查了二元一次方程组的应用,一次函数的应用等知识,解题的关键是理解题意,学会构建方程组、一次函数解决问题.21.学校举行广播操比赛,八年级三个班的各项得分及三项得分的平均数如下(单位:分).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,ABC ∆中,40A ∠=︒,20ABO ∠=︒,30ACO ∠=︒,则BOC ∠等于( )A .80︒B .90︒C .100︒D .110︒【答案】B 【分析】延长BO 交AC 于D ,直接利用三角形的一个外角等于与它不相邻的两内角之和,即可得出结论.【详解】如图,延长BO 交AC 于D∵∠A =40°,∠ABO =20°,∴∠BDC =∠A +∠ABO =40°+20°=60°,∵∠ACO =30°,∴∠BOC =∠ACO +∠BDC =30°+60°=90°,故选:B .【点睛】此题主要考查了三角形外角的性质,熟记三角形的外角的性质是解本题的关键.2.若a=10,则实数a 在数轴上对应的点的大致位置是( )A .点EB .点FC .点GD .点H 【答案】C 【解析】根据被开方数越大算术平方根越大,可得答案. 91016∴310<4,∵a=10,∴3<a <4, 故选:C .【点睛】本题考查了实数与数轴,利用被开方数越大算术平方根越大得出3<10<4是解题关键.3.如图,在ABC ∆中,D E ,分别是边BC AC ,上的点,若EAB ∆≌EDB ∆≌EDC ∆,则C ∠的度数为( )A .15B .20C .25D .30【答案】D 【分析】根据全等三角形的性质求得∠BDE=∠CDE=90°,∠AEB=∠BED=∠CED=60°,即可得到答案.【详解】∵EDB ∆≌EDC ∆,∴∠BDE=∠CDE ,∵∠BDE+∠CDE=180°,∴∠BDE=∠CDE=90°,∵EAB ∆≌EDB ∆≌EDC ∆,∴∠AEB=∠BED=∠CED ,∵∠AEB+∠BED+∠CED=180°,∴∠AEB=∠BED=∠CED=60°,∴∠C=90°-∠CED=30°,故选:D .【点睛】此题考查了全等三角形的性质:全等三角形的对应角相等,以及平角的性质.4.某通讯公司就上宽带网推出A ,B ,C 三种月收费方式.这三种收费方式每月所需的费用y (元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是( )A .每月上网时间不足25h 时,选择A 方式最省钱B .每月上网费用为60元时,B 方式可上网的时间比A 方式多C .每月上网时间为35h 时,选择B 方式最省钱D .每月上网时间超过70h 时,选择C 方式最省钱【答案】D【分析】A 、观察函数图象,可得出:每月上网时间不足25 h 时,选择A 方式最省钱,结论A 正确; B 、观察函数图象,可得出:当每月上网费用≥50元时,B 方式可上网的时间比A 方式多,结论B 正确; C 、利用待定系数法求出:当x≥25时,y A 与x 之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=35时y A 的值,将其与50比较后即可得出结论C 正确;D 、利用待定系数法求出:当x≥50时,y B 与x 之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=70时y B 的值,将其与120比较后即可得出结论D 错误.综上即可得出结论.【详解】A 、观察函数图象,可知:每月上网时间不足25 h 时,选择A 方式最省钱,结论A 正确; B 、观察函数图象,可知:当每月上网费用≥50元时,B 方式可上网的时间比A 方式多,结论B 正确; C 、设当x≥25时,y A =kx+b ,将(25,30)、(55,120)代入y A =kx+b ,得: 253055120k b k b +⎧⎨+⎩==,解得:345k b ⎧⎨-⎩==, ∴y A =3x-45(x≥25),当x=35时,y A =3x-45=60>50,∴每月上网时间为35h 时,选择B 方式最省钱,结论C 正确;D 、设当x≥50时,y B =mx+n ,将(50,50)、(55,65)代入y B =mx+n ,得:50505565m n m n +⎧⎨+⎩== , 解得:3100m n ==⎧⎨-⎩, ∴y B =3x-100(x≥50),当x=70时,y B =3x-100=110<120,∴结论D错误.故选D.【点睛】本题考查了函数的图象、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象,利用一次函数的有关知识逐一分析四个选项的正误是解题的关键.5.某校举行运动会,从商场购买一定数量的笔袋和笔记本作为奖品.若每个笔袋的价格比每个笔记本的价格多3元,且用200元购买笔记本的数量与用350元购买笔袋的数量相同.设每个笔记本的价格为x元,则下列所列方程正确的是()A.2003503x x=-B.2003503x x=+C.2003503x x=+D.2003503x x=-【答案】B【解析】试题分析:设每个笔记本的价格为x元,根据“用200元购买笔记本的数量与用350元购买笔袋的数量相同”这一等量关系列出方程即可.考点:由实际问题抽象出分式方程6.以下列各组数为边长,能组成直角三角形的是()A.5,6,7 B.4,5,6 C.6,7,8 D.5,12,13【答案】D【分析】根据勾股定理的逆定理可知,当三角形中三边的关系为a2+b2=c2时,则三角形为直角三角形. 【详解】解:A、52+62≠72,不符合勾股定理的逆定理,不能组成直角三角形,故错误;B、42+52≠62,不符合勾股定理的逆定理,不能组成直角三角形,故错误;C、62+72≠82,不符合勾股定理的逆定理,不能组成直角三角形,故错误;D、52+122=132,符合勾股定理的逆定理,能组成直角三角形,故正确.故选:D.【点睛】此题考查的知识点是勾股定理的逆定理:已知三角形的三边满足:a2+b2=c2时,则该三角形是直角三角形.解答时只需看两较小数的平方和是否等于最大数的平方.7.方程组2x yx y3+=⎧⎨+=⎩的解为x2y=⎧⎨=⎩●,则被遮盖的两个数分别为()A.5,1 B.3,1 C.3,2 D.4,2 【答案】A【分析】把x=2代入x+y=3中求出y的值,确定出2x+y的值即可.【详解】解:把x=2代入x+y=3中,得:y=1,把x=2,y=1代入得:2x+y=4+1=5,故选:A.【点睛】此题考查了二元一次方程组的解,熟练掌握运算法则是解本题的关键.8.如图,若x 为正整数,则表示()2221441x x x x +-+++的值的点落在( )A .段①B .段②C .段③D .段④【答案】B 【分析】将所给分式的分母配方化简,再利用分式加减法化简,根据x 为正整数,从所给图中可得正确答案.【详解】解∵2222(2)1(2)1441(2)1x x x x x x x ++-=-=+++++1111x x x -=++. 又∵x 为正整数,∴121x x ≤+<1,故表示22(2)1441x x x x +-+++的值的点落在②. 故选B .【点睛】本题考查了分式的化简及分式加减运算,同时考查了分式值的估算,总体难度中等.9.如图,直线//,160a b ︒∠=,则2∠=( )A .60︒B .100︒C .150︒D .120︒【答案】D 【分析】由//,160a b ︒∠=得到∠3的度数为60︒,再根据邻补角即可计算得到∠2的度数.【详解】∵//,160a b ︒∠=,∴∠3=∠1=60︒,∴∠2=180︒-60︒=120︒,故选:D.【点睛】此题考查平行线的性质,邻补角的定义,正确理解题中角度的关系,由此列式计算得出角度值是解题的关键.10.若等腰三角形的周长为40,一边为16,则腰长为()A.16B.12C.16或12 D.以上都不对【答案】C【分析】分两种情况:腰长为12和底边长为12,分别利用等腰三角形的定义进行讨论即可.-⨯=【详解】若腰长为1,则底边为401628此时,三角形三边为16,16,8,可以组成三角形,符合题意;-÷=若底边长为1,则腰长为(4016)212此时,三角形三边为12,12,16,可以组成三角形,符合题意;综上所述,腰长为12或1.故选:C.【点睛】本题主要考查等腰三角形的定义,掌握等腰三角形的定义并分情况讨论是解题的关键.二、填空题11.如图,已知△ABC是等边三角形,D是AC边上的任意一点,点B,C,E在同一条直线上,且CE=CD,则∠E=_____度.【答案】1.【分析】根据等边三角形的性质得出∠ACB=60°,然后根据等腰三角形的性质以及三角形外角的性质即可求得∠E.【详解】解:∵△ABC是等边三角形,∴∠ACB=60°,∵CE =CD ,∴∠E =∠CDE ,∵∠ACB =∠E+∠CDE ,∴∠E =12ACB ∠=1°,故答案为1.【点睛】本题考查等边三角形的性质,关键在于牢记基础知识,通过题目找到关键性质. 12.化简: 222222105x y ab a b x y +•-的结果是_____. 【答案】4.(()b a x y - 【解析】原式=2220()45()()()ab x y b a b x y x y a x y +=+-- ,故答案为4()b a x y -. 13.已知一次函数3y kx =+与2y x b =+的图像交点坐标为(−1,2),则方程组32y kx y x b=+⎧⎨=+⎩的解为____. 【答案】12x y =-⎧⎨=⎩. 【分析】直接根据一次函数和二元一次方程组的关系求解.【详解】解:∵一次函数3y kx =+与2y x b =+的图象的交点的坐标为(−1,2),∴方程组32y kx y x b =+⎧⎨=+⎩的解是12x y =-⎧⎨=⎩. 【点睛】本题考查了一次函数和二元一次方程(组)的关系:要准确的将一次函数问题的条件转化为二元一次方程(组),注意自变量取值范围要符合实际意义.14.一次函数()25y m x =++,若y 随x 的增大而减小,则点()1,3A m m --在第______象限.【答案】二【分析】根据y 随x 增大而减小可得m 的范围,代入点A 坐标,得到点A 的横、纵坐标的范围,从而可以判断点A 所在象限.【详解】解:∵()25y m x =++中y 随x 增大而减小,∴m+2<0,解得:m <-2,∴m-1<-3,3-m >5,∴点()1,3A m m --在第二象限.故答案为:二.【点睛】本题考查了一次函数的增减性,解题的关键是根据y 随x 的增大的变化情况得出m 的取值范围. 15.计算:(3×10﹣5)2÷(3×10﹣1)2=_____. 【答案】8110. 【分析】首先把括号里的各项分别乘方,再根据单项式除法进行计算,最后把负整数指数化为正整数指数即可.【详解】解:原式=(9×10﹣10)÷(9×10﹣2)=(9÷9)×(10﹣10÷10﹣2)=10﹣8 =8110. 故答案为:8110. 【点睛】此题主要考查了单项式的除法以及负整数指数幂,题目比较基础,关键是掌握计算顺序.16.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大正方形的边长为7 cm ,则正方形A ,B ,C ,D 的面积之和为___________cm 1.【答案】2【分析】根据正方形的面积公式,连续运用勾股定理,发现:四个小正方形的面积和等于最大正方形的面积.【详解】解:如图,∵所有的三角形都是直角三角形,所有的四边形都是正方形,∴正方形A 的面积=a 1,正方形B 的面积=b 1,正方形C 的面积=c 1,正方形D 的面积=d 1,又∵a 1+b 1=x 1,c 1+d 1=y 1,∴正方形A 、B 、C 、D 的面积和=(a 1+b 1)+(c 1+d 1)=x 1+y 1=71=2cm 1.故答案为:2.【点睛】本题考查了勾股定理,注意掌握直角三角形中,两直角边的平方和等于斜边的平方是解答本题的关键.17.当x时,分式43xx+-有意义.【答案】3≠【分析】根据分式有意义的条件:分母不等于0即可求解.【详解】根据题意得:x﹣1≠0,解得:x≠1.故答案为:≠1.【点睛】本题考查了分式有意义的条件,是一个基础题目.三、解答题18.某中学要印制期末考试卷,甲印刷厂提出:每套试卷收0.6元印刷费,另收400元制版费;乙印刷厂提出:每套试卷收1元印刷费,不再收取制版费.(1)分别写出两个厂的收费y(元)与印刷数量x(套)之间的函数关系式;(2)请在上面的直角坐标系中分别作出(1)中两个函数的图象;(3)若学校有学生2000人,为保证每个学生均有试卷,则学校至少要付出印刷费多少元?【答案】(1)y甲=0.6x+400;y乙=x;(2)见解析;(3)学校至少要付出印刷费1600元【解析】(1)直接根据题意列式即可;(2)分别找到两个函数与x轴y轴的交点坐标作两个函数的图象即可;(3)当x=2000时,分别求出y甲与y乙,就可得确定学校至少要付出印刷费的数额.【详解】解:(1)y甲=0.6x+400;y乙=x(2)如图所示:(3)当x=2000时y 甲=0.6×2000+400=1600(元).y 乙=2000(元).答:学校至少要付出印刷费1600元.【点睛】主要考查利用一次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义求解.19.已知:如图,AB=DE ,AB ∥DE ,BE=CF ,且点B 、E 、C 、F 都在一条直线上,求证:AC ∥DF .【答案】详见解析【解析】首先利用平行线的性质∠B=∠DEF ,再利用SAS 得出△ABC ≌△DEF ,得出∠ACB=∠F ,根据平行线的判定即可得到结论.【详解】证明:∵AB ∥DE ,∴∠B=∠DEC ,又∵BE=CF ,∴BC=EF ,在△ABC 和△DEF 中,AB DE B DEF BC EF ⎧⎩=⎪==⎪⎨∠∠, ∴△ABC ≌△DEF (SAS ),∴∠ACB=∠F ,∴AC∥DF.【点睛】本题考查了平行线的性质以及全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题关键.20.已知,如图,EF⊥AC于F,DB⊥AC于M,∠1=∠2,∠3=∠C,求证:AB∥MN.【答案】见解析【分析】由于EF⊥AC,DB⊥AC得到EF∥DM,进而可证∠1=∠CDM,根据平行线的判定得到MN∥CD,再由∠3=∠C,可证AB//CD,然后根据平行线的判定即可得到AB∥MN.【详解】证明:∵EF⊥AC,DB⊥AC,∴EF∥DM,∴∠2=∠CDM,∵∠1=∠2,∴∠1=∠CDM,∴MN∥CD,∵∠3=∠C,∴AB//CD,∴AB∥MN.【点睛】本题主要考查了平行线的性质与判定的综合应用,熟练掌握平行线的性质与判定方法是解答本题的关键.解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.21.如图,在平行四边形ABCD中,点E为AD的中点,延长CE交BA的延长线于点F.(1)求证:AB=AF;(2)若BC=2AB,∠BCD=100°,求∠ABE的度数.【答案】(1)证明见解析;(2)∠ABE=40°.【分析】(1)由四边形ABCD是平行四边形,点E为AD的中点,易证得△DEC≌△AEF(AAS),继而可证得DC =AF ,又由DC =AB ,证得结论;(2)由(1)可知BF =2AB ,EF =EC ,然后由∠BCD =100°求得BE 平分∠CBF ,继而求得答案.【详解】证明:(1)∵四边形ABCD 是平行四边形,∴CD =AB ,CD ∥AB ,∴∠DCE =∠F ,∠FBC+∠BCD =180°,∵E 为AD 的中点,∴DE =AE .在△DEC 和△AEF 中,DCE F DEC AEF DE AE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△DEC ≌△AEF (AAS ).∴DC =AF .∴AB =AF ;(2)由(1)可知BF =2AB ,EF =EC ,∵∠BCD =100°,∴∠FBC =180°﹣100°=80°,∵BC =2AB ,∴BF =BC ,∴BE 平分∠CBF ,∴∠ABE =12∠FBC =12×80°=40° 【点睛】本题考查了平行四边形的性质、全等三角形的判定与性质以及等腰三角形的性质,证得△DEC ≌△AEF 和△BCF 是等腰三角形是关键.22.如图,在长方形ABCD 中,AB =CD =6cm ,BC =10cm ,点P 从点B 出发,以2cm/秒的速度沿BC 向点C 运动,设点P 的运动时间为t 秒:(1)PC = cm .(用t 的代数式表示)(2)当t 为何值时,△ABP ≌△DCP ?(3)当点P 从点B 开始运动,同时,点Q 从点C 出发,以vcm/秒的速度沿CD 向点D 运动,是否存在这样v 的值,使得△ABP 与△PQC 全等?若存在,请求出v 的值;若不存在,请说明理由.【答案】(1)(10﹣2t );(2)t =2.5;(3)2.4或2【分析】(1)根据P 点的运动速度可得BP 的长,再利用BC ﹣BP 即可得到CP 的长;(2)当t =2.5时,△ABP ≌△DCP ,根据三角形全等的条件可得当BP =CP 时,再加上AB =DC ,∠B =∠C 可证明△ABP ≌△DCP ;(3)此题主要分两种情况①当BA =CQ ,PB =PC 时,再由∠B =∠C ,可得△ABP ≌△QCP ;②当BP =CQ ,AB =PC 时,再由∠B =∠C ,可得△ABP ≌△PCQ ,然后分别计算出t 的值,进而得到v 的值.【详解】解:(1)点P 从点B 出发,以2cm/秒的速度沿BC 向点C 运动,点P 的运动时间为t 秒时,BP =2t ,则PC =(10﹣2t )cm ;故答案为:(10﹣2t );(2)当t =2.5时,△ABP ≌△DCP ,∵当t =2.5时,BP =2.5×2=5,∴PC =10﹣5=5,∵在△ABP 和△DCP 中,90AB DC B C BP CP =⎧⎪∠=∠=︒⎨⎪=⎩,∴△ABP ≌△DCP (SAS );(3)①如图1,当BA =CQ ,PB =PC 时,再由∠B =∠C ,可得△ABP ≌△QCP ,∵PB =PC ,∴BP =PC =12BC =5, 2t =5,解得:t =2.5,BA =CQ =6,v×2.5=6,解得:v =2.4(秒).②如图2,当BP =CQ ,AB =PC 时,再由∠B =∠C ,可得△ABP ≌△PCQ ,∵AB =6,∴PC =6,∴BP =10﹣6=4,2t =4,解得:t =2,CQ =BP =4,2v =4,解得:v =2;综上所述:当v =2.4秒或2秒时△ABP 与△PQC 全等.【点睛】此题主要考查了全等三角形的判定,关键是掌握全等三角形全等的条件,找准对应边.23.如图,已知在Rt ABC ∆中,90ACB ∠=︒,8AC =,16BC =,D 是AC 上的一点,3CD =,点P 从B 点出发沿射线BC 方向以每秒2个单位的速度向右运动.设点P 的运动时间为t .连结AP .(1)当3t =秒时,求AP 的长度(结果保留根号);(2)当ABP ∆为等腰三角形时,求t 的值;(3)过点D 做DE AP ⊥于点E .在点P 的运动过程中,当t 为何值时,能使DE CD =?【答案】(1)41(2)516或2;(3)2或1.【分析】(1)根据题意得BP=2t ,从而求出PC 的长,然后利用勾股定理即可求出AP 的长;(2)先利用勾股定理求出AB 的长,然后根据等腰三角形腰的情况分类讨论,分别列出方程即可求出t 的值;(3)根据点P 的位置分类讨论,分别画出对应的图形,根据勾股定理求出AE ,分别利用角平分线的性质和判定求出AP ,利用勾股定理列出方程,即可求出t 的值.【详解】(1)根据题意,得BP=2t ,∴PC=16-2t=16-2×3=10,∵AC=8,在Rt △APC 中,根据勾股定理,得22AC +PC 16441答:AP的长为241.(2)在Rt△ABC中,AC=8,BC=16,根据勾股定理,得AB=22+=320=85AC BC若BA=BP,则2t=85,解得:t=45;若AB=AP,∴此时AC垂直平分BP则BP=32,2t=32,解得:t=16;若PA=PB=2t,CP=16-2t∵PA2= CP2+AC2则(2t)2=(16-2t)2+82,解得:t=2.答:当△ABP为等腰三角形时,t的值为45、16、2.(3)若P在C点的左侧,连接PDCP=16-2t⊥,DC⊥PC∵DE=DC=3,AC=8,DE AP∴PD平分∠EPC,AD=AC-DC=2根据勾股定理可得224AD DE-=,∴∠EPD=∠CPD∴∠EDP=90°-∠EPD=90°-∠CPD=∠CDP∴DP平分∠EDC∴PE=CP=16-2t∴AP=AE+EP=20-2t∵PA2= CP2+AC2则(20-2t)2=(16-2t)2+82,解得:t=2;若P在C点的右侧,连接PDCP=2t-16⊥,DC⊥PC∵DE=DC=3,AC=8,DE AP∴PD平分∠EPC,AD=AC-DC=2根据勾股定理可得AE=224-=AD DE∴∠EPD=∠CPD∴∠EDP=90°-∠EPD=90°-∠CPD=∠CDP∴DP平分∠EDC∴PE=CP=2t-16∴AP=AE+EP=2t-12∵PA2= CP2+AC2则(2t-12)2=(2t-16)2+82,解得:t=1;答:当t为2或1时,能使DE=CD.【点睛】此题考查的是勾股定理的应用、等腰三角形的定义、角平分线的性质和判定,掌握利用勾股定理解直角三角形、根据等腰三角形腰的情况分类讨论和角平分线的性质和判定是解决此题的关键.24.平面内的两条直线有相交和平行两种位置关系(1)如图a,若AB∥CD,点P在AB、CD外部,则有∠B=∠BOD,又因∠BOD是△POD的外角,故∠BOD =∠BPD+∠D,得∠BPD=∠B﹣∠D.将点P移到AB、CD内部,如图b,以上结论是否成立?若成立,说明理由;若不成立,则∠BPD、∠B、∠D之间有何数量关系?请证明你的结论;(2)在图b中,将直线AB绕点B逆时针方向旋转一定角度交直线CD于点Q,如图c,则∠BPD、∠B、∠D、∠BQD之间有何数量关系?(不需证明)(3)根据(2)的结论求图d中∠A+∠B+∠C+∠D+∠E+∠F的度数.∠=∠+∠+∠;(3)【答案】(1)不成立.结论是∠BPD=∠B+∠D,证明见解析;(2)BPD BQD B D 360°.【分析】(1)延长BP交CD于E,根据两直线平行,内错角相等,求出∠PED=∠B,再利用三角形的一个外角等于和它不相邻的两个内角的和即可说明不成立,应为∠BPD=∠B+∠D;(2)作射线QP,根据三角形的外角性质可得;(3)根据四边形的内角和以及(2)的结论求解即可.【详解】解:(1)不成立.结论是∠BPD=∠B+∠D延长BP交CD于点E,∵AB∥CD∴∠B=∠BED又∵∠BPD=∠BED+∠D,∴∠BPD=∠B+∠D.(2)结论:∠BPD=∠BQD+∠B+∠D.作射线QP,∵∠BPE是△BPQ的外角,∠DPE是△PDQ的外角,∴∠BPE=∠B+∠BQE,∠DPE=∠D+∠DQP,∴∠BPE+∠DPE=∠B+∠D+∠BQE+∠DQP,即∠BPD=∠BQD+∠B+∠D;(3)在四边形CDFG中,∠CGF+∠C+∠D+∠F=360°,又∵∠AGB=∠CGF,∴∠AGB +∠C+∠D+∠F=360°,由(2)知,∠AGB=∠B+∠A+∠E,∴∠A+∠B+∠C+∠D+∠E+∠F=360°.【点睛】本题考查的是平行线的性质,三角形的内角,三角形外角的性质,以及多边形的内角和,根据题意作出辅助线,构造出三角形,利用三角形外角的性质求解是解答此题的关键.25.已知在平面直角坐标系中有三点A(﹣2,1),B(3,1),C(2,3),请解答下列问题:(1)在坐标系内描出A,B,C的位置;(2)画出△ABC关于x轴对称的图形△A1B1C1,并写出顶点A1,B1,C1的坐标;(3)写出∠C的度数.【答案】(1)见解析;(2)见解析;A1(﹣2,﹣1),B1(3,﹣1),C1(2,﹣3);(3)∠C=90°.【分析】(1)根据坐标确定位置即可;(2)首先确定A,B,C关于x轴对称的点的位置,再连结即可;(3)利用勾股定理和勾股定理逆定理进行计算即可.【详解】解:(1)如图所示:(2)如图所示:A1(﹣2,﹣1),B1(3,﹣1),C1(2,﹣3)(3)∵CB2=22+12=5,AC2=42+22=20,AB2=52=25,∴CB2+AC2=AB2,∴∠C=90°.【点睛】本题主要考查了作图—轴对称变换,勾股定理以及勾股定理逆定理,掌握画轴对称图形的方法是解答本题的关键.八年级上学期期末数学试卷一、选择题(每题只有一个答案正确)1.如图,一副三角板叠在一起,最小锐角的顶点D 恰好放在等腰直角三角板的斜边AB 上,AC 与DE 交于点M ,如果105BDF ∠=︒,则AMD ∠的度数为( )A .80︒B .85︒C .90︒D .95︒【答案】C 【分析】先根据平角的概念求出ADM ∠的度数,然后利用三角形内角和定理即可得出答案.【详解】105,30BDF EDF ∠=︒∠=︒1801803010545ADM EDF BDF ∴∠=︒-∠-∠=︒-︒-︒=︒45CAB ∠=︒180180454590AMD CAB ADM ∴∠=︒-∠-∠=︒-︒-︒=︒故选:C .【点睛】本题主要考查三角形内角和定理及平角的概念,掌握三角形内角和定理是解题的关键.2.下列计算正确的是( )A .x 2•x 3=x 6B .(xy )2=xy 2C .(x 2)4=x 8D .x 2+x 3=x 5【答案】C【分析】根据同底数幂的乘法法则、积的乘方、幂的乘方、合并同类项.【详解】解:A .x 2•x 3=x 5,故原题计算错误;B .(xy )2=x 2y 2,故原题计算错误;C .(x 2)4=x 8,故原题计算正确;D .x 2和x 3不是同类项,故原题计算错误.故选C .【点睛】本题主要考查了同底数幂的乘法、积的乘方、幂的乘方、合并同类项,关键是掌握计算法则. 3.下列一次函数中,y 随x 的增大而增大的是( )A .y=-xB .y=1-2xC . y=-x -3D .y=2x -1 【答案】D【分析】根据一次函数的性质对各选项进行逐一分析即可.【详解】解:∵y=kx+b 中,k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小, A 、k=-1<0,y 的值随着x 值的增大而减小;B 、k=-2<0,y 的值随着x 值的增大而减小;C 、k=-1<0,y 的值随着x 值的增大而减小;D 、k=2>0,y 的值随着x 值的增大而增大;故选D.【点睛】本题考查了一次函数的性质,属于基础题,关键是掌握在直线y=kx+b 中,当k >0时,y 随x 的增大而增大;当k <0时,y 随x 的增大而减小.4.在3π-,227-,中,无理数的个数是( ) A .1个B .2个C .3个D .4个 【答案】B【分析】根据无理数的定义判断即可.【详解】解:3π-1-3 ,227-可以化成分数,不是无理数. 故选 B【点睛】此题主要考查了无理数的定义,熟记带根号的开不尽方的是无理数,无限不循环的小数是无理数. 5.下列各式不是最简二次根式的是( ).AB .CD .2 【答案】A【分析】最简二次根式:分母没有根号;被开方数不能再进行开方;满足以上两个条件为最简二次根式,逐个选项分析判断即可.【详解】A.B. 是最简二次根式;C.D.2是最简二次根式; 故选A【点睛】本题考查最简二次根式,熟练掌握最简二次根式的要求是解题关键.6.要使分式1x x -有意义,则x 的取值范围是 ( ) A .x≠1B .x >1C .x <1D .x≠1-【答案】A【分析】根据分式有意义,分母不等于0列不等式求解即可.【详解】由题意得,x-1≠0,解得x ≠1.故答案为:A .【点睛】本题考查了分式有意义的条件:分式有意义⇔分母不为零,比较简单.7.在△ABC 中,∠A=20°,∠B=60°,则△ABC 的形状是( )A .等边三角形B .锐角三角形C .直角三角形D .钝角三角形 【答案】D【解析】试题分析:根据三角形的内角和定理求出∠C ,即可判定△ABC 的形状.解:∵∠A=20°,∠B=60°,∴∠C=180°﹣∠A ﹣∠B=180°﹣20°﹣60°=100°,∴△ABC 是钝角三角形.故选D .点评:本题考查了三角形的内角和定理,比较简单,求出∠C 的度数是解题的关键.8.如图,在ABC 中,9AB =, 15BC =,12AC =.沿过点D 的直线折叠这个三角形,使点A 落在BC 边上的点E 处,折痕为CD .则BDE 的周长是( )A .15B .12C .9D .6【答案】B 【分析】先根据勾股定理的逆定理判断△ABC 是直角三角形,从而可得B 、E 、C 三点共线,然后根据折叠的性质可得AD=ED ,CA=CE ,于是所求的BDE 的周长转化为求AB+BE ,进而可得答案.【详解】解:在ABC 中,∵22222291222515AB AC BC +=+===,∴ABC 是直角三角形,且∠A=90°,∵沿过点D 的直线折叠这个三角形,使点A 落在BC 边上的点E 处,折痕为CD ,∴B、E、C三点共线,AD=ED,CA=CE,∴BE=BC-CE=15-1=3,∴BDE的周长=BD+DE+BE=BD+AD+3=AB+3=9+3=1.故选:B.【点睛】本题考查了勾股定理的逆定理和折叠的性质,属于常见题型,熟练掌握上述基本知识是解题关键.9.下列交通标志是轴对称图形的是()A.B.C.D.【答案】C【分析】根据轴对称图形的概念求解.【详解】A、不是轴对称图形,故错误;B、不是轴对称图形,故错误;C、是轴对称图形,故正确;D、不是轴对称图形,故错误.故选:C.【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.10.若分式方程1244x ax x+=+--无解,则a的值为()A.5 B.4 C.3 D.0【答案】A【分析】解分式方程,用含a的式子表示x,根据分式方程无解,得到x-4=0,得到关于a的方程,即可求解.【详解】解:1244x ax x+=+--,方程两边同时乘以(x-4)得()124x x a+=-+,9x a∴=-,由于方程无解,40x∴-=,940a∴--=,5a∴=,故选:A .【点睛】本题考查根据分式方程解的情况求字母的取值,解题关键是熟练解分式方程.二、填空题11.如图,在ABC ∆中,点D 是BC 的中点,点E 是AD 上一点,BE AC =.若70C ∠=︒,50DAC ∠=︒ 则EBD ∠的度数为______.【答案】10︒【分析】延长AD 到F 使DF AD =,连接BF ,通过ACD FDB ≅,根据全等三角形的性质得到CAD BFD ∠=∠,AC BF =, 等量代换得BF BE =,由等腰三角形的性质得到F BEF ∠=∠,即可得到BEF CAD ∠=∠,进而利用三角形的内角和解答即可得.【详解】如图,延长AD 到F ,使DF AD =,连接BF :∵D 是BC 的中点∴BD CD =又∵ADC FDB ∠=∠,AD DF =∴ACD FDB ≅∴AC BF =, CAD F ∠=∠,C DBF ∠=∠∵AC BE =, 70C ︒∠=, 50CAD ︒∠=∴BE BF =, 70DBF ︒∠=∴50BEF F ︒∠=∠=∴180180505080EBF F BEF ︒︒︒︒︒∠=-∠-∠=--=∴807010EBD EBF DBF ︒︒︒∠=∠-∠=-=故答案为:10︒【点睛】本题主要考查的知识点有全等三角形的判定及性质、等腰三角形的性质及三角形的内角和定理,解题的关键在于通过倍长中线法构造全等三角形.12.已知,x 、y 为实数,且y =21x -﹣21x -+3,则x+y =_____.【答案】2或2.【分析】直接利用二次根式有意义的条件求出x 好y 的值,然后代入x+y 计算即可.【详解】解:由题意知,x 2﹣2≥0且2﹣x 2≥0,所以x =±2.所以y =3.所以x+y =2或2故答案是:2或2.【点睛】此题主要考查了二次根式有意义的条件以及平方根,正确得出x ,y 的值是解题关键.13.若关于x 的分式方程=3的解是负数,则字母m 的取值范围是 ___________ .【答案】m>-3且m≠-2【解析】先解关于x 的分式方程,求得x 的值,然后再依据“解是负数”建立不等式求m 的取值范围.【详解】原方程整理得:2x-m=3(m+1),解得:x=-(m+3),∵x<0,∴-(m+3)<0,即m>-3,∵原方程是分式方程,∴x≠-1,即-(m+3)≠-1,解得:m≠-2,综上所述:m 的取值范围是m>-3,且m ≠-2,故答案为:m>-3,且m ≠-2【点睛】此题考查了分式方程的解,解答本题时,易漏掉分母不等于0这个隐含的条件,熟练掌握解分式方程的方法及分式有意义的条件是解题关键.14.一次函数y=7-4x和y=1-x的图象的交点坐标为(2,-1),则方程组471x yx y+=⎧⎨+=⎩的解为_______.【答案】21 xy=⎧⎨=-⎩【分析】一次函数的交点坐标即是两个一次函数解析式组成的方程组的解,由此即可得到方程组的解. 【详解】∵一次函数y=7-4x和y=1-x的图象的交点坐标为(2,-1),∴方程组471x yx y+=⎧⎨+=⎩的解为21xy=⎧⎨=-⎩,故答案为:21 xy=⎧⎨=-⎩.【点睛】此题考查两个一次函数的交点坐标与方程组的解的关系,正确理解方程组与依次函数的关系是解题的关键.15.一个多边形的内角和是外角和的72倍,那么这个多边形的边数为_______.【答案】1【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解即可.【详解】解:设这个多边形是n边形,根据题意得,(n-2)•180°=72×360°,解得:n=1.故答案为:1.【点睛】本题考查了多边形的内角和公式与外角和定理,多边形的外角和与边数无关,任何多边形的外角和都是360°.16.一个等腰三角形的内角为80°,则它的一个底角为_____.【答案】50°或80°【分析】分情况讨论,当80°是顶角时,底角为(18080)250︒-︒÷=︒;当80°是底角时,则一个底角就是80°.【详解】在等腰三角形中,若顶角是80°,则一个底角是(18080)250︒-︒÷=︒;若内角80°是底角时,则另一个底角就是80°,所以它的一个底角就是50°或80°,故答案为:50°或80°.【点睛】本题考查了等腰三角形的性质,分类讨论思想的应用,三角形内角和的定理,熟记等腰三角形的性质以及内角和定理是解题关键.17.如图,直线y=kx+b与直线y=2x+6关于y轴对称且交于点A,直线y=2x+6交x轴于点B,直线y=kx+b 交x轴于点C,正方形DEFG一边DG在线段BC上,点E在线段AB上,点F在线段AC上,则点G的坐标是____.【答案】(32,0).【分析】根据轴对称求得直线AC的解析式,再根据正方形的性质以及轴对称的性质设G(m,0),则F(m,2m),代入直线AC的解析式,得到关于m的方程,解得即可.【详解】解:由直线y=2x+6可知A(0,6),B(﹣3,0).∵直线y=kx+b与直线y=2x+6关于y轴对称且交于点A,直线y=2x+6交x轴于点B,直线y=kx+b交x轴于点C,∴直线AC为y=﹣2x+6,设G(m,0),∵正方形DEFG一边DG在线段BC上,点E在线段AB上,点F在线段AC上,∴F(m,2m),代入y=﹣2x+6得:2m=﹣2m+6,解得:m32 ,∴G的坐标为(32,0).故答案为:(32,0).【点睛】本题考查了一次函数图象与几何变换,正方形的性质,对称轴的性质,表示出F点的坐标是解题的关键.三、解答题18.如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD.(1)求证:OP=OF ;(2)求AP 的长.【答案】(1)证明见解析;(2)4.1.【分析】(1)由折叠的性质得出∠E=∠A=90°,从而得到∠D=∠E=90°,然后可证明△ODP ≌△OEF ,从而得到OP=OF ;(2)由△ODP ≌△OEF ,得出OP=OF ,PD=FE ,从而得到DF=PE ,设AP=EP=DF=x ,则PD=EF=6-x ,DF=x ,求出CF 、BF ,根据勾股定理得出方程,解方程即可.【详解】(1)∵四边形ABCD 是矩形,∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=1.由翻折的性质可知:EP=AP ,∠E=∠A=90°,BE=AB=1,在△ODP 和△OEF 中,D E OD OEDOP EOF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ODP ≌△OEF (ASA ).∴OP=OF .(2)∵△ODP ≌△OEF (ASA ),∴OP=OF ,PD=EF .∴DF=EP .设AP=EP=DF=x ,则PD=EF=6-x ,CF=1-x ,BF=1-(6-x )=2+x ,在Rt △FCB 根据勾股定理得:BC 2+CF 2=BF 2,即62+(1-x )2=(x+2)2,解得:x=4.1,∴AP=4.1.19.已知ABC ∆在平面直角坐标系中的位置如图所示,将ABC ∆向右平移5个单位长度,再向下平移3个单位长度得到111A B C ∆.(图中每个小方格边长均为1个单位长度)。