九年级数学上概率-相似-反比例函数(带答案)
北师大版九年级数学上册 6 1 反比例函数同步练习 (含答案)
北师版九上 6.1 反比例函数一、选择题(共9小题)1. 下列关系式中,y是x的反比例函数的是( )A. y=5xB. yx =3 C. y=−1xD. y=x2−32. 下列函数:①y=x−2,②y=3x ,③y=x−1,④y=2x+1,其中,y是x的反比例函数的个数是( )A. 0B. 1C. 2D. 33. 下列函数是y关于x的反比例函数的是( )A. y=1x+1B. y=1x2C. y=−12xD. y=−x24. 下列关系中,两个量之间为反比例函数关系的是( )A. 正方形的面积S与边长a的关系B. 正方形的周长C与边长a的关系C. 矩形的长为a,宽为20,其面积S与a的关系D. 矩形的面积为40,其长a与宽b之间的关系5. 下列关系式中,不是y关于x的反比例函数的是( )A. xy=2B. y=5x8C. x=57yD. x=5y−36. 下列函数中,y是x的反比例函数的是( )A. y=34x B. y=12x2 C. y=13x D. y=1x27. 函数y=(k2−▫)x k2+k−1是反比例函数,“▫”处在印刷时被油墨盖住了,若要保证k的值有两个,则“▫”处的数字不能是( )A. 1,0B. −1,0C. 2,1D. 2,08. 当k=−1时,下列函数是反比例函数的是( )A. y=k+1xB. y=(k2+k)x−∣k∣C. y=−kx−1D. y=(k−1)x9. 在函数y=−2(m+1)x−m中,y是x的反比例函数,则比例系数为( )A. −2B. 2C. −4D. 0二、填空题(共5小题)的比例系数为.10. 反比例函数y=18x11. 下列函数中,如果是反比例函数,就在括号里打“√”,并写出比例系数k的值;否则打“×”..()(1)y=1x.()(2)y=−2x+1.()(3)y=1xx.()(4)y=32.()(5)y=2x−1.()(6)y=35x12. 若函数y=x m−2是y关于x的反比例函数,则m的值为.+(k2−2k)是反比函数,则k=.13. 如果y=k−2x14. 如果函数y=(m−1)x m2−2是反比例函数,那么m的值是.三、解答题(共4小题)15. 在下列函数关系式中,x均表示自变量,那么哪些是关于x的反比例函数?若是反比例函数,相应的比例系数k是多少?(1)y=5;2x;(2)y=x2(3)xy=2;(4)y=7x−1;.(5)y=0.4x−116. 写出下列问题中两个变量之间的函数表达式,并判断其是不是反比例函数.(1)底边为3cm的三角形的面积y(cm2)随底边上的高x(cm)的变化而变化;(2)一艘轮船从相距200km的甲地驶往乙地,轮船的速度v(km/h)与航行时间t(h)的关系;(3)在检修100m长的管道时,每天能完成10m,剩下的未检修的管道长y(m)随检修天数x的变化而变化.17. 在下列关系式中,x均为自变量,哪些是反比例函数?每一个反比例函数相应的k值是多少?(1)y=5;x(2)y=0.4x−1;;(3)y=x2(4)xy=2;(5)y=6x+3;(6)xy=−7;;(7)y=5x2x.(8)y=15,求a的值,并确定函数解析式.18. 已知y关于x的反比例函数的解析式为y=a+3x∣a∣−2答案1. C【解析】y=5x是一次函数;yx=3可化为y=3x(x≠0),是一次函数;y=−1x是反比例函数;y=x2−3是二次函数.2. C【解析】②③是反比例函数.3. C【解析】A.y=1x+1,是y与x+1成反比例函数,故此选项不合题意;B.y=1x2,是y与x2成反比例,故此选项不合题意;C.y=−12x,符合反比例函数的定义,故此选项符合题意;D.y=−x2是正比例函数,故此选项不合题意.故选C.4. D【解析】A.S=a2,S是a的二次函数;B.C=4a,C是a的正比例函数;C.S=20a,S是a的正比例函数;D.a=40b,故a与b是反比例函数关系.5. B【解析】A选项、C选项、D选项:反比例函数的形式有:y=kx(k≠0,x≠0),变形:xy=k(k≠0),y=kx−1(k≠0,x≠0),故ACD正确;B选项:y=5x8是一次函数,故B错误.6. A【解析】y=34x 可化为y=34x,是反比例函数,符合题意;y=12x2,y=13x,y=1x2都不是反比例函数.故选A.7. A【解析】由题意得k2+k−1=−1,解得k1=0,k2=−1,又∵系数不为0,∴k2−▫≠0,∴k 2≠▫,∵k 的值有两个,∴▫≠0,▫≠1.8. C【解析】A 中,当 k =−1 时,k +1=0,此时 y =k+1x 不是反比例函数;B 中,当 k =−1 时,−∣k ∣=−1,k 2+k =0,此时 y =(k 2+k )x −∣k∣ 不是反比例函数;C 中,当 k =−1 时,函数 y =−kx −1 为 y =1x ,是反比例函数;D 中,当 k =−1 时,函数 y =(k −1)x 为 y =−2x ,不是反比例函数.9. C【解析】由题意得 m =1,则比例系数为 −2×(1+1)=−4.故选C .10. 18【解析】∵y =18x =18x ,∴ 反比例函数 y =18x 的比例系数是 18. 11. √,1,√,−2,×,×,×,√,3512. 1【解析】∵ 函数 y =x m−2 是 y 关于 x 的反比例函数,∴m −2=−1,解得:m =1.13. 0【解析】由题意得:{k −2≠0,k 2−2k =0,解得 k =0,故答案为:0.14. −1【解析】根据题意 m 2−2=−1,m =±1,又 m −1≠0,m ≠1,所以 m =−1.15. (1)y=52x 是反比例函数,k=52.(2)y=x2不是反比例函数.(3)xy=2是反比例函数,k=2.(4)y=7x−1是反比例函数,k=7.(5)y=0.4x−1不是反比例函数.16. (1)根据三角形的面积公式可得y=32x,所以不是反比例函数.(2)因为vt=200,所以两个变量之间的函数表达式为v=200t,是反比例函数.(3)因为y+10x=100,所以两个变量之间的函数表达式为y=100−10x,不是反比例函数.17. (1)(2)(4)(6)是反比例函数,相应的k值分别是5,0.4,2,−7.18. 由反比例函数的解析式y=a+3x∣a∣−2得{∣a∣−2=1,a+3≠0,解得a=3.故函数解析式为y=6x.。
北师大初三数学上册反比例函数难题带答案解析
初三数学上册反比例函数一.选择题(共20小题)1.如图,点A、B是反比例函数y=(k≠0)图象上的两点,延长线段AB交y轴于点C,且点B为线段AC中点,过点A作AD⊥x轴于点D,点E为线段OD的三等分点,且OE<DE.连接AE、BE,若S△ABE=7,则k的值为()A.﹣12B.﹣10C.﹣9D.﹣62.如图,A、B、C是反比例函数y=(k<0)图象上三点,作直线l,使A、B、C到直线l的距离之比为3:1:1,则满足条件的直线l共有()A.4条B.3条C.2条D.1条3.如图,正方形ABCO和正方形CDEF的顶点B、E在双曲线y=(x>0)上,连接OB、OE、BE,则S△OBE的值为()A.2B.2.5C.3D.3.54.如图,点A是函数y=的图象上的点,点B,C的坐标分别为B(﹣,﹣),C(,).试利用性质:“函数y=的图象上任意一点A都满足|AB﹣AC|=2”求解下面问题:作∠BAC的内角平分线AE,过B作AE的垂线交AE于F,已知当点A在函数y=的图象上运动时,点F总在一条曲线上运动,则这条曲线为()A.直线B.抛物线C.圆D.反比例函数的曲线5.如图,在平面直角坐标系中,△ABO的顶点A在x轴上,反比例函数y=(x<0)的图象与△OAB的边OB、AB 分别交于点C,点D.若BC:BO=2:3,BD:BA=3:4,S△ABO=,则k的值为()A.﹣8B.﹣6C.D.﹣6.如图,点A在反比例函数y=(k≠0)的图象上,且点A是线段OB的中点,点D为x轴上一点,连接BD交反比例函数图象于点C,连接AC,若BC:CD=2:1,S△ADC=.则k的值为()A.B.16C.D.107.如图,点A是双曲线y=上一点,过A作AB∥x轴,交直线y=﹣x于点B,点D是x轴上一点,连接BD交双曲线于点C,连接AD,若BC:CD=3:2,△ABD的面积为,tan∠ABD=,则k的值为()A.﹣2B.﹣3C.﹣D.8.如图所示,已知双曲线y=(x<0)和y=(x>0),直线OA与双曲线y=交于点A,将直线OA向下平移与双曲线y=交于点B,与y轴交于点P,与双曲线y=交于点C,S△ABC=6,=,则k=()A.﹣6B.﹣4C.6D.49.如图,已知A,B为反比例函数y1=图象上两点,连接AB,线段AB经过点O,C是反比例函数y2=(k<0)在第二象限内的图象上一点,当△CAB是以AB为底的等腰三角形,且=时,k的值为()A.﹣B.﹣3C.﹣4D.﹣10.如图,在平面直角坐标系中,正方形ABCD的顶点A的坐标为(﹣1,1),点B在x轴正半轴上,点D在第三象限的双曲线y=上,过点C作CE∥x轴交双曲线于点E,则CE的长为()A.B.C.3.5D.511.如图,已知A1,A2,A3,…A n,…是x轴上的点,且OA1=A1A2=A2A3=…=A n﹣1A n…=1,分别过点A1,A2,A3,…,A n,…作x轴的垂线交反比例函数y=(x>0)的图象于点B1,B2,B3,…,B n,…,过点B2作B2P1⊥A1B1于点P1,过点B3作B3P2⊥A2B2于点P2…,记△B1P1B2的面积为S1,△B2P2B3的面积为S2…,△B n P n B n+1的面积为S n,则S1+S2+S3+…+S n等于()A.B.C.D.12.如图,O为坐标原点,点C在x轴上.四边形OABC为菱形,D为菱形对角线AC与OB的交点,反比例函数y=在第一象限内的图象经过点A与点D,若菱形OABC的面积为24,则点A的坐标为()A.(1,6)B.(,5)C.(2,4)D.(3,3)13.如图,点A,B分别在y轴正半轴、x轴正半轴上,以AB为边构造正方形ABCD,点C,D恰好都落在反比例函数y=(k≠0)的图象上,点E在BC延长线上,CE=BC,EF⊥BE,交x轴于点F,边EF交反比例函数y=(k ≠0)的图象于点P,记△BEF的面积为S,若S=+12,则△CEP的面积是()A.2+2B.2﹣2C.+2D.﹣214.如图,平面直角坐标系中,矩形OABC的边与函数y=(x>0)图象交于E,F两点,且F是BC的中点,则四边形ACFE的面积等于()A.4B.6C.8D.不能确定15.如图,直线AD分别与x轴,y轴交于A,D两点,与反比例函数y=的图象交于B,C两点,连接OB,OC,若AB=BC,S△BOC=4,则k的值为()A.4B.C.D.16.如图,以矩形OABC的顶点O为坐标原点建立平面直角坐标系,使点A、C分别在x轴、y轴的正半轴上,双曲线y=(x>0)的图象经过BC的中点D,且与AB交于点E.过OC边上一点F,把△BCF沿直线BF翻折,使点C 落在点C′处(点C′在矩形OABC内部),且C′E∥BC,若点C′的坐标为(2,3),则k的值为()A.B.C.D.17.如图,点A是反比例函数y=(x>0)的图象上一点,过点A作直线y=﹣x的垂线,垂足为点B,再过点A作AC⊥AB交y=(x>0)的图象于点C,若△ABC是等腰三角形,则点B的坐标是()A.(﹣,)B.(﹣,)C.(﹣2,2)D.(﹣3,3)18.如图,菱形四边形ABCD的四个顶点分别在反比例函数y=,y=﹣的图象上,若该菱形的面积为78,则这个菱形的边长为()A.B.C.13D.1319.反比例函数y=的图象向右平移个单位长度得到一个新的函数,当自变量x取1,2,3,4,5,…,(正整数)时,新的函数值分别为y1,y2,y3,y4,y5,…,其中最小值和最大值分别为()A.y1,y2B.y43,y44C.y44,y45D.y2014,y201520.如图,△ABC是等边三角形,顶点C在y轴的负半轴上,点A(1,),点B在第一象限,经过点A的反比例函数y=(x>0)的图象恰好经过顶点B,则△ABC的边长为()A.3B.2C.4D.3二.填空题(共10小题)21.如图,在平面直角坐标系中,经过点A的双曲线y=(x>0)同时经过点B,且点A在点B的左侧,点A的横坐标为1,∠AOB=∠OBA=45°,则k的值为.22.如图,函数y=(k为常数,k>0)的图象与过原点的O的直线相交于A,B两点,点M是第一象限内双曲线上的动点(点M在点A的左侧),直线AM分别交x轴,y轴于C,D两点,连接BM分别交x轴,y轴于点E,F.现有以下四个结论:①△ODM与△OCA的面积相等;②若BM⊥AM于点M,则∠MBA=30°;③若M点的横坐标为1,△OAM为等边三角形,则k=2+;④若MF=MB,则MD=2MA.其中正确的结论的序号是.(只填序号)23.已知如图,直线y=x分别与双曲线y=(m>0,x>0)、双曲线y=(n>0,x>0)交于点A,点B,且=,将直线y=x向左平移6个单位长度后,与双曲线y=交于点C,若S△ABC=4,则mn的值为.24.如图,等边△OBA和等边△AFE的一边都在x轴上,双曲线y=(k>0)经过OB的中点C和AE的中点D,已知OB=16,则点F的坐标为.25.如图,直角坐标系xOy中,直线y=﹣x+b分别交x,y轴的正半轴于点A,B,交反比例函数y=﹣的图象于点C,D(点C在第二象限内),过点C作CE⊥x轴于点E,记四边形OBCE的面积为S1,△OBD的面积为S2,若,则CD的长为.26.如图,直线y=x﹣8交x轴于点A,交y轴于点B,点C是反比例函数y=的图象上位于直线AB上方的一点,CD∥/x轴交AB于点D,CE⊥CD交AB于点E,若AD•BE=4,则k的值为.27.如图,△OBC的边BC∥x轴,过点C的双曲线y=(k≠0)与△OBC的边OB交于点D,且OD:DB=1:2,若△OBC的面积等于8,则k的值为.28.如图,一次函数y=x与反比例函数y=(k>0)的图象在第一象限交于点A,点C在以B(7,0)为圆心,2为半径的⊙B上,已知AC长的最大值为7,则该反比例函数的函数表达式为.29.如图,C、D是双曲线y=(x>0,k>0)上两点,延长CD交x轴于点E,DB⊥x轴于点B,点F是线段DE的中点,延长FB交y轴于点S,连接SE,若S△SBE=,则k=30.如图,已知动点A在函数y=(x>0)的图象上,AB⊥x轴于点B,AC⊥y轴于点C,延长CA至点D,使AD =AB,延长BA至点E,使AE=AC,直线DE分别交x轴,y轴于点P,Q,当QE:DP=9:25时,图中的阴影部分的面积等于.三.解答题(共10小题)31.如图,一次函数y=k1x+b与反比例函数y=的图象交于A(2,m),B(n,﹣2)两点.过点B作BC⊥x轴,垂足为C,且S△ABC=5.(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式k1x+b>的解集;(3)若P(p,y1),Q(﹣2,y2)是函数y=图象上的两点,且y1≥y2,求实数p的取值范围.32.如图,反比例函数y=的图象与一次函数y=x的图象交于点A、B,点B的横坐标是4.点P是第一象限内反比例函数图象上的动点,且在直线AB的上方.(1)若点P的坐标是(1,4),直接写出k的值和△P AB的面积;(2)设直线P A、PB与x轴分别交于点M、N,求证:△PMN是等腰三角形;(3)设点Q是反比例函数图象上位于P、B之间的动点(与点P、B不重合),连接AQ、BQ,比较∠P AQ与∠PBQ 的大小,并说明理由.33.如图1,已知点A(a,0),B(0,b),且a、b满足,▱ABCD的边AD与y轴交于点E,且E为AD中点,双曲线经过C、D两点.(1)求k的值;(2)点P在双曲线上,点Q在y轴上,若以点A、B、P、Q为顶点的四边形是平行四边形,试求满足要求的所有点P、Q的坐标;(3)以线段AB为对角线作正方形AFBH(如图3),点T是边AF上一动点,M是HT的中点,MN⊥HT,交AB于N,当T在AF上运动时,的值是否发生改变?若改变,求出其变化范围;若不改变,请求出其值,并给出你的证明.34.平面直角坐标系xOy中,点A、B分别在函数y1=(x>0)与y2=﹣(x<0)的图象上,A、B的横坐标分别为a、b.(1)若AB∥x轴,求△OAB的面积;(2)若△OAB是以AB为底边的等腰三角形,且a+b≠0,求ab的值;(3)作边长为3的正方形ACDE,使AC∥x轴,点D在点A的左上方,那么,对大于或等于4的任意实数a,CD 边与函数y1=(x>0)的图象都有交点,请说明理由.35.如图1所示,已知y=(x>0)图象上一点P,P A⊥x轴于点A(a,0),点B坐标为(0,b)(b>0),动点M 是y轴正半轴上B点上方的点,动点N在射线AP上,过点B作AB的垂线,交射线AP于点D,交直线MN于点Q,连接AQ,取AQ的中点为C.(1)如图2,连接BP,求△P AB的面积;(2)当点Q在线段BD上时,若四边形BQNC是菱形,面积为2,求此时P点的坐标;(3)当点Q在射线BD上时,且a=3,b=1,若以点B,C,N,Q为顶点的四边形是平行四边形,求这个平行四边形的周长.36.如图,直线y1=﹣x+4,y2=x+b都与双曲线y=交于点A(1,m),这两条直线分别与x轴交于B,C两点.(1)求y与x之间的函数关系式;(2)直接写出当x>0时,不等式x+b>的解集;(3)若点P在x轴上,连接AP把△ABC的面积分成1:3两部分,求此时点P的坐标.37.如图1,在平面直角坐标系中,四边形AOBC是矩形,点C的坐标为(4,3),反比例函数y=(k>0)的图象与矩形AOBC的边AC、BC分别相交于点E、F,将△CEF沿EF对折后,C点恰好落在OB上.(1)求证:△AOE与△BOF的面积相等;(2)求反比例函数的解析式;(3)如图2,P点坐标为(2,﹣3),在反比例函数y=的图象上是否存在点M、N(M在N的左侧),使得以O、P、M、N为顶点的四边形是平行四边形?若存在,求出点M、N的坐标;若不存在,请说明理由.38.如图,直线y=k1x(x≥0)与双曲线y=(x>0)相交于点P(2,4).已知点A(4,0),B(0,3),连接AB,将Rt△AOB沿OP方向平移,使点O移动到点P,得到△A'PB'.过点A'作A'C∥y轴交双曲线于点C.(1)求k1与k2的值;(2)求直线PC的表达式;(3)直接写出线段AB扫过的面积.39.如图,在平面直角坐标系xOy中,已知四边形DOBC是矩形,且D(0,4),B(6,0).若反比例函数y=(x >0)的图象经过线段OC的中点A,交DC于点E,交BC于点F.设直线EF的解析式为y=k2x+b.(1)求反比例函数和直线EF的解析式;(2)求△OEF的面积;(3)请结合图象直接写出不等式k2x+b﹣>0的解集.40.如图,正方形AOCB的边长为4,反比例函数的图象过点E(3,4).(1)求反比例函数的解析式;(2)反比例函数的图象与线段BC交于点D,直线过点D,与线段AB相交于点F,求点F的坐标;(3)连接OF,OE,探究∠AOF与∠EOC的数量关系,并证明.参考答案与试题解析一.选择题(共20小题)1.【分析】设A(m,),C(0,n),则D(m,0),E(m,0),由AB=BC,推出B(,),根据点B在y =上,推出•=k,可得mn=3k,连接EC,OA.因为AB=BC,推出S△AEC=2•S△AEB=14,根据S△AEC=S△AEO+S△ACO﹣S△ECO,构建方程即可解决问题;【解答】解:设A(m,),C(0,n),则D(m,0),E(m,0),∵AB=BC,∴B(,),∵点B在y=上,∴•=k,∴k+mn=4k,∴mn=3k,连接EC,OA.∵AB=BC,∴S△AEC=2•S△AEB=14,∵S△AEC=S△AEO+S△ACO﹣S△ECO,∴14=•(﹣m)•+•n•(﹣m)﹣•(﹣m)•n,∴14=﹣k﹣+,∴k=﹣12.故选:A.2.【分析】如解答图所示,满足条件的直线有两种可能:一种是与直线BC平行,符合条件的有两条,如图中的直线a、b;还有一种是过线段BC的中点,符合条件的有两条,如图中的直线c、d.【解答】解:如解答图所示,满足条件的直线有4条,故选:A.3.【分析】连接CE.只要证明CE∥OB,推出S△OBE=S△OBC,即可解决问题;【解答】解:连接CE.∵四边形ABCO,四边形DEFC都是正方形,∴∠ECF=∠BOC=45°,∴CE∥OB,∴S△OBE=S△OBC,∵BC=OC,点B在y=上,∴BC=OC=2,∴S△OBE=×2×2=2,故选:A.4.【分析】如图:延长AC交BF的延长线于G,连接OF.只要证明OF是△BCG的中位线,可得OF=CG=,即可解决问题.【解答】解:如图:延长AC交BF的延长线于G,连接OF.∵AF⊥BG,∴∠AFB=∠AFG=90°,∴∠BAF+∠ABF=90°,∠G+∠GAF=90°,∵∠BAF=∠F AG,∴∠ABF=∠G,∴AB=AG,∵AF⊥BG,∴BF=FG,∵B(﹣,﹣),C(,),∴OB=OC,∴OF=CG,∵|AB﹣AC|=2,AB=AG,∴CG=2,∴OF=,∴点F在以O为圆心为半径的圆上运动.故选:C.5.【分析】设B(m,n),想办法求出A,D,C的坐标,构建方程求出mn的值即可解决问题.【解答】解:设B(m,n),∵BC:BO=2:3,∴C(m,n),∵BD:AB=3:4,∴点D的纵坐标为n,∵C,D在y=的图象上,∴D(m,),∴直线BD的解析式为y=x﹣n,令y=0,得到x=m,∴A(m,0),∵S△ABO=,∴×(﹣m)×n=,∴mn=﹣,∴k==﹣×=﹣,故选:C.6.【分析】作AE⊥OD于E,CF⊥OD于F.首先证明S△AOC=S△AOE+S梯形AEFC﹣S△OCF=S梯形AEFC,由此构建方程即可解决问题;【解答】解:作AE⊥OD于E,CF⊥OD于F.连接AC,AD.∵BC:CD=2:1,S△ADC=,∴S△ACB=,∵OA=AB,∴B(2m,2n),S△AOC=S△ACB=,∵A、C在y=上,BC=2CD,∴C(m,n),∵S△AOC=S△AOE+S梯形AEFC﹣S△OCF=S梯形AEFC,∴•(n+n)×m=,∴mn=16,故选:B.7.【分析】如图作BH⊥OD于H.延长BA交y轴于E.由tan∠ABD=tan∠BDH=,设DH=5m,BH=9m,则BH =BE=9m,OD=4m,推出C(﹣6m,m),推出A(﹣m,9m),由△ABD的面积为,推出×m×9m=,可得m2=,推出k=﹣6m×m=﹣2;【解答】解:如图作BH⊥OD于H.延长BA交y轴于E.∵AB∥DH,∴∠ABD=∠BDH,∴tan∠ABD=tan∠BDH=,设DH=5m,BH=9m,则BH=BE=9m,OD=4m,∴C(﹣6m,m),∴A(﹣m,9m),∵△ABD的面积为,∴×m×9m=,∴m2=,∴k=﹣6m×m=﹣2,故选:A.8.【分析】设A(x a,y a),B(x b,y b),C(x c,y c),则有x a y a=x b y b=5,x c y c=k,由OA∥BC可得:=,过点A作AF⊥x轴于点F,BE⊥x轴于点E,CD⊥x轴于点D,由图可得:S△ABC=S梯形AFEB+S梯形BEDC﹣S梯形AFDC,代入坐标可得到:(y a+y b)(x b﹣x a)+(y b+y c)(x c﹣x b)﹣(y a+y c)(x c﹣x a)=6,整理得到:y a x b﹣x a y b+y b x c ﹣y c x b﹣y a x c+x a y c=6,综上得到y b x c﹣y c x b=12,已知=,可得=,y b==,综合以上式子可得:10+x c y c=12,所以x c y c=4,即k=4.【解答】解:设A(x a,y a),B(x b,y b),C(x c,y c),则有x a y a=x b y b=5,x c y c=k,∵OA∥BC∴=,整理得到:y a x b﹣y a x c=x a y b﹣x a y c①过点A作AF⊥x轴于点F,BE⊥x轴于点E,CD⊥x轴于点D,∵S△ABC=S梯形AFEB+S梯形BEDC﹣S梯形AFDC=6∴(AF+BE)×EF+(BE+CD)×DE﹣(AF+CD)×DF=6代入坐标可得到:(y a+y b)(x b﹣x a)+(y b+y c)(x c﹣x b)﹣(y a+y c)(x c﹣x a)=6,整理得:y a x b﹣x a y b+y b x c﹣y c x b﹣y a x c+x a y c=6,②①②联立得:y b x c﹣y c x b=12,③由=,可得:=,即x b=x c,∴y b==,代入③得:10+x c y c=12,解得:x c y c=4,即k=﹣4.解法二:如图连接OB,OC,作BE⊥OP于E,CF⊥OP于F.∵OA∥BC,∴S△OBC=S△ABC=6,∵PB:PC=1:2,∴S△OPB=2,S△OPC=4,∵S△OBE=,∴S△PBE=,∵△BEP∽△CFP,∴S△CFP=4×=2,∴S△OCF=2,∴k=﹣4.故选:B.9.【分析】如图作AE⊥x轴于E,CF⊥x轴于F.连接OC.首先证明△CFO∽△OEA,推出=()2,因为CA:AB=5:8,AO=OB,推出CA:OA=5:4,推出CO:OA=3:4,可得=()2=,因为S△AOE =2,可得S△COF=,延长即可解决问题;【解答】解:如图作AE⊥x轴于E,CF⊥x轴于F.连接OC.∵A、B关于原点对称,∴OA=OB,∵AC=BC,OA=OB,∴OC⊥AB,∴∠CFO=∠COA=∠AEO=90°,∵∠COF+∠AOE=90°,∠AOE+∠EAO=90°,∴∠COF=∠OAE,∴△CFO∽△OEA,∴=()2,∵CA:AB=5:8,AO=OB,∴CA:OA=5:4,∴CO:OA=3:4,∴=()2=,∵S△AOE=2,∴S△COF=,∴=,∵k<0,∴k=﹣,故选:A.10.【分析】证明△DHA≌△CGD(AAS)、△ANB≌△DGC(AAS)得到:AN=DG=1=AH,而AH=﹣1﹣m=1,解得:m=﹣2,即可求解.【解答】解:设点D(m,),如图所示,过点D作x轴的垂线交CE于点G,过点A过x轴的平行线交DG于点H,过点A作AN⊥x轴于点N,∵∠GDC+∠DCG=90°,∠GDC+∠HDA=90°,∴∠HDA=∠GCD,又AD=CD,∠DHA=∠CGD=90°,∴△DHA≌△CGD(AAS),∴HA=DG,DH=CG,同理△ANB≌△DGC(AAS),∴AN=DG=1=AH,则点G(m,﹣1),CG=DH,AH=﹣1﹣m=1,解得:m=﹣2,故点G(﹣2,﹣5),D(﹣2,﹣4),H(﹣2,1),则点E(﹣,﹣5),GE=,CE=CG﹣GE=DH﹣GE=5﹣=,故选:B.11.【分析】由OA1=A1A2=A2A3=…=A n﹣1A n=1可知B1点的坐标为(1,y1),B2点的坐标为(2,y2),B3点的坐标为(3,y3)…B n点的坐标为(n,y n),把x=1,x=2,x=3代入反比例函数的解析式即可求出y1、y2、y3的值,再由三角形的面积公式可得出S1、S2、S3…S n的值,故可得出结论.【解答】解:∵OA1=A1A2=A2A3=…=A n﹣1A n=1,∴设B1(1,y1),B2(2,y2),B3(3,y3),…B n(n,y n),∵B1,B2,B3…Bn在反比例函数y=(x>0)的图象上,∴y1=1,y2=,y3=…y n=,∴S1=×1×(y1﹣y2)=×1×(1﹣)=(1﹣);S2=×1×(y2﹣y3)=×(﹣);S3=×1×(y3﹣y4)=×(﹣);…S n=(﹣),∴S1+S2+S3+…+S n=(1﹣+﹣+﹣+…+﹣)=.故选:C.12.【分析】作AE⊥OC于E,DF⊥OC于F.设A(a,b).想办法证明OE=EF=CF即可解决问题;【解答】解:作AE⊥OC于E,DF⊥OC于F.设A(a,b).∵四边形ABCO是菱形,∴AD=DC,∵AE∥DF,∴EF=FC,∴DF=AE=b∵反比例函数y=在第一象限内的图象经过点A与点D,∴D(2a,b),∴OE=EF=FC=a,∴OA=OC=3a,∴AE==2a,∵OC•AE=24,∴3a•2a=24,∴a2=4,∵a>0,∴a=2,∴A(2,4),故选:C.13.【分析】如图作DM⊥y轴于M,CN⊥x轴于N.设OA=b,OB=a.首先利用全等三角形的性质求出D、C两点坐标,再证明a=b,再构建方程求出a、k,再求出直线EF的解析式,利用方程组确定点P坐标即可解决问题;【解答】解:如图作DM⊥y轴于M,CN⊥x轴于N.设OA=b,OB=a.∵四边形ABCD是正方形,∵AD=AB=BC,∠DAB=∠ABC=90°,易证△AOB≌△BNC≌△DMA,∴DM=OA=BN=b,AM=OB=CN=a,∴D(b,a+b),C(a+b,a),∵点C,D恰好都落在反比例函数y=(k≠0)的图象上,∴b(a+b)=a(a+b),∵a+b≠0,∴a=b,∴OA=OB,∴∠ABO=45°,∠EBF=45°,∵BE⊥EF,∴△BEF是等腰直角三角形,∵BC=EC,∴可得E(3a,2a),F(5a,0),∴×4a×2a=+12,∵D(a,2a),∴2a2=k,∴a=2,k=8,∴E(6,4),F(10,0),∴直线EF的解析式为y=﹣x+10,由,解得或,∴p(5+,5﹣),∴PE=﹣,∴S△ECP=•EC•EP=•(﹣)×2=2﹣2,故选:B.14.【分析】连接OF、OB、OE.首先证明EF是△BAC的中位线,利用相似三角形的性质即可解决问题.【解答】解:连接OF、OB、OE.∵四边形ABCO是矩形,∴S△ABO=S△BCO,∵BF=CF,∴S△CFO=S△BFO,∵E、F在y=(x>0)上,∴S△AEO=S△FCO=S△ABO,∴AE=EB,∵BF=CF,∴EF∥AC,∴△BEF∽△BAC,∴=,∵S矩形ABCO=16,∴S△BEF=×8=2,∴S四边形ACFE=8﹣2=6,故选:B.15.【分析】首先证明CD=BC=AB,设C的横坐标为x,则B的横坐标为2x,根据S△OBC=S△OBD﹣S△OCD,构建方程,即可求得k的值;【解答】解:作BE⊥x轴于E,CF⊥x轴于F,∴BE∥CF,∴=,∵AC=BC,∴CF=2BE,∵S△COF=S△OBE,∴CF•OF=OE•BE,∴OE=2OF,∵OD∥CF∥BE,∴DC=BC=AB,∴设C的横坐标为x,则B的横坐标为2x,∴C的纵坐标为,B的纵坐标为,∴CF=,BE=,OA=3x∵S△OBC=S△OAC﹣S△OAB,△OBC的面积为4,∴OA•CF﹣OA•C=4,∴•3x•﹣•3x•=4,∴k=故选:B.16.【分析】首先证明点E是线段AB的中点,设BC=BC′=m,则EC′=m﹣2.在Rt△BEC′中,根据BC′2=BE2+EC′2,构建方程求出m即可解决问题;【解答】解:连接OD、OE.设BC=BC′=m,则EC′=m﹣2.∵CD=BD,∴S△CDO==S矩形ABCD,∵S△AOE==S△CDO=S矩形ABCD,∴AE=EB,∵C′(2,3),∴AE=EB=3,在Rt△BEC′中,∵BC′2=BE2+EC′2,∴m2=32+(m﹣2)2,∴m=,∴E(,3),∵点E在y=上,∴k=,故选:D.17.【分析】由题意,△ABC是等腰直角三角形,BC∥x轴,设B(a,﹣a),想办法证明A(﹣a,﹣3a),利用待定系数法求出a即可.【解答】解:由题意,△ABC是等腰直角三角形,BC∥x轴,设B(a,﹣a),∵AC∥OB,∴AC⊥直线y=x,∴A、C关于直线y=x对称,作OH⊥AC于H,则四边形ABOH是矩形,∴AH=HC=OB,AB=2OB,∴A(﹣a,﹣3a),∴3a2=6,∴a2=2,∵a<0,∴a=﹣,∴B(﹣,),故选:A.18.【分析】据对称性可知,反比例函数y=,y=﹣的图象是中心对称图形,菱形是中心对称图形,推出菱形ABCD 的对角线AC与BD的交点即为原点O.如图:作DM⊥x轴于M,CN⊥x轴于N.连接OD,OC.由△DOM∽△OCN,S△DOM=2,S△OCN=,推出()2=,可以假设OD=2k,OC=3k,根据菱形的面积公式构建方程即可解决问题;【解答】解:根据对称性可知,反比例函数y=,y=﹣的图象是中心对称图形,菱形是中心对称图形,∴菱形ABCD的对角线AC与BD的交点即为原点O.如图:作DM⊥x轴于M,CN⊥x轴于N.连接OD,OC.∵DO⊥OC,∴∠DOM+∠CON=90°,∠CON+∠OCN=90°,∴∠DOM=∠OCN,∵∠DMO=∠CNO=90°,∴△DOM∽△OCN,∵S△DOM=2,S△OCN=,∴()2=,∴可以假设OD=2k,OC=3k,∵S菱形ABCD=4••2k•3k=78,∴k=,∴CD==k=,故选:B.19.【分析】图象y=向右平移个单位长度得到一个新的函y=,因为44<<45,结合图形可知:当x<44时,y<0,y随x的增大而减小,x=44时,得到y的最小值y44,当x>45时,y>0,y随x的增大而增大,x=45时,得到y的最大值y45;【解答】解:图象y=向右平移个单位长度得到一个新的函y=,∵44<<45,∴当x<44时,y<0,y随x的增大而减小,x=44时,得到y的最小值y44,当x>45时,y>0,y随x的增大而增大,x=45时,得到y的最大值y45,故选:C.20.【分析】如图延长AB到D,使得AB=BD,连接CD,作AH⊥y轴于H,DE⊥y轴于E.设C(0,c).由△ACH ∽△CDE,推出===,由A(1,),推出AH=1,CH=﹣c,推出EC=,DE=﹣c,推出D(﹣c,c﹣),根据BA=BD,可得B(,),因为A、B在y=上,可得=×,解方程求出点C坐标即可解决问题;【解答】解:如图延长AB到D,使得AB=BD,连接CD,作AH⊥y轴于H,DE⊥y轴于E.设C(0,c).∵△ABC是等边三角形,∴AB=AC=BC,∵AB=BD,∴BA=BC=BD,∴△ACD是直角三角形,∵∠CAD=60°,∴DC=AC,∵∠ACD=∠AHC=∠DEC=90°,∴∠ACH+∠DCE=90°,∵∠ECD+∠CDE=90°,∴∠ACH=∠CDE,∴△ACH∽△CDE,∴===,∵A(1,),∴AH=1,CH=﹣c,∴EC=,DE=﹣c,∴D(﹣c,c﹣),∵BA=BD,∴B(,),∵A、B在y=上,∴=×,整理得:4c2﹣16c﹣11=0,解得c=﹣或(舍弃),∴C(0,﹣),∴AC==2,故选:B.二.填空题(共10小题)21.【分析】过A作AM⊥y轴于M,过B作BD选择x轴于D,直线BD与AM交于点N,由等腰三角形的判定与性质得出OA=BA,∠OAB=90°,证出∠AOM=∠BAN,由AAS证明△AOM≌△BAN,得出AM=BN,OM=AN,即可得到求出B的坐标,代入反比例函数即可得出一元二次方程,解方程即可得到k的值.【解答】解:如图所示,过A作AM⊥y轴于M,过B作BD选择x轴于D,直线BD与AM交于点N,则OD=MN,DN=OM,∠AMO=∠BNA=90°,∴∠AOM+∠OAM=90°,∵∠AOB=∠OBA=45°,∴OA=BA,∠OAB=90°,∴∠OAM+∠BAN=90°,∴∠AOM=∠BAN,∴△AOM≌△BAN,∴AM=BN=1,OM=AN=k,∴OD=1+k,BD=OM﹣BN=k﹣1∴B(1+k,k﹣1),∵双曲线y=(x>0)经过点B,∴(1+k)•(k﹣1)=k,整理得:k2﹣k﹣1=0,解得:k=(负值已舍去),故答案为:.22.【分析】①设点A(m,),M(n,),构建一次函数求出C,D坐标,利用三角形的面积公式计算即可判断.②△OMA不一定是等边三角形,故结论不一定成立.③设M(1,k),由△OAM为等边三角形,推出OA=OM=AM,可得1+k2=m2+,推出m=k,根据OM=AM,构建方程求出k即可判断.④如图,作MK∥OD交OA于K.利用平行线分线段成比例定理解决问题即可.【解答】解:①设点A(m,),M(n,),则直线AC的解析式为y=﹣x++,∴C(m+n,0),D(0,),∴S△ODM=n×=,S△OCA=(m+n)×=,∴△ODM与△OCA的面积相等,故①正确;∵反比例函数与正比例函数关于原点对称,∴O是AB的中点,∵BM⊥AM,∴OM=OA,∴k=mn,∴A(m,n),M(n,m),∴AM=(m﹣n),OM=,∴AM不一定等于OM,∴∠BAM不一定是60°,∴∠MBA不一定是30°.故②错误,∵M点的横坐标为1,∴可以假设M(1,k),∵△OAM为等边三角形,∴OA=OM=AM,1+k2=m2+,∵m>0,k>0,∴m=k,∵OM=AM,∴(1﹣m)2+=1+k2,∴k2﹣4k+1=0,∴k=2,∵m>1,∴k=2+,故③正确,如图,作MK∥OD交OA于K.∵OF∥MK,∴==,∴=,∵OA=OB,∴=,∴=,∵KM∥OD,∴==2,∴DM=2AM,故④正确.故答案为①③④.23.【分析】先求出直线y=x向左平移6个单位长度后的解析式为y=x+4,那么直线y=x+4交y轴于E(0,4),作EF⊥OB于F.根据互相垂直的两直线斜率之积为﹣1得出直线EF的解析式为y=﹣x+4,再求出F(,),EF==,根据S△ABC=4,求出AB=,那么OA=AB=,进而求出A、B 两点坐标,求出m、n即可解决问题.【解答】解:直线y=x向左平移6个单位长度后的解析式为y=(x+6),即y=x+4,∴直线y=x+4交y轴于E(0,4),作EF⊥OB于F.可得直线EF的解析式为y=﹣x+4,由,解得,即F(,).∴EF==,∵S△ABC=4,∴•AB•EF=4,∴AB=,∵=,∴OA=AB=,∴A(3,2),B(5,),∴m=6,n=,∴mn=100.故答案为100.24.【分析】过点C作CG⊥OA于点G,根据等边三角形的性质求出OG、CG的长度,从而得到点C的坐标,再利用待定系数法求反比例函数解析式;过点D作DH⊥AF于点H,设AH=a,根据等边三角形的性质表示出DH的长度,然后表示出点D的坐标,再把点D的坐标代入反比例函数解析式,解方程得到a的值,从而得解.【解答】解:过点C作CG⊥OA于点G,过点D作DH⊥AF于点H,∵点C是等边△OAB的边OB的中点,∴OC=8,∠AOB=60°,∴OG=4,CG=OG•tan60°=4,∴点C的坐标是(4,4),∴k=4×4=16,∴该双曲线所表示的函数解析式为y=,设AH=a,则DH=a.∴点D的坐标为(16+a,a),∵点D是双曲线y=上的点,∴a×(16+a)=16,即:a2+16a﹣16=0,解得:a1=﹣8+4,a2=﹣8﹣4(舍去),∴AD=2AH=﹣16+8,∴AF=2AD=﹣32+16,∴OF=AO+AF=16﹣32+16=16﹣16,即点F的坐标为(16﹣16,0).故答案为:(16﹣16,0).25.【分析】由题意B(0,b),A(b,0),推出OA=OB=b,因为直线y=﹣x+b关于直线y=x对称,反比例函数y =﹣关于y=x对称,推出BC=AD,设BC=AD=a,则C(﹣a,b+a),D(b+a,﹣a),想办法构建方程求出a、b的关系,求出点D的坐标(用b表示),再利用待定系数法即可解决问题;【解答】解:由题意B(0,b),A(b,0),∴OA=OB=b,∵直线y=﹣x+b关于直线y=x对称,反比例函数y=﹣关于y=x对称,∴BC=AD,设BC=AD=a,则C(﹣a,b+a),D(b+a,﹣a),∵,∴=,整理得:12a2+17ab﹣14b2=0,解得a=b或a=﹣b(舍弃),∴D(b,﹣b),∵D在y=﹣的图象上,∴b×(﹣b)=﹣4,解得b=3或﹣3(舍弃),∴D(4,﹣1),C(﹣1,4),∴CD==5,故答案为5.26.【分析】过D作DF⊥AO于F,过EG⊥OB于G,则DF∥OB,GE∥AO,设C(x,y),则GE=x,DF=﹣y,由△ADF∽△ABO,可得AD=﹣y,由△BEG∽△BAO,可得BE=2x,再根据AD•BE=4,即可得到k=xy=.【解答】解:如图,过D作DF⊥AO于F,过EG⊥OB于G,则DF∥OB,GE∥AO,由直线y=x﹣8,可得A(,0),B(0,﹣8),∴AO=,BO=8,AB=,设C(x,y),则GE=x,DF=﹣y,由△ADF∽△ABO,可得,即=,∴AD=﹣y,由△BEG∽△BAO,可得,即=,∴BE=2x,∵AD•BE=4,∴﹣y×2x=4,∴xy=﹣,∴k=xy=﹣,故答案为:﹣.27.【分析】延长BC交y轴于点E,过点D作DF⊥x轴于点FBA⊥x轴于A.由矩形与反比例函数的性质,可得S四边=S△OBC=8,易证得△ODF∽△OBA,又由OD:DB=1:2,即可得S△ODF=S四边形ABDF=×4=,则形ABDF可求得答案.【解答】解:延长BC交y轴于点E,过点D作DF⊥x轴于点F,BA⊥x轴于A.∵梯形ABCO的底边AO在x轴上,BC∥AO,AB⊥AO,∴四边形OABE是矩形,∴S△OBE=S△OAB,∵过点C的双曲线y=交OB于点D,∴S△OCE=S△ODF,∴S四边形ABDF=S△OBC=8,∵DF∥AB,∴△ODF∽△OBA,∵OD:DB=1:2,∴OD:OB=1:3,∴S△ODF:S△OAB=1:9,∴S△ODF:S四边形ABDF=1:8,∴S△ODF=S四边形ABDF=×8=1,∴k=2.故答案为:2.28.【分析】设A(m,m),因为点C在以B(7,0)为圆心,2为半径的⊙B上,已知AC长的最大值为7,可得AB =5,由此构建方程即可解决问题.【解答】解:设A(m,m),∵点C在以B(7,0)为圆心,2为半径的⊙B上,已知AC长的最大值为7,∴AB=5,∴m2+(7﹣m)2=25,解得m=3或4,∴A(3,3)或(4,4),∵点A在y=上,∴k=9或16,∴反比例函数的解析式为y=或y=,故答案为y=或y=.29.【分析】连接OD.设D(m,n),只要证明△SBO∽△DEB,可得=,推出DB•OB=OS•BE,因为S△SBE =,可得•BE•SO=,推出BE•SO=,推出DB•OB=,即可解决问题;【解答】解:连接OD.设D(m,n)∵DB⊥OE,∴∠DBE=90°,∵DF=FE,∴BF=FE,∴∠FEB=∠FBE,∵∠FBE=∠SBO,∴∠SBO=∠DEB,∵∠SOB=∠DBE=90°,∴△SBO∽△DEB,∴=,∴DB•OB=OS•BE,∵S△SBE=,∴•BE•SO=,∴BE•SO=,∴DB•OB=,∵D(m,n)在y=上,∴k=mn=DB•OB=,故答案为.30.【分析】作DF⊥x轴于点F,EG⊥y轴于G,得到△QEG∽△PDF,于是得到,设EG=9t,则PF=25t,然后根据△ADE∽△FPD,据此即可得到关于t的方程,求得t的值,进而求解.【解答】解:作DF⊥x轴于点F,EG⊥y轴于G,∴△QEG∽△DPF,∴,设EG=9t,则PF=25t,∴A(9t,),由AC=AEAD=AB,∴AE=9t,AD=,DF=,PF=25t,∵△ADE∽△FPD,∴AE:DF=AD:PF,9t:=:25t,即t2=,图中阴影部分的面积=×9t×9t+××=,故答案为:.三.解答题(共10小题)31.【分析】(1)把A、B的坐标代入反比例函数解析式求出m=﹣n,过A作AE⊥x轴于E,过B作BF⊥y轴于F,延长AE、BF交于D,求出梯形BCAD的面积和△BDA的面积,即可得出关于n的方程,求出n的值,得出A、B 的坐标,代入反比例函数和一次函数的解析式,即可求出答案;(2)根据A、B的横坐标,结合图象即可得出答案;(3)分为两种情况:当点P在第三象限时和当点P在第一象限时,根据坐标和图象即可得出答案.【解答】解:(1)把A(2,m),B(n,﹣2)代入y=得:k2=2m=﹣2n,即m=﹣n,则A(2,﹣n),过A作AE⊥x轴于E,过B作BF⊥y轴于F,延长AE、BF交于D,∵A(2,﹣n),B(n,﹣2),∴BD=2﹣n,AD=﹣n+2,BC=|﹣2|=2,∵S△ABC=•BC•BD∴×2×(2﹣n)=5,解得:n=﹣3,即A(2,3),B(﹣3,﹣2),把A(2,3)代入y=得:k2=6,即反比例函数的解析式是y=;把A(2,3),B(﹣3,﹣2)代入y=k1x+b得:,解得:k1=1,b=1,即一次函数的解析式是y=x+1;(2)∵A(2,3),B(﹣3,﹣2),∴不等式k1x+b>的解集是﹣3<x<0或x>2;(3)分为两种情况:当点P在第三象限时,要使y1≥y2,实数p的取值范围是p≤﹣2,当点P在第一象限时,要使y1≥y2,实数p的取值范围是p>0,即P的取值范围是p≤﹣2或p>0.32.【分析】(1)过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP与y轴交于点C,如图1,可根据条件先求出点B的坐标,然后把点B的坐标代入反比例函数的解析式,即可求出k,然后求出直线AB与反比例函数的交点A的坐标,从而得到OA=OB,由此可得S△P AB=2S△AOP,要求△P AB的面积,只需求△P AO的面积,只需用割补法就可解决问题;(2)过点P作PH⊥x轴于H,如图2.可用待定系数法求出直线PB的解析式,从而得到点N的坐标,同理可得到点M的坐标,进而得到MH=NH,根据垂直平分线的性质可得PM=PN,即△PMN是等腰三角形;(3)过点Q作QT⊥x轴于T,设AQ交x轴于D,QB的延长线交x轴于E,如图3.可设点Q为(c,),运用待定系数法求出直线AQ的解析式,即可得到点D的坐标为(c﹣4,0),同理可得E(c+4,0),从而得到DT=ET,根据垂直平分线的性质可得QD=QE,则有∠QDE=∠QED.然后根据对顶角相等及三角形外角的性质,就可得到∠P AQ=∠PBQ.【解答】解:(1)k=4,S△P AB=15.提示:过点A作AR⊥y轴于R,过点P作PS⊥y轴于S,连接PO,设AP与y轴交于点C,如图1,把x=4代入y=x,得到点B的坐标为(4,1),把点B(4,1)代入y=,得k=4.解方程组,得到点A的坐标为(﹣4,﹣1),则点A与点B关于原点对称,∴OA=OB,∴S△AOP=S△BOP,∴S△P AB=2S△AOP.设直线AP的解析式为y=mx+n,把点A(﹣4,﹣1)、P(1,4)代入y=mx+n,求得直线AP的解析式为y=x+3,则点C的坐标(0,3),OC=3,∴S△AOP=S△AOC+S△POC=OC•AR+OC•PS=×3×4+×3×1=,∴S△P AB=2S△AOP=15;(2)过点P作PH⊥x轴于H,如图2.B(4,1),则反比例函数解析式为y=,设P(m,),直线P A的方程为y=ax+b,直线PB的方程为y=px+q,联立,解得直线P A的方程为y=x+﹣1,联立,解得直线PB的方程为y=﹣x++1,∴M(m﹣4,0),N(m+4,0),∴H(m,0),∴MH=m﹣(m﹣4)=4,NH=m+4﹣m=4,∴MH=NH,∴PH垂直平分MN,∴PM=PN,∴△PMN是等腰三角形;(3)∠P AQ=∠PBQ.理由如下:过点Q作QT⊥x轴于T,设AQ交x轴于D,QB的延长线交x轴于E,如图3.可设点Q为(c,),直线AQ的解析式为y=px+q,则有,解得:,∴直线AQ的解析式为y=x+﹣1.当y=0时,x+﹣1=0,解得:x=c﹣4,∴D(c﹣4,0).同理可得E(c+4,0),∴DT=c﹣(c﹣4)=4,ET=c+4﹣c=4,∴DT=ET,∴QT垂直平分DE,∴QD=QE,∴∠QDE=∠QED.∵∠MDA=∠QDE,∴∠MDA=∠QED.∵PM=PN,∴∠PMN=∠PNM.∵∠P AQ=∠PMN﹣∠MDA,∠PBQ=∠NBE=∠PNM﹣∠QED,∴∠P AQ=∠PBQ.33.【分析】(1)先根据非负数的性质求出a、b的值,故可得出A、B两点的坐标,设D(1,t),由DC∥AB,可知C (2,t﹣2),再根据反比例函数的性质求出t的值即可;(2)由(1)知k=4可知反比例函数的解析式为y=,再由点P在双曲线上,点Q在y轴上,设Q(0,y),P(x,),再分以AB为边和以AB为对角线两种情况求出x的值,故可得出P、Q的坐标;(3)连NH、NT、NF,易证NF=NH=NT,故∠NTF=∠NFT=∠AHN,∠TNH=∠TAH=90°,MN=HT,由此即可得出结论.【解答】解:(1)∵+(a+b+3)2=0,且≥0,(a+b+3)2≥0,∴,解得:,∴A(﹣1,0),B(0,﹣2),∵E为AD中点,∴x D=1,设D(1,t),又∵四边形ABCD是平行四边形,∴C(2,t﹣2),∴t=2t﹣4,∴t=4,∴k=4;(2)∵由(1)知k=4,∴反比例函数的解析式为y=,∵点P在双曲线上,点Q在y轴上,∴设Q(0,y),P(x,),①当AB为边时:如图1所示:若ABPQ为平行四边形,则=0,解得x=1,此时P1(1,4),Q1(0,6);如图2所示;若ABQP为平行四边形,则=,解得x=﹣1,此时P2(﹣1,﹣4),Q2(0,﹣6);②如图3所示;当AB为对角线时:AP=BQ,且AP∥BQ;∴=,解得x=﹣1,∴P3(﹣1,﹣4),Q3(0,2);故P1(1,4),Q1(0,6);P2(﹣1,﹣4),Q2(0,﹣6);P3(﹣1,﹣4),Q3(0,2);(3)连NH、NT、NF,∵MN是线段HT的垂直平分线,∴NT=NH,∵四边形AFBH是正方形,∴∠ABF=∠ABH,在△BFN与△BHN中,,∴△BFN≌△BHN,∴NF=NH=NT,∴∠NTF=∠NFT=∠AHN,四边形ATNH中,∠ATN+∠NTF=180°,而∠NTF=∠NFT=∠AHN,所以,∠ATN+∠AHN=180°,所以,四边形ATNH内角和为360°,所以∠TNH=360°﹣180°﹣90°=90°.∴MN=HT,∴=.34.【分析】(1)如图1,AB交y轴于C,由于AB∥x轴,根据k的几何意义得到S△OAC=2,S△OBC=2,所以S△OAB =S△OAC+S△OBC=4;(2)根据函数图象上点的坐标特征得A、B的纵坐标分别为、﹣,根据两点间的距离公式得到OA2=a2+()2,OB2=b2+(﹣)2,则利用等腰三角形的性质得到a2+()2=b2+(﹣)2,变形得到(a+b)(a﹣b)(1﹣)=0,由于a+b≠0,a>0,b<0,所以1﹣=0,易得ab=﹣4;(3)由于a≥4,AC=3,则可判断直线CD在y轴的右侧,直线CD与函数y1=(x>0)的图象一定有交点,设直线CD与函数y1=(x>0)的图象交点为F,由于A点坐标为(a,),正方形ACDE的边长为3,则得到C 点坐标为(a﹣3,),F点的坐标为(a﹣3,),所以FC=﹣,然后比较FC与3的大小,由于3﹣FC =3﹣(﹣)=,而a≥4,所以3﹣FC≥0,于是可判断点F在线段DC上.【解答】解:(1)如图1,AB交y轴于C,∵AB∥x轴,∴S△OAC=×|4|=2,S△OBC=×|﹣4|=2,∴S△OAB=S△OAC+S△OBC=4;(2)∵A、B的横坐标分别为a、b,∴A、B的纵坐标分别为、﹣,∴OA2=a2+()2,OB2=b2+(﹣)2,∵△OAB是以AB为底边的等腰三角形,∴OA=OB,∴a2+()2=b2+(﹣)2,∴a2﹣b2+()2﹣()2=0,∴a2﹣b2+=0,∴(a+b)(a﹣b)(1﹣)=0,∵a+b≠0,a>0,b<0,∴1﹣=0,∴ab=﹣4;(3)∵a≥4,而AC=3,∴直线CD在y轴的右侧,直线CD与函数y1=(x>0)的图象一定有交点,设直线CD与函数y1=(x>0)的图象交点为F,如图2,∵A点坐标为(a,),正方形ACDE的边长为3,∴C点坐标为(a﹣3,),∴F点的坐标为(a﹣3,),。
九年级数学上册第六章《反比例函数》测试卷-北师大版(含答案)
九年级数学上册第六章《反比例函数》测试卷-北师大版(含答案)(满分 120 分)一、选择题(每题3分,共30分) 1.下列函数中,是反比例函数的是( )A. y = -2xB. y =-12xC. y =11x- D. y =21x 2.已知点 P (-1,4)在反比例函数y = kx(k =0)的图象上,则K 值是( ) A. -14B.14 C. 4 D. -4 3.下列各点中,在函数y = -6x图象上的是( )A. (-2,-4)B.(2,3)C.(-1,6)D.(-12,3)4.反比例函数y =5m x-的图象在第二、四象限内,那么m 的取值范围是( ) A. m <0B. m >0C.m >5D. m <55. 函数4y=-x,当x >0时的图象为下图中的( )6.已知点(1,y 1),B (2,y 2),C (-3,y 3)都在反比例函数y =6x 的图象上,则y 1,y 2 ,y 3;的大小关系是( ) A. y 3<y 1 <y 2; B. y 1<y 2<y 3; C. y 2,y 1,y 3; D. y 3<y 2<y 1;7.关于反比例函数y = 4x的图象,下列说法正确的是( ) A.必经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x 轴成轴对称D.两个分支关于原点成中心对称8.三角形的面积为4 c m²,底边上的高y(c m)与底边x(c m)之间的函数关系图象大致应为()9. 函数y= ax与y=αx-a(a≠0)在同一坐标系中的大致图象是()10.如图,函数y1=x-1和函数y2=-2x的图象相交于点M(2,m),N(-1,n),若y1<y2,则x的取值范围是()A.x<-1或0<x<2B.x<-1或x>2C.-1<x<0或0<x<2D.-1<x<0或x>2二、填空题(每题4分,共28分)11.反比例函数y=- 1x的图象在第__________象限,在每个象限内,y随x的增大而________ .12. 反比例函数y= kx过A(-1,4)和B(2,m)两点,则m= ___________________.13.对于函数y= 3x,当x>0时y__________0,这部分图象在第_____________象限.14.完成某项任务可获得500 元报酬,考虑由x人完成这项任务,试写出人均报酬y(元)与人数x(人)之间的函数关系式_________________________________.15.若点P(1,m),P,(2,n)在反比例函数y=kx(k<0)的图象上,则m_____n(填">""<"或"=").16.如图,已知点A在反比例函数图象上,A M⊥x轴于点M,且⊥AO M的面积为1,则反比例函数的解析式为______________________.17.如图,一次函数y= kx+b与反比例函数y=mx的图象交于A(2,1),B(-1,n)两点.连接OA,OB,则三角形OAB 的面积为____________.三、解答题(一)(每题6分,共18 分)18.某打印店要完成一批电脑打字任务,如果每天完成100 页,需8天完成任务.(1)每天完成的页数y与所需天数x之间是什么函数关系?(2)要求4天完成,每天应完成几页?19.已知反比例函数y =kx(k为常数,k≠0)的图象经过A(2,3).(1)求这个函数的解析式;(2)判断点B(-1,6)是否在这个函数的图象上,并说明理由.20.如图,反比例函数y =kx(k为常数,且k≠0)经过点A(1,3).(1)求反比例函数的解析式;(2)在x轴正半轴上有一点B,若⊥AOB 的面积为6,求直线AB的解析式.四、解答题(二)(每题8 分,共24 分)21.码头工人以每天30 吨的速度往一艘轮船上装载货物,装载完毕恰好用了8 天时间.(1)轮船到达目的地后开始卸货,卸货速度ν(单位:吨/天)与卸货时间t(单位:天)之间有怎样的函数关系?(2)由于遇到紧急情况,船上的货物必须在不超过5天内卸载完毕,那么平均每天至少要卸多少吨货物?22.如图,已知A (-4,2),B (n ,-4)是一次函数y =kx +b 的图象与反比例函数y =mx的图象的两个交点. (1)求此反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围.23.如图,已知在平面直角坐标系x O y 中,0是坐标原点,点A (2,5)在反比例函数y =kx的图象上,过点A 的直线y =x +b 交x 轴于点 B. (1)求k 和b 的值; (2)求⊥OAB 的面积;(3)当-3≤x ≤-1时,反比例函数值的范围为_________________.五、解答题(三)(每题10 分,共 20 分) 24.一次函数y =k 1x +b 与反比例函数y =2k x(x <0)的图象相交于A ,B 两点,且与坐标轴的交点为(-6,0),(0,6),点B 的横坐标为-4. (1)试确定反比例函数的解析式;(2)求⊥AOB 的面积; (3)直接写出不等式后k 1x +b>2k x的解.25.对教室进行"薰药消毒".已知药物在燃烧释放过程中,室内空气中每立方米含药量y (毫克)与燃烧时间x (分钟)之间的关系如图所示(即图中线段 OA 和双曲线在 A 点及其右侧的部分),根据图象所示信息,解答下列问题: (1)写出从药物释放开始,y 与x 之间的函数关系式及自变量的取值范围; (2)据测定,当空气中每立方米的含药量低于 2 毫克时,对人体无毒害作用,那么从消毒开始,至少在多长时间内,师生不能进入教室?参考答案一、1.B 2.D 3.C 4.D 5.B 6.D 7.D 8.B 9.A 10. A 二、11.二、四 增大 12. -2 13. > 一 14.500y x= 15. <16. y =-2x 17. 32三、18.解:(1)800y x=,反比例函数 (2)当x =4,800y x== 200(页) 19.解:(1) 6y x= (2)不在,理由如下: 当x = -1,61y =-= -6≠6 ⊥点B(-1,6)不在y =6x 的图象上。
专题 反比例函数(10个考点)-九年级数学上学期期中期末考点大串讲(人教版)(原卷版)
专题06反比例函数(10个考点)【知识梳理+解题方法】一.反比例函数的定义(1)反比例函数的概念形如y=(k为常数,k≠0)的函数称为反比例函数.其中x是自变量,y是函数,自变量x的取值范围是不等于0的一切实数.(2)反比例函数的判断判断一个函数是否是反比例函数,首先看看两个变量是否具有反比例关系,然后根据反比例函数的意义去判断,其形式为y=(k为常数,k≠0)或y=kx﹣1(k为常数,k≠0).二.反比例函数的图象用描点法画反比例函数的图象,步骤:列表﹣﹣﹣描点﹣﹣﹣连线.(1)列表取值时,x≠0,因为x=0函数无意义,为了使描出的点具有代表性,可以以“0”为中心,向两边对称式取值,即正、负数各一半,且互为相反数,这样也便于求y值.(2)由于函数图象的特征还不清楚,所以要尽量多取一些数值,多描一些点,这样便于连线,使画出的图象更精确.(3)连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线.(4)由于x≠0,k≠0,所以y≠0,函数图象永远不会与x轴、y轴相交,只是无限靠近两坐标轴.三.反比例函数图象的对称性反比例函数图象的对称性:反比例函数图象既是轴对称图形又是中心对称图形,对称轴分别是:①二、四象限的角平分线Y=﹣X;②一、三象限的角平分线Y=X;对称中心是:坐标原点.四.反比例函数的性质反比例函数的性质(1)反比例函数y=(k≠0)的图象是双曲线;(2)当k>0,双曲线的两支分别位于第一、第三象限,在每一象限内y随x的增大而减小;(3)当k<0,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大.注意:反比例函数的图象与坐标轴没有交点.五.反比例函数系数k的几何意义比例系数k的几何意义在反比例函数y=图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是|k|,且保持不变.六.反比例函数图象上点的坐标特征反比例函数y=k/x(k为常数,k≠0)的图象是双曲线,①图象上的点(x,y)的横纵坐标的积是定值k,即xy=k;②双曲线是关于原点对称的,两个分支上的点也是关于原点对称;③在y=k/x图象中任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.七.待定系数法求反比例函数解析式用待定系数法求反比例函数的解析式要注意:(1)设出含有待定系数的反比例函数解析式y=(k为常数,k≠0);(2)把已知条件(自变量与函数的对应值)带入解析式,得到待定系数的方程;(3)解方程,求出待定系数;(4)写出解析式.八.反比例函数与一次函数的交点问题反比例函数与一次函数的交点问题(1)求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.(2)判断正比例函数y=k1x和反比例函数y=在同一直角坐标系中的交点个数可总结为:①当k1与k2同号时,正比例函数y=k1x和反比例函数y=在同一直角坐标系中有2个交点;②当k1与k2异号时,正比例函数y=k1x和反比例函数y=在同一直角坐标系中有0个交点.九.根据实际问题列反比例函数关系式根据实际问题列反比例函数关系式,注意分析问题中变量之间的联系,建立反比例函数的数学模型,在实际问题中,往往要结合题目的实际意义去分析.首先弄清题意,找出等量关系,再进行等式变形即可得到反比例函数关系式.根据图象去求反比例函数的解析式或是知道一组自变量与函数值去求解析式,都是利用待定系数法去完成的.注意:要根据实际意义确定自变量的取值范围.十.反比例函数的应用(1)利用反比例函数解决实际问题①能把实际的问题转化为数学问题,建立反比例函数的数学模型.②注意在自变量和函数值的取值上的实际意义.③问题中出现的不等关系转化成相等的关系来解,然后在作答中说明.(2)跨学科的反比例函数应用题要熟练掌握物理或化学学科中的一些具有反比例函数关系的公式.同时体会数学中的转化思想.(3)反比例函数中的图表信息题正确的认识图象,找到关键的点,运用好数形结合的思想.【专题过关】一.反比例函数的定义(共3小题)1.(2021秋•遵化市期末)下列函数关系式中属于反比例函数的是()A.y=4x B.2x+y=4C.y=x2+3D.2.(2022•东营模拟)函数y=(m﹣2)是反比例函数,则m=.3.(2022•西宁一模)函数的自变量x的取值范围是.二.反比例函数的图象(共4小题)4.(2021秋•大城县期末)反比例函数的图象如图所示,则k的值可以是()A.﹣2B.C.1D.35.(2021秋•大城县期末)二次函数y=ax2+bx+c的图象如图所示,反比例函数与正比例函数在同一平面直角坐标系内的大致图象是()A.B.C.D.6.(2021秋•襄州区期末)问题呈现:我们知道反比例函数的图象是双曲线,那么函数(k、m、n为常数且k≠0)的图象还是双曲线吗?它与反比例函数的图象有怎样的关系呢?让我们一起开启探索之旅……探索思考:我我们可以借鉴以前研究函数的方法,首先探索函数的图象.(1)画出函数图象.①列表:x…﹣6﹣5﹣4﹣3﹣201234…y…﹣1﹣2﹣4421…②描点并连线.(2)观察图象,写出该函数图象的两条不同类型的特征:①,②;(3)理解运用:函数的图象是由函数的图象向平移个单位,其对称中心的坐标为.(4)灵活应用:根据上述画函数图象的经验,想一想函数的图象大致位置,并根据图象指出,当x满足时,y≥3.7.(2022•市南区校级二模)二次函数y=ax2+bx+c的图象如图所示,其对称轴是直线x=,点A的坐标为(1,0),AB垂直于x轴,连接CB,则下列说法一定正确的是()A.如图①,四边形ABCO是矩形B.在同一平面直角坐标系中,二次函数y=ax2+bx,一次函数y=ax+b和反比例函数y=的图象大致如图②所示C.在同一平面直角坐标系中,二次函数y=﹣x(ax+b)+c与反比例函数y=的图象大致如图③所示D.在同一平面直角坐标系中,一次函数y=bx﹣ac与反比例函数y=在的图象大致如图④所示三.反比例函数图象的对称性(共3小题)8.(2022•高要区一模)若正比例函数y=﹣2x与反比例函数y=图象的一个交点坐标为(﹣1,2),则另一个交点的坐标为()A.(2,﹣1)B.(1,﹣2)C.(﹣2,﹣1)D.(﹣2,1)9.(2022春•洪泽区月考)如图,已知直线y=mx与双曲线y=的一个交点坐标为(3,4),则它们的另一个交点坐标是.10.(2022•自贡模拟)如图,半径为2的两圆⊙O1和⊙O2均与x轴相切于点O,反比例函数(k>0)的图象与两圆分别交于点A,B,C,D,则图中阴影部分的面积是.(结果保留π)四.反比例函数的性质(共6小题)11.(2021秋•政和县期末)反比例函数中,反比例常数k的值为.12.(2022秋•青浦区期中)已知正比例函数y=中,y的值随x的值的增大而增大,那么它和反比例函数y=在同一平面直角坐标系内的大致图象可能是()A.B.C.D.13.(2021秋•丰宁县期末)已知反比例函数,则下列描述不正确的是()A.图象位于第一、第三象限B.图象必经过点C.图象不可能与坐标轴相交D.y随x的增大而减小14.(2022•威县校级模拟)如图,矩形ABCO在平面直角坐标系中,点A(﹣5,0),点C(0,6),双曲线L1:y=﹣(x<0)和双曲线L2:y=(x<0).[把矩形ABCO内部(不含边界)横、纵坐标均为整数的点称为“优点”](1)若k=﹣12,则L2和L1之间(不含边界)有个“优点”;(2)如果L2和L1之间(不含边界)有4个“优点”,那么k的取值范围为.15.(2022•杞县模拟)若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数,下面我们参照学习函数的过程与方法,探究分段函数y=的图象与性质,探究过程如下,请补充完整.(1)列表:x…﹣3﹣2﹣10123…y…m12101n…其中,m=,n=.(2)描点:在平面直角坐标系中,以自变量x的取值为横坐标,以相应的函数值y为纵坐标,描出相应的点,如图所示,请画出函数的图象.(3)研究函数并结合图象与表格,回答下列问题:①点,在函数图象上,则y1y2,x1x2;(填“>”,“=”或“<”)②当函数值时y=1,求自变量x的值.16.(2022•沙市区模拟)探究分段函数y=的图象与性质.列表:x…﹣1﹣012…y…210121…描点:描出相应的点,并连线,如图所示结合图象研究函数性质,回答下列问题:(1)点A(3,y1),B(5,y2),C(x1,),D(x2,6)在函数图象上,则y1y2,x1 x2;(填“>”、“=”或“<”)(2)当函数值y=2时,自变量x的值为;(3)在直角坐标系中作出y=x的图象;(4)当方程x+b=有三个不同的解时,则b的取值范围为.五.反比例函数系数k的几何意义(共5小题)17.(2022•茂南区二模)如图,两个反比例函数和在第一象限内的图象分别是l1和l2,设点P 在l1上,PC⊥x轴于点C,交l2于点A,PD⊥y轴于点D,交l2于点B,则四边形P AOB的面积为()A.k1+k2B.k1﹣k2C.k1k2D.k2﹣k118.(2022•河池)如图,点P(x,y)在双曲线y=的图象上,P A⊥x轴,垂足为A,若S△AOP=2,则该反比例函数的解析式为.19.(2022•开远市二模)若图中反比例函数的表达式均为,则阴影面积为2的是()A.B.C.D.20.(2022•靖江市二模)反比例函数,(n<0)的图象如图所示,点P为x轴上不与原点重合的一动点,过点P作AB∥y轴,分别与y1、y2交于A、B两点.(1)当n=﹣10时,求S△OAB;(2)延长BA到点D,使得DA=AB,求在点P整个运动过程中,点D所形成的函数图象的表达式.(用含有n的代数式表示).21.(2022•德城区模拟)如图,A、B两点在反比例函数y=(x>0)的图象上,其中k>0,AC⊥y轴于点C,BD⊥x轴于点D,且AC=1(1)若k=2,则AO的长为,△BOD的面积为;(2)若点B的横坐标为k,且k>1,当AO=AB时,求k的值.六.反比例函数图象上点的坐标特征(共9小题)22.(2022秋•合浦县期中)如图,点A是反比例函数图象上一点,则下列各点在该函数图象上的是()A.(﹣1,﹣1)B.(1,﹣1)C.D.(﹣2,1)23.(2021秋•碧江区期末)如图,△OAB、△BA1B1、△B1A2B2、…、△B n﹣1A n B n都是等边三角形,顶点A、A1、A2、…、A n在反比例函数(x>0)的图象上,则B2020的坐标是.24.(2022秋•杜集区校级月考)我们不妨约定:在平面直角坐标系中,若某函数图象上至少存在不同的两点关于直线x=n(n为常数)对称,则把该函数称之为“X(n)函数“.(1)在下列关于x的函数中,是“X(n)函数”的是(填序号);①;②y=|4x|;③y=x2﹣2x﹣5.(2)若关于x的函数y=|x﹣h|(h为常数)是“X(3)函数”,与(m为常数,m>0)相交于A (x A,y A)、B(x B,y B)两点,A在B的左边,x B﹣x A=5,则m=.25.(2022•思明区校级二模)阅读理解:若三个非零实数x,y,z满足:只要其中一个数的倒数等于另外两个数的倒数的和,则称这三个实数x,y,z构成“和谐三数组”.(1)若A(m,y1),B(m+1,y2),C(m+3,y3)三点均在反比例函数的图象上,且三点的纵坐标恰好构成“和谐三数组”,求实数m的值;(2)若实数a,b,c是“和谐三数组”,且满足a>b>c>0,求点与原点O的距离OP的取值范围.26.(2022•牧野区校级三模)如图,矩形ABCD的边BC在x轴上,E为对角线AC,BD的交点,点A,C 的坐标分别为A(﹣3,3),C(﹣1,0).(1)反比例函数y1=在第三象限的图象经过D点,求这个函数的解析式;(2)点E是否在函数y1=的图象上?说明理由;(3)一次函数y2=k2+b的图象经过点B,点D,根据图象直接写出不等式k2x+b<的解集.27.(2022•荷塘区校级二模)如图,点A(a,a),B(b,b)是直线y=x上在第一象限的两点,过A,B两点分别作y轴的平行线交双曲线y=(x>0)于C,D两点.(1)当b=2,BD=1时,求k的值;(2)当k=1时:①若AC=BD,求a与b的数量关系;②若AC=2BD,求4OD2﹣OC2的值.28.(2021秋•梧州期末)在函数y=(其中a≠0,a为常数)经过点A(x1,y1),B(x2,y2),C(x3,y3),且x3<0<x1<x2,则把y1、y2、y3按从小到大排列为.29.(2022•营口)如图,在平面直角坐标系中,△OAC的边OC在y轴上,反比例函数y=(x>0)的图象经过点A和点B(2,6),且点B为AC的中点.(1)求k的值和点C的坐标;(2)求△OAC的周长.30.(2022秋•东湖区期中)如图,在平面直角坐标系中,正方形OABC的顶点O在坐标原点,顶点A在y 轴上,顶点C在x轴上,反比例函数y=k的图象过AB边上一点E,与BC边交于点D,BE=2,OE=10.(1)求k的值;(2)直线y=ax+b过点D及线段AB的中点F,点P是直线OF上一动点,当PD+PC的值最小时,直接写出这个最小值.七.待定系数法求反比例函数解析式(共4小题)31.(2021秋•平泉市期末)如图,矩形ABCD的两边AD,AB的长分别为3,8,E是DC的中点,反比例函数的图象经过点E,与AB交于点F.(1)若点B的坐标为(﹣6,0),求m的值.(2)若AF﹣AE=2,求反比例函数的解析式.32.(2022•蓬江区一模)如图,在平面直角坐标系中,正方形ABCD的顶点A、B分别在x轴、y轴的正半轴上,反比例函数的图象经过点C,OA=2,OB=4.(1)求反比例函数的解析式;(2)若将正方形ABCD沿x轴向右平移得到正方形A'B'C'D',当点D'在反比例函数的图象上时,请求出点B'的坐标,并判断点B'是否在该反比例函数的图象上,说明理由.33.(2022•睢阳区二模)如图,平行四边形ABCD的面积为12,AB∥y轴,AB,CD与x轴分别交于点M,N,对角线AC,BD的交点为坐标原点,点A的坐标为(﹣2,1),反比例函数的图象经过点B,D.(1)求反比例函数的解析式;(2)点P为y轴上的点,连接AP,若△AOP为等腰三角形,求满足条件的点P的坐标.34.(2021秋•孟村县期末)已知y与x成反比例,当x=﹣1时,y=﹣6.(1)y与x的函数解析式为;(2)若点A(a,﹣4),B(b,﹣8)都在该反比例函数的图象上,则a,b的大小关系是.八.反比例函数与一次函数的交点问题(共5小题)35.(2022•市南区校级一模)如图,直线y=kx+3与x轴、y轴分别交于点B、C,与反比例函数y=交于点A、D,过D作DE⊥x轴于E,连接OA,OD,若A(﹣2,n),S△OAB:S△ODE=1:2.(1)求反比例函数的表达式;(2)求点C的坐标;(3)直接写出关于x不等式:>kx﹣3的解为.36.(2022•宝安区校级模拟)如图,一次函数y1=kx+b(k≠0)的图象与反比例函数y2=(m为常数且m ≠0)的图象都经过A(﹣1,2),B(2,﹣1),结合图象,则不等式kx>﹣b的解集是()A.x<﹣1B.﹣1<x<0C.x<﹣1或0<x<2D.﹣1<x<0或x>237.(2022•仁怀市模拟)如图,直线y=x﹣4分别与x轴,y轴交于点A,B,与反比例函数y=的图象交于点D,过点A作AC⊥x轴与反比例函数的图象相交于点C,若AC=AD,则k的值为()A.3B.4C.D.38.(2022•市南区校级二模)如图,在平面直角坐标系中,点A(﹣3,1),以点O为顶点作等腰直角三角形AOB,双曲线y1=在第一象限内的图象经过点B.设直线AB的表达式为y2=k2x+b,回答下列问题:(1)求双曲线y1=和直线AB的y2=k2x+b表达式;(2)当y1>y2时,求x的取值范围;(3)求△AOB的面积.39.(2022•吉阳区模拟)如图,函数y=与函数y=kx(k>0)的图象相交于A、B两点,AC∥y轴,BC∥x轴,则△ABC的面积等于()A.24B.18C.12D.6九.根据实际问题列反比例函数关系式(共3小题)40.(2022秋•滁州期中)某电子产品的售价为8000元,购买该产品时可分期付款:前期付款3000元,后期每个月分别付相同的数额,则每个月付款额y(元)与付款月数x(x为正整数)之间的函数关系式是()A.B.C.D.41.(2021•东胜区一模)A、B两地相距400千米,某人开车从A地匀速到B地,设小汽车的行驶时间为t 小时,行驶速度为v千米/小时,且全程限速,速度不超过100千米/小时.(1)写出v关于t的函数表达式;(2)若某人开车的速度不超过每小时80千米,那么他从A地匀速行驶到B地至少要多长时间?(3)若某人上午7点开车从A地出发,他能否在10点40分之前到达B地?请说明理由.42.(2021•杭州二模)某气球内充满了一定量的气体,当温度不变时,气球内气体的气压p(kPa)是气体体积V(m3)的反比例函数,其图象如图所示.(1)求这个函数的解析式;(2)当气体体积为1m3时,气压是多少?(3)当气球内的气压大于140kPa时,气球将爆炸,为了安全起见,气体的体积应不小于多少?(精确到0.01m3)一十.反比例函数的应用(共4小题)43.(2022秋•涟源市期中)如图1是一个亮度可调节的台灯,其灯光亮度的改变,可以通过调节总电阻控制电流的变化来实现.如图2是该台灯的电流I(A)与电阻R(Ω)成反比例函数的图象,该图象经过点P(880,0.25).根据图象可知,下列说法正确的是()A.当I<0.25时,R<880B.I与R的函数关系式是I=(R>0)C.当R>1000时,I>0.22D.当880<R<1000时,I的取值范围是0.22<I<0.2544.(2022•南阳二模)在对物体做功一定的情况下,力F(N)与此物体在力的方向上移动的距离s(m)成反比例函数关系,其图象如图所示,点P(4,3)在其图象上,则当力达到10N时,物体在力的方向上移动的距离是()A.2.4m B.1.2m C.1m D.0.5m45.(2022•邓州市二模)给定一个函数:y=x++1(x>0),为了研究它的图象与性质,并运用它的图象与性质解决实际问题,进行如下探索:(1)图象初探①列表如下x…1234…y…m3n…请直接写出m,n的值;②请在如下的平面直角坐标系中描出剩余两点,并用平滑的曲线画出该函数的图象.(2)性质再探请结合函数的图象,写出当x=,y有最小值为;(3)学以致用某农户要建造一个如图①所示的长方体无盖水池,其底面积为1平方米,深为1米.已知底面造价为3千元/平方米,侧面造价为0.5千元/平方米.设水池底面一边长为x米,水池总造价为y千元,可得到y与x的函数关系式为:y=x++3.根据以上信息,请回答以下问题:①水池总造价的最低费用为千元;②若该农户预算不超过5.5千元,请直接写出x的值应控制在什么范围?.46.(2021秋•丰南区期末)在工程实施过程中,某工程队接受一项开挖水渠的工程,所需天数y(天)与每天完成工程量x米的函数关系图象如图所示,是双曲线的一部分.(1)请根据题意,求y与x之间的函数表达式;(2)若该工程队有2台挖掘机,每台挖掘机每天能够开挖水渠30米,问该工程队需要用多少天才能完成此项任务?(3)工程队在(2)的条件下工作5天后接到防汛紧急通知,最多再给5天时间完成全部任务,则最少还需调配几台挖掘机?。
部编版初中九年级数学反比例函数(含中考真题解析答案)
部编版初中九年级数学反比例函数(含中考真题解析答案)反比例函数(含答案)?解读考点知识点 1.反比例函数概念反比例函数概2.反比例函数图象念、图象和性3.反比例函数的性质质 4.一次函数的解析式确定名师点晴会判断一个函数是否为反比例函数。
知道反比例函数的图象是双曲线,。
会分象限利用增减性。
能用待定系数法确定函数解析式。
会用数形结合思想解决此类问题.反比例函5.反比例函数中比例系数的几何能根据图象信息,解决相应的实际问题.数的应用意义能解决与三角形、四边形等几何图形相关的计算和证明。
?2年中考【2021年题组】y?1.(2021崇左)若反比例函数kx的图象经过点(2,-6),则k的值为()A.-12 B.12 C.-3 D.3【答案】A.【解析】y?试题分析:∵反比例函数kx的图象经过点(2,��6),∴k?2?(?6)??12,解得k=��12.故选A.考点:反比例函数图象上点的坐标特征. 2.(2021苏州)若点A(a,b)在反比例函数A.0 B.��2 C.2 D.��6 【答案】B.【解析】y?y?2x的图象上,则代数式ab��4的值为()试题分析:∵点(a,b)反比例函数22b?x上,∴a,即ab=2,∴原式=2��4=��2.故选B.考点:反比例函数图象上点的坐标特征. 3.(2021来宾)已知矩形的面积为10,长和宽分别为x和y,则y关于x的函数图象大致是()- 1 -A. B. C.D.【答案】C.考点:1.反比例函数的应用;2.反比例函数的图象.4.(2021河池)反比例函数y1?mx(x?0)的图象与一次函数y2??x?b的图象交于A,B两点,其中A(1,2),当y2?y1时,x的取值范围是()A.x<1 B.1<x<2 C.x>2 D.x<1或x>2 【答案】B.【解析】试题分析:根据双曲线关于直线y=x对称易求B(2,1).依题意得:如图所示,当1<x<2时,y2?y1.故选B.考点:反比例函数与一次函数的交点问题.- 2 -5.(2021贺州)已知k1?0?k2,则函数y?k1x和y?k2x?1的图象大致是()A.【答案】C.B.C. D.考点:1.反比例函数的图象;2.一次函数的图象. 6.(2021宿迁)在平面直角坐标系中,点A,B的坐标分别为(��3,0),(3,0),点P在y?反比例函数2x的图象上,若△PAB为直角三角形,则满足条件的点P的个数为()A.2个 B.4个 C.5个 D.6个【答案】D.【解析】y?试题分析:①当∠PAB=90°时,P点的横坐标为��3,把x=��3代入此时P点有1个;22y??x得3,所以2222222(x?3)?()(x?3)?()22x,PB=x,AB2 ②当∠APB=90°,设P(x,x),PA=222222(x?3)?()?(x?3)?()222(3?3)xxPA?PB?AB==36,因为,所以=36,整理得2x4?9x2?4?0,所以x2?9?659?65x2?22,或,所以此时P点有4个;y?22y?x得3,所以此时P点有1个;③当∠PBA=90°时,P点的横坐标为3,把x=3代入综上所述,满足条件的P点有6个.故选D.考点:1.反比例函数图象上点的坐标特征;2.圆周角定理;3.分类讨论;4.综合题.7.(2021自贡)若点(的点,并且x1,y1),(x2,y2),(x3,y3y??),都是反比例函数1x图象上y1?0?y2?y3,则下列各式中正确的是()- 3 -A.D.x1?x2?x3 B.x1?x3?x2 C.x2?x1?x3x2?x3?x1【答案】D.【解析】试题分析:由题意得,点(的点,且(x1,y1)xy,xy,(2,2)(3,3)都是反比例函数y??1x上y1?0?y2?y3,xy,xy位于第三象限,x?x3,则(2,2)(3,3)y随x的增大而增大,2 x1,y1)位于第一象限,x1最大,故x1、x2、x3的大小关系是x2?x3?x1.故选D.考点:反比例函数图象上点的坐标特征.8.(2021凉山州)以正方形ABCD两条对角线的交点O为坐标原点,建立如图所示的平面y?直角坐标系,双曲线3x经过点D,则正方形ABCD的面积是()A.10 B.11 C.12 D.13 【答案】C.考点:反比例函数系数k的几何意义.y?9.(2021眉山)如图,A、B是双曲线kx上的两点,过A点作AC⊥x轴,交OB于D点,垂足为C.若△ADO的面积为1,D为OB的中点,则k的值为()48A.3 B.3 C.3 D.4- 4 -【答案】B.考点:1.反比例函数系数k的几何意义;2.相似三角形的判定与性质. 10.(2021内江)如图,正方形ABCD位于第一象限,边长为3,点A在直线y=x上,点Ay?的横坐标为1,正方形ABCD的边分别平行于x轴、y轴.若双曲线有公共点,则k的取值范围为()kx与正方形ABCDA.1<k<9 B.2≤k≤34 C.1≤k≤16 D.4≤k<16 【答案】C.【解析】试题分析:点A在直线y=x上,其中A点的横坐标为1,则把x=1代入y=x解得y=1,则Ay?的坐标是(1,1),∵AB=BC=3,∴C点的坐标是(4,4),∴当双曲线kx经过点(1,1)时,k=1;当双曲线kx经过点(4,4)时,k=16,因而1≤k≤16.故选C.考点:1.反比例函数与一次函数的交点问题;2.综合题.- 5 -11.(2021孝感)如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函y?数1ky?x的图象上.若点B在反比例函数x的图象上,则k的值为()A.��4 B.4 C.��2 D.2【答案】A.考点:1.反比例函数图象上点的坐标特征;2.相似三角形的判定与性质;3.综合题.41012.(2021宜昌)如图,市煤气公司计划在地下修建一个容积为m3的圆柱形煤气储存室,则储存室的底面积S(单位:m2)与其深度d(单位:m)的函数图象大致是()- 6 -【答案】A.B. C. D.考点:1.反比例函数的应用;2.反比例函数的图象.y?13.(2021三明)如图,已知点A是双曲线2x在第一象限的分支上的一个动点,连接AO并延长交另一分支于点B,过点A作y轴的垂线,过点B作x轴的垂线,两垂线交于点C,随着点A的运动,点C的位置也随之变化.设点C的坐标为(m,n),则m,n满足的关系式为()A.n??2m B.【答案】B.【解析】n??24n??m C.n??4m D.m2试题分析:∵点C的坐标为(m,n),∴点A的纵坐标是n,横坐标是:n,∴点A 的坐22标为(n,n),∵点C的坐标为(m,n),∴点B的横坐标是m,纵坐标是:m,∴点B2nm?2222mmn??mn,∴m2n2?4,又∵m<0,n>0,∴的坐标为(m,m),又∵n,∴- 7 -mn??2,∴n??2m,故选B.考点:反比例函数图象上点的坐标特征.y?14.(2021株洲)从2,3,4,5中任意选两个数,记作a和b,那么点(a,b)在函数图象上的概率是()12x1111A.2 B.3 C.4 D.6【答案】D.考点:1.列表法与树状图法;2.反比例函数图象上点的坐标特征.OA3?OB4.15.(2021乌鲁木齐)如图,在直角坐标系xOy中,点A,B分别在x轴和y轴,∠y?AOB的角平分线与OA的垂直平分线交于点C,与AB交于点D,反比例函数kx的图象2过点C.当以CD为边的正方形的面积为7时,k的值是()- 8 -A.2 B.3 C.5 D.7 【答案】D.考点:1.反比例函数综合题;2.综合题;3.压轴题. 16.(2021重庆市)如图,在平面直角坐标系中,菱形ABCD在第一象限内,边BC与x轴y?平行,A,B两点的纵坐标分别为3,1.反比例函数ABCD的面积为()3x的图象经过A,B两点,则菱形A.2 B.4 C.22 D.42 【答案】D.【解析】y?试题分析:过点A作x轴的垂线,与CB的延长线交于点E,∵A,B两点在反比例函数3x的图象上且纵坐标分别为3,1,∴A,B横坐标分别为1,3,∴AE=2,BE=2,∴AB=22,S菱形ABCD=底×高=22×2=42,故选D.- 9 -考点:1.菱形的性质;2.反比例函数图象上点的坐标特征;3.综合题.17.(2021临沂)在平面直角坐标系中,直线y??x?2与反比例函数1y?x的图象有2个公共点,则b的取值范围是公共点,若直线y??x?b与反比例函数()y?1x的图象有唯一A.b>2 B.��2<b<2 C.b>2或b<��2 D.b<��2 【答案】C.考点:反比例函数与一次函数的交点问题. 18.(2021滨州)如图,在x轴的上方,直角∠BOA绕原点O按顺时针方向旋转,若∠BOA12y??y?x、x的图象交于B、A两点,则∠OAB的大小的变化趋势为的两边分别与函数()- 10 -A.逐渐变小 B.逐渐变大 C.时大时小 D.保持不变【答案】D.考点:1.相似三角形的判定与性质;2.反比例函数图象上点的坐标特征;3.综合题. 19.(2021扬州)已知一个正比例函数的图象与一个反比例函数的一个交点坐标为(1,3),则另一个交点坐标是.【答案】(��1,��3).【解析】试题分析:∵反比例函数的图象与经过原点的直线的两个交点一定关于原点对称,∴另一个交点的坐标与点(1,3)关于原点对称,∴该点的坐标为(��1,��3).故答案为:(��1,��3).考点:反比例函数图象的对称性.20.(2021泰州)点(a��1,1)、(a+1,2)在反比例函数yyy?k?k?0?x的图象上,若y1?y2,- 11 -则a的范围是.【答案】��1<a<1.考点:1.反比例函数图象上点的坐标特征;2.分类讨论.y?21.(2021南宁)如图,点A在双曲线23ky?x(x?0)上,x(x?0)点B在双曲线上(点B在点A的右侧),且AB∥x轴.若四边形OABC是菱形,且∠AOC=60°,则k= .【答案】63.【解析】y?试题分析:因为点A在双曲线2323x(x?0)上,设A点坐标为(a,a),因为四23边形OABC是菱形,且∠AOC=60°,所以OA=2a,可得B点坐标为(3a,a),可得:3a?k=23a=63,故答案为:63.考点:1.菱形的性质;2.反比例函数图象上点的坐标特征;3.综合题. 22.(2021桂林)如图,以?ABCO的顶点O为原点,边OC所在直线为x轴,建立平面直y?角坐标系,顶点A、C的坐标分别是(2,4)、(3,0),过点A的反比例函数交BC于D,连接AD,则四边形AOCD的面积是.kx的图象- 12 -【答案】9.考点:1.平行四边形的性质;2.反比例函数系数k的几何意义;3.综合题;4.压轴题. 23.(2021贵港)如图,已知点A1,A2,…,An均在直线y?x?1上,点B1,B2,…,y??Bn均在双曲线1x上,并且满足:A1B1⊥x轴,B1A2⊥y轴,A2B2⊥x轴,B2A3⊥y轴,…,AnBn⊥x轴,BnAn+1⊥y轴,…,记点An的横坐标为an(n为正整数).若则a2021= .a1??1,【答案】2.- 13 -考点:1.反比例函数图象上点的坐标特征;2.一次函数图象上点的坐标特征;3.规律型;4.综合题.24.(2021南京)如图,过原点O的直线与反比例函数y1,y2的图象在第一象限内分别交于点A,B,且A为OB的中点,若函数y1?1x,则y2与x的函数表达式是.【答案】【解析】y2?4x.试题分析:过A作AC⊥x轴于C,过B作BD⊥x轴于D,∵点A在反比例函数y1?1x上,11∴设A(a,a),∴OC=a,AC=a,∵AC⊥x轴,BD⊥x轴,∴AC∥BD,∴△OAC∽△ACOCOAACOCOA12?????OBD,∴BDODOB,∵A为OB的中点,∴BDODOB2,∴BD=2AC=a,- 14 -2k2y2?2a??4yx,∴k=aOD=2OC=2a,∴B(2a,a),设,∴2与x的函数表达式是:y2?44y2?x.故答案为:x.考点:1.反比例函数与一次函数的交点问题;2.综合题;3.压轴题.y?25.(2021攀枝花)如图,若双曲线kx(k?0)与边长为3的等边△AOB(O为坐标原点)的边OA、AB分别交于C、D两点,且OC=2BD,则k的值为.363【答案】25.- 15 -考点:1.反比例函数图象上点的坐标特征;2.等边三角形的性质;3.综合题.93(x>0)y?x26.(2021荆门)如图,点A1,A2依次在的图象上,点B1,B2依次在x轴的正半轴上,若△A1OB1,△A2B1B2均为等边三角形,则点B2的坐标为.【答案】(62,0).- 16 -考点:1.反比例函数图象上点的坐标特征;2.等边三角形的性质;3.综合题;4.压轴题. 27.(2021南平)如图,在平面直角坐标系xOy中,△OAB的顶点A在x轴正半轴上,OCy?是△OAB的中线,点B,C在反比例函数于.3x(x?0)的图象上,则△OAB的面积等9【答案】2.考点:1.反比例函数系数k的几何意义;2.综合题. 28.(2021烟台)如图,矩形OABC的顶点A、C的坐标分别是(4,0)和(0,2),反比y?例函数kx(x>0)的图象过对角线的交点P并且与AB,BC分别交于D,E两点,连接OD,OE,DE,则△ODE的面积为.- 17 -15【答案】4.考点:1.反比例函数系数k的几何意义;2.反比例函数综合题;3.综合题. 29.(2021玉林防城港)已知:一次函数y??2x?10的图象与反比例函数y?kx(k?0)的图象相交于A,B两点(A在B的右侧).(1)当A(4,2)时,求反比例函数的解析式及B点的坐标;(2)在(1)的条件下,反比例函数图象的另一支上是否存在一点P,使△PAB是以AB为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.(3)当A(a,��2a+10),B(b,��2b+10)时,直线OA与此反比例函数图象的另一支交BC5?BD2,求△ABC的面积.于另一点C,连接BC交y轴于点D.若y?【答案】(1)81?x,B(1,8);(2)(��4,��2)、(��16,2);(3)10.- 18 -【解析】y?试题分析:(1)把点A的坐标代入kx,就可求出反比例函数的解析式;解一次函数与反比例函数的解析式组成的方程组,就可得到点B的坐标;(2)①若∠BAP=90°,过点A作AH⊥OE于H,设AP与x轴的交点为M,如图1,对于y=��2x+10,当y=0时,��2x+10=0,解得x=5,∴点E(5,0),OE=5.∵A(4,2),∴OH=4,AH=2,∴HE=5��4=1.∵AH⊥OE,∴∠AHM=∠AHE=90°.又∵∠BAP=90°,∴∠AME+∠AEM=90°,∠AME+∠MAH=90°,∴∠MAH=∠AEM,∴△AHM∽△EHA,∴AHMH2MH??EHAH,∴12,∴MH=4,∴M(0,0),可设直线AP的解析式为y?mx,1?y?x??2??x?4811?y??y?xy?2?x,2,则有4m?2,解得m=2,∴直线AP的解析式为解方程组?得:??x??4?y??2,∴点P的坐标为(��4,��2)或?.1②若∠ABP=90°,同理可得:点P的坐标为(��16,2).?- 19 -1综上所述:符合条件的点P的坐标为(��4,��2)、(��16,2);?(3)过点B作BS⊥y轴于S,过点C作CT⊥y轴于T,连接OB,如图2,则有BS∥CT,CDCTBC5CTCD3????BD2.∵A(a,��2a+10)∴△CTD∽△BSD,∴BDBS.∵BD2,∴BS,B(b,��2b+10),∴C(��a,2a��考点:1.反比例函数综合题;2.待定系数法求一次函数解析式;3.反比例函数与一次函数的交点问题;4.相似三角形的判定与性质;5.压轴题.【2021年题组】1. (2021年湖南湘潭)如图,A、B两点在双曲线线段,已知S阴影=1,则S1+S2=()y?4x上,分别经过A、B两点向轴作垂- 20 -④若OABC是菱形,则两双曲线既关于x轴对称,也关于y轴对称.其中正确的结论是(把所有正确的结论的序号都填上).【答案】①④.考点:1.反比例函数综合题;2. 反比例函数的图象和k的几何意义;3.平行四边形、矩形的性质和菱形的性质.- 26 -9. (2021年湖北荆州)如图,已知点A是双曲线y?2x在第一象限的分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边△ABC,点C在第四象限.随着点A的运动,点C的位置也不断变化,但点C始终在双曲线是.y?kx(k<0)上运动,则k的值【答案】��6.考点:1.单动点问题;2.曲线上点的坐标与方程的关系;3. 等边三角形的性质;4.相似三角形的判定和性质;5.锐角三角函数定义;6.特殊角的三角函数值.- 27 -10. (2021年江苏淮安)如图,点A(1,6)和点M(m,n)都在反比例函数y?kx(x>0)的图象上,(1)k的值为;(2)当m=3,求直线AM的解析式;(3)当m>1时,过点M作MP⊥x轴,垂足为P,过点A作AB⊥y轴,垂足为B,试判断直线BP与直线AM的位置关系,并说明理由.【答案】(1)6;(2)y=��2x+8;(3)直线BP与直线AM的位置关系为平行,.- 28 -考点:1.反比例函数综合题;2.待定系数法的应用;3.曲线上点的坐标与方程的关系;4.相似三角形的判定和性质;5.平行的判定.?考点归纳归纳 1:反比例函数的概念基础知识归纳:一般地,函数(k是常数,k0)叫做反比例函数。
初中数学 北师大版 九年级上学期期末备考压轴题专项习题:反比例函数(含答案)
数学九年级(北师大版)上学期期末备考压轴题专项习题:反比例函数1.如图,O为坐标原点,点B在x轴的正半轴上,四边形OACB是平行四边形,OA=10,sin∠AOB=,反比例函数y=kx﹣1(k>0)在第一象限内的图象经过点A,与BC交于点F.(1)求反比例函数的表达式;(2)若点F为BC的中点,求△OBF的面积.2.如图,已知一次函数y=kx+b的图象交反比例函数的图象于点A(2,﹣4)和点B(n,﹣2),交x轴于点C.(1)求这两个函数的表达式;(2)求△AOB的面积;(3)请直接写出使一次函数值大于反比例函数值的x的范围.3.如图,A(4,3)是反比例函数y=在第一象限图象上一点,连接OA,过A作AB∥x 轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=的图象于点P.(1)求反比例函数y=的表达式;(2)求点B的坐标及OB所在直线解析式;(3)求△OAP的面积.4.如图,在平面直角坐标系中,四边形ABCD为正方形,已知点A(﹣6,0)、D(﹣7,3),点B、C在第二象限内.(1)点B的坐标;(2)将正方形ABCD以每秒2个单位的速度沿x轴向右平移t秒,若存在某一时刻t,使在第一象限内点B、D两点的对应点B'、D'正好落在某反比例函数的图象上,请求出此时t的值以及这个反比例函数的解析式;(3)在(2)的情况下,问是否存在y轴上的点P和反比例函数图象上的点Q,使得以P、Q、B'、D'四个点为顶点的四边形是平行四边形?若存在,请直接写出符合题意的点P、Q的坐标;若不存在,请说明理由.5.如图,直线y=x与反比例函数y=(x>0)的图象相交于点D,点A为直线y=x上一点,过点A作AC⊥x轴于点C,交反比例函数y=(x>0)的图象于点B,连接BD.(1)若点B的坐标为(8,2),则k=,点D的坐标为;(2)若AB=2BC,且△OAC的面积为18,求k的值及△ABD的面积.6.如图,已知反比例函数y=与一次函数y=x+b的图象在第一象限相交于点A(1,﹣k+4).(1)试确定这两个函数的表达式;(2)求△AOB的面积;(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.7.如图,在平面直角坐标系中,△ABC的顶点A在x轴负半轴上,顶点C在x轴正半轴上,顶点B在第一象限,过点B作BD⊥y于点D,A(﹣6,0),C(6,0),tan∠ACB =2,∠BAC=45°(1)则AC=;(2)反比例函数y=的图象经过点B,求k的值;(3)在线段OD上是否存在点P,使以P,B,D为顶点的三角形与以P,O,A为顶点的三角形相似?若存在,请直接写出满足条件的点P的坐标(不用写过程);若不存在,请说明理由.8.“凡此变数中函彼变数者,则此为彼之函数”这是我国著名数学家李善兰给出的“(function)函数”翻译,一次函数、二次函数、反比例函数是初中阶段必须掌握的三大初等函数.(1)已知一次函数y=kx+b与反比例函数相交于A(1,6),B(n,2)两点,求这两个函数的解析式及由坐标系原点O,A,B围成的三角形的面积;(2)已知实数m,n(m<n)在二次函数y=x2+3x﹣4对称轴的同一侧,当m≤x≤n时,y的取值范围为,求出m,n的值;(3)已知直线y=2tx﹣2和抛物线y=(t2﹣1)x2﹣1在y轴左边相交于A,B两点,点C是线段AB的中点,经过C,D(﹣2,0)的直线交y轴于点H(0,h),求h取值范围.9.如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A(,1)在反比例函数y=的图象上.(1)求反比例函数y=的表达式;(2)求△AOB的面积;(3)在坐标轴上是否存在一点P,使得以O、B、P三点为顶点的三角形是等腰三角形若存在,请直接写出所有符合条件的点P的坐标:若不存在,简述你的理由.10.如图,点A(a,b)是双曲线y=(x>0)上的一点,点P是x轴负半轴上的一动点,AC⊥y轴于C点,过A作AD⊥x轴于D点,连接AP交y轴于B点.(1)△P AC的面积是;(2)当a=2,P点的坐标为(﹣2,0)时,求△ACB的面积;(3)当a=2,P点的坐标为(x,0)时,设△ACB的面积为S,试求S与x之间的函数关系.11.直线y=kx+b与反比例函数(x>0)的图象分别交于点A(m,4)和点B(8,n),与坐标轴分别交于点C和点D.(1)求直线AB的解析式;(2)观察图象,当x>0时,直接写出的解集;(3)若点P是x轴上一动点,当△COD与△ADP相似时,求点P的坐标.12.已知一次函数y=kx+b的图象与反比例函数y=的图象交于点A,与x轴交于点B(5,0),若OB=AB,且S=.△OAB(1)求反比例函数与一次函数的表达式;(2)若点P为x轴上一点,△ABP是等腰三角形,求点P的坐标.13.如图,双曲线y=(x>0)经过△AOB的点顶A(2,3),AB∥x轴,OB交双曲线于点C,且OB=3OC(1)求k的值;(2)连接AC,求点C的坐标和△ABC的面积.14.如图,在平面直角坐标系xOy中,菱形ABCD的对角线AC与BD交于点P(﹣1,2),AB⊥x轴于点E,正比例函数y=mx的图象与反比例函数y=的图象相交于A,P两点.(1)求m,n的值与点A的坐标;(2)求证:△CPD∽△AEO;(3)求sin∠CDB的值.15.如图,已知一次函数y=mx﹣4(m≠0)的图象分别交x轴,y轴于A(﹣4,0),B两点,与反比例函数y=(k≠0)的图象在第二象限的交点为C(﹣5,n)(1)分别求一次函数和反比例函数的表达式;(2)点P在该反比例函数的图象上,点Q在x轴上,且P,Q两点在直线AB的同侧,若以B,C,P,Q为顶点的四边形是平行四边形,求满足条件的点P和点Q的坐标.参考答案1.解:(1)如图,过点A 作AH ⊥OB 于H , ∵sin ∠AOB =,OA =10, ∴AH =8,OH =6, ∴A 点坐标为(6,8),代入反比例函数y =kx ﹣1(k >0)可得:k =6×8=48, ∴反比例函数解析式:y =;(2)如图,过点F 作FM ⊥x 轴于M , ∵四边形AOBC 是平行四边形, ∴AO ∥BC ,AO =CB =10, ∴∠AOB =∠FBM , ∵sin ∠AOB =, ∴sin ∠FBM =, ∵点F 为BC 的中点, ∴BF =5,∵AH =8,OH =6, ∴FM =4,BM =3, ∴S △BFM =6,∵F 在反比例函数图象上, ∴S △OFM =24,∴S △OBF =S △OFM ﹣S △BFM =18.2.解:(1)把A(2,﹣4)的坐标代入得:,∴4﹣2m=﹣8,反比例函数的表达式是;把B(n,﹣2)的坐标代入得,解得:n=4,∴B点坐标为(4,﹣2),把A(2,﹣4)、B(4,﹣2)的坐标代入y=kx+b得,解得,∴一次函数表达式为y=x﹣6;(2)当y=0时,x=0+6=6,∴OC=6,∴△AOB的面积=×6×4﹣×6×2=6;(3)由图象知,一次函数值大于反比例函数值的x的范围为0<x<2或x>4.3.解:(1)将点A(4,3)代入y=(k≠0),得:k=12,则反比例函数解析式为y=;(2)如图,过点A作AC⊥x轴于点C,则OC=4、AC=3,∴OA==5,∵AB∥x轴,且AB=OA=5,∴点B的坐标为(9,3);设OB所在直线解析式为y=mx(m≠0),将点B(9,3)代入得m=,∴OB所在直线解析式为y=x;(3)联立解析式:解得:,可得点P坐标为(6,2),过点P作PD⊥x轴,延长DP交AB于点E,连接AP,则点E坐标为(6,3),∴AE=2,PE=1,PD=2,则△OAP的面积=×(2+6)×3﹣×6×2﹣×2×1=5.4.解:(1)如图,过点B、D分别作BH⊥x轴、DG⊥x轴交于点H、G,∵点A(﹣6,0)、D(﹣7,3),∴OA=6,OG=7,DG=3,∴AG=OG﹣OA=1,∵∠DAG+∠BAH=90°,∠DAG+∠GDA=90°,∴∠GDA=∠BAH,又∠DGA=∠AHB=90°,AD=AB,∴△DGA≌△AHB(AAS),∴DG=AH=3,BH=AG=1,∴点B坐标为(﹣3,1);(2)由(1)知,B(﹣3,1),∵D(﹣7,3)∴运动t秒时,点D'(﹣7+2t,3)、B'(﹣3+2t,1),设反比例函数解析式为y=,∵点B',D'在反比例函数图象上,∴k=(﹣7+2t)×3=(﹣3+2t)×1,∴,k=6,∴反比例函数解析式为;(3)存在,理由:由(2)知,点D'(﹣7+2t,3)、B'(﹣3+2t,1),t=,∴D'(2,3)、B'(6,1),由(2)知,反比例函数解析式为y=,设点Q(m,),点P(0,s),以P、Q、B'、D'四个点为顶点的四边形是平行四边形,∴①当PQ与B'D'是对角线时,∴(0+m)=(2+6),(s+)=(3+1),∴m=8,s=,∴Q(8,),P(0,),②当PB'与QD'是对角线时,∴(0+6)=(2+m),(s+1)=(+3),∴m=4,s=,∴Q(4,),P(0,).③当PD'与QB'是对角线时,∴(0+2)=(m+6),(s+3)=(+1),∴m=﹣4,s=﹣,∴Q(﹣4,﹣),P(0,﹣),综上:Q(8,),P(0,)或Q(4,),P(0,)或Q(﹣4,﹣),P(0,﹣).5.解:(1)把B(8,2)代入y=得:k=2×8=16,∴反比例函数的关系式为y=,由题意得:解得:,(舍去)∴点D的坐标为(4,4)故答案为:16,(4,4)(2)过点D作DE⊥OC,DF⊥AC,垂足为E、F,如图所示:∵点A在第一象限y=x上,∴AC=OC,又∵△OAC的面积为18,∴AC=OC=6,∵AB=2BC,∴AB=4,BC=2,∴点B(6,2),代入y=得,k=12;设点D(a,a)代入y=得,a=(a>0)∴D (,),即OE =DE =,∴DF =EC =OC ﹣OE =6﹣,∴△ABD 的面积=AB •DF =×4×(6﹣)=12﹣;因此k 的值为12,∴△ABD 的面积为12﹣.6.解:(1)∵已知反比例函数y =与一次函数y =x +b 的图象在第一象限相交于点A (1,﹣k +4), ∴﹣k +4=k , 解得k =2,故反比例函数的解析式为y =,又知A (1,2)在一次函数y =x +b 的图象上, 故2=1+b , 解得b =1,故一次函数的解析式为y =x +1; (2)由题意得:,解得x =﹣2或1, ∴B (﹣2,﹣1),令y =0,得x +1=0,解得x =﹣1, ∴C (﹣1,0), ∴S △AOB =S △AOC +S △COB =×1×2+×1×1 =1+ =1.5;(3)由图象可知,当一次函数的值大于反比例函数值时,x的取值范围是x>1或﹣2<x <0.7.解:(1)6﹣(﹣6)=12.故答案为:12.(2)过点B作BE⊥x轴,如图1所示.设BE=m,则CE==m,AE==m.∵AE+CE=12,∴m+m=12,∴m=8,∴OE=OC﹣CE=6﹣×8=2.∴点B的坐标为(2,8).(3)∵点B的坐标为(2,8),BD⊥y于点D,∴点D的坐标为(0,8),∴BD=2.∵点A的坐标为(﹣6,0),∴OA=6.设点P的坐标为(0,n)(0<n<8),则OP=n,DP=8﹣n.∵∠AOP=∠BDP=90°,以P,B,D为顶点的三角形与以P,O,A为顶点的三角形相似,∴=或=,即=或=,解得:n=2或n=6,∴在线段OD上存在点P(0,2)或(0,6),使以P,B,D为顶点的三角形与以P,O,A为顶点的三角形相似.8.解:(1)∵A(1,6),B(n,2)在反比例函数的图象上,∴m=6,∴反比例函数的解析式是y=,∴2n=6,解得n=3,∴B(3,2),∵一次函数y=kx+b与反比例函数y=的图象交于A、B两点.∴,解得,∴一次函数解析式为y=﹣2x+8;设直线y=﹣2x+8与x轴相交于点C,C的坐标是(4,0).S△AOB =S△AOC﹣S△BOC=OC|y A|﹣OC|y B)=8;(2)分两种情况讨论:①当m<n<﹣,即m、n在对称轴的左侧时,二次函数y的值随x增大而减小,∵,∴方程组中的第一个方程×n得,n3+3n2﹣4n=12∴(n+2)(n﹣2)(n+3)=0解得n=﹣2或2或﹣3,同理由方程组中的第二个方程×m得m=﹣2或2或3,∵m<n<﹣,∴m=﹣3,n=﹣2;②当﹣<m<n,即m、n在对称轴的右侧时,二次函数y的值随x增大而增大,∵,,方程①×n﹣2×m,得m2n﹣n2m+4(m﹣n)=0,∴(mn+4)(m﹣n)=0,∵m﹣n≠0,∴mn+4=0,m=﹣,将m=﹣代入方程②得,n2+3n﹣4=﹣3n,∴n=﹣3±∵n>﹣n=﹣3+∴m=﹣3﹣<﹣,与上述﹣<m<n矛盾,∴没有满足的m、n.综上,在对称轴的左侧存在实数m、n,当m≤x≤n时,y的取值范围为,此时m=﹣3,n=﹣2;(3)设点A(x1,y1)、B(x2,y2),则x1、x2是方程2tx﹣2=(t2﹣1)x2﹣1即(t2﹣1)x2﹣2tx+1=0,解得x1=,x2=,∴x1+x2=,y1+y2=2tx1﹣2+2tx2﹣2=2t(x1+x2)﹣4=.∵点C是AB的中点,∴点C的坐标为(,)即(,).设直线DC的解析式为y=mx+n,则有,解得.∴直线与y轴的交点纵坐标h=n=.∵点A、B在y轴的左侧,∴x1=<0且x2=<0,解得t<﹣1.设k=2t2+t﹣1,则有h=,k=2(t+)2﹣,∵2>0,∴当t<﹣1时k随着t的增大而减小,∴k>2(﹣1+)2﹣即k>﹣1,对于h=,①当﹣1<k<0时,h<﹣4;②当k>0时,h>0,∴直线与y轴的交点纵坐标h的取值范围是h<﹣4或h>0.9.解:(1)将A(,1)代入y=,得:1=,解得:k=,∴反比例函数的表达式为y=.(2)∵点A的坐标为(,1),AB⊥x轴于点C,∴OC=,AC=1,∴OA==2=2AC,∴∠AOC=30°.∵OA⊥OB,∴∠AOB=90°,∴∠B=∠AOC=30°,∴AB=2OA=4,=AB•OC=×4×=2.∴S△AOB(3)在Rt△AOB中,OA=2,∠AOB=90°,∠ABO=30°,∴OB==2.分三种情况考虑:①当OP=OB时,如图2所示,∵OB=2,∴OP=2,∴点P的坐标为(﹣2,0),(2,0),(0,﹣2),(0,2);②当BP=BO时,如图3,过点B做BD⊥y轴于点D,则OD=BC=AB﹣AC=3,∵BP=BO,∴OP=2OC=2或OP=2OD=6,∴点P的坐标为(2,0),(0,﹣6);③当PO=PB时,如图4所示.若点P在x轴上,∵PO=PB,∠BOP=60°,∴△BOP为等边三角形,∴OP=OB=2,∴点P的坐标为(2,0);若点P在y轴上,设OP=a,则PD=3﹣a,∵PO=PB,∴PB2=PD2+BD2,即a2=(3﹣a)2+12,解得:a=2,∴点P的坐标为(0,﹣2).综上所述:在坐标轴上存在一点P,使得以O、B、P三点为顶点的三角形是等腰三角形,点P的坐标为(﹣2,0),(2,0),(0,﹣2),(0,2),(0,﹣6),(0,﹣2).10.解:(1)∵点A(a,b)是双曲线y=(x>0)上,∴ab=8,∵AC⊥y轴于C点,AD⊥x轴于D点,∴AC=a,AD=b,∴△P AC的面积=AD•AC=ab=4;故答案为:4;(2)∵a=2,∴b=4,∴AC=2,AD=4,A(2,4),设直线AP的解析式为y=kx+b,∴,∴,∴直线AP的解析式为y=x+2,∴B(0,2),∴S=AC•BC==2;△ABC(3)同理直线AP的解析式为y=﹣,∴B(0,﹣),∴BC=4+=∴S=×2×=.11.解:(1)∵点A(m,4)和点B(8,n)在y=图象上,∴m==2,n==1,即A(2,4),B(8,1)把A(2,4),B(8,1)两点代入y=kx+b中得解得:,所以直线AB的解析式为:y=﹣x+5;(2)由图象可得,当x>0时,kx+b>的解集为2<x<8.(3)由(1)得直线AB的解析式为y=﹣x+5,当x=0时,y=5,∴C(0,5),∴OC=5,当y=0时,x=10,∴D点坐标为(10,0)∴OD=10,∴CD==5∵A(2,4),∴AD==4设P点坐标为(a,0),由题可以,点P在点D左侧,则PD=10﹣a 由∠CDO=∠ADP可得①当△COD∽△APD时,,∴,解得a=2,故点P坐标为(2,0)②当△COD∽△P AD时,,∴,解得a=0,即点P的坐标为(0,0)因此,点P的坐标为(2,0)或(0,0)时,△COD与△ADP相似.12.解:(1)如图1,过点A作AD⊥x轴于D,∵B(5,0),∴OB=5,∵S=,△OAB∴×5×AD=,∴AD=3,∵OB=AB,∴AB=5,在Rt△ADB中,BD==4,∴OD=OB+BD=9,∴A(9,3),将点A坐标代入反比例函数y=中得,m=9×3=27,∴反比例函数的解析式为y=,将点A(9,3),B(5,0)代入直线y=kx+b中,,∴,∴直线AB的解析式为y=x﹣;(2)由(1)知,AB=5,∵△ABP是等腰三角形,∴①当AB=PB时,∴PB=5,∴P(0,0)或(10,0),②当AB=AP时,如图2,由(1)知,BD=4,易知,点P与点B关于AD对称,∴DP=BD=4,∴OP=5+4+4=13,∴P(13,0),③当PB=AP时,设P(a,0),∵A(9,3),B(5,0),∴AP2=(9﹣a)2+9,BP2=(5﹣a)2,∴(9﹣a)2+9=(5﹣a)2∴a=,∴P(,0),即:满足条件的点P的坐标为(0,0)或(10,0)或(13,0)或(,0).13.解:(1)把A (2,3)代入y =得:k =2×3=6, 答:k 的值为:6.(2)过点A 、C 、B 分别作AF ⊥x 轴,CD ⊥x 轴,BE ⊥x 轴,垂足为F 、D 、E , ∵A (2,3) ∴OF =2,AF =3, 由△OCD ∽△OBE 得:,∴CD =1,把y =1代入y =得:x =6, ∴C (6,1), ∴OE =18,∴S △OAB =S 梯形OABE ﹣S △OBE =(18+16)×3﹣×18×3=24, ∵OB =3OC , ∴S △ABC =S △AOB ==16.答:点C 的坐标为(6,1),△ABC 的面积为16.14.(1)解:将点P(﹣1,2)代入y=mx,得:2=﹣m,解得:m=﹣2,∴正比例函数解析式为y=﹣2x;将点P(﹣1,2)代入y=,得:2=﹣(n﹣3),解得:n=1,∴反比例函数解析式为y=﹣.联立正、反比例函数解析式成方程组,得:,解得:,,∴点A的坐标为(1,﹣2).(2)证明:∵四边形ABCD是菱形,∴AC⊥BD,AB∥CD,∴∠DCP=∠BAP,即∠DCP=∠OAE.∵AB⊥x轴,∴∠AEO=∠CPD=90°,∴△CPD∽△AEO.(3)解:∵点A的坐标为(1,﹣2),∴AE=2,OE=1,AO==.∵△CPD∽△AEO,∴∠CDP=∠AOE,∴sin∠CDB=sin∠AOE===.15.解:(1)∵点A是一次函数y=mx﹣4的图象上,∴﹣4m﹣4=0,∴m=﹣1,∴一次函数的解析式为y=﹣x﹣4,∵点C(﹣5,n)是直线y=﹣x﹣4上,∴n=﹣(﹣5)﹣4=1,∴C(﹣5,1),∵点C(﹣5,1)是反比例函数y=(k≠0)的图象上,∴k=﹣5×1=﹣5,∴反比例函数的解析式为y=﹣;(2)由(1)知,C(﹣5,1),直线AB的解析式为y=﹣x﹣4,∴B(0,﹣4),设点Q(q,0),P(p,﹣),∵以B,C,P,Q为顶点的四边形是平行四边形,且P,Q两点在直线AB的同侧,∴①当BP与CQ是对角线时,∴BP与CQ互相平分,∴,∴,∴P(﹣1,5),Q(4,0)②当BQ与CP是对角线时,∴BQ与CP互相平分,∴,∴,∴P(﹣1,5),Q(﹣4,0),此时,点C,Q,B,P在同一条线上,不符合题意,舍去,即以B,C,P,Q为顶点的四边形是平行四边形,点P(﹣1,5),点Q(4,0).。
北师大版九年级数学上学期期末压轴题培优第六章:反比例函数(含答案)
九年级上学期期末压轴题培优:反比例函数1.如图,在平面直角坐标系xOy中,反比例函数y=(x>0)的图象和△ABC都在第一象限内,AB=AC=,BC∥x轴,且BC=4,点A的坐标为(3,5).(1)若反比例函数y=(x>0)的图象经过点B,求此反比例函数的解析式;(2)若将△ABC向下平移m(m>0)个单位长度,A,C两点的对应点同时落在反比例函数图象上,求m的值.解:(1)∵AB=AC=,BC=4,点A(3,5).∴B(1,),C(5,),若反比例函数y=(x>0)的图象经过点B,则=,解得,k=,∴反比例函数的解析式为y=;(2)∵点A(3,5).C(5,),将△ABC向下平移m个单位长度,∴A(3,5﹣m),C(5,﹣m),∵A,C两点同时落在反比例函数图象上,∴3(5﹣m)=5(﹣m),∴m=.2.一次函数y =kx +b 的图象与反比例函数y =的图象相交于A (﹣1,m ),B (n ,1)两点.(1)求出这个一次函数的表达式; (2)求△OAB 的面积.解:(1)把A (﹣1,m ),B (n ,﹣1)分别代入y =得﹣m =﹣2,﹣n =﹣2,解得m=2,n =2,所以A 点坐标为(﹣1,2),B 点坐标为(2,﹣1),把A (﹣1,2),B (2,﹣1)代入y =kx +b 得,解得,所以这个一次函数的表达式为y =﹣x +1; (2)设直线AB 交y 轴于P 点,如图, 当x =0时,y =1,所以P 点坐标为(0,1),所以S △OAB =S △AOP +S △BOP =×1×1+×1×2=.3.如图所示,已知双曲线y=(k>0,x>0)的图象上有两点P1(x1,y1),P2(x2,y2),且x1<x2,分别过P1,P2向x轴作垂线,垂足为B,D,过P1,P2向y轴作垂线,垂足分别为A,C.(1)若记四边形AP1BO和四边形CP2DO的面积分别为S1,S2,试比较S1和S2的大小.(2)若记四边形AP1BO和四边形CP2DO的周长分别为C1和C2,试比较C1,C2的大小.(3)若P是双曲线y=(k>0,x>0)上一点,分别过P向x轴、y轴作垂线,垂足分别为M,N.试问当P在何处时四边形PMON的周长最小,最小值为多少?解:(1)根据反比例函数系数k的几何意义可知S1=S2=k;(2)∵C1=2OB+2AO=2BO+2CO+2AC,C2=2CO+2OD=2CO+2OB+2BD,∴当y1﹣y2=x2﹣x1,即AC=BD时,C1=C2;当y1﹣y2<x2﹣x1,即AC<BD时,C1<C2;当y1﹣y2>x2﹣x1,即AC>BD时,C1>C2.(3)设P(x,y),即(x,),四边形PMON的周长=2(x+y)=2(x+),因为面积相等的四边形中正方形的周长最小,所以x=,即x2=k,解得x=,故P点坐标为(,).∴最小值为4.4.如图,在平面直角坐标系中,过点M (0,2)的直线l 与x 轴平行,且直线l 分别与反比例函数y =(x >0)和y =(x <0)的图象分别交于点P ,Q . (1)求P 点的坐标;(2)若△POQ 的面积为9,求k 的值.解:(1)∵PQ ∥x 轴, ∴点P 的纵坐标为2,把y =2代入y =得x =3, ∴P 点坐标为(3,2);(2)∵S △POQ =S △OMQ +S △OMP ,∴|k |+×|6|=9, ∴|k |=12, 而k <0, ∴k =﹣12.5.如图,四边形OABC是矩形,A、C分别在y轴、x轴上,且OA=6cm,OC=8cm,点P 从点A开始以2cm/s的速度向B运动,点Q从点B开始以1cm/s的速度向C运动,设运动时间为t.(1)如图(1),当t为何值时,△BPQ的面积为4cm2?(2)当t为何值时,以B、P、Q为顶点的三角形与△ABC相似?(3)如图(2),在运动过程中的某一时刻,反比例函数y=的图象恰好同时经过P、Q 两点,求这个反比例函数的解析式.解:(1)由题意AB=OC=8cm,AO=BC=6cm,∠B=90°,∵P A=2t,BQ=t,∴PB=8﹣2t,∵△BPQ的面积为4cm2,∴•(8﹣2t)•t=4,解得t=2,∴t=2s时,△PBQ的面积为4.(2)①当△BPQ∽△BAC时,=,∴=,解得t=.②当△BPQ∽△BCA时,=,∴=,解得t=,∴t为s或s时,以B、P、Q为顶点的三角形与△ABC相似.(3)由题意P(2t,6),Q(8,6﹣t),∵反比例函数y=的图象恰好同时经过P、Q两点,∴12t=8(6﹣t),解得t=,∴P(,6),∴m=,∴反比例函数的解析式为y=.6.如图1,在平面直角坐标系中,点A(0,4),B(1,m)都在直线y=﹣2x+b上,反比例函数y=(x>0)的图象经过点B.(1)直接写出m和k的值;(2)如图2,将线段AB向右平移n个单位长度(n≥0),得到对应线段CD,连接AC,BD.①在平移过程中,若反比例函数图象与线段AB有交点,求n的取值范围;②在平移过程中,连接BC,若△BCD是直角三角形,请直接写出所有满足条件n的值.解:(1)∵点A(0,4)在直线y=﹣2x+b上,∴﹣2×0+b=4,∴b=4,∴直线AB的解析式为y=﹣2x+4,将点B(1,m)代入直线AB的解析式y=﹣2x+4中,得﹣2×1+4=m,∴b=2,∴B(1,2),将B(1,2)在反比例函数解析式y=(x>0)中,得k=xy=1×2=2;(2)①∵将线段AB向右平移n个单位长度,∴A(n,4),把A(n,4)代入y=中,得,4=,∴n=,∴在平移过程中,若反比例函数图象与线段AB有交点,n的取值范围为0≤n≤;②∵将线段AB向右平移n个单位长度(n≥0),得到对应线段CD,∴AB∥CD,∴∠CDB≠90°,当∠CBD=90°时,△BCD是直角三角形,∴CB⊥BC,∴C(1,4),∴n=1;当∠BCD=90°,△BCD是直角三角形,则C(n,4),D(n+1,2),∵BC2+CD2=BD2,∴(n﹣1)2+(4﹣2)2+12+(4﹣2)2=n2,解得:n=5,综上所述,若△BCD是直角三角形,n的值为1或5.7.如图,在平面直角坐标系xOy中,直线y=﹣x+1与图数y=的限象交于A(﹣2,a),B两点.(1)求a,k的值;(2)已知点P(0,n),过点P作平行于x轴的直线l,交函数y=的图象于点C(x1,y1),交直线y=﹣x+1的图象于点D(x2,y2),若|x1|≤|x2|,结合函数图象,请求出m的取值范围.解:(1)∵直线y=﹣x+1与函数y=的图象交于A(﹣2,a),把A(﹣2,a)代入y=﹣x+1解得a=3,∴A(﹣2,3).把A(﹣2,3)代入y=,解得k=﹣6;(2)画出函数图象如图解得或,∵A (﹣2,3), ∴B (3,﹣2),根据图象可得:若|x 1|≤|x 2|,则m ≥3或﹣2≤m <0.8.如图,在直角坐标系xOy 中,矩形ABCD 的DC 边在x 轴上,D 点坐标为(﹣6,0)边AB 、AD 的长分别为3、8,E 是BC 的中点,反比例函数y =的图象经过点E ,与AD 边交于点F .(1)求k 的值及经过A 、E 两点的一次函数的表达式;(2)若x 轴上有一点P ,使PE +PF 的值最小,试求出点P 的坐标;(3)在(2)的条件下,连接EF 、PE 、PF ,在直线AE 上找一点Q ,使得S △QEF =S △PEF 直接写出符合条件的Q 点坐标.解:(1)在矩形ABCD 中,AB =3,AD =8, ∴CD =AB =3,BC =AD =8, ∵D (﹣6,0),∴A (﹣6,8),C (﹣3,0),B (﹣3,8), ∵E 是BC 的中点, ∴E (﹣3,4),∵点D 在反比例函数y =的图象上, ∴k =﹣3×4=﹣12,设经过A 、E 两点的一次函数的表达式为y =k 'x +b ,∴,∴,∴经过A 、E 两点的一次函数的表达式为y =﹣x ;(2)如图1,由(1)知,k =﹣12,∴反比例函数的解析式为y =﹣,∵点F 的横坐标为﹣6, ∴点F 的纵坐标为2, ∴F (﹣6,2),作点F 关于x 轴的对称点F ',则F '(﹣6,﹣2), 连接EF '交x 轴于P ,此时,PE +PF 的值最小, ∵E (﹣3,4),∴直线EF '的解析式为y =2x +10, 令y =0,则2x +10=0, ∴x =﹣5, ∴P (﹣5,0);(3)如图2,由(2)知,F '(﹣6,﹣2), ∵E (﹣3,4),F (﹣6,2),∴S △PEF =S △EFF '﹣S △PFF '=×(2+2)×(﹣3+6)﹣(2+2)×(﹣5+6)=4, ∵E (﹣3,4),F (﹣6,2),∴直线EF 的解析式为y =x +6,由(1)知,经过A 、E 两点的一次函数的表达式为y =﹣x ,设点Q (m ,﹣m ),过点Q 作y 轴的平行线交EF 于G ,∴G (m , m +6),∴QG =|﹣m ﹣m ﹣6|=|2m +6|, ∵S △QEF =S △PEF ,∴S △QEF =|2m +6|×(﹣3+6)=4,∴m =﹣或m =﹣,∴Q (﹣,)或(﹣,).9.如图,直线y =2x +6与反比例数y =(x >0)的图象交于点A (1,m ),与x 轴交于点B ,与y 轴交于点D .(1)求m 的值和反比例函数的表达式;(2)在y 轴上有一动点P (0,n )(n <6),过点P 作平行于x 轴的直线,交反比例函数的图象于点M ,交直线AB 于点N ,连接OM ,MN①当n =4时,判断四边形BOMN 的形状,并简要写出证明思路; ②若S △BDM >S △BOD ,直接写出点P 的纵坐标n 的取值范围.解:(1)当x=1时,m=2x+6=8,∴点A的坐标为(1,8).∵点A(1,8)在反比例数y=的图象上,∴k=1×8=8,∴反比例函数的解析式为y=.(2)①四边形BOMN为平行四边形.证明:当y=0时,2x+6=0,解得:x=﹣3,∴点A的坐标为(﹣3,0),OB=3;当y=4时,2x+6=4,=4,解得:x=﹣1,x=2,∴点M的坐标为(2,4),点N的坐标为(﹣1,4),∴MN=2﹣(﹣1)=3,∴MN=OB.∵MN∥x轴,OB在x轴上,∴MN∥OB,∴四边形BOMN为平行四边形.②过点O作直线l∥AB,交反比例数y=(x>0)的图象于点M.∵直线AB的解析式为y=2x+6,∴直线l的解析式为y=2x.联立直线l 和反比例函数解析式成方程组,得:,解得:,(舍去),∴点M 的坐标为(2,4);同理,可求出直线y =2x +12与反比例函数y =的图象交点M 3(﹣3﹣,6﹣2)(舍去),M 4(﹣3+,6+2)(舍去).∵S △BDM >S △BOD , ∴0<n <4.10.小明家饮水机中原有水的温度为20℃,通电开机后,饮水机自动开始加热(此过程中水温y (℃)与开机时间x (分)满足一次函数关系),当加热到100℃时自动停止加热,随后水温开始下降(此过程中水温y (℃)与开机时间x (分)成反比例关系),当水温降至20℃时,饮水机又自动开始加热…,重复上述程序(如图所示),根据图中提供的信息,解答下列问题:(1)当0≤x≤10时,求水温y(℃)与开机时间x(分)的函数关系式;(2)求图中t的值;(3)若小明在通电开机后即外出散步,请你预测小明散步57分钟回到家时,饮水机内的温度约为多少℃?解:(1)当0≤x≤10时,设水温y(℃)与开机时间x(分)的函数关系为:y=kx+b,依据题意,得,解得:,故此函数解析式为:y=8x+20;(2)在水温下降过程中,设水温y(℃)与开机时间x(分)的函数关系式为:y=,依据题意,得:100=,即m=1000,故y=,当y=20时,20=,解得:t=50;(3)∵57﹣50=7≤10,∴当x=7时,y=8×7+20=76,答:小明散步57分钟回到家时,饮水机内的温度约为76℃.11.如图,平面直角坐标系中,一次函数y=kx﹣2的图象与反比例函数y=(x<0)的图象交于点B,与x轴,y轴交于点D,E,BC⊥x轴于C,BA⊥y轴于A,=,△ABE 的面积为24.(1)点E的坐标是(0,﹣2);(2)求一次函数和反比例函数的表达式;(3)以BC为边作菱形CBMN,顶点M在点B左侧的一次函数y=kx﹣2的图象上,判断边MN与反比例函数y=(x<0)的图象是否有公共点.解:(1)∵一次函数y=kx﹣2的图象与y轴交于点E,令x=0,得到y=﹣2,∴E(0,﹣2),故答案为(0,﹣2).(2)∵BC⊥x轴于C,BA⊥y轴于A,∴∠BCO=∠BAO=∠AOD=90°,∴四边形ACOB是矩形,∴OC∥AB,OC=AB,∵=,∴===,∵OE=2,∴EA=6,∴OA=4,=×AB×6=24,∵S△ABE∴AB=8,∴B(﹣8,4),∵点B在y=上,∴m=﹣32,把B(﹣8,4)代入y=kx﹣2得到k=﹣,∴一次函数的解析式为y =﹣x ﹣2,反比例函数的解析式为y =﹣.(3)设M (m ,﹣m ﹣2),延长MN 交x 轴于H .由题意D (﹣,0),∵BC =BM =4,BD ==,∵BC ∥MH ,∴=,∴=,解得m =﹣,∴M (﹣,),N (﹣,),对于反比例函数y =﹣,当x =﹣时,y =,∵<,∴线段MN 与反比例函数的图象有交点.12.如图,已知一次函数y 1=ax +b 的图象与x 轴、y 轴分别交于点D ,C ,与反比例函数y 2=的图象交于A ,B 两点,且点A 的坐标是(1,3)、点B 的坐标是(3,m ). (1)求一次函数与反比例函数的解析式; (2)求C 、D 两点的坐标,并求△AOB 的面积;(3)根据图象直接写出:当x 在什么取值范围时,y 1>y 2?解:(1)把点A (1,3)代入y 2=, ∴3=,即k =3,故反比例函数的解析式为:y 2=.把点B 的坐标是(3,m )代入y 2=,得:m ==1, ∴点B 的坐标是(3,1).把A (1,3),B (3,1)代入y 1=ax +b ,得,解得,故一次函数的解析式为:y 1=﹣x +4;(2)令x =0,则y 1=4; 令y 1=0,则x =4, ∴C (0,4),D (4,0),∴S △AOB =S △AOD ﹣S △BOD =×4×3﹣×4×1=4;(3)当x 满足1<x <3时,则y 1>y 2.13.如图,正比例函数y =2x 的图象与反比例函数的图象交于A 、B 两点,过点A 作AC 垂直x 轴于点C ,连结BC .若△ABC 的面积为2. (1)求k 的值;(2)直接写出:①点A 坐标 (1,2) ;点B 坐标 (﹣1,﹣2) ;②当时,x 的取值范围 x ≥1或0>x ≥﹣1 ;(3)x 轴上是否存在一点D ,使△ABD 为直角三角形?若存在,求出点D 的坐标;若不存在,请说明理由.解:(1)∵反比例函数与正比例函数的图象相交于A、B两点,∴A、B两点关于原点对称,∴OA=OB,∴△BOC的面积=△AOC的面积=2÷2=1,又∵A是反比例函数y=图象上的点,且AC⊥x轴于点C,∴△AOC的面积=|k|,∴|k|=1,∵k>0,∴k=2;(2)①解得,或,∴点A坐标(1,2),点B坐标(﹣1,﹣2),②当时,x的取值范围为x≥1或0>x≥﹣1;故答案为:(1,2),(﹣1,﹣2),x≥1或0>x≥﹣1;(3)x轴上存在一点D,使△ABD为直角三角形.∵A(1,2),B(﹣1,﹣2),①当AD⊥AB时,如图1,设直线AD的关系式为y=﹣x+b,将A(1,2)代入上式得:b=,∴直线AD的关系式为y=﹣x+,令y=0得:x=5,∴D(5,0);②当BD⊥AB时,如图2,设直线BD的关系式为y=﹣x+b,将B(﹣1,﹣2)代入上式得:b=﹣,∴直线BD的关系式为y=﹣x﹣,令y=0得:x=﹣5,∴D(﹣5,0);③当AD⊥BD时,如图3,∵O为线段A的中点,∴OD=AB=OA,∵A(1,2),∴OC=1,AC=2,由勾股定理得:OA===,∴OD=,∴D(,0).根据对称性,当D为直角顶点,且D在x轴负半轴时,D(﹣,0).故x轴上存在一点D,使△ABD为直角三角形,点D的坐标为(5,0)或(﹣5,0)或(,0)或(﹣,0).14.如图,平面直角坐标系xOy中,函数y=(x<0)的图象经过点A(﹣1,6),直线y =mx﹣2与x轴交于点B(﹣1,0).(1)求k,m的值.(2)点P是直线y=﹣2x位于第二象限上的一个动点,过点P作平行于x轴的直线,交直线y=mx﹣2于点C,交函数y=(x<0)的图象于点D,设P(n,﹣2n).①当n=﹣1时,判断线段PD与PC的数量关系,并说明理由②当PD≥2PC时,结合函数的图象,直接写出n的取值范围.解:(1)∵函数y=(x<0)的图象经过点A(﹣1,6),∴k=﹣1×6=﹣6;将B(﹣1,0)代入y=mx﹣2,得:0=﹣m﹣2,解得:m=﹣2.(2)①PD=2PC,理由如下:当n=﹣1时,点P的坐标为(﹣1,2).当y=2时,﹣2x﹣2=2,=2,解得:x=﹣2,x=﹣3,∴点C 的坐标为(﹣2,2),点D 的坐标为(﹣3,2), ∴PC =1,PD =2, ∴PD =2PC .②当n =﹣3时,点P 的坐标为(﹣3,6).当y =6时,﹣2x ﹣2=6,=6,解得:x =﹣4,x =﹣1,∴点C 的坐标为(﹣4,6),点D 的坐标为(﹣1,6), ∴PC =1,PD =2, ∴PD =2PC .∵点P 是直线y =﹣2x 位于第二象限上的一个动点, ∴当PD ≥2PC 时,﹣1≤n <0或n ≤﹣3.15.如图,在平面直角坐标系xOy 中,矩形OABC 的顶点A 在x 轴的正半轴上,顶点C 在y 轴的正半轴上,D 是BC 边上的一点,OC :CD =5:3,DB =6.反比例函数y =(k ≠0)在第一象限内的图象经过点D ,交AB 于点E ,AE :BE =1:2. (1)求这个反比例函数的表达式;(2)动点P 在矩形OABC 内,且满足S △P AO =S 四边形OABC . ①若点P 在这个反比例函数的图象上,求点P 的坐标;②若点Q 是平面内一点使得以A 、B 、P 、Q 为顶点的四边形是菱形求点Q 的坐标.解:(1)设点B 的坐标为(m ,n ),则点E 的坐标为(m , n ),点D 的坐标为(m ﹣6,n ).∵点D ,E 在反比例函数y =(k ≠0)的图象上, ∴k =mn =(m ﹣6)n , ∴m =9.∵OC :CD =5:3, ∴n :(m ﹣6)=5:3, ∴n =5,∴k =mn =×9×5=15,∴反比例函数的表达式为y =.(2)∵S △P AO =S 四边形OABC ,∴OA •y P =OA •OC ,∴y P =OC =4.①当y =4时,=4,解得:x =,∴若点P 在这个反比例函数的图象上,点P 的坐标为(,4).②由(1)可知:点A 的坐标为(9,0),点B 的坐标为(9,5), ∵y P =4,y A +y B =5,∴y P ≠,∴AP ≠BP ,∴AB不能为对角线.设点P的坐标为(t,4).分AP=AB和BP=AB两种情况考虑(如图所示):(i)当AB=AP时,(9﹣t)2+(4﹣0)2=52,解得:t1=6,t2=12(舍去),∴点P1的坐标为(6,4).又∵P1Q1=AB=5,∴点Q1的坐标为(6,9);(ii)当BP=AB时,(9﹣t)2+(5﹣4)2=52,解得:t3=9﹣2,t4=9+2(舍去),∴点P2的坐标为(9﹣2,4).又∵P2Q2=AB=5,∴点Q2的坐标为(9﹣2,﹣1).综上所述:点Q的坐标为(6,9)或(9﹣2,﹣1).16.(1)如图1,已知△ABC与△ABD的面积相等,证明AB∥CD;(2)①如图2,点M,N在反比例函数y=(k>0)的图象上,过点M作ME⊥y轴,过点N作NF⊥x轴,垂足分别为E,E,请利用(1)的结果,证明:MN∥EF;②若①中的其他条件不变,只改变点M,N的位置如图3所示,请判断MN与EF是否平行(不用写理由).(1)证明:在图1中,过点C 作CP ⊥AB 于点P ,过点D 作DQ ⊥AB 于点Q ,则∠CP A =∠DQB =90°, ∴CP ∥DQ .∵△ABC 与△ABD 的面积相等, ∴CP =DQ ,∴四边形CPQD 为平行四边形, ∴AB ∥CD .(2)①证明:在图2中,连接FM ,EN .设点M 的坐标为(x 1,y 1),点N 的坐标为(x 2,y 2).∵点M ,N 在反比例函数y =(k >0)的图象上, ∴k =x 1y 1=x 2y 2. ∵ME ⊥y 轴,NF ⊥x 轴,∴OE =y 1,OF =x 2,ME =x 1,NF =y 2.∵S △EFM =ME •OE =x 1y 1=k ,S △EFN =NF •OF =x 2y 2=k , ∴S △EFM =S △EFN , ∴MN ∥EF ;②解:MN ∥EF ,理由如下: 在图3中,连接MN ,FM ,EN .设点M 的坐标为(x 1,y 1),点N 的坐标为(x 2,y 2).∵点M ,N 在反比例函数y =(k >0)的图象上, ∴k =x 1y 1=x 2y 2.∵ME ⊥y 轴,NF ⊥x 轴,∴OE =y 1,OF =x 2,ME =x 1,NF =y 2.∵S △EFM =ME •OE =x 1y 1=k ,S △EFN =NF •OF =x 2y 2=k , ∴S △EFM =S △EFN , ∴MN ∥EF ;17.如图,正比例函数y 1=kx 与反比例函数y =(x >0)交于点A (2,3),AB ⊥x 轴于点B ,平移直线y 1=kx 使其经过点B ,得到直线y 2,y 2与y 轴交于点C ,与y =交于点D .(1)求正比例函数y 1=kx 及反比例函数y =的解析式;(2)求点D 的坐标; (3)求△ACD 的面积.解:(1)将点A (2,3)分别代入y 1=kx 、得3=2k 、,解得k =,m =6,∴正比例函数及反比例函数的解析式分别为y 1=x 、;(2)∵y 2由y 1平移得到,所以设y 2=x +b ,∵AB ⊥x 轴,∴B (2,0),将其代入y 2=x +b 得b =﹣3,∴y 2=x ﹣3,由题意得:解得:,(舍去),∴点D 坐标为(,);(3)连接OD ,过点D 作DE ⊥y 轴,垂足为E ,则DE =1+,把x =0代入y 2=x ﹣3得,y =﹣3, ∴C (0,﹣3) ∵直线y 1∥y 2,∴S △ACD =S △OCD =OC •DE =×3×()=.答:△ACD 的面积为.18.已知,矩形OABC在平面直角坐标系内的位置如图所示,点O为坐标原点,点A的坐标为(10,0),点B的坐标为(10,8),已知直线AC与双曲线y=(m≠0)在第一象限内有一交点Q(5,n).(1)求直线AC和双曲线的解析式;(2)若动点P从A点出发,沿折线AO→OC的路径以每秒2个单位长度的速度运动,到达C处停止.求△OPQ的面积S与的运动时间t秒的函数关系式,并求当t取何值时S=10.解:设直线AC的解析式为y=kx+b(k≠0),过A(10,0)、C(0,8),,解得:,∴直线AC的解析式为y=﹣x+8,又∵Q(5,n)在直线AC上,∴n=﹣×5+8=4,又∵双曲线y=过Q(5,4),∴m=5×4=20,∴双曲线的解析式为:y=;②当0≤t≤5时,OP=10﹣2t,过Q作QD⊥OA,垂足为D,如图1,∵Q(5,4),∴QD=4,∴S=(10﹣2t)×4=20﹣4t,当S=10时,20﹣4t=10解得t=2.5,当5<t≤9时,OP=2t﹣10,过Q作QE⊥OC,垂足为E,如图2∵Q(5,4),∴QE=5,∴S=(2t﹣10)×5=5t﹣25,当S=10时,5t﹣25=10,解得t=7,综上,S=,当t=5秒时,△OPQ的面积不存在,∴当t=2.5秒或t=7秒时,S=10.19.如图,一次函数y1=k1x+2与反比例函数y2=的图象交于点A(4,m)和B(﹣8,﹣2),与y轴交于点C.(1)k1=,k2=16;(2)根据函数图象可知,当y1>y2时,x的取值范围是﹣8<x<0或x>4;(3)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点.设直线OP与线段AD交于点E,当S四边形ODAC :S△ODE=3:1时,求直线OP的解析式.解:(1)把B(﹣8,﹣2)代入y1=k1x+2得﹣8k1+2=﹣2,解得k1=,∴一次函数解析式为y1=x+2;把B(﹣8,﹣2)代入y2=得k2=﹣8×(﹣2)=16,∴反比例函数解析式为y2=,故答案为:,16;(2)∵当y1>y2时即直线在反比例函数图象的上方时对应的x的取值范围,∴﹣8<x<0或x>4;故答案为:﹣8<x<0或x>4;(3)把A(4,m)代入y2=得4m=16,解得m=4,∴点A的坐标是(4,4),而点C的坐标是(0,2),∴CO=2,AD=OD=4.∴S梯形ODAC=×(2+4)×4=12,∵S梯形ODAC :S△ODE=3:1,∴S△ODE=×12=4,∴OD•DE=4,∴DE=2,∴点E的坐标为(4,2).设直线OP的解析式为y=kx,把E(4,2)代入得4k=2,解得k=,∴直线OP的解析式为y=x.20.如图,在平面直角坐标系中,边长为4的等边△OAB的边OB在x轴的负半轴上,反比例函数y=(x<0)的图象经过AB边的中点C,且与OA边交于点D.(1)求k的值;(2)连接OC,CD,求△OCD的面积;(3)若直线y=mx+n与直线CD平行,且与△OAB的边有交点,直接写出n的取值范围.解:(1)∵等边△OAB,∴AB=BO=AO=4,∠ABO=∠BOA=∠OAB=60°,∵点C是AB的中点,∴BC=AC=2,过点C作CM⊥OB,垂足为M,在Rt△BCM中,∠BCM=90°﹣60°=30°,BC=2,∴BM=1,CM=,∴OM=4﹣1=3,∴点C的坐标为(﹣3,),代入y=得:k=﹣3答:k的值为﹣3.(2)过点A作AN⊥OB,垂足为N,由题意得:AN=2CM=2,ON=OB=2,∴A(﹣2,2),设直线OA的关系式为y=kx,将A的坐标代入得:k=﹣,∴直线OA的关系式为:y=﹣x,31由题意得:,解得:舍去,,∴D(﹣,3) 过D 作DE ⊥OB ,垂足为E ,S △OCD =S CMED +S △DOE ﹣S △COM =S CMED=(+3)×(3﹣)=3, 答:△OCD 的面积为3.(3)①当与直线CD 平行的直线y =mx +n 过点O 时,此时y =mx +n 的n =0, ②当与直线CD 平行的直线y =mx +n 经过点A 时,设直线CD 的关系式为y =ax +b ,把C 、D 坐标代入得:,解得:a =1,b =3+∴直线CD 的关系式为y =x+3+, ∵y =mx +n 过与直线y =x+3+平行, ∴m =1,把A (﹣2,2)代入y =x +n 得:n =2+2因此:0≤n ≤2+2.答:n 的取值范围为:0≤n ≤2+2.。
北师大版九年级数学第六章《反比例函数》单元复习练习题(含答案)
北师大版九年级数学第六章《反比例函数》单元复习练习题(含答案)一、单选题 1.反比例函数()30y x x=-<的图象如图所示,则△ABC 的面积为( )A .12B .32C .3D .62.反比例函数6y x=-的图像大致是( )A .B .C .D .3.列车从甲地驶往乙地,行完全程所需的时间()h t 与行驶的平均速度()km/h v 之间的反比例函数关系如图所示.若列车要在2.5h 内到达,则速度至少需要提高到( )km/h .A .180B .240C .280D .3004.如图,在平面直角坐标系中,点M 为x 轴正半轴上一点,过点M 的直线l ∥y 轴,且直线l 分别与反比例函数8y x =和ky x=的图象交于P 、Q 两点.若S △POQ =15,则k 的值为( )A .38B .22C .﹣7D .﹣225.关于函数2y x=-,下列说法中正确的是( )A .图像位于第一、三象限B .图像与坐标轴没有交点C .图像是一条直线D .y 的值随x 的值增大而减小6.某城市市区人口x 万人,市区绿地面积50万平方米,平均每人拥有绿地y 平方米,则y 与x 之间的函数表达式为( ) A .50y x =+B .50y x =C .50y x=D .50=x y 7.如图,一次函数(y kx b k =+、b 为常数,0)k ≠与反比例函数4y x=的图象交于A (1,m ),B (n ,2)两点,与坐标轴分别交于M ,N 两点.则△AOB 的面积为( )A .3B .6C .8D .128.已知反比例函数y =kx(k ≠0),且在各自象限内,y 随x 的增大而增大,则下列点可能在这个函数图象上的为( ) A .(2,3)B .(-2,3)C .(3,0)D .(-3,0)9.对于反比例函数y =﹣5x,下列说法错误的是( )A .图象经过点(1,﹣5)B .图象位于第二、第四象限C .当x <0时,y 随x 的增大而减小D .当x >0时,y 随x 的增大而增大 10.若反比例函数(0)ky k x=≠的图象经过点(2,3)-,则它的图象也一定经过的点是( ) A .(2,3)--B .(3,2)--C .(1,6)-D .(6,1)11.某市举行中学生党史知识竞赛,如图用四个点分别描述甲、乙、丙、丁四所学校竞赛成绩的优秀率(该校优秀人数与该校参加竞赛人数的比值)y 与该校参加竞赛人数x 的情况,其中描述乙、丁两所学校情况的点恰好在同一个反比例函数的图像上,则这四所学校在这次党史知识竞赛中成绩优秀人数最多的是( )A .甲B .乙C .丙D .丁12.如图,在平面直角坐标系中,直线y =x 与反比例函数y =4x (x >0)的图象交于点A ,将直线y =x 沿y 轴向上平移b 个单位长度,交y 轴于点B ,交反比例函数图象于点C .若OA =2BC ,则b 的值为( )A .1B .2C .3D .4二、填空题13.若1(1,)M y -、21(,)2N y -两点都在函数ky x=的图像上,且1y <2y ,则k 的取值范围是______.14.已知点(),A m n 在双曲线k y x =上,点(),B m n -在直线23y x k =-上,则21n m+的值为______.15.如图所示,矩形ABCD 顶点A 、D 在y 轴上,顶点C 在第一象限,x 轴为该矩形的一条对称轴,且矩形ABCD 的面积为6.若反比例函数ky x=的图象经过点C ,则k 的值为_________.16.如图,点A 是反比例函数3y x=图象上任意一点,过点A 分别作x 轴,y 轴的垂线,垂足为B ,C ,则四边形OBAC 的面积为____.17.如图,边长为4的正方形ABCD 的对称中心是坐标原点O ,//AB x 轴,//BC y 轴,反比例函数2y x =与2y x=-的图像均与正方形ABCD 的边相交,则图中阴影部分的面积之和是________.18.如图,若反比例函数1ky x=与一次函数2y ax b =+交于A 、B 两点,当12y y <时,则x 的取值范围是_________.19.如图,点A 在反比例函数y =xk(x >0)的图象上,过点A 作AB ⊥x 轴于点B ,若△OAB的面积为3,则k =_______.20.如图,在平面直角坐标系中,正方形ABCD 的顶点A ,B 分别在x 轴、y 轴上,对角线交于点E ,反比例函数(0,0)ky x k x=>>的图像经过点C ,E .若点(3,0)A ,则k 的值是_________.三、解答题21.如图,在平面直角坐标系中,反比例函数y kx=(x >0)的图象经过点A (2,6),将点A 向右平移2个单位,再向下平移a 个单位得到点B ,点B 恰好落在反比例函数y kx=(x >0)的图象上,过A ,B 两点的直线与y 轴交于点C .(1)求k的值及点C的坐标;(2)在y轴上有一点D(0,5),连接AD,BD,求△ABD的面积.22.如图,在平面直角坐标系中,O为坐标原点,Rt△OAB的直角边OB在x轴的正半轴上,点A的坐标为(6,4),斜边OA的中点D在反比例函数ykx=(x>0)的图象上,AB交该图象于点C,连接OC.(1)求k的值;(2)求△OAC的面积.23.如图是反比例函数y=52mx-的图象的一支.根据图象解决下列问题:(1)求m的取值范围;(2)若点A(m-3,b1)和点B(m-4,b2)是该反比例函数图象上的两点,请你判断b1与b2的大小关系,并说明理由.24.教师办公室有一种可以自动加热的饮水机,该饮水机的工作程序是:放满水后接通电源,则自动开始加热,每分钟水温上升10℃,待加热到100℃,饮水机自动停止加热,水温开始下降.水温y(℃)和通电时间x(min)成反比例函数关系,直至水温降至室温,饮水机再次自动加热,重复上述过程.设某天水温和室温均为20℃,接通电源后,水温y(℃)和通电时间x(min)之间的关系如图所示,回答下列问题:(1)分别求出当0≤x≤8和8<x≤a时,y和x之间的函数关系式;(2)求出图中a的值;(3)李老师这天早上7:30将饮水机电源打开,若他想在8:10上课前喝到不低于40℃的开水,则他需要在什么时间段内接水?25.如图,A(4,3)是反比例函数y=kx在第一象限图象上一点,连接OA,过A作AB∥x轴,截取AB=OA(B在A右侧),连接OB,交反比例函数y=kx的图象于点P.(1)求反比例函数y=kx的表达式;(2)求点B的坐标;(3)求△OAP的面积.26.如图,一次函数1y k x b =+与反比例函数2(0)k y x x=>的图象交于(1,6)A ,(3,)B n 两点. (1)求反比例函数的解析式和n 的值; (2)根据图象直接写出不等式21k k x b x+<的x 的取值范围; (3)求AOB 的面积.27.如图,已知一次函数1y kx b =+与反比例函数2my x=的图象在第一、三象限分别交于(6,1)A ,(,3)B a -两点,连接OA ,OB .(1)求一次函数和反比例函数的解析式; (2)AOB 的面积为______;(3)直接写出12y y >时x 的取值范围.28.如图,一次函数5y x =+的图象与反比例函数ky x=(k 为常数且0k ≠)的图象相交于(1,)A m -,B 两点.(1)求反比例函数的表达式;(2)将一次函数5y x =+的图象沿y 轴向下平移b 个单位(0)b >,使平移后的图象与反比例函数ky x=的图象有且只有一个交点,求b 的值.29.如图,一次函数1522y x =-+的图像与反比例函数k y x=(k >0)的图像交于A ,B 两点,过点A 做x 轴的垂线,垂足为M ,△AOM 面积为1. (1)求反比例函数的解析式;(2)在y 轴上求一点P,使PA+PB 的值最小,并求出其最小值和P 点坐标.参考答案1.B2.C3.B4.D5.B6.C7.A8.B9.C10.C11.C12.C 13.k <0 14.-3 15.3 16.3 17.818.10,2x x <<>-19.6 20.421.解:(1)把点(2,6)A 代入ky x =,2612k =⨯=,∴反比例函数的解析式为12y x=,将点A 向右平移2个单位,4x ∴=, 当4x =时,1234y ==, (4,3)B ∴,设直线AB 的解析式为y mx n =+,由题意可得6234m nm n =+⎧⎨=+⎩,解得329m n ⎧=-⎪⎨⎪=⎩, 392y x ∴=-+,当0x =时,9y =,(0,9)C ∴;(2)由(1)知954CD =-=,1111||||444242222ABD BCD ACD B A S S S CD x CD x ∆∆∆∴=-=⋅-⋅=⨯⨯-⨯⨯=.22.(1)解:点A 的坐标为(6,4),点D 为OA 的中点, ∴点D 的坐标为(3,2),点D 在反比例函数ky x=的图象上, 326k ∴=⨯=;(2)解:由题意得,点C 的横坐标为6, ∴点C 的纵坐标为:616=, 413AC ∴=-=,OAC ∴∆的面积16392=⨯⨯=.23.(1)解:由图象可知,520k m =->, 解得52m <,∴m 的取值范围为52m <. (2)解:12<b b .理由如下:∵52m <,∴430m m -<-<,由反比例函数的图象与性质可知,当0x <时,y 随着x 的增大而减小,∴12<b b .24.(1)当0≤x ≤8时,设y =k 1x +b , 将(0,20),(8,100)的坐标分别代入y =k 1x +b 得,1208100b k b =⎧⎨+=⎩ 解得k 1=10,b =20.∴当0≤x ≤8时,y =10x +20.当8<x ≤a 时,设y =2k x, 将(8,100)的坐标代入y =2k x , 得k 2=800∴当8<x ≤a 时,y =800x. 综上,当0≤x ≤8时,y =10x +20;当8<x ≤a 时,y =800x. (2)将y =20代入y =800x , 解得x =40,即a =40;(3)当y =40时,x =80040=20. ∴要想喝到不低于40℃的开水,x 需满足8≤x ≤20,即李老师要在7:38到7:50之间接水.25.(1)将点A (4,3)代入y =k x,得:k =12, 则反比例函数解析式为y =12x; (2)如图,过点A 作AC ⊥x 轴于点C ,则OC =4、AC =3,∴OA 2243+,∵AB ∥x 轴,且AB =OA =5, ∴点B 的坐标为(9,3);(3)∵点B 坐标为(9,3),∴OB 所在直线解析式为y =13x , 由1312y x y x ⎧=⎪⎪⎨⎪=⎪⎩可得点P 坐标为(6,2),(负值舍去), 过点P 作PD ⊥x 轴,延长DP 交AB 于点E ,则点E 坐标为(6,3),∴AE =2、PE =1、PD =2,则△OAP 的面积=12×(2+6)×3﹣12×6×2﹣12×2×1=5.26.解:(1)(1,6)A 在2k y x=的图象上, 26k ∴=, ∴反比例函数的解析式是6y x=. 又∵(3,)B n 在2k y x=的图象上,623n ∴==; (2)由图像可知:当01x <<或3x >时,21k k x b x +<; (3)(1,6)A ,(3,2)B 在函数1y k x b =+的图象上,∴11632k b k b +=⎧⎨+=⎩, 解得:128k b =-⎧⎨=⎩, 则一次函数的解析式是28y x =-+,设直线28y x =-+与x 轴相交于点C ,则C 的坐标是(4,0).∴AOB AOC BOC S S S =-△△△1122A B OC y OC y =⋅-⋅ 11464222=⨯⨯-⨯⨯ 8=.27.解:(1)把(6,1)A 代入反比例函数2m y x =得: m=6,∴反比例函数的解析式为26y x=, ∵(,3)B a -点在反比例函数2m y x =图像上, ∴-3a=6,解得a=-2,∴B (-2,-3),∵一次函数y 1=kx+b 的图象经过A 和B ,∴1632k b k b =+⎧⎨-=-+⎩,解得:122k b ⎧=⎪⎨⎪=-⎩, ∴一次函数的解析式为1122y x =-; (2)∵(6,1)A ,(2,3)B --,一次函数的解析式为1122y x =-, 令y=0,解得:x=4,即一次函数图像与x 轴交点为(4,0),∴S △AOB =()141382⨯⨯+=, 故答案为:8;(3)由图象可知:12y y >时,即一次函数图像在反比例函数图像上方,x 的取值范围是:-2<x <0或x >6.28.(1)由题意,将点(1,)A m -代入一次函数5y x =+得:154m =-+=(1,4)A -∴将点(1,4)A -代入k y x=得:41k =-,解得4k =- 则反比例函数的表达式为4y x=-; (2)将一次函数5y x =+的图象沿y 轴向下平移b 个单位得到的一次函数的解析式为5y x b =+- 联立54y x b y x =+-⎧⎪⎨=-⎪⎩整理得:2(5)40x b x +-+=一次函数5y x b =+-的图象与反比例函数4y x=-的图象有且只有一个交点 ∴关于x 的一元二次方程2(5)40x b x +-+=只有一个实数根∴此方程的根的判别式2(5)440b ∆=--⨯=解得121,9b b ==则b 的值为1或9.29.(1)反比例函数(0)k y k x=>的图象过点A ,过A 点作x 轴的垂线,垂足为M ,AOM ∆面积为1,∴11 2k=,k >,2k∴=,故反比例函数的解析式为:2yx =;(2)作点A关于y轴的对称点'A,连接'A B,交y轴于点P,则PA PB+最小.由15222y xyx⎧=-+⎪⎪⎨⎪=⎪⎩,解得12xy=⎧⎨=⎩,或412xy=⎧⎪⎨=⎪⎩,()1,2A∴,14,2B⎛⎫ ⎪⎝⎭,()'1,2A∴-,最小值'A B=设直线'A B的解析式为y mx n=+,则2142m nm n-+=⎧⎪⎨+=⎪⎩,解得3101710mn⎧=-⎪⎪⎨⎪=⎪⎩,∴直线'A B的解析式为3171010y x=-+,x∴=时,1710y=,P∴点坐标为17 0,10⎛⎫ ⎪⎝⎭.。
2024-2025学年湘教版数学九年级上第一章 反比例函数 单元试卷(含答案)
2024-2025学年湘教版数学九上 第一章 反比例函数一、选择题1. 下列函数中,y 是 x 的反比例函数的是( ) A .y =3xB .y =1+1xC .3xy =2D .y =1x−22. 已知反比例函数的图象经过点 (2,−4),则这个反比例函数的表达式为 ( ) A . y =2xB . y =−2xC . y =8xD . y =−8x3. 某高铁站建设初期需要运送大量的土石方,运输公司承担了运送总量为 106 m 3 土石方的任务,该运输公司平均运送土石方的速度 v (单位:立方米/天)与完成运送任务所需的时间 t (单位:天)之间的函数表达式为 ( ) A . v =106tB . v =106tC . v =1106t 2D . v =106t 24. 某种气球内充满了一定质量的气体,当温度不变时,气球内气体的气压 p (kPa) 是气球体积 V 的反比例函数,其图象如图所示,当气球内的气压大于 160 kPa 时,气球将爆炸,为了安全,气球的体积应该 ( )A .不小于 35 m 3B .小于 53 m 3C .不大于 53 m 3D .小于 35 m 35. 在平面直角坐标系中,正方形 OABC 的顶点 A 坐标为 (2,1),点 C 在反比例函数 y =kx 的图象上,则 k 的值为 ( )A .−5B .−2C .2D .56. 矩形长为 x ,宽为 y ,面积为 9,则 y 与 x 之间的函数关系用图象表示大致为 ( )A.B.C.D.交于A,B两点,若A,B两点坐标分别为A 7. 如图所示,直线y=kx(k>0)与双曲线y=2x(x,y1),B(x2,y2),则x1y2+x2y1的值为1A.−8B.4C.−4D.08. 如图,已知等边△OA1B1,顶点A1在双曲线y=3(x>0)上,点B1的坐标为(2,0),过xB1作B1A2∥OA1交双曲线于点A2,过A2作A2B2∥A1B1交x轴于点B2,得到第二个等边△B1A2B2;过B2作B2A3∥B1A2交双曲线于A3,过A3作A3B3∥A2B2交x轴于B3,得到第三个等边△B2A3B3;以此类推,⋯,则点B6的横坐标为( )A.25B.26C.27D.32二、填空题9. 图象经过点(1,−1)的反比例函数的表达式是.10. 已知 y 与 x−1 成反比例,且当 x =2 时,y =3,则 y 与 x 的函数关系为.11. 如图,已知反比例函数 y =kx (k 为常数,k ≠0)的图象经过点 A ,过 A 点作 AB ⊥x 轴,垂足为 B .若 △AOB 的面积为 1,则 k =.12. 已知点 (x 1,y 1),(x 2,y 2),(x 3,y 3) 在双曲线 y =1x 上,当 x 3<x 2<0<x 1 时,y 1,y 2,y 3 的大小关系是.13. 如图,在平面直角坐标系 xOy 中,四边形 ODEF 和四边形 ABCD 都是正方形,点 F 在 x 轴的正半轴上,点 C 在边 DE 上,反比例函数 y =kx (k ≠0,x >0) 的图象过点 B ,E .若 AB =2,则 k 的值为.14. 设函数 y =−3x 与 y =x +2 的图象的交点坐标为 (m,n ),则 1m −1n 的值为.15. 如图,在平面直角坐标系中,菱形 OABC 的面积为 12,点 B 在 y 轴上,点 C 在反比例函数 y =kx的图象上,则 k 的值为.16. 如图,在平面直角坐标系中,正方形ABCD的面积为20,顶点A在y轴上,顶点C在x轴上,顶点D在双曲线y=kx(x>0)的图象上,边CD交y轴于点E,若CE=ED,则k的值为.三、解答题17. 如图,在平面直角坐标系中,已知点A(8,1),B(0,−3).反比例函数y=kx(x>0)的图象经过点A,直线x=4与反比例函数的图象交于点M,与直线AB交于点N.(1) 求k的值.(2) 求△BMA的面积.18. 放寒假,小明的爸爸把油箱注满油后准备驾驶汽车到距家300 km的学校接小明,在接到小明后立即按原路返回.已知小明爸爸汽车油箱的容积为70 L,请回答下列问题:(1) 写出油箱注满油后,汽车能够行使的总路程s(km)与平均耗油量x(L/km)之间的函数关系式.(2) 小明的爸爸以平均每千米耗油0.1 L的速度驾驶汽车到达学校,在返回时由于下雨,小明的爸爸降低了车速,此时每千米的耗油量增加了一倍,如果小明的爸爸始终以此速度行使,油箱里的油是否够回到家?如果不够用,请通过计算说明至少还需加多少油.19. 如图,直线y1=x+b交x轴于点B,交y轴于点A(0,2),与反比例函数y2=k的图象交x 于C(1,m),D(n,−1),连接OC,OD.(1) 求k的值.(2) 求△COD的面积.(3) 根据图象直接写出y1<y2时,x的取值范围.20. 已知一艘轮船上装有100吨货物,轮船到达目的地后开始卸货.设平均卸货速度为v(单位:吨/小时),卸完这批货物所需的时间为t(单位:小时).(1) 求v关于t的函数表达式.(2) 若要求不超过5小时卸完船上的这批货物,那么平均每小时至少要卸货多少吨?21. 如图,在平面直角坐标系中,菱形ABCD的顶点C与原点O重合,点B在y轴的正半轴上,点A在函数y=kx(k>0,x>0)的图象上,点D的坐标为(4,3).(1) 求k的值;(2) 若将菱形ABCD沿x轴正方向平移,当菱形的顶点D落在函数y=kx(k>0,x>0)的图象上时,求菱形ABCD沿x轴正方向平移的距离.22. 如图,一次函数y=−12x+5的图象l1分别与x轴,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,154).(1) 求m的值及l2的解析式.(2) 求得S△AOC−S△BOC的值为.(3) 一次函数y=kx+1的图象为l3,且l1,l2,l3可以围成三角形,直接写出k的取值范围.23. 为了预防流感,某学校在休息天用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(毫克)与时间x(分钟)成正比例;药物释放完毕后,y与x成反比例,如图所示.根据图中提供的信息,解答下列问题:(1) 写出从药物释放开始,y与x之间的两个函数关系式及相应的自变量取值范围;(2) 据测定,当空气中每立方米的含药量降低到4.5毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?答案一、选择题1. C2. D3. A4. A5. B6. C7. C8. B二、填空题9. y=−1x10. y=3x−111. −212. y2<y3<y113. 6+2514. −2315. −616. 4三、解答题17.(1) ∵反比例函数y=k(x>0)的图象经过点A,x∴1=k,解得k=8.8(2) 设直线AB的解析式为y=kx+b,把点A(8,1),B(0,−3)代入得{8k+b=1,b=−3,解得{k=12,b=−3,∴直线AB的解析式为y=12x−3,则M(4,2),N(4,−1),∴MN=2−(−1)=3,∴S△BMA=12×3×8=12.18.(1) ∵耗油量×行驶里程=70升;∴xy=70,∴y=70x(x>0).(2) 不够用,理由如下:∵0.1×300=30(升),0.2×300=60(升),∴30+60>70故不够用,30+60−70=20(升).答:不够用,到家至少需要20升油.19.(1) 把A(0,2)代入y1=x+b得:b=2,即一次函数的表达式为y1=x+2,把C(1,m),D(n,−1)代入得:m=1+2,−1=n+2,解得m=3,n=−3,即C(1,3),D(−3,−1),把C的坐标代入y2=kx 得:3=k1,解得:k=3.(2) 由y1=x+2可知:B(−2,0),∴△AOC的面积为12×2×3+12×2×1=4.(3) x<−3或0<x<1.20.(1) 由题意可得:100=vt,则v=100t.(2) ∵不超过5小时卸完船上的这批货物,∴t≤5,则v≥1005=20,答:平均每小时至少要卸货20吨.21.(1) 如图,过点D作x轴的垂线,垂足为F.因为点D的坐标为(4,3),所以OF=4,DF=3.所以OD=5.所以AD=5.所以点A的坐标为(4,8).所以k=4×8=32.(2) 如图,将菱形ABCD沿x轴正方向平移,使得点D落在函数y=32x(x>0)的图象上的Dʹ处,过点Dʹ作x轴的垂线,垂足为Fʹ.因为DF=3,所以DʹFʹ=3.所以点Dʹ的纵坐标为3.因为点Dʹ在y=32x的图象上,所以3=32x,解得x=323,即OFʹ=323.所以FFʹ=323−4=203.所以菱形ABCD沿x轴正方向平移的距离为203.22.(1) 把C(m,154)代入一次函数y=−12x+5,可得,154=−12m+5,解得m=52,∴C(52,154),设l2的解析式为y=ax,将点C(52,154)代入,得154=52a,解得a=32,∴l2的解析式为y=32x.(2) 252(3) k≠1110且k≠32且k≠−12.23.(1) 正比例函数是y=kx,反比例函数是y=mx ,把点(12,9)分别代入,k=34,m=108,所以两个函数解析式分别是y=34x,y=108x.(2) 当y=4.5时,108=4.5,x解得:x=24,答:至少需要24分钟才能进入教室.。
北师大版九年级数学上册第六章《反比例函数的图像和性质》课时练习题(含答案)
北师大版九年级数学上册第六章《2.反比例函数的图像和性质》课时练习题(含答案)一、单选题1.反比例函数6y x=-的图像大致是( )A .B .C .D .2.反比例函数()30y x x=-<的图象如图所示,则△ABC 的面积为( )A .12B .32C .3D .63.若点()()()123,2,,1,,4A x B x C x -都在反比例函数8y x=的图像上,则123,,x x x 的大小关系是( ) A .123x x x <<B .231x x x <<C .132x x x <<D .213x x x <<4.反比例函数的图像如图所示,则这个反比例函数的表达式可能是( )A .4y x =-B .3y x=-C .83y x=D .52y x=-5.一次函数y ax a =-与反比例函数(0)ay a x=≠在同一坐标系中的图象可能是( )A .B .C .D .6.若点()()()123,5,,2,,5A x B x C x -都在反比例函数10y x=的图象上,则123,,x x x 的大小关系是( ) A .123x x x << B .231x x x <<C .132x x x <<D .312x x x <<7.已知反比例函数y kx=(k ≠0)的图象如图所示,则一次函数y =kx +2的图象经过( )A .第一、二、三象限B .第一、三、四象限C .第一、二、四象限D .第二、三、四象限8.如图,点A ,B 在反比例函数1(0)y x x=>的图象上,点C ,D 在反比例函数(0)ky k x=>的图象上,AC //BD //y 轴,已知点A ,B 的横坐标分别为1,2,△OAC 与△ABD 的面积之和为32,则k 的值为( )A .4B .3C .2D .32二、填空题9.若1(1,)M y -、21(,)2N y -两点都在函数ky x=的图像上,且1y <2y ,则k 的取值范围是______.10.已知反比例函数2a y x-=的图象在第二、第四象限,则a 的取值范围是______. 11.在平面直角坐标系中,一次函数2y x =与反比例函数()0ky k x=≠的图象交于()11,A x y ,()22,B x y 两点,则12y y +的值是____________.12.已知函数25(1)ny n x -=+是反比例函数,且图象位于第一、三象限,则n =________.13.如图,点A 是反比例函数1(0)k y x x=<图象上一点,AC x ⊥轴于点C 且与反比例函数2(0)k y x x=<的图象交于点B ,3AB BC = ,连接OA ,OB ,若OAB 的面积为6,则12k k +=_________.14.如图,过x 轴上任意一点P 作y 轴的平行线,分别与反比例函数y =3x (x >0),y =﹣6x(x >0)的图像交于A 点和B 点,若C 为y 轴任意一点.连接AB 、BC ,则△ABC 的面积为_____.三、解答题15.九年级某数学兴趣小组在学习了反比例函数的图像与性质后,进一步研究了函数2y x=的图像与性质,其探究过程如下:(1)绘制函数图像列表:下表是x 与y 的几组对应值,其中m =_________. x…3-2-1-12-121 2 3 …y (23)12 4 4 2 1 m …描点:根据表中各组对应值(),x y ,在平面直角坐标系中描出各点,请你描出剩下的点; 连线:用平滑的曲线顺次连接各点,已经画出了部分图像,请你把图像补充完整; (2)观察函数图像;下列关于该函数图像的性质表述正确的是:__________;(填写代号) ①函数值y 随x 的增大而增大;②函数图像关于y 轴对称;③函数值y 都大于0. (3)运用函数性质:若点()()()1230.5,,1.5,,2.5,-y y y ,则1y 、2y 、3y 大小关系是__________.16.已知反比例函数y =4kx-,分别根据下列条件求出字母k 的取值范围. (1)函数图象位于第一、三象限;(2)在每个象限内,y 随着x 的增大而增大.17.已知反比例函数1k y x-=(k 为常数,1k ≠);(1)若点()1,2A 在这个函数的图象上,求k 的值;(2)若在这个函数图象的每一分支上,y 随x 的增大而增大,求k 的取值范围.18.如图,在平面直角坐标系中,四边形OABC 为矩形,点B 在函数y 1=4x (x >0)的图象上,边AB 与函数y 2=2x(x >0)的图象交于点D .求四边形ODBC 的面积.19.已知反比例函数ky x=(k 为常数,k≠0)的图象经过点A (2,3). (1)求这个函数的解析式;(2)判断点B (-1,6),C (3,2)是否在这个函数的图象上,并说明理由; (3)当-3<x <-1时,求y 的取值范围.20.已知,在平面直角坐标系中,有反比例函数y =3x的函数图像:(1)如图1,点A是该函数图像第一象限上的点,且横坐标为a(a>0),延长AO使得AO=A'O,判断点A'是否为该函数图像第三象限上的点,并说明理由;(2)如图2,点B、C均为该函数图像第一象限中的点,连接BC,点D为线段BC的中点,请仅用一把无刻度的直尺作出点D关于点O的对称点D'.(不写作图过程,保留作图痕迹)参考答案1.C2.B3.B4.D5.D6.C7.C8.B9.k<010.2a<11.012.213.20-14.9 215.(1)解:把x=3代入函数2yx =,得:23m y==;如图(2)解:由函数图像可知,当x <0时,函数值y 随x 的增大而增大;当x >0时,函数值y 随x 的增大而减小;函数图像关于y 轴对称;函数值y 都大于0, ∴下列关于该函数图像的性质表述正确的是②③; (3)解:分别把x =-0.5、x =1.5、x =2.5代入函数2y x=, 得1y =4,2y =43,3y =45,∴123y y y >>.16.(1)∵双曲线在第一、三象限,∴4-k >0,k <4; (2)∵在每个象限内,y 随x 的增大而增大,∴4-k <0,k >4. 17.(1)∵点()1,2A 在这个函数的图象上, ∴121k -=, 解得3k =. 故答案是3k =. (2) 在函数1k y x-=图象的每一分支上,y 随x 的增大而增大, ∴10k -<, ∴1k <. 故答案是:1k <.18.解:∵点D是函数y2=2x(x>0)图象上的一点,∴△AOD的面积为1212⨯=,∵点B在函数y1=4x(x>0)的图象上,四边形ABCO为矩形,∴矩形ABCO的面积为4,∴阴影部分ODBC的面积=矩形ABCO的面积-△AOD的面积=4-1=3,19.解:(1)∵反比例函数kyx=(k为常数,k≠0)的图象经过点A(2,3),∴把点A的坐标代入解析式,得k32=,解得,k=6.∴这个函数的解析式为:6yx=.(2)∵反比例函数解析式6yx =,∴6=xy.分别把点B、C的坐标代入,得(-1)×6=-6≠6,则点B不在该函数图象上;3×2=6,则点C在函数图象上.(3)∵k>0,∴当x<0时,y随x的增大而减小.∵当x=-3时,y=-2,当x=-1时,y=-6,∴当-3<x<-1时,-6<y<-2.20.(1)点A'是该函数图像第三象限上的点,理由如下:过点A作AM⊥x轴于点M,过点A'作A N x'⊥轴于点N,点A 是反比例函数y =3x的图像第一象限上的点,且横坐标为a (a >0),3y a∴=,即3(,)A a a ,3,OM a AM a∴==, ,,AOM A ON AMO A NO OA OA '''∠=∠∠=∠=, ()AOM A ON AAS '∴≅,3,OM ON a AM A N a'∴====, 3(,)A a a '∴--,3()3a a-⋅-=,∴点A '是该函数图像第三象限上的点;(2)连接BO 并延长,交反比例函数第三象限的图像于点B ',连接CO 并延长,交反比例函数第三象限的图像于点C ',连接B C '',连接DO 并延长,交B C ''于点D , 此时,点D 即为所求.。
中考数学反比例函数综合经典题及答案
中考数学反比例函数综合经典题及答案一、反比例函数1.已知一次函数y=kx+b与反比例函数y= 交于A(﹣1,2),B(2,n),与y轴交于C 点.(1)求反比例函数和一次函数解析式;(2)如图1,若将y=kx+b向下平移,使平移后的直线与y轴交于F点,与双曲线交于D,E两点,若S△ABD=3,求D,E的坐标.(3)如图2,P为直线y=2上的一个动点,过点P作PQ∥y轴交直线AB于Q,交双曲线于R,若QR=2QP,求P点坐标.【答案】(1)解:点A(﹣1,2)在反比例函数y= 的图象上,∴m=(﹣1)×2=﹣2,∴反比例函数的表达式为y=﹣,∵点B(2,n)也在反比例函数的y=﹣图象上,∴n=﹣1,即B(2,﹣1)把点A(﹣1,2),点B(2,﹣1)代入一次函数y=kx+b中,得,解得:k=﹣1,b=1,∴一次函数的表达式为y=﹣x+1,答:反比例函数的表达式是y=﹣,一次函数的表达式是y=﹣x+1;(2)解:如图1,连接AF,BF,∵DE∥AB,∴S△ABF=S△ABD=3(同底等高的两三角形面积相等),∵直线AB的解析式为y=﹣x+1,∴C(0,1),设点F(0,m),∴AF=1﹣m,∴S△ABF=S△ACF+S△BCF= CF×|x A|+ CF×|x B|= (1﹣m)×(1+2)=3,∴m=﹣1,∴F(0,﹣1),∵直线DE的解析式为y=﹣x+1,且DE∥AB,∴直线DE的解析式为y=﹣x﹣1①.∵反比例函数的表达式为y=﹣②,联立①②解得,或∴D(﹣2,1),E(1,﹣2);(3)解:如图2由(1)知,直线AB的解析式为y=﹣x﹣1,双曲线的解析式为y=﹣,设点P(p,2),∴Q(p,﹣p﹣1),R(p,﹣),PQ=|2+p+1|,QR=|﹣p﹣1+ |,∵QR=2QP,∴|﹣p﹣1+ |=2|2+p+1|,解得,p= 或p= ,∴P(,2)或(,2)或(,2)或(,2).【解析】【分析】(1)把A的坐标代入反比例函数的解析式可求得m的值,从而可得到反比例函数的解析式;把点A和点B的坐标代入一次函数的解析式可求得一次函数的解析式;(2)依据同底等高的两个三角形的面积相等可得到S△ABF=S△ABD=3,再利用三角形的面积公式可求得点F的坐标,即可得出直线DE的解析式,即可求出交点坐标;(3)设点P(p,2),则Q(p,﹣p﹣1),R(p,﹣),然后可表示出PQ与QR的长度,最后依据QR=2QP,可得到关于p的方程,从而可求得p的值,从而可得到点P的坐标.2.如图,一次函数y=kx+b的图象分别与反比例函数y= 的图象在第一象限交于点A(4,3),与y轴的负半轴交于点B,且OA=OB.(1)求函数y=kx+b和y= 的表达式;(2)已知点C(0,5),试在该一次函数图象上确定一点M,使得MB=MC,求此时点M 的坐标.【答案】(1)解:把点A(4,3)代入函数y= 得:a=3×4=12,∴y= .OA= =5,∵OA=OB,∴OB=5,∴点B的坐标为(0,﹣5),把B(0,﹣5),A(4,3)代入y=kx+b得:解得:∴y=2x﹣5.(2)解:∵点M在一次函数y=2x﹣5上,∴设点M的坐标为(x,2x﹣5),∵MB=MC,∴解得:x=2.5,∴点M的坐标为(2.5,0).【解析】【分析】(1)先求反比例函数关系式,由OA=OB,可求出B坐标,再代入一次函数解析式中求出解析式;(2)M点的纵坐标可用x 的式子表示出来,可套两点间距离公式,表示出MB、MC,令二者相等,可求出x .3.如图1,已知直线y=x+3与x轴交于点A,与y轴交于点B,将直线在x轴下方的部分沿x轴翻折,得到一个新函数的图象(图中的“V形折现”)(1)类比研究函数图象的方法,请列举新函数的两条性质,并求新函数的解析式;(2)如图2,双曲线y= 与新函数的图象交于点C(1,a),点D是线段AC上一动点(不包括端点),过点D作x轴的平行线,与新函数图象交于另一点E,与双曲线交于点P.①试求△PAD的面积的最大值;②探索:在点D运动的过程中,四边形PAEC能否为平行四边形?若能,求出此时点D的坐标;若不能,请说明理由.【答案】(1)解:如图1,新函数的性质:1.函数的最小值为0;2.函数图象的对称轴为直线x=3.由题意得,点A的坐标为(-3,0),分两种情况:①当x-3时,y=x+3;②当x<-3时,设函数解析式为y=kx+b,在直线y=x+3中,当x=-4时,y=-1,则点(-4,-1)关于x轴的对称点为(-4,1),把点(-4,1),(-3,0),代入y=kx+b中,得:,解得:,∴y=-x-3.综上,新函数的解析式为y=.(2)解:如图2,①∵点C(1,a)在直线y=x+3上,∴a=4,∵点C(1,4)在反比例函数y=上,∴k=4,∴反比例函数的解析式为y=.∵点D是线段AC上一动点,∴设点D的坐标为(m,m+3),且-3<m<1,∵DP∥x轴,且点P在双曲线上,∴点P的坐标为(,m+3),∴PD=-m,∴S△PAD=(-m)(m+3)=m2-m+2=(m+)2+,∵a=<0,∴当m=时,S有最大值,最大值为,又∵-3<<1,∴△PAD的面积的最大值为.②在点D的运动的过程中,四边形PAEC不能为平行四边形,理由如下:当点D为AC的中点时,其坐标为(-1,2),此时点P的坐标为(2,2),点E的坐标为(-5,2),∵DP=3,DE=4,∴EP与AC不能互相平分,∴四边形PAEC不能为平行四边形.【解析】【分析】(1)根据一次函数的性质,结合函数图象写出新函数的两条性质;利用待定系数法求新函数解析式,注意分两种情况讨论;(2)①先求出点C的坐标,再利用待定系数法求出反比例函数解析式,设出点D的坐标,进而得到点P的坐标,再根据三角形的面积公式得出函数解析式,利用二次函数的性质求解即可;②先求出A的中点D的坐标,再计算DP、DE的长度,如果对角线互相平分,则能成为平行四边形,如若对角线不互相平分,则不能成为平行四边形.4.如图,一次函数y=﹣x+3的图象与反比例y= (k为常数,且k≠0)的图象交于A(1,a),B两点.(1)求反比例函数的表达式及点B的坐标;(2)在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标.【答案】(1)解:∵点A(1,a)在一次函数y=﹣x+3的图象上,∴a=﹣1+3=2,∴点A(1,2).∵点A(1,2)在反比例y= (k为常数,且k≠0)的图象上,∴k=1×2=2,∴反比例函数的表达式为y= .联立一次函数与反比例函数关系式成方程组,得:,解得:,,∴点B(2,1)(2)解:作B点关于x轴的对称点B′(2,﹣1),连接AB’,交x轴于点P,连接PB,如图所示.∵点B、B′关于x轴对称,∴PB=PB′.∵点A、P、B′三点共线,∴此时PA+PB取最小值.设直线AB′的函数表达式为y=mx+n(m≠0),将A(1,2)、B(2,﹣1)代入y=mx+n,,解得:,∴直线AB′的函数表达式为y=﹣3x+5.当y=﹣3x+5=0时,x= ,∴满足条件的点P的坐标为(,0).【解析】【分析】(1)将x=1代入直线AB的函数表达式中即可求出点A的坐标,由点A 的坐标利用反比例函数图象上点的坐标特征即可求出反比例函数的表达式,联立两函数表达式成方程组,通过解方程组即可求出点B的坐标;(2)作B点关于x轴的对称点B′(2,﹣1),连接AB’,交x轴于点P,连接PB,由两点之间线段最短可得出此时PA+PB 取最小值,根据点A、B′的坐标利用待定系数法可求出直线AB′的函数表达式,再利用一次函数图象上点的坐标特征即可求出点P的坐标.5.【阅读理解】我们知道,当a>0且b>0时,(﹣)2≥0,所以a﹣2 +≥0,从而a+b≥2 (当a=b时取等号),【获得结论】设函数y=x+ (a>0,x>0),由上述结论可知:当x= 即x= 时,函数y有最小值为2(1)【直接应用】若y1=x(x>0)与y2= (x>0),则当x=________时,y1+y2取得最小值为________.(2)【变形应用】若y1=x+1(x>﹣1)与y2=(x+1)2+4(x>﹣1),则的最小值是________(3)【探索应用】在平面直角坐标系中,点A(﹣3,0),点B(0,﹣2),点P是函数y= 在第一象限内图象上的一个动点,过P点作PC⊥x轴于点C,PD⊥y轴于点D,设点P的横坐标为x,四边形ABCD的面积为S①求S与x之间的函数关系式;②求S的最小值,判断取得最小值时的四边形ABCD的形状,并说明理由.【答案】(1)1;2(2)4(3)解:①设P(x,),则C(x,0),D(0,),∴AC=x+3,BD= +2,∴S= AC•BD= (x+3)( +2)=6+x+ ;②∵x>0,∴x+ ≥2 =6,∴当x= 时,即x=3时,x+ 有最小值6,∴此时S=6+x+ 有最小值12,∵x=3,∴P(3,2),C(3,0),D(0,2),∴A、C关于x轴对称,D、B关于y轴对称,即四边形ABCD的对角线互相垂直平分,∴四边形ABCD为菱形.【解析】【解答】解:(1)∵x>0,∴y1+y2=x+ ≥2 =2,∴当x= 时,即x=1时,y1+y2有最小值2,故答案为:1;2;(2)∵x>﹣1,∴x+1>0,∴ = =(x+1)+ ≥2 =4,∴当x+1= 时,即x=1时,有最小值4,故答案为:4;【分析】(1)直接由结论可求得其取得最小值,及其对应的x的值;(2)可把x+1看成一个整体,再利用结论可求得答案;(3)①可设P(x,),则可表示出C、D的坐标,从而可表示出AC和BD,再利用面积公式可表示出四边形ABCD的面积,从而可得到S 与x的函数关系式;②再利用结论可求得其最得最小值时对应的x的值,则可得到P、C、D的坐标,可判断A、C关于x轴对称,B、D关于y轴对称,可判断四边形ABCD为菱形.6.如图,过原点的直线y=k1x和y=k2x与反比例函数y= 的图象分别交于两点A,C和B,D,连接AB,BC,CD,DA.(1)四边形ABCD一定是________四边形;(直接填写结果)(2)四边形ABCD可能是矩形吗?若可能,试求此时k1,k2之间的关系式;若不能,说明理由;(3)设P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y= 图象上的任意两点,a=,b= ,试判断a,b的大小关系,并说明理由.【答案】(1)平行(2)解:∵正比例函数y=k1x(k1>0)与反比例函数y= 的图象在第一象限相交于A,∴k1x= ,解得x= (因为交于第一象限,所以负根舍去,只保留正根)将x= 带入y=k1x得y= ,故A点的坐标为(,)同理则B点坐标为(,),又∵OA=OB,∴ = ,两边平方得: +k1= +k2,整理后得(k1﹣k2)(k1k2﹣1)=0,∵k1≠k2,所以k1k2﹣1=0,即k1k2=1;(3)解:∵P(x1, y1),Q(x2, y2)(x2>x1>0)是函数y= 图象上的任意两点,∴y1= ,y2= ,∴a= = = ,∴a﹣b= ﹣ = = ,∵x2>x1>0,∴>0,x1x2>0,(x1+x2)>0,∴>0,∴a﹣b>0,∴a>b.【解析】【解答】解:(1)∵直线y=k1x和y=k2x与反比例函数y= 的图象关于原点对称,∴OA=OC,OB=OD,∴四边形ABCD 是平行四边形;故答案为:平行;【分析】(1)由直线y=k1x和y=k2x与反比例函数y= 的图象关于原点对称,即可得到结论.(2)联立方程求得A、B点的坐标,然后根据OA=OB,依据勾股定理得出 = ,两边平分得 +k1= +k2,整理后得(k1﹣k2)(k1k2﹣1)=0,根据k1≠k2,则k1k2﹣1=0,即可求得;(3)由P(x1,y1),Q(x2,y2)(x2>x1>0)是函数y= 图象上的任意两点,得到y1= ,y2= ,求出a= = = ,得到a﹣b= ﹣ = = >0,即可得到结果.7.如图所示,在平面直角坐标系xoy中,直线y= x+ 交x轴于点B,交y轴于点A,过点C(1,0)作x轴的垂线l,将直线l绕点C按逆时针方向旋转,旋转角为α(0°<α<180°).(1)当直线l与直线y= x+ 平行时,求出直线l的解析式;(2)若直线l经过点A,①求线段AC的长;②直接写出旋转角α的度数;(3)若直线l在旋转过程中与y轴交于D点,当△ABD、△ACD、△BCD均为等腰三角形时,直接写出符合条件的旋转角α的度数.【答案】(1)解:当直线l与直线y= x+平行时,设直线l的解析式为y= x +b,∵直线l经过点C(1,0),∴0=+b,∴b=,∴直线l的解析式为y=x−(2)解:①对于直线y= x+,令x=0得y=,令y=0得x=−1,∴A(0,),B(−1,0),∵C(1,0),∴AC=,②如图1中,作CE∥OA,∴∠ACE=∠OAC,∵tan∠OAC=,∴∠OAC=30°,∴∠ACE=30°,∴α=30°(3)解:①如图2中,当α=15°时,∵CE∥OD,∴∠ODC=15°,∵∠OAC=30°,∴∠ACD=∠ADC=15°,∴AD=AC=AB,∴△ADB,△ADC是等腰三角形,∵OD垂直平分BC,∴DB=DC,∴△DBC是等腰三角形;②当α=60°时,易知∠DAC=∠DCA=30°,∴DA=DC=DB,∴△ABD、△ACD、△BCD均为等腰三角形;③当α=105°时,易知∠ABD=∠ADB=∠ADC=∠ACD=75°,∠DBC=∠DCB=15°,∴△ABD、△ACD、△BCD均为等腰三角形;④当α=150°时,易知△BDC是等边三角形,∴AB=BD=DC=AC,∴△ABD、△ACD、△BCD均为等腰三角形,综上所述:当α=15°或60°或105°或150°时,△ABD、△ACD、△BCD均为等腰三角形.【解析】【分析】(1)设直线l的解析式为y= x+b,把点C(1,0)代入求出b即可;(2)①求出点A的坐标,利用两点间距离公式即可求出AC的长;②如图1中,由CE∥OA,推出∠ACE=∠OAC,由tan∠OAC=,推出∠OAC=30°,即可解决问题;(3)根据等腰三角形的判定和性质,分情况作出图形,进行求解即可.8.综合实践问题情景:某综合实践小组进行废物再利用的环保小卫士行动. 他们准备用废弃的宣传单制作装垃圾的无盖纸盒.操作探究:(1)若准备制作一个无盖的正方体形纸盒,如图1,下面的哪个图形经过折叠能围成无盖正方体形纸盒?(2)如图2是小明的设计图,把它折成无盖正方体形纸盒后与“保”字相对的是哪个字?(3)如图3,有一张边长为20cm的正方形废弃宣传单,小华准备将其四角各剪去一个小正方形,折成无盖长方体形纸盒.①请你在图3中画出示意图,用实线表示剪切线,虚线表示折痕.②若四角各剪去了一个边长为xcm的小正方形,用含x的代数式表示这个纸盒的高为________cm,底面积为________cm2,当小正方形边长为4cm时,纸盒的容积为________cm3.【答案】(1)解:A.有田字,故A不能折叠成无盖正方体;B.只有4个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体;C.可以折叠成无盖正方体;D.有6个小正方形,无盖的应该有5个小正方形,不能折叠成无盖正方体.故答案为:C.(2)解:正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,所以与“保”字相对的字是“卫”(3)x;(20﹣2x)2;576【解析】【解答】(3)解:①如图,②设剪去的小正方形的边长为x(cm),用含字母x的式子表示这个盒子的高为xcm,底面积为(20﹣2x)2cm2,当小正方形边长为4cm时,纸盒的容积为=x(20﹣2x)2=4×(20﹣2×4)2=576(cm3).故答案为:x,(20﹣2x)2, 576【分析】(1)由平面图形的折叠及正方体的展开图解答本题;(2)正方体的平面展开图中,相对面的特点是中间必须间隔一个正方形,据此作答;(3)①根据题意,画出图形即可;②根据正方体底面积、体积,即可解答.9.请完成下面题目的证明.如图,AB为⊙O的直径,AB=8,点C和点D是⊙O上关于直线AB 对称的两个点,连接OC,AC,且∠BOC<90°,直线BC与直线AD相交于点E,过点C作直线CG与线段AB的延长线相交于点F,与直线AD相交于点G,且∠GAF=∠GCE(1)求证:直线CG为⊙O的切线;(2)若点H为线段OB上一点,连接CH,满足CB=CH;①求证:△CBH∽△OBC;②求OH+HC的最大值.【答案】(1)证明:由题意可知:∠CAB=∠GAF,∵AB是⊙O的直径,∴∠ACB=90°∵OA=OC,∴∠CAB=∠OCA,∴∠OCA+∠OCB=90°,∵∠GAF=∠GCE,∴∠GCE+∠OCB=∠OCA+∠OCB=90°,∵OC是⊙O的半径,∴直线CG是⊙O的切线;(2)证明:①∵CB=CH,∴∠CBH=∠CHB,∵OB=OC,∴∠CBH=∠OCB,∴△CBH∽△OBC解:②由△CBH∽△OBC可知:∵AB=8,∴BC2=HB•OC=4HB,∴HB= ,∴OH=OB-HB=∵CB=CH,∴OH+HC=当∠BOC=90°,此时BC=∵∠BOC<90°,∴0<BC<令BC=x∴OH+HC= = =当x=2时,∴OH+HC可取得最大值,最大值为5【解析】【分析】(1)由题意可知:∠CAB=∠GAF,∠GAF=∠GCE,由圆的性质可知:∠CAB=∠OCA,所以∠OCA=∠GCE,从而可证明直线CG是⊙O的切线;(2)①由于CB=CH,所以∠CBH=∠CHB,易证∠CBH=∠OCB,从而可证明△CBH∽△OBC;②由△CBH∽△OBC可知:,所以HB= ,由于BC=HC,所以OH+HC=利用二次函数的性质即可求出OH+HC的最大值.10.如图1,抛物线y=ax2+bx﹣3经过点A,B,C,已知点A(﹣1,0),点B(3,0)(1)求抛物线的解析式(2)点D为抛物线的顶点,DE⊥x轴于点E,点N是线段DE上一动点①当点N在何处时,△CAN的周长最小?②若点M(m,0)是x轴上一个动点,且∠MNC=90°,求m的取值范围.【答案】(1)解:函数的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),故﹣3a=﹣3,解得:a=1,故函数的表达式为:y=x2﹣2x﹣3(2)解:①过点C作x轴的平行线交抛物线于点C'(2,﹣3),连接AC'交DE于点N,则此时△CAN的周长最小.设过点A、C'的一次函数表达式为y=kx+b,则:,解得:,故直线AC'的表达式为:y=﹣x﹣1,当x=1时,y=﹣2,故点N(1,﹣2);②如图2,过点C作CG⊥ED于点G.设NG=n,则NE=3﹣n.∵∠CNG+∠GCN=90°,∠CNG+∠MNE=90°,∴∠NCG=∠MNE,则tan∠NCG=n=tan∠MNE,故ME=﹣n2+3n,∴﹣1<0,故ME有最大值,当n时,ME,则m的最小值为:;如下图所示,当点N与点D重合时,m取得最大值.过C作CG⊥ED于G.∵y=x2﹣2x﹣3= y=(x-1)2﹣4,∴D(1,-4),∴CG=OE=1.∵EG=OC=3∴GD=4-3=1,∴CG=DG=1,∴∠CDG=45°.∵∠CDM=90°,∴∠EDM=45°,∴△EDM是等腰直角三角形,∴EM=ED=4,∴OM=OE+EM=1+4=5,∴m=5.故:m≤5.【解析】【分析】(1)函数的表达式为:y=a(x+1)(x﹣3)=a(x2﹣2x﹣3),即可求解;(2)①过点C作x轴的平行线交抛物线于点C'(2,﹣3),连接AC'交DE于点N,则此时△CAN的周长最小,即可求解;②如图2,ME=﹣n2+3n,求出ME最大值,则可求出m的最小值;当点N与点D处时,m取得最大值,求解即可.11.已知:如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90°,点A,C的坐标分别为A(﹣3,0),C(1,0),BC=AC.(1)在x轴上找一点D,连接DB,使得△ADB与△ABC相似(不包括全等),并求点D的坐标;(2)在(1)的条件下,如P,Q分别是AB和AD上的动点,连接PQ,设AP=DQ=m,问是否存在这样的m,使得△APQ与△ADB相似?如存在,请求出m的值;如不存在,请说明理由.【答案】(1)解:如图1,过点B作BD⊥AB,交x轴于点D,∵∠A=∠A,∠ACB=∠ABD=90°,∴△ABC∽△ADB,∴∠ABC=∠ADB,且∠ACB=∠BCD=90°,∴△ABC∽△BDC,∴∵A(﹣3,0),C(1,0),∴AC=4,∵BC=AC.∴BC=3,∴AB===5,∵,∴,∴CD=,∴AD=AC+CD=4+ =,∴OD=AD﹣AO=,∴点D的坐标为:(,0);(2)解:如图2,当∠APC=∠ABD=90°时,∵∠APC=∠ABD=90°,∠BAD=∠PAQ,∴△APQ∽△ABD,∴,∴∴m=,如图3,当∠AQP=∠ABD=90°时,∵∠AQP=∠ABD=90°,∠PAQ=∠BAD,∴△APQ∽△ADB,∴,∴∴m=;综上所述:当m=或时,△APQ与△ADB相似.【解析】【分析】(1)如图1,过点B作BD⊥AB,交x轴于点D,可证△ABC∽△ADB,可得∠ABC=∠ADB,可证△ABC∽△BDC,可得,可求CD 的长,即可求点D坐标;(2)分两种情况讨论,由相似三角形的性质可求解.12.在平面直角坐标系xOy中,抛物线y=mx2-2mx+m-1(m>0)与x轴的交点为A,B.(1)求抛物线的顶点坐标;(2)横、纵坐标都是整数的点叫做整点.①当m=1时,求线段AB上整点的个数;②若抛物线在点A,B之间的部分与线段AB所围成的区域内(包括边界)恰有6个整点,结合函数的图象,求m的取值范围.【答案】(1)解:将抛物线表达式变为顶点式,则抛物线顶点坐标为(1,-1);(2)解:①m=1时,抛物线表达式为,因此A、B的坐标分别为(0,0)和(2,0),则线段AB上的整点有(0,0),(1,0),(2,0)共3个;②抛物线顶点为(1,-1),则由线段AB之间的部分及线段AB所围成的区域的整点的纵坐标只能为-1或者0,所以即要求AB线段上(含AB两点)必须有5个整点;又有抛物线表达式,令y=0,则,得到A、B两点坐标分别为(,0),(,0),即5个整点是以(1,0)为中心向两侧分散,进而得到,∴.【解析】【分析】(1)将抛物线表达式变为顶点式,即可得到顶点坐标;(2)①m=1时,抛物线表达式为,即可得到A、B的坐标,可得到线段AB上的整点个数;②抛物线顶点为(1,-1),则由线段AB之间的部分及线段AB所围成的区域的整点的纵坐标只能为-1或者0,所以即要求AB线段上(含AB两点)必须有5个整点;令y=0,则,解方程可得到A、B两点坐标分别为(,0),(,0),即5个整点是以(1,0)为中心向两侧分散,进而得到,即可得到结论.。
中考数学高频考点《反比例函数》专项练习题-带答案
中考数学高频考点《反比例函数》专项练习题-带答案学校:___________班级:___________姓名:___________考号:___________一、单选题的图象上,下列结论中正确的是()1.已知点(-1,y1),(2,y2),(3,y3)在反比例函数y=−1xA.y1>y2>y3;B.y1>y3>y2;C.y3>y1>y2;D.y2>y3>y1.(k≠0)的图像上,当x>−1时,y的取值范围是()2.已知点A(1,3)在反比例函数的y=kxA.y>−3B.y<3或y>0C.y<−3D.y>−3或y>03.函数y=kx+b与y=kb(k、b为常数,且kb≠0)在同坐标系内的图象大致是()xA.B.C.D.4.如图,反比例函数y1= k1和一次函数y2=k2x+b的图象交于A,B N点.A,B两点的横坐标分别为2,-3.通x过观察图象,若y1>y2,则x的取值范围是()A.0<x<2 B.-3<x<0或x>2C.0<x<2或x<-3 D.-3<x<05.如图,平行四边形ABCD中,点A在反比例函数y= k(k≠0)的图象上,点D在y轴上,点B、点Cx在x轴上.若平行四边形ABCD的面积为10,则k的值是()A.﹣10 B.﹣5 C.5 D.106.某村耕地总面积为50公顷,且该村人均耕地面积y(单位:公顷/人)与总人口x(单位:人)的函数图象如图所示,则下列说法正确的是()A.该村人均耕地面积随总人口的增多而增多B.当该村总人口为50人时,人均耕地面积为1公顷C.若该村人均耕地面积为2公顷,则总人口有100人D.该村人均耕地面积y与总人口x成正比例(c 7.如图,在同一平面直角坐标系中,一次函数y1=kx+b(k、b是常数,且k≠0)与反比例函数y2= cx是常数,且c≠0)的图象相交于A(﹣3,﹣2),B(2,3)两点,则不等式y1>y2的解集是()A.﹣3<x<2 B.x<﹣3或x>2C.﹣3<x<0或x>2 D.0<x<28.教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在上午第一节下课时(8:25)能喝到不小于70℃的水,则接通电源的时间可以是当天上午的()A.7:00 B.7:10 C.7:25 D.7:35二、填空题9.如图,已知点A,B分别在反比例函数y1=﹣2x 和y2= kx的图象上,若点A是线段OB的中点,则k的值为.10.如图,两个反比例函数y=4x 和y=2x在第一象限内的图象分别是C1和C2,设点P在C1上,PA⊥x轴于点A,交C2于点B,则△POB的面积为.11.如图,在平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(3,0),B(0,6)分别在x轴,y轴上,反比例函数y= kx(x>0)的图象经过点D,且与边BC交于点E,则点E的坐标为.(x<0) 12.如图,在平面直角坐标系中,菱形OABC的顶点B在y轴上,顶点C在反比例函数y=kx的图象上,若对角线AC=6 , OB=8,则k的值为.13.如图,在平面直角坐标系中,△ABC的顶点A和C分别在x轴、y轴的正半轴上,且AB∥y轴,AB=4,△ABC的面积为2,将△ABC以点B为旋转中心,顺时针旋转90°得到△DBE,一反比例函数图象恰好过点D时,则此反比例函数解析式是.三、解答题(k≠0)在第一象限的图象交于A(1,a)和B两14.如图,一次函数y=−x+3的图象与反比例函数y=kx点,与x轴交于点C.(1)求反比例函数的解析式;(2)若点P在x轴上,且△APC的面积为5,求点P的坐标.15.如图,已知点A(1,a)是反比例函数y1= mx 的图象上一点,直线y2=﹣12x+12与反比例函数y1= mx的图象的交点为点B、D,且B(3,﹣1),求:(Ⅰ)求反比例函数的解析式;(Ⅱ)求点D坐标,并直接写出y1>y2时x的取值范围;(Ⅲ)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.16.如图,已知函数y= kx(x>0)的图象经过点A、B,点A的坐标为(1,2),过点A作AC∥y轴,AC=1(点C位于点A的下方),过点C作CD∥x轴,与函数的图象交于点D,过点B作BE⊥CD,垂足E在线段CD上,连接OC、OD.(1)求△OCD的面积;(2)当BE= 12AC时,求CE的长.17.如图,直线l经过点A(1,0),且与双曲线y=mx(x>0)交于点B(2,1)过点P(p,p﹣1)(p>1且p≠2)作x轴的平行线分别交曲线y=mx (x>0)和y=−mx(x<0)于点M,N.(1)求m的值及直线l的解析式;(2)是否存在实数p,使得△AMN与△AMP的面积相等?若存在,求出所以满足条件的p的值;若不存在,说明理由.18.为进行技术转型,某企业从今年1月开始对车间的生产线进行为期5个月的技术升级改造.改造期间的月利润与时间成反比例函数,到今年5月底开始恢复全面生产后,企业的月利润都会比前一个月增加10万元.设今年1月为第1个月,第x个月的利润为y万元,利润与时间的图像如图所示.(1)分别求出生产线升级改造前后,y与x的函数表达式.(2)已知月利润少于50万元时,为企业的资金紧张期,求资金紧张期共有几个月.答案1.B2.D3.C4.C5.A6.B7.C8.B9.-810.111.(2,7)12.-1213.y=﹣12x.14.(1)解:把点A(1,a)代入y=−x+3解得a=2∴A点坐标为(1,2)把A(1,2)代入反比例函数y=kx∴k=1×2=2∴反比例函数的解析式为y=2x;(2)解:∵一次函数y=−x+3的图象与x轴交于点C∴C点坐标为(3,0)设P点坐标为(x,0)∴PC=|3−x|∴S△APC=12×|3−x|×2=5∴x=−2或x=8∴P的坐标为(−2,0)或(8,0).15.解:(Ⅰ)∵B(3,﹣1)在反比例函数y1=mx的图象上∴-1= m3∴m=-3∴反比例函数的解析式为y=−3x;(Ⅱ){y=−3xy=−12x+12∴−3x = −12x+12x2-x-6=0(x-3)(x+2)=0x1=3,x2=-2当x=-2时,y= 32∴D(-2,32);y1>y2时x的取值范围是-2<x<0或x> 32;(Ⅲ)∵A(1,a)是反比例函数y1=mx的图象上一点∴a=-3∴A(1,-3)设直线AB为y=kx+b{k+b=−33k+b=−1∴{k=1b=−4∴直线AB为y=x-4令y=0,则x=4∴P(4,0)16.(1)解;y= kx(x>0)的图象经过点A(1,2)∴k=2.∵AC∥y轴,AC=1∴点C的坐标为(1,1).∵CD∥x轴,点D在函数图象上∴点D的坐标为(2,1).∴S△OCD=12×1×1=12.(2)解;∵BE= 12AC ∴BE =12 . ∵BE ⊥CD点B 的纵坐标=2﹣ 12 = 32 由反比例函数y= 2x 点B 的横坐标x=2÷ 32 = 43∴点B 的横坐标是 43 ,纵坐标是 32 . ∴CE= 43−1=13 .17.(1)解:把B (2,1)代入y= mx 中得:m=2×1=2 设直线l 的解析式为:y=kx+b把A (1,0)、B (2,1)代入y=kx+b 中得: {k +b =02k +b =1解得: {k =1b =−1∴直线l 的解析式为:y=x ﹣1 (2)解:存在.理由如下: ∵P 点坐标为(p ,p ﹣1) ∴点P 在直线l 上 而MN ∥x 轴∴点M 、N 的纵坐标都为p ﹣1∴M ( 2p−1 ,p ﹣1),N (﹣ 2p−1 ,p ﹣1) ∴MN= 4p−1∴S △AMN = 12 • 4p−1 •(p ﹣1)=2 当p >2时,如图S△APM= 12(p﹣2p−1)(p﹣1)= 12(p2﹣p﹣2)∵S△AMN=S△APM∴12(p2﹣p﹣2)=2整理得,p2﹣p﹣6=0,解得p1=﹣2(不合题意,舍去),p2=3.∴满足条件的p的值为318.(1)解:∵改造期间的月利润与时间成反比例函数设升级改造前y与x的函数表达式为y=kx(k≠0)当x=1时,y=100∴k1=100,即k=100∴升级改造前y与x的函数表达式为y=100x(0<x≤5,x且为整数);当x=5时,y=1005=20∵到今年5月底开始恢复全面生产后,企业的月利润都会比前一个月增加10万元∴y=10(x−5)+20=10x−30∴升级改造后y与x的函数表达式为y=10x−30(x>5x且为整数)∴升级改造前y=100x(0<x≤5,x且为整数);升级改造后y=10x−30(x>5且x为整数);(2)解:在y=100x中当y=50时x=2∵100>0∴在该象限中,y随x的增大而减小∴y<50时,x>2在y=10x−30中当y<50时10x−30<50∴x<8∴2<x<8且x为整数.∴x可取3、4、5、6、7共5个月.∴资金紧张期共有5个月。
北师大版数学九年级上学期期末备考压轴题培优:反比例函数(含答案)
期末备考压轴题培优:反比例函数1.如图,在直角坐标系xOy中,直线y=mx与双曲线y=相交于A(﹣1,a)、B两点,BC⊥x轴,垂足为C,△AOC的面积是1.(1)求m、n的值;(2)求直线AC的解析式.(3)点P在双曲线上,且△POC的面积等于△ABC面积的,求点P的坐标.2.如图,一次函数y=﹣x+的图象与反比例函数y=(k>0)的图象交于A,B两点,过点A做x轴的垂线,垂足为M,△AOM面积为1.(1)求反比例函数的解析式;并直接写出不等式≤﹣+的解集.(2)在x轴上求一点P,使|P A﹣PB|的值最大,并求出其最大值和P点坐标.(3)连接OB,求三角形AOB的面积.3.如图,一次函数y=﹣x+3的图象与反比例函数y=(k≠0)在第一象限的图象交于A (1,a)和B两点,与x轴交于点C.(1)求反比例函数的解析式;(2)若点P在x轴上,且△APC的面积为5,求点P的坐标;(3)直接写出不等式﹣x+3<的解集.4.已知A(a,﹣2a)、B(﹣2,a)两点是反比例函数y=与一次函数y=kx+b图象的两个交点.(1)求一次函数和反比例函数的解析式;(2)求△ABO的面积;(3)观察图象,直接写出不等式kx+b﹣>0的解集.5.如图,在平面直角坐标系中,直线l1:y=﹣x与反比例函数y=的图象交于A,B两点(点A在点B左侧),已知A点的纵坐标是2;(1)求反比例函数的表达式;(2)根据图象直接写出﹣x>的解集;(3)将直线l1:y=x沿y向上平移后的直线l2与反比例函数y=在第二象限内交于点C,如果△ABC的面积为30,求平移后的直线l2的函数表达式.6.如图所示,双曲线y=(x>0,k>0)与直线y=ax+b(a≠0,b为常数)交于A(2,4),B(m,2)两点.(1)求m的值;(2)若C点坐标为(n,0),当AC+BC的值最小时,求出n的值;(3)求△AOB的面积.7.如图,在平面直角坐标系xOy内,点P在直线y=x上(点P在第一象限),过点P作P A⊥x轴,垂足为点A,且OP=2.(1)求点P的坐标;(2)如果点Q在直线OP上,且S=6,求点Q的坐标;△APQ(3)如果点M和点P都在反比例函数y=(k≠0)图象上,过点M作MN⊥x轴,垂足为点N,如果△MNA和△OAP全等(点M、N、A分别和点O、A、P对应),求点M 的坐标.8.如图,在平面直角坐标系xOy中,反比例函数y=(k≠0)的图象经过等边三角形BOC 的顶点B,OC=2,点A在反比例函数图象上,连接AC,OA.(1)求反比例函数y=(k≠0)的表达式;(2)若四边形ACBO的面积是3,求点A的坐标.9.如图,反比例函数y1=的图象与一次函数y2=ax+b的图象相交于点A(1,4)和B(﹣2,n).(1)求反比例函数与一次函数的解析式;(2)请根据图象直接写出y1<y2时,x的取值范围.10.如图,在平面直角坐标系中,已知点A(8,1),B(0,﹣3),反比例函数(x>0)的图象经过点A,动直线x=t(0<t<8)与反比例函数的图象交于点M,与直线AB交于点N.(1)求k的值;(2)当t=4时,求△BMA面积;(3)若MA⊥AB,求t的值.12(1)求A、B两点的坐标和反比例函数的解析式;(2)求△AOB的面积.12.如图1,点A(0,8)、点B(2,a)在直线y=﹣2x+b上,反比例函数y=(x>0)的图象经过点B.(1)求a和k的值;(2)将线段AB向右平移m个单位长度(m>0),得到对应线段CD,连接AC、BD.①如图2,当m=3时,过D作DF⊥x轴于点F,交反比例函数图象于点E,求E点的坐标;②在线段AB运动过程中,连接BC,若△BCD是等腰三形,求所有满足条件的m的值.12两点.(1)求反比例函数的解析式;(2)观察图象,直接写出使一次函数值不大于反比例函数值的x的取值范围;(3)求△AOB的面积.14.如图,一次函数y=k1x﹣3(k1>0)的图象与x轴、y轴分别交于A,B两点,与反比例函y=(k2>0)的图象交于C,D两点,作CE⊥y轴,垂足为点E,作DF⊥y轴,垂足为点F,已知CE=1.(1)①直接写出点C的坐标(用k1来表示)②k2﹣k1=;(2)若B为AC的中点,求反比例函数的表达式;(3)在(2)的条件下,设点M是x轴负半轴上一点,将线段MF绕点M旋转90°,得到线段MN,当点M滑动时,点N能否在反比例函数的图象上?如果能,求出点N的坐标;如果不能,请说明理由.15.对于一个函数给出如下定义:对于函数y,当a≤x≤b,函数值y满足c≤y≤d,且满足k(b﹣a)=d﹣c,则称此函数为“k属函数”.例如:正比例函数y=﹣3x,当1≤x≤3,﹣9≤y≤﹣3,则k(3﹣1)=﹣3﹣(﹣9),求得:k=3,所以函数y=﹣3x为“3属函数”.(1)反比例函数y=(1≤x≤5)为“k属函数”,求k的值;(2)若一次函数y=ax﹣1(1≤x≤5)为“2属函数”,求a的值.16.如图,已知一次函数y=kx+b的图象交反比例函数的图象于点A(2,﹣4)和点B(n,﹣2),交x轴于点C.(1)求这两个函数的表达式;(2)求△AOB的面积;(3)请直接写出使一次函数值大于反比例函数值的x的范围.17.如图,在平面直角坐标系中,直线y=k1x(x≥0)与双曲线y=(x>0)相交于P (2,4),已知点A、B的坐标分别为(4,0)、(0,3),连结AB.将Rt△AOB沿OP方向平移,得到△A′PB′,点O与点P是对应点.过点A′作A′C∥y轴交双曲线于点C.(1)求k1、k2的值;(2)求点C的坐标;(3)判断四边形PCA′B′是否为平行四边形,请说明理由.18.探索函数y=x+(x>0)的图象和性质.已知正比例函数y=x与反比例函数y=在第一象限内的图象如图所示.若P为函数y =x+(其中x>0)图象上任意一点,过P作PC垂直于x轴且与已知函数的图象、x 轴分别交于点A、B、C,则PC=x+=AC+BC,从而发现下述结论:“点P可以看作点A沿竖直方向向上平移BC个长度单位(P A=BC)而得到”.(1)根据该结论,在图中作出函数y=x+(x>0)图象上的一些点,并画出该函数的图象;(2)观察图象,写出函数y=x+(x>0)两条不同类型的性质.19.如图,在平面直角坐标系xOy中,函数的图象经过点A(﹣1,6),直线y =mx﹣2与x轴交于点B(﹣1,0).(1)求k,m的值;(2)过第二象限的点P(n,﹣2n)作平行于x轴的直线,交直线y=mx﹣2于点C,交函数的图象于点D.①当n=﹣1时,判断线段PD与PC的数量关系,并说明理由;②若PD≥2PC,结合函数的图象,直接写出n的取值范围.参考答案1.解:(1)∵直线y=mx与双曲线y=相交于A(﹣1,a)、B两点,∴B点横坐标为1,即C(1,0),∵△AOC的面积为1,∴A(﹣1,2),将A(﹣1,2)代入y=mx,y=可得m=﹣2,n=﹣2;(2)设直线AC的解析式为y=kx+b,∵y=kx+b经过点A(﹣1,2)、C(1,0)∴,解得k=﹣1,b=1,∴直线AC的解析式为y=﹣x+1;(3)∵A(﹣1,2),C(1,0),∴B(1,﹣2),∴S=×2×2=2,△ABC∵△POC的面积等于△ABC面积的,=,∴S△POC∵S=OC•|y P|,△POC∴=•|y P|,解得y P=±1,∴P(﹣2,1)或(2,﹣1).2.解:(1)∵反比例函数y=(k>0)的图象过点A,过A点作x轴的垂线,垂足为M,△AOM面积为1,∴|k|=1,∵k>0,∴k=2,故反比例函数的解析式为:y=,由,解得或,∴A(1,2),B(4,),∴不等式≤﹣+的解集为1≤x≤4或x≤0;(2)一次函数y=﹣x+的图象与x轴的交点即为P点,此时|P A﹣PB|的值最大,最大值为AB的长.∵A(1,2),B(4,),∴AB==,∴|P A﹣PB|的最大值为;∵一次函数y=﹣x+,令y=0,则﹣x+=0,解得x=5,∴P点坐标为(5,0);(3)∵P (5,0),∴OP =5,∴S △AOB =S △AOP ﹣S △BOP =×5×2﹣=.3.解:(1)把点A (1,a )代入y =﹣x +3,得a =2,∴A (1,2)把A (1,2)代入反比例函数y =,∴k =1×2=2;∴反比例函数的表达式为y =;(2)∵一次函数y =﹣x +3的图象与x 轴交于点C ,∴C (3,0),设P (x ,0),∴PC =|3﹣x |,∴S △APC =|3﹣x |×2=5,∴x =﹣2或x =8,∴P 的坐标为(﹣2,0)或(8,0);(3)解得或,∴B (2,1),由图象可知:不等式﹣x +3<的解集是0<x <1或x >2.4.解:(1)∵A (a ,﹣2a )、B (﹣2,a )两点在反比例函数y =的图象上, ∴m =﹣2a •a =﹣2a ,解得a =1,m =﹣2,∴A (1,﹣2),B (﹣2,1),反比例函数的解析式为y =﹣.将点A (1,﹣2)、点B (﹣2,1)代入到y =kx +b 中, 得:,解得:,∴一次函数的解析式为y =﹣x ﹣1.(2)在直线y =﹣x ﹣1中,令y =0,则﹣x ﹣1=0,解得x =﹣1,∴C (﹣1,0),∴S △AOB =S △AOC +S △BOC =×1×2+×1=;(3)观察函数图象,发现:当x <﹣2或0<x <1时,反比例函数图象在一次函数图象的上方,∴不等式kx +b ﹣>0的解集为x <﹣2或0<x <1.5.解:(1)∵直线l 1:y =﹣x 经过点A ,A 点的纵坐标是2,∴当y =2时,x =﹣4,∴A (﹣4,2),∵反比例函数y =的图象经过点A ,∴k =﹣4×2=﹣8,∴反比例函数的表达式为y =﹣;(2)∵直线l 1:y =﹣x 与反比例函数y =的图象交于A ,B 两点, ∴B (4,﹣2), ∴不等式﹣x >的解集为x <﹣4或0<x <4;(3)如图,设平移后的直线l 2与x 轴交于点D ,连接AD ,BD ,∵CD ∥AB ,∴△ABC 的面积与△ABD 的面积相等,∵△ABC 的面积为30,∴S △AOD +S △BOD =30,即OD (|y A |+|y B |)=30, ∴×OD ×4=30,∴OD =15,∴D(15,0),设平移后的直线l2的函数表达式为y=﹣x+b,把D(15,0)代入,可得0=﹣×15+b,解得b=,∴平移后的直线l2的函数表达式为y=﹣x+.6.解:(1)把A(2,4)代入y=(x>0,k>0),∴k=2×4=8,∴反比例函数的解析式为y=,把B(m,2)代入y=得,2=,解得m=4;(2)由(1)可知:A(2,4),B(4,2),∴B点关于x轴的对称点B′(4,﹣2),连接AB′,交x轴与C,此时AC+BC=AB′,AC+BC的值最小,设直线AB′的解析式为y=mx+t,把A(2,4),B′(4,﹣2)代入得,解得:,∴直线AB′的解析式为y=﹣3x+10,把(n,0)代入得y=﹣3n+10,∴n=;(3)把A(2,4),B(4,2)代入y=ax+b得,解得,∴直线AB的解析式为y=﹣x+6,∴直线AB 与x 轴的交点C (6,0),∴S △AOB =S △AOC ﹣S △BOC =×6×4﹣×6×2=6.7.解:(1)设AP =h ,则OA =2h ,由勾股定理得,OP 2=AP 2+OA 2,即(2)2=h 2+(2h )2, 解得,h =2,∴AP =h =2,则OA =2h =4,∴点P 的坐标为(4,2);(2)设点Q 到AP 的距离为a , 由题意得,×2×a =6, 解得,a =6,∴点Q 的横坐标为4﹣6或4+6, 当x =4﹣6时,y =2﹣3, 当x =4+6,y =2+3,综上所述,点Q 的坐标为(4﹣6,2﹣3)或(4+6,2+3); (3))∵点P (4,2)在反比例函数y =的图象上,∴2=,解得,k =8,∴y =,在Rt △P AO 中,∠P AO =90°,P A =2,AO =4,∵∠MNA =90°,∴当△MNA 和△APO 全等时,分以下两种情况:①点N 在点A 的左侧时,MN =AO =4,AN =AP =2,∴ON =OA ﹣AN =4﹣2=2,∴M(2,4),且点M在反比例函数y=的图象上.②点N在点A的右侧时,AO=MN=4,AN=AP=2,∴ON=AN+AO=4+2=6.∴M(6,4),但点M不在反比例函数y=的图象上,综合①②,满足条件的点M的坐标为(2,4).8.解:(1)作BD⊥OC于D,∵△BOC是等边三角形,∴OB=OC=2,OD=OC=1,∴BD==,=OD×BD=,∴S△OBDS=|k|,△OBD∴|k|=,∵反比例函数y=(k≠0)的图象在一三象限,∴k=,∴反比例函数的表达式为y=;=OC•BD==,(2)∵S△OBC∴S=3﹣=2,△AOC=OC•y A=2,∵S△AOC∴y A=2,把y=2代入y=,求得x=,∴点A的坐标为(,2).9.解:(1)∵反比例函数y1=的图过点A(1,4),∴4=,即k=4,∴反比例函数的解析式为:y1=,∵反比例函数y1=的图象过点B(﹣2,n),∴n==﹣2,∴B(﹣2,﹣2),∵一次函数y2=ax+b的图象过点A(1,4)和点B(﹣2,﹣2),∴,解得:∴一次函数的解析式为:y2=2x+2;(2)由图象可知:当﹣2<x<0或x>1.10.解:(1)∵反比例函数(x>0)的图象经过点A,∴1=,解得k=8;(2)设直线AB的解析式为y=kx+b,把点A(8,1),B(0,﹣3)代入得,解得,∴直线AB的解析式为y=x﹣3,当t=4时,则M(4,2),N(4,﹣1),∴MN=2﹣(﹣1)=3,∴S△BMA=×3×8=12;(3)由题意可知M(t,),∵A(8,1),B(0,﹣3),∴MA2=(t﹣8)2+(﹣1)2,MB2=t2+(+3)2,AB2=82+(1+3)2=80,∵MA⊥AB,∴MB2=MA2+AB2,即t2+(+3)2=(t﹣8)2+(﹣1)2+80,整理得:2t+=17,解得t=或t=8(舍去),故若MA⊥AB,t的值为.11.解:(1)分别把A(1,m)、B(4,n)代入y1=﹣x+5,得m=﹣1+5=4,n=﹣4+5=1,所以A点坐标为(1,4),B点坐标为(4,1),把A(1,4)代入y2=,得k=1×4=4,所以反比例函数解析式为y2=;(2)如图,设一次函数图象与x轴交于点C,当y=0时,﹣x+5=0,解得x=5,则C点坐标为(5,0),所以S△AOB =S△AOC﹣S△BOC=×5×4﹣×5×1=7.5.12.解:(1)∵点A(0,8)在直线y=﹣2x+b上,∴﹣2×0+b=8,∴b=8,∴直线AB的解析式为y=﹣2x+8,将点B(2,a)代入直线AB的解析式y=﹣2x+8中,得﹣2×2+8=a,∴a=4,∴B(2,4),将B(2,4)代入反比例函数解析式y=(x>0)中,得k=xy=2×4=8;(2)①由(1)知,B(2,4),k=8,∴反比例函数解析式为y=,当m=3时,将线段AB向右平移3个单位长度,得到对应线段CD,∴D(2+3,4),即D(5,4),∵DF⊥x轴于点F,交反比例函数y=的图象于点E,∴E(5,);②如图,∵将线段AB向右平移m个单位长度(m>0),得到对应线段CD,∴CD=AB,AC=BD=m,∵A(0,8),B(2,4),∴C(m,8),D((m+2,4),∵△BCD是以BC为腰的等腰三形,当BC=CD时,BC=AB,∴点B在线段AC的垂直平分线上,∴m=2×2=4,当BC=BD时,B(2,4),C(m,8),∴BC=,∴=m,∴m=5,当BD=AB时,m=AB==2,综上所述,△BCD是以BC为腰的等腰三角形,满足条件的m的值为4或5或2.13.解:(1)∵点A(2,4)在反比例函数y2=的图象上,∴k=2×4=8,∴反比例函数的解析式为y2=.(2)∵点B(﹣4,n)在反比例函数y2=的图象上,∴n==﹣2,∴点B的坐标为(﹣4,﹣2).观察函数图象,发现:使一次函数值不大于反比例函数值的x的取值范围为x≤﹣4或0<x≤2.(3)将点A(2,4)、B(﹣4,﹣2)代入到y1=ax+b中,得:解得:,∴一次函数的解析式为y=x+2,令y=0,求得x=﹣2,∴S △AOB =S △AOC +S △BOC =×2×2+2×4=6.14.解:(1)如图1,∵CE ⊥y 轴于点E 且CE =1,∴C 的横坐标为1,当x =﹣1时,y =﹣k 1﹣3∴C (﹣1,﹣k 1﹣3),∵C 在反比例函数的图象上,∴﹣1×(﹣k 1﹣3)=k 2,∴k 2﹣k 1=3;故答案为(﹣1,﹣k 1﹣3),3;(2)如图1,∵CE ⊥y 轴,DF ⊥y 轴,∴CE ∥DF ,∵B 为AC 的中点,∴AB =BC ,∵∠AOB =∠BEC =90°,∠ABO =∠CBE ,∴△ABO ≌△CBE (AAS ),∴AO =CE =1,∴A (1,0),当x =1时,y =k 1+3=0,∴k 1=3,由(1)得:k 2﹣k 1=3,∴k 2=6;∴反比例函数的解析式:y =;(3)当点M 滑动时,点N 能在反比例函数的图象上如图2,MF =MN ,∠FMN =90°过N 作NH ⊥x 轴于H ,易得:△MNH ≌△FMO ,∴FO =MH ,OM =NH ,由(2)知:反比例函数的解析式:y=;设D(m,),∵tan∠ABO===,∴=,解得:m=2,m=﹣1(舍去),∴N(2,3),∴OF=MH=3,设M(x,0),∴N(x+3,x),当点N落在反比例函数的图象上时,x(x+3)=6,x2+3x﹣6=0,解得x=(舍去),x=,∴点N的坐标为(,).15.解:(1)∵反比例函数y=中,k=5>0,∴y随x的增大而减小,当1≤x≤5时,1≤y≤5,∴k(5﹣1)=5﹣1,∴k=1;(2)①a>0时,对于一次函数y=ax﹣1,y随x增大而增大,当1≤x≤5时,a﹣1≤y≤5a﹣1,∴k(5﹣1)=4a,∵k=2,∴a=2;②当a<0时,y随x增大而减小,当1≤x≤5时,a﹣1≤y≤5a﹣1,∴k(5﹣1)=﹣4a,∵k=2,∴a=﹣2.16.解:(1)把A(2,﹣4)的坐标代入得:,∴4﹣2m=﹣8,反比例函数的表达式是;把B(n,﹣2)的坐标代入得,解得:n=4,∴B点坐标为(4,﹣2),把A(2,﹣4)、B(4,﹣2)的坐标代入y=kx+b得,解得,∴一次函数表达式为y=x﹣6;(2)当y=0时,x=0+6=6,∴OC=6,∴△AOB的面积=×6×4﹣×6×2=6;(3)由图象知,一次函数值大于反比例函数值的x的范围为0<x<2或x>4.17.解:(1)∵直线y=k1x过点P(2,4),∴4=2k1,∴k1=2,∵双曲线y=(x>0)过点P(2,4),∴k2=2×4=8;(2)由平移知,点O(0,2)向右平移2个单位,再向上平移4个单位得到点P(2,4),∴点A(4,0)也向右平移2个单位,再向上平移4个单位得到点A'(6,4),∵A'C∥y轴,∴点C的横坐标为6,由(1)知,k2=8,双曲线的解析式为y=,∵点C在双曲线y=上,∴y==,∴C(6,);(3)四边形PCA′B′不是平行四边形,理由:∵B(0,3),∴OB=3,由平移知,PB'=OB=3,PB'∥y轴,∵A'C∥y轴,∴PB'∥A'C,由(2)知,A'(6,4),C(6,),∴A'C=4﹣=≠PB',∴四边形PCA′B′不是平行四边形.18.解:(1)如图所示:(2)函数两条不同类型的性质是:①图象是轴对称图形:②当0<x<1时,y随x的增大而减小,当x>1时,y随x的增大而增大;③当x=1时,函数y=x+(x>0)的最小值是2;19.解:(1)∵函数的图象经过点A(﹣1,6),∴k=﹣6.∵直线y=mx﹣2与x轴交于点B(﹣1,0),∴m=﹣2.(2)①判断:PD=2PC.理由如下:当n=﹣1时,点P的坐标为(﹣1,2),∵y=﹣2x﹣2交于于点C,且点P(﹣1,2)作平行于x轴的直线,∴点C的坐标为(﹣2,2),∵函数的图象于点D,且点P(﹣1,2)作平行于x轴的直线,点D的坐标为(﹣3,2).∴PC=1,PD=2.∴PD=2PC.②当PD=2PC时,有两种情况,分别为:y=2,或者y=6.若PD≥2PC,0<y≤2,或y≥6即0<﹣2n≤2,或﹣2n≤6解得﹣1≤n<0.或n≤﹣3。
初中数学鲁教版(五四制)九年级上册第一章 反比例函数1 反比例函数-章节测试习题(2)
章节测试题1.【答题】反比例函数y=的图象在第二、四象限,则n的取值范围为______,,为图象上两点,则______用“<”或“>”填空.【答案】n<1 <【分析】根据反比例函数的性质再结合反比例函数图象上点的坐标特征即可求解.【解答】因为反比例函数y=的图象在第二、四象限,所以n-1<0,所以n<1.又因为A(2,y1),B(3,y2)在第四象限,所以y1<y2.故答案为:n<1,<.2.【题文】反比例函数的图象经过A(-2,1)、B(1,m)、C(2,n)两点,试比较m、n大小.【答案】m<n【分析】将点A代入反比例函数解出k值,再将B、C的坐标分别代入已知反比例函数解析式,分别求得m、n的值,然后再来比较它们的大小即可【解答】反比例函数,它的图象经过A(-2,1),,k=-2,,将B,C两点代入反比例函数得,,,∴m<n.3.【答题】下列函数中是反比例函数的是()A. y=x﹣1B. y=C. y=D. =1【答案】C【分析】此题应根据反比例函数的定义进行判断,反比例函数的一般形式是y=(k≠0).【解答】A、y=x-1是一次函数,不符合题意;B、y=不是反比例函数,不符合题意;C、y=是反比例函数,符合题意;D、=1不是反比例函数,不符合题意;选C.4.【答题】已知函数是反比例函数,则m的值为()A. 2B. ﹣2C. 2或﹣2D. 任意实数【答案】B【分析】此题应根据反比例函数的定义进行判断,反比例函数的一般形式是y=(k≠0).【解答】解:∵函数是反比例函数,∴,解得:m=﹣2.选B.5.【答题】下面说法正确的是()A.一个人的体重与他的年龄成正比例关系B.正方形的面积和它的边长成正比例关系C.车辆所行驶的路程S一定时,车轮的半径r和车轮旋转的周数m成反比例关系D.水管每分钟流出的水量Q一定时,流出的总水量y和放水的时间x成反比例关系【答案】C【分析】分别利用反比例函数、正比例函数以及二次函数关系分别分析得出答案.【解答】A、一个人的体重与他的年龄成正比例关系,错误;B、正方形的面积和它的边长是二次函数关系,故此选项错误;C、车辆所行驶的路程S一定时,车轮的半径r和车轮旋转的周数m成反比例关系,正确;D、水管每分钟流出的水量Q一定时,流出的总水量y和放水的时间x成正比例关系,故此选项错误;选C.6.【答题】下列函数中,表示y是x的反比例函数的是()A. y=B. y=C. y=2xD. y=【答案】B【分析】根据反比例函数的定义判断各选项即可.【解答】根据反比例函数的定义,可判断出只有y=表示y是x的反比例函数.选B.7.【答题】下列函数中,y既不是x的正比例函数,也不是反比例函数的是()A. B. C. D.【答案】C【分析】根据正比例函数y=kx,反比例函数y=kx-1或y=,可得答案.【解答】A、是反比例函数,故A错误;B、是正比例函数,故B错误;C、既不是正比例函数也不是反比例函数,故C正确;D、是反比例函数,故D错误;选C.8.【答题】将x=代入反比例函数y=﹣中,所得函数值记为y1,又将x=y1+1代入函数中,所得函数值记为y2,再将x=y2+1代入函数中,所得函数值记为y3,…,如此继续下去,则y2012的值为()A. 2B.C.D. 6【答案】A【分析】分别计算出y1,y2,y3,y4,可得到每三个一循环,而2012=670…2,即可得到y2012=y2.【解答】y1=-=-,把x=+1=-代入y=-中得y2=-,把x=2+1=3代入反比例函数y=-中得y3=-,把x=-+1=代入反比例函数y=-得y4=,如此继续下去每三个一循环,2012=670…2,∴y2012=2.选A.9.【答题】下列关系中,两个量之间为反比例函数关系的是()A.正方形的面积S与边长a的关系B.正方形的周长l与边长a的关系C.矩形的长为a,宽为20,其面积S与a的关系D.矩形的面积为40,长a与宽b之间的关系【答案】D【分析】此题应根据反比例函数的定义进行判断.【解答】A、根据题意,得,所以正方形的面积S与边长a的关系是二次函数关系;故本选项错误;B、根据题意,得,所以正方形的周长l与边长a的关系是正比例函数关系;故本选项错误;C、根据题意,得,所以正方形的面积S与边长a的关系是正比例函数关系;故本选项错误;D、根据题意,得,所以正方形的面积S与边长a的关系是反比例函数关系;故本选项正确.选D.10.【答题】反比例函数中常数k为()A. ﹣3B. 2C.D.【答案】D【分析】此题应根据反比例函数的定义进行判断,反比例函数的一般形式是(k≠0).【解答】反比例函数中常数k为.选D.11.【答题】函数是y关于x的反比例函数,则m=______.【答案】3【分析】此题应根据反比例函数的定义进行判断,反比例函数的一般形式是y=(k≠0).【解答】由题意得,解得m=3.12.【答题】若函数y=(m+2)x|m|﹣3是反比例函数,则m的值为______.【答案】2【分析】由于函数y=(m+2)x|m|﹣3是反比例函数,根据反比例函数的定义得到m+2≠0且|m|﹣3=﹣1,然后去绝对值和解不等式即可得到m的值.【解答】∵函数y=(m+2)x|m|﹣3是反比例函数,∴m+2≠0且|m|﹣3=﹣1,∴m=2.故答案为2.13.【答题】若函数是反比例函数,则m=______.【答案】±1【分析】根据反比例函数的定义先求出m的值,再根据系数不为0进行取舍.【解答】∵是反比例函数,∴m2-2=-1,∴m2=1,∴m=±1.故答案为±1.14.【答题】若反比例函数的图象在第二、四象限,m的值为______.【答案】-2【分析】由反比例函数的定义可知3-m2=-1,由反比例函数图象在第二、四象限可知m+1<0.【解答】∵是反比例函数,∴3-m2=-1.解得:m=±2.∵函数图象在第二、四象限,∴m+1<0,解得:m<-1.∴m=-2.故答案为:-2.15.【题文】列出下列问题中的函数关系式,并判断它们是否为反比例函数.(1)某农场的粮食总产量为1500t,则该农场人数y(人)与平均每人占有粮食量x(t)的函数关系式;(2)在加油站,加油机显示器上显示的某一种油的单价为每升4.75元,总价从0元开始随着加油量的变化而变化,则总价y(元)与加油量x(L)的函数关系式;(3)小明完成100m赛跑时,时间t(s)与他跑步的平均速度v(m/s)之间的函数关系式.【答案】见解答【分析】(1)由平均数,得x=,即y=是反比例函数,(2)由单价乘以油量等于总价,得y=4.75x,即y=4.75x是正比例函数,(3)由路程与时间的关系,得t=,即t=是反比例函数.【解答】解:(1)由平均数,得x=,即y=是反比例函数,(2)由单价乘以油量等于总价,得y=4.75x,即y=4.75x是正比例函数,(3)由路程与时间的关系,得t=,即t=是反比例函数.16.【题文】函数是反比例函数,则m的值是多少?【答案】-2【分析】判断一个函数是否是反比例函数,首先看看两个变量是否具有反比例关系,然后根据反比例函数的定义去判断.【解答】∵是反比例函数,∴3-m2=-1,m-2≠0,解得:m=-2.故m的值为-2.17.【题文】若反比例函数的图象经过第二、四象限,求函数的解析式.【答案】y=﹣【分析】根据反比例函数的定义,可以得到m2-24=1,而图象经过第二、四象限,则比例系数是负数,据此即可求解.【解答】根据题意得:解得:m=﹣5.则函数的解析式是:y=﹣.18.【题文】给出下列四个关于是否成反比例的命题,判断它们的真假.(1)面积一定的等腰三角形的底边长和底边上的高成反比例;(2)面积一定的菱形的两条对角线长成反比例;(3)面积一定的矩形的两条对角线长成反比例;(4)面积一定的直角三角形的两直角边长成比例.【答案】见解答【分析】根据反比例函数的定义及形式y=(k≠0)可判断各个命题的真假.【解答】解:(1)∵等腰三角形的面积一定,∴底边长和底边上的高的乘积为非零常数.∴命题(1)正确;(2)∵菱形的面积是它的对角线长的乘积的一半,∴当菱形的面积一定时,对角线长的乘积也一定.∴它们成反比例.故正确.(3)∵矩形的面积一定时,它的对角线长的乘积并不一定,∴两对角线长不成反比例,∴命题(3)为假命题;(4)∵直角三角形的面积为直角边乘积的一半,∴当它的面积一定时,其直角边长的乘积也一定.∴两直角边长成反比例,∴命题(4)正确.19.【答题】下列函数中,不是反比例函数的是()A. B. C. D.【答案】D【分析】本题考查了反比例函数的定义。
(典型题)北师大版九年级上册数学第六章 反比例函数含答案
北师大版九年级上册数学第六章反比例函数含答案一、单选题(共15题,共计45分)1、如图,在平面直角坐标系中,函数与的图象交于点,则代数式的值为()A. B. C. D.2、若反比例函数的图象经过点(1,-2),则k=()A.-2B.2C.D.-3、已知点A(,),B(1,),C(2,)是函数图象上的三点,则,,的大小关系是()A. <<B. <<C. <<D.无法确定4、若反比例函数y=的图象位于第二、四象限,则k的取值可能是()A.4B.3C.2D.05、在反比例函数的每一条曲线上,y都随着x的增大而增大,则k的值可以是()A.-1B.0C.1D.26、设有反比例函数y=,(x1, y1)、(x2, y2)为其图象上的两点,若x1<0<x2时y1>y2,则k的取值范围是()A.k>0B.k<0C.k>-1D.k<-17、直线y=3x与双曲线的一个分支(k≠0、x>0)相交,则该分支所在象限为()A.1B.2C.3D.48、点A(x1, y1),B(x2, y2),C(x3, y3)都是反比例函数的图象上,若x1<x2<0<x3,则y1, y2, y3的大小关系是()A.y3<y1<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y39、点A为反比例函数图象上一点,它到原点的距离为5,则x轴的距离为3,若点A第二象限内,则这个函数的解析式为()A.y=B.y=﹣C.y=D.y=﹣10、当x<0时,函数的图象在( )A.第四象限B.第三象限C.第二象限D.第一象限11、若,点M(a,b)在反比例函数的图象上,则反比例函数的解析式为()A. B. C. D.12、函数是反比例函数,则m的值为()A.0B.-1C.0或-1D.0或113、如图,点在双曲线上,点在双曲线上,轴,过点作轴于.连接,与相交于点,若,则的值为()A.6B.9C.10D.1214、如图,在同一平面直角坐标系中,直线与双曲线相交于两点,已知点A的坐标为,则点B的坐标为()A. B. C. D.15、如图,点A的反比例函数y=(x>0)的图象上,点B在反比例函数y =(x>0)的图象上,AB∥x轴,BC⊥x轴,垂足为C,连接AC,若△ABC 的面积是6,则k的值为()A.10B.12C.14D.16二、填空题(共10题,共计30分)16、已知直线y= x+2与y轴交于点A,与双曲线y= 有一个交点为B(2,3),将直线AB向下平移,与x轴.y轴分别交于点C,D,与双曲线的一个交点为P,若,则点D的坐标为________.17、如图,矩形ABCD的边AB与x轴平行,顶点A的坐标为(2,1),点B与点D都在反比例函数的图象上,则矩形ABCD的周长为________.18、正比例函数与反比例函数的图象交于A,B两点,若点A的坐标是(1,2),则点B的坐标是________.19、如图,正方形ABOC的边长为2,反比例函数y= 过点A,则k的值是________.20、在平面直角坐标系中,O为坐标原点,设点P(1,t)在反比例函数y=的图象上,过点P作直线l与x轴平行,点Q在直线l上,满足QP=OP.若反比例函数y=的图象经过点Q,则k=________ .21、如图,过原点的直线与反比例函数的图象相交于点、,根据图中提供的信息可知,这个反比例函数的解析式为________.22、如图,在平面直角坐标系中,已知直线y=kx(k>0)分别交反比例函数y= 和y= 在第一象限的图象于点A、B,过点B作BD⊥x轴于点D,交y= 的图象于点C,连结AC.若△ABC是等腰三角形,则k的值是________ .23、如图,平面直角坐标系中,⊙O1过原点O,且⊙O1与⊙O2相外切,圆心O1与O 2在x轴正半轴上,⊙O1的半径O1P1、⊙O2的半径O2P2都与x轴垂直,且点P1、P2在反比例函数(x>0)的图象上,则________.24、如图,平面直角坐标系中,OB在x轴上,∠ABO=90°,点A的坐标为(﹣1,2),将△AOB绕点A顺时针旋转90°,点O的对应点D恰好落在双曲线y=上,则k的值为________.25、若反比例函数的图象经过第一、三象限,则 k的取值范围是________.三、解答题(共5题,共计25分)26、已知, 与成正比例, 与成反比例,且当时,; 时, .试求当时, 的值.27、如图,△OAP、△ABQ是等腰直角三角形,点P、Q在函数(k≠0)第一象限的图像上,直角顶点A、B均在x轴上,若OA=3,求点Q的坐标.28、如图所示,Rt△AOB中,∠AOB=90°,OA=10,点B在反比例函数y=图象上,且点B的横坐标为3.(1)求OB的长;(2)求过点A的双曲线的解析式.29、按要求完成下列各小题.(1)解方程:x2+6x+2=2x+7;(2)如图是反比例函数y=在第三象限的图案,点M在该图象上,且点M到点x轴,y轴的距离都等于|k|,求k的值.30、美美用300元钱全部用来买营养品送给她妈妈,写出她所能购买营养品的数量y(kg)与单价x(元/kg)之间的关系式.问y是x的函数吗?y是x的反比例函数吗?参考答案一、单选题(共15题,共计45分)1、C2、A3、B4、D5、D6、D7、A8、A9、B10、C11、A12、A13、B14、A15、D二、填空题(共10题,共计30分)16、17、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、27、29、30、。
2020年冀教版数学九年级上册 27.2 反比例函数的图像和性质(含答案)
拓展训练2020年冀教版数学九年级上册27.2 反比例函数的图像和性质基础闯关全练1.已知k₁<0<k₂,则函数y=-k₂x-1和的图像大致是( )A. B. C. D.2.若a、b是实数,点A(2,a)、B(3,b)在反比例函数的图像上,则( )A.a<b<0B.b<a<0C.a<0<bD.b<0<a3.若是反比例函数,且它的图像位于第一、三象限,则m的值为( )A.2 B.-2 C.D.4.对于函数,下列说法错误的是( )A.这个函数的图像位于第一、三象限B.这个函数的图像既是轴对称图形又是中心对称图形C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小5.若反比例函数的图像在每个象限内,y随x的增大而减小,则k的值可以为( ) A.-1 B.3 C.0 D.-36.反比例函数(x<0)的图像如图所示,则矩形OAPB的面积是( )A.3 B.-3 C.D.7.如图是反比例函数在第三象限内的图像,点M在该图像上,且点M到x轴,y轴的距离都等于|k|.(1)求反比例函数的表达式;(2)若直线y=ax+2经过点M,且与y轴交于点A,求AM的值.能力提升全练1.已知当x>0时,反比例函数的函数值随自变量的增大而减小,此时关于x的方程x²-2(k+1)x+k²-1=0的根的情况为( )A.有两个相等的实数根B.没有实数根C.有两个不相等的实数根D.无法确定2.如图,在平面直角坐标系中,点A是反比例函数在第二象限内的图像上的一点,B(m-1,m-3),则OA+OB的最小值是( )A.B.C.+1 D.+23.已知点M(-3,4)在双曲线上,则下列各点一定在该双曲线上的是( )A.(3,4) B.(-4,-3) C.(4,3) D.(3,-4)4.如图是反比例函数图像的一支,根据图像可知常数m的取值范围是________.5.如图,已知一次函数y=-x+2与反比例函数的图像交于A,B两点,与x轴交于点M,且点A的横坐标是-2,B点的横坐标是4.(1)求反比例函数的解析式;(2)求△AOM的面积;(3)根据图像直接写出反比例函数值大于一次函数值时x的取值范围.6.如图,正比例函数的图像与反比例函数(k≠0)在第一象限的图像交于A点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1.(1)求反比例函数的解析式;(2)如果B为反比例函数在第一象限的图像上的点(点B与点A不重合),且B点的横坐标为1,在x轴上求一点P,使PA+PB最小.三年模拟全练一、选择题1.(2019河北沧州期末,7,★☆☆)若点(-2,y₁),(-1,y₂),(3,y₃)在双曲线(k<0)上,则y₁,y₂,y₃的大小关系是( )A.y₁<y₂<y₃B.y₃<y₂<y₁C.y₂<y₁<y₃D.y₃<y₁<y₂二、填空题2.(2019河北保定莲池期末,18,★★☆)如图,已知点A是反比例函数(k≠0,且k为常数)图像上的一点,AB⊥y轴于B,△AOB的面积是3,则这个反比例函数的解析式为___________.三、解答题3.(2019河北沧州月考,20,★★☆)已知反比例函数(k≠0)的图像经过点M(2,1).(1)求该函数的解析式;(2)当2<x<4时,求y的取值范围(直接写出结果).五年中考全练一、选择题1.(2018广东广州中考,9,★☆☆)一次函数y= ax +b和反比例函数在同一直角坐标系中的大致图像是( )A. B. C. D.2.(2015河北中考,10,★☆☆)一台印刷机每年可印刷的书本数量y(万册)与它的使用时间x(年)成反比例关系,当x=2时,y=20.则y与x的函数图像大致是( )A. B. C. D.二、解答题3.(2017河南中考,13,★★☆)已知点A(1,m),B(2,n)在反比例函数的图像上,则m 与n的大小关系为_______.4.(2018安徽中考,13,★★☆)如图,正比例函数y=kx与反比例函数的图像有一个交点A(2,m),AB⊥x轴于点B.平移直线y=kx,使其经过点B,得到直线l,则直线l对应的函数表达式是____________.三、解答题5.(2018四川成都中考,19,★★☆)如图,在平面直角坐标系xOy中,一次函数y=x+b 的图像经过点A(-2,0),与反比例函数(x>0)的图像交于B(a,4).(1)求一次函数和反比例函数的表达式;(2)设M是直线AB上一点,过M作MN∥x轴,交反比例函数(x>0)的图像于点N,若以A,O,M,N为顶点的四边形为平行四边形,求点M的坐标.核心素养全练1.(2019河北保定期末)如图,在反比例函数y=(x>0)的图像上,有点P₁、P₂、P₃、P₄,它们的横坐标依次是1、2、3、4,分别过这些点作x轴与y轴的垂线,若图中所构成的阴影部分的面积从左到右依次为S₁、S₂、S₃,则S₁+S₂+S₃=____.2.(2019北京东城期末)有这样一个问题:探究函数的图像与性质.小彤根据学习函数的经验,对函数的图像与性质进行了探究.下面是小彤探究的过程,请补充完整:(1)函数的自变量x的取值范围是____;(2)下表是y与x的几组对应值:则m的值为___________;(3)如图所示,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出了图像的一部分,请根据剩余的点补全此函数的图像;(4)观察图像,写出该函数的一条性质____________________;(5)若函数的图像上有三个点A(x₁,y₁)、B(x₂,y₂)、C(x₃,y₃),且x₁<3<x₂<x₃,则y₁、y₂、y₃之间的大小关系为___________.27.2反比例函数的图像和性质基础闯关全练1.C ∵k₂>0,∴-k₂<0,则直线y=-k₂x-1过第二、三、四象限,∵k₁<0,∴反比例函数的图像位于第二、四象限,故选C.2.A.∵A(2,a),B(3,b)在反比例函数的图像上,∴a=-1,,∴a<b<0,故选A.3.A ∵y=mx是反比例函数,∴m²-5=-1,解得m=±2.∵它的图像位于第一、三象限,∴m>0.∴m =2.故选A.4.C函数的图像位于第一、三象限,A中的说法正确;函数的图像既是轴对称图形,又是中心对称图形,B中的说法正确;当x>0时,y随x的增大而减小,C中的说法错误;当x <0时,y随x的增大而减小,D中的说法正确,故选C.5.B根据题意得k-1>0,则k>1,故选B.6.A由题意可得,故选A.7.解析(1)由题意得|k|²=2k,且k>0,∴k=2.∴反比例函数的表达式为.(2)由题意,可知A点的横坐标为0,则纵坐标为2,∴A(0,2).由(1)可知M(-2,-2).∴.能力提升全练1.C ∵当x>0时,反比例函数的函数值随自变量的增大而减小,∴k>0.∵x²-2(k+1)x+k²-1=0,∴[ -2(k+1)]²-4×1×(k²-1)= 8k+8>0,∴关于x的方程x²-2(k+1)x+k²-1 =0有两个不相等的实数根,故选C.2.B如图,当点A、O、B三点共线时,OA+OB取最小值.此时点B与点A关于原点对称,∵点B( m-1,m-3)在反比例函数图像上,点A在第二象限内,∴点B在第四象限内,∴(m-1)(m-3)=-1,解得m=2.∴B(1,-1),∴A(-1,1),∴OA +OB最小值为.故选B.3.D将点M(-3,4)代入双曲线,可知k=xy=- 12.分别将点(3,4),(-4,-3),(4,3),(3,-4)代入k=xy,只有点(3,-4)符合题意,即k=xy=3×(-4)=-12.故选D.4.答案m>5解析∵反比例函数图像的一支在第一象限内,∴m-5>0,解得m>5.5.解析(1)∵点A的横坐标是-2,B点的横坐标是4,∴当x=-2时,y=-(-2)+2=4,当x=4时,y= -4+2= -2,∴A(-2,4),B(4,-2),∵反比例函数的图像经过A,B两点,∴k=-2×4=4×(-2)= -8,∴反比例函数的解析式为.(2)一次函数y= -x+2中,令y=0,则x=2,∴M(2,0),即MO=2.∴△AOM的面积.(3)∵A(-2,4),B(4,-2),∴由图像可得,反比例函数值大于一次函数值时x的取值范围为-2<x<0或x>4.6.解析(1)设A点的坐标为(a,b),a>0,b>0,则.∴ab=k,∵,∴,∴k=2.∴反比例函数的解析式为.(2)易求得A(2,1),B(1,2).设A点关于x轴的对称点为C,则C点的坐标为(2,-1).设直线BC的解析式为y=mx+n(m≠0),将B(1,2),C(2,-1)代入得.解得∴直线BC的解析式为y= -3x+5,易知直线BC与x轴的交点即为所求作的点P.对于y= - 3x+5,当y=0时,.∴,即当P点的坐标为时,PA+PB最小.三年模拟全练一、选择题1.D当k<0时,反比例函数的图像位于第二、四象限,在每个象限内,y的值随x的增大而增大,∵点(-2,y₁),(-1,y₂)在第二象限内,则y₁<y₂(且y₁>0,y₂>0),点(3,y₃)在第四象限内,则y₃<0,∴y₃<y₁<y₂,故选D.二、填空题2.答案解析由题意可得,∵△AOB的面积是3.∴,解得k=6或-6,由题意可得反比例函数的图像位于第二、四象限,∴k<0,∴k= -6.∴反比例函数的解析式为.故答案为.三、解答题3.解析(1)将M(2,1)代入,得k=2,故该函数的解析式为.(2)当2<x<4时,.五年中考全练一、选择题1.A在选项A与B中,y= ax+b经过第一、二、三象限,a>0,b>0,直线和x轴的交点的横坐标为,由,得b<a,所以a-b>0,所以双曲线位于第一、三象限,故选项B不成立,选项A成立;在选项C与D中,由y= ax+b经过第一、二、四象限,得a<0,b>0,则a-b <0,双曲线位于第二、四象限,故选项C、D均不成立;故选A.2.C由题意设(x>0),因为当x=2时,y=20,所以k=40,∴(x>0).故选C.二、填空题3.答案m<n解析解法一:把点A(1,m),B(2,n)分别代入,可得m=-2,n=-1,所以m<n,解法二:∵k=-2<0.∴双曲线位于第二、四象限,在每个象限内,y随x的增大而增大,∵0<1<2,∴m<n.4.答案解析∵正比例函数y=kx与反比例函数的图像有一个交点A(2,m),∴2m=6,解得m=3,故A(2,3),则3=2k,解得k=,故正比例函数表达式为,∵AB⊥x轴于点B,平移直线y=kx,使其经过点B,∴B(2,0),∴设平移后直线的解析式为y=x+b(b≠0),将B(2,0)代入得,0= 3+b,解得b=-3,故直线l对应的函数表达式是.故答案为.三、解答题5.解析(1)∵一次函数y=x+b的图像经过点A(-2,0),∴-2+b=0.∴b=2.∴一次函数的表达式为y=x+2,∵一次函数的图像与反比例函数(x>0)的图像交于B(a,4),∴a+2=4,∴a=2,∴B(2,4),∴反比例函数的表达式为(x>0).(2)设M( m-2,m),,m>0.当MN //AO且MN=AO时,以A、O、M、N为顶点的四边形是平行四边形.故且m>0,解得或,∴M的坐标为或.核心素养全练1.答案3解析∵在反比例函数(x>0)的图像上,点P₁、P₂、P₃、P₄,它们的横坐标依次是1、2、3、4,∴P₁(1,4),P₂(2,2),,P₄(4,1),∴P₁A=4-1=3,由图可知,所有的阴影部分向左平移,则所有阴影部分的面积恰好等于矩形P₁ABC的面积,∴,∴S₁+S₂+S₃=3.故答案为3.2.解析(1)因为分式有意义,分母不等于零,所以x-3≠0,即x≠3.(2)将x=-1代入,解得.(3)如图所示.(4)当x>3时,y随x的增大而减小(答案不唯一).(5)当x<3时,y<1,当x>3时,y>1且y随x的增大而减小,所以y₁<y₃<y₂.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
九年级数学上--概率、相似图形、反比例函数复习练习A 组、1、如图,△ABC 是等边三角形,CE 是外角平分线,点D 在AC 上,连结BD 并延长与CE 交于点E . (1)求证:△ABD ∽△CED .(2)若AB =6,AD =2CD ,求BE 的长.2、如图,方格纸中每个小正方形的边长为1,△ABC 和△DEF 的顶点都在方格纸的格点上. (1) 判断△ABC 和△DEF 是否相似,并说明理由;(2) P 1,P 2,P 3,P 4,P 5,D ,F 是△DEF 边上的7个格点,请在这7个格点中选取3个点作为三角形的顶点,使构成的三角形与△ABC 相似(要求写出2个符合条件的三角形,并在图中连结相应线段,不必说明理由).3、如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点, 且∠AFE =∠B.(1)求证:△ADF ∽△DEC ;(2)若AB =4,AD =33,AE =3,求AF 的长.ACBFEDP 1P 2P 3P 4P 54、在图15-1至图15-3中,直线MN 与线段AB 相交于点O ,∠1 = ∠2 = 45°. (1)如图15-1,若AO = OB ,请写出AO 与BD 的数量关系和位置关系;(2)将图15-1中的MN 绕点O 顺时针旋转得到图15-2,其中AO = OB .求证:AC = BD ,AC ⊥ BD ;(3)将图15-2中的OB 拉长为AO 的k 倍得到图15-3,求ACBD的值.5、如图2,△ABC 中,点D 在边AB 上,满足∠ACD =∠ABC ,若AC = 2,AD = 1,则DB = __________.6、如图,在△ABC 中,AB =AC ,点E 、F 分别在AB 和AC 上,CE 与BF 相交于点D ,若AE =CF ,D 为BF 的中点,则AE ∶AF 的值为 .7、如图,等边△ABC 的边长为12㎝,点D 、E 分别在边AB 、AC 上,且AD =AE =4㎝,若点F 从点B 开始以2㎝/s 的速度沿射线BC 方向运动,设点F 运动的时间为t 秒,当t >0时,直线FD 与过点A 且平行于BC 的直线相交于点G ,GE 的延长线与BC 的延长线相交于点H ,AB 与GH 相交于点O. (1)设△EGA 的面积为S (㎝2),求S 与t 的函数关系式;图15-2AD O BC 2 1MN 图15-1AD BMN12图15-3AD O BC21MNO图2B C(2)在点F运动过程中,试猜想△GFH的面积是否改变,若不变,求其值;若改变,请说明理由. (3)请直接写出t为何值时,点F和点C是线段BH的三等分点.8、如图,在△ABC中,D是BC边上一点,E是AC边上一点.且满足AD=AB,∠ADE=∠C.(1)求证:∠AED=∠ADC,∠DEC=∠B;(2)求证:AB2=AE•AC.9、如图9,在△ABC中,BC>AC,点D在BC上,且DC=AC,∠ACB的平分线CF交AD于点F.点E是AB的中点,连结EF.(1)求证:EF∥BC;(2)若△ABD的面积是6.求四边形BDFE的面积BDC10、如图,在△ABC 和△ADE 中,∠BAD=∠CAE ,∠ABC=∠ADE .(1)写出图中两对相似三角形(不得添加辅助线);(2)请分别说明两对三角形相似的理由.11、.一般来说,依据数学研究对象本质属性的相同点和差异点,将数学对象分为不同种类的数学思想叫做“分类”的思想;将事物进行分类,然后对划分的每一类分别进行研究和求解的方法叫做“分类讨论”的方法。
请依据分类的思想和分类讨论的方法解决下列问题: 如图,在△ABC 中,∠ACB >∠ABC 。
1、若∠BAC 是锐角,请探索在直线AB 上有多少个点D ,能保证△ACD ~△ABC (不包括全等)?2、请对∠BAC 进行恰当的分类,直接写出每一类在直线AB 上能保证△ACD ~△ABC(不包括全等)的点D 的个数。
B 组.1、已知反比例函数y =8m x-(m 为常数)的图象经过点A (-1,6). (1)求m 的值;(2)如图9,过点A 作直线AC 与函数y =8m x-的图象交于点B ,与x 轴交于点C ,且AB =2BC ,求点C 的坐标.2、如图,P 1是反比例函数)0(>k x ky =在第一象限图像上的一点,点A 1 的坐标为(2,0).(1)当点P 1的横坐标逐渐增大时,△P 1O A 1的面积 将如何变化?(2)若△P 1O A 1与△P 2 A 1 A 2均为等边三角形,求此反比例函数的解析式及A 2点的坐标.3、如图,正比例函数12y x =的图象与反比例函数ky x=(0)k ≠在第一象限的图象交于A 点,过A 点作x 轴的垂线,垂足为M ,已知OAM ∆的面积为1.(1)求反比例函数的解析式;(2)如果B 为反比例函数在第一象限图象上的点(点B 与点A 不重合),且B 点的横坐标为1,在x 轴上求一点P ,使PA PB +最小.4、如图,直线y x m =+与双曲线ky x=相交于A (2,1)、B 两点.(1)求m 及k 的值;(2)不解关于x 、y 的方程组,,y x m k y x =+⎧⎪⎨=⎪⎩直接写出点B 的坐标; (3)直线24y x m =-+经过点B 吗?请说明理由.xA (第3题)5、一辆汽车匀速通过某段公路,所需时间t (h )与行驶速度v (km/h )满足函数关系:vkt =, 其图象为如图所示的一段曲线,且端点为)1,40(A 和)5.0,(m B .(1)求k 和m 的值;(2)若行驶速度不得超过60(km/h ),则汽车通过该路段最少需要多少时间?6、如图,一次函数b kx y +=的图象与反比例函数xmy =的图象交于点A ﹙-2,-5﹚C ﹙5,n ﹚,交y 轴于点B ,交x 轴于点D . (1) 求反比例函数xmy =和一次函数b kx y +=的表达式; (2) 连接OA ,OC .求△AOC 的面积.7、如图,一次函数2y kx =+的图象与反比例函数my x=的图象交于点P ,点P 在第一象限.PA ⊥x 轴于点A ,PB ⊥y 轴于点B .一次函数的图象分别交x 轴、y 轴于点C 、D ,且S △PBD =4,12OC OA=. (1)求点D 的坐标;(2)求一次函数与反比例函数的解析式;(3)根据图象写出当0x >时,一次函数的值大于反比例函数的值的x 的取值范围.8、已知:如图,在平面直角坐标系xOy 中,直线AB 与x 轴交于点(2,0)A -,与反比例函数在第一象限内的图象交于点(2,)B n ,连结BO ,若S 4AOB ∆=. (1)求该反比例函数的解析式和直线AB 的解析式; (2)若直线AB 与y 轴的交点为C ,求△OCB 的面积.9、如图, 已知在平面直角坐标系xOy 中,一次函数b kx y +=(k ≠0)的图象与反比例函数x m y =(m ≠0)的图象相交于A 、B 两点,且点B 的纵坐标为21-,过点A 作AC ⊥x 轴于点C , AC=1,OC=2. 求:(1)求反比例函数的解析式;(2)求一次函数的解析式.10、如图,已知一次函数2-=x y 与反比例函数xy 3=的图象交于A 、B 两点. (1)求A 、B 两点的坐标;(2)观察图象,可知一次函数值小于反比例函数值的x 的取值范围是 .第8题图题图911、如图,直线l 与双曲线交于A 、C 两点,将直线l 绕点O 顺时针旋转α度角(0°<α≤45°),与双曲线交于B 、D 两点,则四边形ABCD 的形状一定是_____________形。
12、一次函数y=kx+b 的图象与反比例函数y=mx的图象交于点A (2,1),B (-1,n )两点。
(1)求反比例函数的解析式;(2)求一次例函数的解析式;(3)求△AOB 的面积13、.保护生态环境,建设绿色社会已经从理念变为人们的行动.某化工厂2009年1 月的利润为200万元.设2009年1 月为第1个月,第x 个月的利润为y 万元.由于排污超标,该厂决定从2009年1 月底起适当限产,并投入资金进行治污改造,导致月利润明显下降,从1月到5月,y 与x 成反比例.到5月底,治污改造工程顺利完工,从这时起,该厂每月的利润比前一个月增加20万元(如图).⑴分别求该化工厂治污期间及治污改造工程完工后y 与x 之间对应的函数关系式. ⑵治污改造工程完工后经过几个月,该厂月利润才能达到2009年1月的水平? ⑶当月利润少于100万元时为该厂资金紧张期,问该厂资金紧张期共有几个月?xy图12OBACD14、已知:正比例函数y=k 1x 的图象与反比例函数xk y 2(x>0)的图象交于点M (a,1),MN ⊥x 轴于点N (如图),若△OMN 的面积等于2,求这两个函数的解析式.C 组、1、不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个是白球的概率为21. (1)求袋中蓝球的个数;(2)第一次任意摸出一个球(不放回),第二次再摸出一个球,请用树状图或列表法,求两次摸到都是白球的概率.2、现有两个纸箱,每个纸箱内各装有4个材质、大小都相同的乒乓球,其中一个纸箱内4个小球上分别写有1、2、3、4这4个数,另一个纸箱内4个小球上分别写有5、6、7、8这4个数,甲、乙两人商定了一个游戏,规则是:从这两个纸箱中各随机摸出一个小球,然后把两个小球上的数字相乘,若得到的积是2的倍数,则甲得1分,若得到积是3的倍数,则乙得2分.完成一次游戏后,将球分别放回各自的纸箱,摇匀后进行下一次游戏,最后得分高者胜出.。
(1)请你通过列表(或树状图)分别计算乘积是2的倍数和3的倍数的概率;(2)你认为这个游戏公平吗?为什么?若不公平,请你修改得分规则,使游戏对双方公平.3、在一个口袋中有n个小球,其中两个是白球,其余为红球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,从袋中随机地取出一个球,它是红球的概率是35.(1)求n的值;(2)把这n个球中的两个标号为1,其余分别标号为2,3,…,1n ,随机地取出一个小球后不放回,再随机地取出一个小球,求第二次取出小球标号大于第一次取出小球标号的概率。
4、小李和小王设计了A、B两种游戏:游戏A的规则:用四张数字分别为2、3、4、5的扑克牌,将扑克牌洗匀后背面朝上放置在桌面上,第一次随机抽出一张牌记下数字后再原样放回,洗匀后再第二次随机抽出一张牌记下数字.若抽出的两张牌上的数字之和为偶数,则小李获胜;若两数字之和为奇数,则小王获胜.游戏B的规则:用四张数字分别为5、6、6、8的扑克牌,将牌洗匀后背面朝上放置在桌面上,小李先随机抽出一张牌,抽出的牌不放回,小王从剩下的牌中随机抽出一张牌.若小李抽出的牌面上的数字比小王的大,则小李获胜;否则,小王获胜.请你帮小王选择其中一种游戏,使他获胜的可能性较大,说明理由.5、有一个可以自由转动的转盘,被分成了4个相同的扇形,分别标有数1、2、3、4(如图所示)另一个不透明的口袋装有分别标有数0、1、3的三个小球(出数不同外,其余都相同)。