圆锥曲线高考真题江苏卷(解析版)-2021年高考数学圆锥曲线中必考知识专练
压轴题10 圆锥曲线压轴解答题常考套路题型(解析版)-2023年高考数学压轴题专项训练(江苏专用)
压轴题10圆锥曲线压轴解答题常考套路题型解析几何是高考数学的重要考查内容,常作为试卷的拔高与区分度大的试题,其思维要求高,计算量大.令同学们畏惧.通过对近几年高考试题与模拟试题的研究,分析归纳出以下考点:(1)解析几何通性通法研究;(2)圆锥曲线中最值、定点、定值问题;(3)解析几何中的常见模型;解析几何的核心内容概括为八个字,就是“定义、方程、位置关系”.所有的解析几何试题都是围绕这八个字的内容与三大考向展开.考向一:轨迹方程考向二:向量搭桥进行翻译考向三:弦长、面积范围与最值问题考向四:斜率之和差商积问题考向五:定值问题考向六:定点问题1、直接推理计算,定值问题一般是先引入参数,最后通过计算消去参数,从而得到定值.2、先猜后证,从特殊入手,求出定点或定值,再证明定点或定值与参数无关.3、建立目标函数,使用函数的最值或取值范围求参数范围.4、建立目标函数,使用基本不等式求最值.5、根据题设不等关系构建不等式求参数取值范围.1.(2023·北京海淀·统考一模)已知椭圆:2222:1(0)x y E a b a b+=>>的左、右顶点分别为12,A A ,上、下顶点分别为12,B B ,122B B =,四边形1122A B A B的周长为.(1)求椭圆E 的方程;(2)设斜率为k 的直线l 与x 轴交于点P ,与椭圆E 交于不同的两点M ,N ,点M 关于y 轴的对称点为M '、直线M N '与y 轴交于点Q .若OPQ △的面积为2,求k 的值.【解析】(1)由122B B =,得22b =,即1b =,由四边形1122A B A B的周长为,得=25a =,所以椭圆的方程为2215x y +=.(2)设直线l 的方程为y kx m =+(0k ≠,0m ≠),11(,)M x y ,22(,)N x y ,则(,0)m P k-,11(,)M x y '-,联立方程组2215x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 得,222(51)10550k x kmx m +++-=,222(10)4(51)(55)0km k m ∆=-+->,得2251k m >-,1221051km x x k +=-+,21225551m x x k -=+,直线M N '的方程为212212()y y y y x x x x --=-+,令0x =,得211221221212(0)y y x y x y y x y x x x x -+=-+=++,又因为()()1221122112122102()51k x y x y x kx m x kx m kx x m x x k -+=+++=++=+,所以1(0,)Q m ,OPQ △的面积1122m k m ⨯-=,得14k =±,经检验符合题意,所以k 的值为14±.2.(2023·山西太原·太原五中校考一模)如图,小明同学先把一根直尺固定在画板上,把一块三角板的一条直角边紧靠在直尺边沿,再取一根细绳,它的长度与另一直角边相等,让细绳的一端固定在三角板的顶点A 处,另一端固定在画板上点F 处,用铅笔尖扣紧绳子,让细绳紧贴住三角板的直角边,然后将三角板沿着直尺上下滑动,这时笔尖在平面上留下轨迹C .已知细绳长度为3cm ,经测量,当笔尖运动到点P 处时,30,90FAP AFP ∠∠== .设直尺边沿所在直线为a ,以过F 垂直于直尺的直线为x 轴,以过F 垂直于a 的垂线段的中垂线为y 轴,以1cm 为单位长度,建立平面直角坐标系.(1)求C 的方程;(2)过点()0,3D -且斜率为k 的直线l 与C 交于,M N 两点,k 的取值范围为()0,2,探究:是否存在λ,使得DM DN λ= ,若存在,求出λ.的取值范围,若不存在,说明理由.【解析】(1)依题意,笔尖到点F 的距离与它到直线a 的距离相等,因此笔尖留下的轨迹为以F 为焦点,a 为准线的抛物线,设其方程为22(0)y px p =>,则(,0)2p F ,由30,90FAP AFP ︒︒∠=∠=,得2PA PF =,又||||3PF PA +=,所以1PF =,所以点P 到直线a 的距离为1,由60FPA ︒∠=得点P 的横坐标122p -,而抛物线的准线方程为2p x =-,则11222p p -+=,解得32p =,所以轨迹C 的方程为23y x =.(2)假设存在λ,使得DM DN λ= ,设()()1122,,,M x y N x y ,直线l 的方程为3y kx =-,由233y kx y x=-⎧⎨=⎩消去y 得:22(63)90k x k x -++=,而(0,2)k ∈,22(63)363690k k k ∆=+-=+>,121222639,k x x x x k k++==,222121222112263()(14249)k x x x x k x x x x k k k ++++==++,由DM DN λ= 得12x x λ=,即12x x λ=,于是21142k kλλ+=++,令11(,)2t k =∈+∞,22214242(2)2t t t k k ++=++=+-17(,)4∈+∞,因此1174λλ+>,又0λ>,即217104λλ-+>,解得104λ<<或4λ>,所以存在1(0,(4,)4λ∈⋃+∞,使得DM DN λ= 成立.3.(2023·浙江杭州·统考二模)已知椭圆()2222:10x y C a b a b +=>>的离心率为32,左、右顶点分别为A 、B ,点P 、Q 为椭圆上异于A 、B 的两点,PAB 面积的最大值为2.(1)求椭圆C 的方程;(2)设直线AP 、BQ 的斜率分别为1k 、2k ,且1235k k =.①求证:直线PQ 经过定点.②设PQB △和PQA △的面积分别为1S 、2S ,求12S S -的最大值.【解析】(1)当点P 为椭圆C 短轴顶点时,PAB 的面积取最大值,且最大值为112222AB b ab ab ⋅=⨯==,由题意可得22222c a ab c a b ⎧=⎪⎪⎪=⎨⎪=-⎪⎪⎩,解得21a b c ⎧=⎪=⎨⎪=⎩,所以,椭圆C 的标准方程为2214x y +=.(2)①设点()11,P x y 、()22,Q x y .若直线PQ 的斜率为零,则点P 、Q 关于y 轴对称,则12k k =-,不合乎题意.设直线PQ 的方程为x ty n =+,由于直线PQ 不过椭圆C 的左、右焦点,则2n ≠±,联立2244x ty n x y =+⎧⎨+=⎩可得()2224240t y tny n +++-=,()()()22222244441640t n t n t n ∆=-+-=+->,可得224n t <+,由韦达定理可得12224tn y y t +=-+,212244n y y t -=+,则()2121242n ty y y y n -=+,所以,()()()()()()()()212121121112221212122122422222422222n y y n y ty n y ty y n y k y x n n k x y ty n y ty y n y y y n y n-++-+-+--=⋅===-++++++++()()()()1211222222522223n y y ny n n n n y y ny n ++---=⋅==+-+++,解得12n =-,即直线PQ 的方程为12x ty =-,故直线PQ 过定点1,02M ⎛⎫- ⎪⎝⎭.②由韦达定理可得1224t y y t +=+,()1221541y y t =-+,所以,12121·2S S AM BM y y -=--=41=++,20t ≥因为函数()1f x x x=+在)+∞上单调递增,故15≥=,所以,12161515S S -≤0=t 时,等号成立,因此,12S S -的最大值为154.4.(2023·全国·校联考二模)在平面直角坐标系xOy 中,椭圆2222:1(0)C bb x a a y +>>=的上焦点为F ,且C 上的点到点F的距离的最大值与最小值的差为过点F 且垂直于y 轴的直线被C 截得的弦长为1.(1)求C 的方程;(2)已知直线l :(0y kx m m =+≠)与C 交于M ,N 两点,与y 轴交于点P ,若点P 是线段MN靠近N 点的四等分点,求实数m 的取值范围.【解析】(1)设C 的焦距为2c,由题意知2222()()21a c a c b a a b c ⎧+--=⎪⎪=⎨⎪=+⎪⎩解得21a b c ⎧=⎪=⎨⎪=⎩故C 的方程为2214y x +=.(2)设()()1122,,,M x y N x y ,联立2214y kx m y x =+⎧⎪⎨+=⎪⎩消去y 整理得()2224240k x mkx m +++-=,所以()()222244440m k k m ∆=-+->,即2240k m -+>,且12224km x x k -+=+,212244m x x k -=+.因为点P 是线段MN 靠近点N 的四等分点,所以3MP PN = ,所以123x x =-,所以()()()221222212332434x x x x x x x +=⨯-=-⨯-=-.所以()21212340x x x x ++=所以()()2222224412044m k m k k -+=++,整理得222240m k m k +--=,显然21m =不成立,所以22241m k m -=-.因为3240k m -+>,所以2224401m m m --+>-,即()222401m m m ->-.解得21m -<<-,或12m <<,所以实数m 的取值范围为(2,1)(1,2)--⋃.5.(2023·河北沧州·统考模拟预测)已知()2,0A -,()2,0B ,动点(),Q x y 关于x 轴的对称点为1Q ,直线AQ 与1BQ 的斜率之积为14-.(1)求点Q 的轨迹C 的方程;(2)设点P 是直线1x =上的动点,直线PA ,PB 分别与曲线C 交于不同于A ,B 的点M ,N ,过点B 作MN 的垂线,垂足为D ,求AD 最大时点P 的纵坐标.【解析】(1)由题意得()1,Q x y -,且2x ≠±,2AQ k y x =+,12BQ y k x -=-,所以1224y y x x -⋅=-+-,整理得曲线()22:124x C y x -=≠±.(2)设()01,P y ,()11,M x y ,()22,N x y ,若直线MN 平行于x 轴,根据双曲线的对称性,可知点P 在y 轴上,不符合题意,故设直线MN :()2,0x ty m m =+≠±,代入曲线C 中,得()2224240t y tmy m -++-=,则12224tm y y t -+=-,212244m y y t -=-,则()2121242m ty y y y m -=-+,由P ,A ,M 三点共线得PA MA k k =,即01132y y x =+,同理,由P ,B ,N 三点共线得2022y y x -=-,消去0y ,得()()21122320y x y x ++-=,即()()121243220ty y m y m y +-++=,得()()()()21212243220m y y m y m y m --++-++=,得()()()()1224240m m y m m y ---+-=,即对任意1y ,2y ,都有[]12(4)(2)(2)0m m y m y ---+=成立,故4m =或12(2)(2)0m y m y --+=,若12(2)(2)0m y m y --+=,由212244m y y t -=-,12224tm y y t -+=-可得:1222(2)(2),,44m t m t y y t t -+--==--所以22222(4)444m t m t t --=--即224t t =-,矛盾,故12(2)(2)0m y m y --+≠,所以4m =.所以直线MN :4x ty =+恒过点()4,0H ,则点D 的轨迹是以HB 为直径的圆,其方程为()2231x y -+=,当D 与H 重合时,AD 最大,此时MN x ⊥轴,AM :)2y x =+,1,2P ⎛± ⎝⎭.所以当AD 最大时,点P 的纵坐标为2±.6.(2023·湖南·校联考二模)已知椭圆E :()222210x y a b a b+=>>经过点(,且离心.F 为椭圆E 的左焦点,点P 为直线l :3x =上的一点,过点P 作椭圆E 的两条切线,切点分别为A ,B ,连接AB ,AF ,BF .(1)求证:直线AB 过定点M ,并求出定点M 的坐标;(2)记△AFM 、△BFM 的面积分别为1S 和2S ,当12S S -取最大值时,求直线AB 的方程.参考结论:点()00,Q x y 为椭圆22221x ya b+=上一点,则过点Q 的椭圆的切线方程为00221x x y ya b+=.【解析】(1)由题意可得b =,ca =222a b c =+,所以26a =,22b =,椭圆E 的方程为22162x y +=.设()11,A x y ,()22,B x y ,()03,P y ,由参考结论知过点P 在A 处的椭圆E 的切线方程为11162x x y y +=,同理,过点P 在B 处的椭圆E 的切线方程为22162x x y y +=.因为点P 在直线PA ,PB 上,所以101202122122y y x y y x ⎧+=⎪⎪⎨⎪+=⎪⎩,所以直线AB 的方程为0122x y y+=,则直线AB 过定点()2,0M .(2)设直线AB 的方程为2x ty =+,联立方程组222162x ty x y =+⎧⎪⎨+=⎪⎩,得()223420t y ty ++-=,故12243ty y t +=-+,12223y y t =-+,1212122882233t S S y y y y t t t-=-=+==≤++,当且仅当3tt=,即t =此时直线AB 的方程为2x =+.7.(2023·上海金山·统考二模)已知椭圆:Γ()2221024x y b b+=<<.(1)已知椭圆ΓΓ的标准方程;(2)已知直线l 过椭圆Γ的右焦点且垂直于x 轴,记l 与Γ的交点分别为A 、B ,A 、B 两点关于y 轴的对称点分别为A '、B ',若四边形ABB A ''是正方形,求正方形ABB A ''的内切圆的方程;(3)设О为坐标原点,P 、Q 两点都在椭圆Γ上,若OPQ △是等腰直角三角形,其中OPQ ∠是直角,点Р在第一象限,且O 、P 、Q 三点按顺时针方向排列,求b 的最大值.【解析】(1)由题意得2a =,c a =c =所以2221b a c =-=,所以椭圆Γ的标准方程为2214x y +=;(2)设右焦点()1,0F c ,左焦点()2,0F c -,因为四边形ABB A ''是正方形,不妨设点A 在第一象限,则(),A c c ,所以12,AF c AF ===,由(12124AF AF c a +===,得1c ,正方形ABB A ''的内切圆的圆心为()0,01-,所以所求圆的方程为226x y +=-;(3)设直线OP 的倾斜角为π,0,2θθ⎛⎫∈ ⎪⎝⎭,斜率为()0k k >,则直线OQ 的斜率为π1tan 41k k θ-⎛⎫-= ⎪+⎝⎭,设()()1122,,,P x y Q x y ,则2110,0x x y >>>,联立22214x y b y kx⎧+=⎪⎨⎪=⎩,得2212244b x k b =+,同理可得()()()2222222222414141141b k b x k k b k b k +==--++⎛⎫+ ⎪+⎝⎭,由OQ 得222OQ OP =,即()2222222211121k x x x k x k -⎛⎫+=+ ⎪+⎝⎭,整理得()()222244002b k b k b +-+=<<,注意到()22240b b->且240b >,则要使上述关于k 的一元二次方程有正数解,只需要()222Δ44160b b =--≥,解得01b <≤,所以b 1.8.(2023·上海黄浦·统考二模)已知双曲线C 的中心在坐标原点,左焦点1F 与右焦点2F 都在x 轴上,离心率为3,过点2F 的动直线l 与双曲线C 交于点A 、B .设222AF BF ABλ⋅=.(1)求双曲线C 的渐近线方程;(2)若点A 、B 都在双曲线C 的右支上,求λ的最大值以及λ取最大值时1AF B ∠的正切值;(关于求λ的最值.某学习小组提出了如下的思路可供参考:①利用基本不等式求最值;②设2||AF AB 为μ,建立相应数量关系并利用它求最值;③设直线l 的斜率为k ,建立相应数量关系并利用它求最值).(3)若点A 在双曲线C 的左支上(点A 不是该双曲线的顶点,且1λ=,求证:1AF B △是等腰三角形.且AB 边的长等于双曲线C 的实轴长的2倍.【解析】(1)设双曲线方程为22221x y a b-=(),0a b >,焦距为2c ,由3c e a ==,所以b a ==y =±.(2)由(1)可得3c a =,b =,所以双曲线C 的方程为222218x y a a-=,设21AF t =,22BF t =,因为点A 、B 都在双曲线C 的右支上,所以12AB t t =+,所以()()2212122221214AF BF t t t t t t ABλ⋅==≤=+,当且仅当12t t =时取等号,即max 14λ=,当14λ=时12t t =,所以121122AF a t a t BF =+=+=,所以l x ⊥轴且1212AF F BF F ∠=∠,又双曲线C 的方程为222218x y a a -=,即22288x y a -=,由222388x a x y a =⎧⎨-=⎩,解得8y a =±,可知28AF a =,又126F F a =,所以2121284tan 63a AF F AF F F a ∠===,121122122tan 24tan tan 21tan 7AF F AF B AF F AF F ∠∠=∠==--∠.(3)设直线l 的方程为3x my a =+,将它代入22288x y a -=,可得()22228148640my may a -++=,设()11,A x y ,()22,B x y ,可得1224881am y y m +=--,21226481a y y m =-,由1λ=,可得222AF BF AB ⋅=,)21212y -=,又1y 、2y 同号,所以()21212y y y y =-,即()212125y y y y =+,所以2222644858181a am m m ⎛⎫= ⎪⎝--⎭⨯-,解得254m =,此时直线l<l 与双曲线的两支都相交,又221226464819a a y y m ==-,所以()2212222296411649A a m y y B a AF BF =⋅==+=⨯,则4AB a =,它等于双曲线实轴长的2倍,此时211222422AF AF a BF a a BF a BF =-=+-=+=,所以1AF B △是等腰三角形.9.(2023·江西九江·校联考模拟预测)已知P 为椭圆22142x y +=上一点,过点P 引圆222x y +=的两条切线PA 、PB ,切点分别为,A B ,直线AB 与x 轴、y 轴分别交于点M 、N .(1)设点P 坐标为0(x ,0)y ,求直线AB 的方程;(2)求MON △面积的最小值(O 为坐标原点).【解析】(1)先求在圆上一点的切线方程:设圆U 的方程为()()222x a y b r -+-=,圆心为(),U a b ,半径为r ,设()00,V x y 是圆U 上的一点,则()()22200x a y b r -+-=①,设(),W x y 是圆U 在()00,V x y 处的切线方程上任意一点,则0VU VW ⋅=,即()()()()()()00000000,,0a x b y x x y y a x x x b y y y --⋅--=--+--=②,-①②并整理得()()()()200x a x a y b y b r --+--=,即圆U 在()00,V x y 处的切线方程为()()()()200x a x a y b y b r --+--=.根据题意,设1(A x ,1)y ,2(B x ,2)y ,0(P x ,0)y ,PA 是圆222x y +=的切线且切点为A ,则PA 的方程为112x x y y +=,同理PB 的方程为222x x y y +=,又由PA 、PB 交于点P ,则有10102x x y y +=,20202x x y y +=,则直线AB 的方程为002x x y y +=.(2)要使,,O M N 围成三角形,则P 不是椭圆的顶点,所以000,0x y ≠≠,由(1)可得M 的坐标为02(x ,0),N 的坐标为2(0,)y ,00122OMN S OM ON x y =⋅= ,又由点P 是椭圆22142x y +=上的动点(非顶点),则有2200142x y +=,则有220000142x y y =+≥,即00||x y ≤当且仅当22001422x y ==时等号成立,0012=2OMN S OM ON x y =⋅ 即OMN.10.(2023·河南商丘·商丘市实验中学校联考模拟预测)已知椭圆()2222:10x y C a b a b+=>>的上顶点为A ,右顶点为B ,坐标原点O 到直线AB,AOB 的面积为2.(1)求椭圆C 的方程;(2)若过点()2,0P 且不过点()3,1Q 的直线l 与椭圆C 交于M ,N 两点,直线MQ 与直线4x =交于点E ,证明://PQ NE .【解析】(1)依题意,(0,),(,0)A b B a,有||AB =,因为AOB 的面积为2,则122AOB S ab == ,又点O 到直线AB的距离为5,则有1||22AOB S AB == ,于是22410ab a b =⎧⎨+=⎩,而0a b >>,解得a b ⎧=⎪⎨=⎪⎩,所以椭圆C 的方程为22182x y +=.(2)直线PQ 的斜率10132PQ k -==-,当直线l 的斜率不存在时,直线l 的方程为2x =,代入椭圆方程得1y =±,不妨设此时(2,1)M ,(2,1)N -,则(4,1)E ,直线NE 的斜率1(1)142NE PQ k k --===-,因此//PQ NE ;当直线l 的斜率存在时,设其方程为(2)(1)y k x k =-≠,设1122(,),(,)M x y N x y ,则直线MQ 的方程为1111(3)3y y x x --=--,令4x =,得1114(4,)3y x E x +--,由2248(2)x y y k x ⎧+=⎨=-⎩消去y 得:2222(14161680)k x k x k +-+-=,由于点P 在椭圆C 内,必有0∆>,则21221614k x x k +=+,212216814k x x k -=+,1121243114NE y x y x k x +----=--()()()11212143143y x y x x x +---=---()()()()()()()1121212124234343k x x k x x x x x x -+-------=--[]()()()()22221212212148168(1)(8)(1)3(814140)4343k k k k x x x x k k x x x x -----+--++===----,因此1NE PQ k k ==,即//PQ NE ,所以//PQ NE .11.(2023·重庆·统考模拟预测)已知椭圆C :()222210x y a b a b+=>>的长轴长是短轴长的2倍,直线12y x =被椭圆截得的弦长为4.(1)求椭圆C 的方程;(2)设M ,N ,P ,Q 为椭圆C 上的动点,且四边形MNPQ 为菱形,原点О在直线MN 上的垂足为点H ,求H 的轨迹方程.【解析】(1)由题意可得2a b =,则椭圆C :222214x y b b +=,联立22221412x y b b y x⎧+=⎪⎪⎨⎪=⎪⎩,解得x y ⎧=⎪⎨=⎪⎩或2x y b ⎧=⎪⎨=⎪⎩,4=,解得285b =,所以2325a =,所以椭圆C 的方程为22132855x y +=,即2252032x y +=;(2)因为四边形MNPQ 为菱形,所以,MP NQ 垂直且平分,设()()1122,,,M x y P x y ,则2222112252032,52032x y x y +=+=,两式相减得()()222212125200x x y y -+-=,即()()()()1212121240x x x x y y y y -++-+=,设菱形的中心为()00,x y ,若直线,MP NQ 的斜率都存在,设直线,MP NQ 的斜率分别为12,k k ,由()()()()1212121240x x x x y y y y -++-+=,得()()()()1212121240y y x x y y x x -+++=-,所以001280x y k +=,即00140x y k +=,同理00240x y k +=,所以0102y k y k =,由121k k =-得00y =,所以00x =,即菱形的中心为原点,则直线MP 的方程为1y k x =,直线NQ 的方程为2y k x =,联立12252032y k x x y =⎧⎨+=⎩,解得212132520x k =+,所以()()22122221111213211520k OM x y k x k +=+=+=+,同理()22222321520k ON k +=+,因为1122OMN S OH OM ON ==,所以2222222111OM ON OHOMONOMON+==()()22222212121222222212121252052028555321321321k k k k k k k k k k k k +++++=+=⋅+++++()()2222121222221212285525525321132232k k k k k k k k +++++=⋅=⋅=+++++,所以点H 在圆222532x y +=上;若直线,MP NQ 中有一条直线的斜率不存在,由对称性可知棱形的中心为原点,,,,M N P Q 四点分别为椭圆的顶点,不妨设M 为右顶点,N 为上顶点,则22328,55OM ON ==,同理可得22222221112532OM ON OHOMONOMON+==+=,点H 任在圆222532x y +=上,综上所述,H 的轨迹方程为222532x y +=.12.(2023·上海闵行·统考二模)已知O 为坐标原点,曲线1C :()22210xy a a -=>和曲线2C :22142x y +=有公共点,直线1l :11y k x b =+与曲线1C 的左支相交于A 、B 两点,线段AB 的中点为M .(1)若曲线1C 和2C 有且仅有两个公共点,求曲线1C 的离心率和渐近线方程;(2)若直线OM 经过曲线2C 上的点)2,1T-,且2a 为正整数,求a 的值;(3)若直线2l :22y k x b =+与曲线2C 相交于C 、D 两点,且直线OM 经过线段CD 中点N ,求证:22121k k +>.【解析】(1)因为曲线1C 和2C 有且仅有两个公共点,所以曲线1C 和2C 的两公共点为左右顶点,则2a =,曲线1C 的半焦距5c =所以曲线1C 的离心率52c e a ==,渐近线方程为12y x =±;(2)联立222111x y a y k x b⎧-=⎪⎨⎪=+⎩,得()()22222211111210a k x a k b x a b ---+=,设()()1122,,,A x y B x y ,则()222111121222221112,11a b a k b x x x x a k a k -++==--,所以2112211M a k b x a k =-,21111122221111M a k b b y k b a k a k =+=--,故直线OM 的方程为211y x a k =,依题意直线OM 经过点)2,1T -,代入得212a k =4212a k =,所以2142k a =,因为直线1l 与曲线1C 的左支相交于两点,故()()221221101a b a k -+>-,得2211a k >,则422212a aa >=,所以22a <,又曲线1C 和2C 有公共点,所以204a <≤,所以202a <<,又2a 为正整数,所以21a =,所以1a =;(3)由(2)可得()12102M M y k a x a=<≤,同理,联立直线2l :22y k x b =+与曲线2C :22142x y +=,可得212N N y k x =-,因为N M M N y y x x =,所以2212a k k =-,又因为2211a k >,所以42222221121114a k k k k a k +=+>≥,即22121k k +>.13.(2023·重庆九龙坡·统考二模)已知椭圆C :()222210x y a b a b+=>>的离心率为12,左、右焦点分别为1F ,2F ,过1F 的直线()1y t x =+交椭圆于M ,N 两点,交y 轴于P 点,1PM MF λ= ,1PN NF μ=,记OMN ,2OMF △,2ONF △的面积分别为1S ,2S ,3S .(1)求椭圆C 的标准方程;(2)若123S mS S λ=-,433μ-≤≤-,求m 的取值范围.【解析】(1)由题意得,左焦点1(1,0)1F c -⇒=,122c a a =⇒=,2223b a c =-=,所以椭圆C 的标准方程为:22143x y +=.(2)设1122(,),(,)M x y N x y ,令0x =,y t =,则()0,P t ,则11(,)PM x y t =-uuu r,()1111,MF x y =--- 由1PM MF λ=得()()1111,1,x y t x y λ-=---,解得11t y λ=-,同理21ty μ=-.由()221431x y y t x ⎧+=⎪⎨⎪=+⎩,得2236490y y t t ⎛⎫+--= ⎪⎝⎭,则1226,43t y y t +=+2122943ty y t -=+,()1212128223t y y t t y y y y λμ++=+-=-=-.不妨设120y y >>,1121211122S y y y y =⋅⋅-=-(),21111122S y y =⋅⋅=,32211122S y y =⋅⋅=-,由11t y λ=-,21t y μ=-.得11t y λ=+,21t y μ=+,2111513y y λλμλ++==-++.代入123S mS S λ=-,有()2121121122y y y m y λ-+=,则1212m y y y y λ=-+,解得22221114(1)15911(1)1()553333y y y m y y y λλλλλλ+=--=-+=+=-+++++,43,3μ-≤≤-Q 511[,2]33λμ∴+=--∈设53u λ=+,则1[,2]3u ∈,则()4193h u u u=-++,则()2419h u u -'=-,令()0h u '>,解得223u <<,令()0h u '<,解得1233u <<,故()h u 在12,33⎛⎫⎪⎝⎭上单调递减,在2,23⎛⎫ ⎪⎝⎭上单调递增,则()min 213h u h ⎛⎫== ⎪⎝⎭,且()1417,2339h h ⎛⎫== ⎪⎝⎭,则()171,9h u ⎡⎤∈⎢⎥⎣⎦,则171,9m ∈⎡⎤⎢⎥⎣⎦.14.(2023·上海静安·统考二模)已知双曲线Γ:22221x y a b-=(其中0,0a b >>)的左、右焦点分别为1F (-c ,0)、2F (c ,0)(其中0c >).(1)若双曲线Γ过点(2,1)且一条渐近线方程为2y x =;直线l 的倾斜角为4π,在y轴上的截距为2-.直线l 与该双曲线Γ交于两点A 、B ,M 为线段AB 的中点,求△12MF F 的面积;(2)以坐标原点O 为圆心,c 为半径作圆,该圆与双曲线Γ在第一象限的交点为P .过P 作圆的切线,若切线的斜率为Γ的离心率.【解析】(1)双曲线Γ:22221x y a b -=渐近线方程为b y x a =±,已知一条渐近线方程为y =,所以a =,双曲线Γ经过点(2,1),所以22411a b -=,解得222,1a b ==.所以双曲线Γ:2212x y -=.直线l 的倾斜角为π4,则斜率为1,又l 在y 轴上的截距为2-,则l 方程为:2y x =-,代入双曲线方程得:28100x x -+=,设两点A 、B 坐标分别为(1x ,1y )、(2x ,2y ),M (x ,y ),则1284,2x x x y +=⇒==.又12F F =则12MF F △的面积1111222F F y =⋅⋅=⨯=(2)方法一:由题可知圆方程为:222x y c +=,将其与双曲线方程联立:22222222222221x y c b b x b c x y x y a c ab ⎧+=⎪⇒+-=⇒==⎨-=⎪⎩,即2,b P c c ⎛⎫⎪ ⎪⎝⎭,又切线斜率为2OP b k c =⋅=()22442242334803840c a c a a c e e ⇒-=⇒+-=⇒-+=,解得22e =,所以双曲线Γ;方法二:设切线与x 轴交于E点,因切线斜率为3πPEO ∠=,又2πOPE ∠=,则1566ππ,POE POF ∠=∠=.注意到12OF OF c OP ===,则在2 POF 中,由余弦定理,22PF c -===,在1POF △中,由余弦定理,1PF ===.则()12122c a PF PF c e a=-=⇒==15.(2023·辽宁大连·统考一模)已知双曲线C 上的所有点构成集合()(){}22,10,0P x y axby a b =-=>>和集合()(){}22,010,0Q x y axby a b =<-<>>,坐标平面内任意点()00,N x y ,直线00:1l ax x by y -=称为点N 关于双曲线C 的“相关直线”.(1)若N P ∈,判断直线l 与双曲线C 的位置关系,并说明理由;(2)若直线l 与双曲线C 的一支有2个交点,求证:N Q ∈;(3)若点N Q ∈,点M 在直线l 上,直线MN 交双曲线C 于A ,B ,求证:MA MBAN BN=.【解析】(1)直线l 与双曲线C 相切.理由如下:联立方程组220011ax by ax x by y ⎧-=⎨-=⎩,∴()222220000210aby a x x ax x by -+--=①,∵N P ∈,∴22001ax by -=,即22001ax by -=,代入①得,220020ax ax x ax -+-=,∴222200440a x a x ∆=-=,∴直线l 与双曲线C 相切.(2)由(1)知()222220000210aby a x x ax x by -+--=,∵直线l 与双曲线C 的一支有2个交点,则2220020222000Δ010aby a x by aby a x ⎧⎪-≠⎪⎪>⎨⎪--⎪>⎪-⎩,∴()()()22222222000000044141a x a by ax by aby by ax ∆=----=+-,∴22001ax by -<,∵()2200222220000110by by aby a x a ax by --+=>--,∴220001ax by <-<,∴()00,N x y Q ∈.(3)设()11,M x y ,(),A x y ,设MA AN λ= ,MB BN μ=,∵()00,N x y l ∉,∴1λ≠-,则101011x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩,代入双曲线22:1C ax by -=,利用M 在l 上,即01011ax x by y -=,整理得()222220011110ax by ax by λ--+--=,同理得关于μ的方程()222220011110ax by ax by μ--+--=.即λ、μ是()222220011110ax by t ax by --+--=的两根,∴0λμ+=,∴MA MBAN BN=.16.(2023·湖南益阳·统考模拟预测)已知1F 、2F 分别为双曲线22122:1(0,0)y xC a b a b-=>>的上、下焦点,其中1F 坐标为()0,2点M 是双曲线1C 上的一个点.(1)求双曲线1C 的方程;(2)已知过点()4,1P 的直线与22122:1(0,0)y x C a b a b-=>>上支交于不同的A 、B 两点,在线段AB 上取点Q ,满足AP QB AQ PB ⋅=⋅,证明:点Q 总在某条定直线上.【解析】(1)由1F 坐标为()0,2得224a b +=,点M在双曲线1C 上得22231a b -=,解得2213a b ⎧=⎨=⎩,双曲线方程为221.3x y -=(2)设直线与双曲线交于()11,A x y ,()22,B x y ,点(),Q x y ,由AP QB AQ PB ⋅=⋅得(0AP AQ PBQBλλ==>且1)λ≠,AP PB λ=- ,AQ QB λ=,代入坐标得()()1122414,1,x y x y λ--=---,()()1122,,x x y y x x y y λ--=--,整理得:()1241x x λλ-=-①()121x x x λλ+=+,②,得()22221241x x x λλ-=-③,同理121y y λλ-=-④,()121y y y λλ+=+⑤,得()2222121y y y λλ-=-⑥,由于双曲线1C 上的点满足2233y x -=,⑥3⨯-③得()()()222222112233341y x y x y x λλ---=--,即()()2233341y x λλ-=--,所以343y x -=,表示点(),Q x y 在定直线4330x y -+=上.17.(2023·贵州黔西·校考一模)已知双曲线()2222:10,0x y C a b a b-=>>5点(3,2P -在双曲线C 上.(1)求双曲线C 的方程;(2)设()1,0A -,M 为C 上一点,N 为圆221x y +=上一点(M ,N 均不在x 轴上).直线AM ,AN 的斜率分别记为1k ,2k ,且2140k k +=,判断:直线MN 是否过定点?若过定点,求出定点的坐标;若不过定点,请说明理由.【解析】(1)由双曲线离心率为2215c b e a a ==+224b a =,所以双曲线方程为222214x y a a-=,又点(3,2P -在双曲线上,即2293214a a -=,解得21a =,24b =,所以双曲线的方程为2214y x -=;(2)由已知得10k ≠,20k ≠,设直线()1:1AM y k x =+,点()11,M x y ,由()122114y k x y x ⎧=+⎪⎨-=⎪⎩得()22221114240k x k x k ----=,0∆>,则212144A M k x x k +=--,即212144M k x k +-=--,212144M k x k +=-,所以211221148,44k k M k k ⎛⎫+ ⎪--⎝⎭由2140k k +=,得124k k =-,所以2222222418,141k k M k k ⎛⎫+ ⎪--⎝⎭设直线()2:1AN y k x =+,联立直线与圆221x y +=,得()22222221210k x k x k +++-=,0∆>,则222211A N k x x k -=+,即222211N k x k --=+,222211N k x k -=+,所以222222212,11k k N k k ⎛⎫- ⎪++⎝⎭,所以222222222222222281141141114MNk k k k k k k k k k --+-==--+-+-,即21MN k k ⋅=-,所以MN AN ⊥,又点A 在圆221x y +=上,设圆221x y +=与x 轴的另一个交点为B ,则()10B ,,且AN BN ⊥,即直线BN 与MN 重合,所以直线MN 恒过点()10B ,.18.(2023·浙江宁波·统考二模)已知双曲线2222:1x y E a a-=,点(0,2)D 与双曲线上的点的(1)求双曲线E 的方程;(2)直线:l y kx m =+与圆22:(2)1C x y ++=相切,且交双曲线E 的左、右支于A ,B 两点,交渐近线于点M ,N .记DAB ,OMN 的面积分别为1S ,2S ,当12847S S -=时,求直线l 的方程.【解析】(1)设(,)P x y 是双曲线上的任意一点,则2222222(2)2442(1)2DP x y y y a y a =+-=-++=-++,所以当1y =时,2DP 的最小值为22a +,所以223a +=,得21a =,所以双曲线E 的方程为221x y -=.(2)由直线:l y kx m =+与圆22:(2)1C x y ++=1=,由直线交双曲线的左、右支于A ,B 两点,设()11,A x y ,()22,B x y ,联立221x y y kx m⎧-=⎨=+⎩,消y 整理得()()2221210k x mkx m ---+=,则()221Δ410m k=+->,212211m x x k +=-,12221mk x x k +=--,所以12x x -=所以221222110142m m x x k m m ++==<-++,即2420m m ++<,解得22m -<<-,1=,则21m +≥,解得1m ≥-或3m ≤-,所以(231,2m ⎤⎡∈--⋃--⎦⎣,所以12AB x x =-=,又点(0,2)D 到AB 的距离1d =1121(2242m S AB d m m -==---,设()33,M x y ,()44,N x y ,联立方程组220x y y kx m⎧-=⎨=+⎩,消y 整理得()222120k x mkx m ---=,则22Δ4m =,34221mk x x k +=-,23421m x x k -⋅=-,所以34221m x x k --=-,所以34221mMN x x k -=-=-,又点O 到MN 的距离2d =22221242mS MN d m m ==---,所以当12847S S -=时,有222(2)428442427m m m m m m --=------,整理得()24(25847m m m -=--,即4(2(52)(2)7m m m -=+-,又2m ≠,4(52)7m -=+,即2200258810m m ++=,解得134m =-,22750m =-(舍去),所以34m =-,则34k =±,所以直线方程为3344y x =±-.19.(2023·上海松江·统考二模)已知椭圆2212:12x y C b+=的左、右焦点分别为12F F 、,离心率为1e ;双曲线2222:12x y C b -=的左、右焦点分别为34F F 、,离心率为2e ,12e e ⋅=.过点1F 作不垂直于y 轴的直线l 交曲线1C 于点A 、B ,点M 为线段AB 的中点,直线OM 交曲线2C 于P 、Q 两点.(1)求1C 、2C 的方程;(2)若113AF F B =,求直线PQ 的方程;(3)求四边形APBQ 面积的最小值.【解析】(1)由题意可知:12e e ==所以12222e e ⋅===,解得:21b =,所以椭圆方程为2212x y +=,双曲线方程为:2212x y -=.(2)由(1)知()11,0F -,因为直线AB 不垂直与y 轴,设直线AB 的方程为:1x my =-,设点()()1122,,,A x y B x y ,则()1111,,AF x y =---()1221,F B x y =+ ,由113AF F B =,则123y y -=,即123y y =-,联立:22112x my x y =-⎧⎪⎨+=⎪⎩,可得:()222210m y my +--=,()()222442810m m m ∆=++=+>,由韦达定理可得:1221222212m y y m y y m ⎧+=⎪⎪+⎨-⎪⋅=⎪+⎩,将123y y =-代入得:()222222132m y m y m -⎧=⎪+⎪⎨=⎪+⎪⎩解得1m =±,当1m =时,弦AB 的中点21,33M ⎛⎫- ⎪⎝⎭,此时直线PQ 的方程为:12y x =-;当1m =-时,弦AB 的中点21,33M ⎛⎫-- ⎪⎝⎭,此时直线PQ 的方程为:12y x =.所以直线PQ 的方程为12y x =-或12y x =.(3)设AB 的中点()00,M x y ,由(2)可得)2212m AB m +=+,且000222,122m y x my m m -==-=++,点222,22m M m m -⎛⎫ ++⎝⎭,2PQ OM m k k ==-,直线PQ 的方程为:2my x =-,联立22212m y x x y ⎧=-⎪⎪⎨⎪-=⎪⎩可得:2242x m =-,2222m y m =-,且220m ->,由双曲线的对称性,不妨取点P ⎛⎫⎪⎭、Q ⎛⎫,所以点P 到直线AB的距离为:21d =,点Q 到直线AB的距离为:22d ==21222m d d ++=,所以四边形APBQ的面积为()1212S AB d d =+===2022m <-≤,所以当222m -=,即0m =时,四边形APBQ 的面积取最小值2.20.(2023·湖北武汉·统考模拟预测)过点()4,2的动直线l 与双曲线()2222:10,0x y E a b a b-=>>交于,M N 两点,当l 与x 轴平行时,MN=l 与y 轴平行时,MN =(1)求双曲线E 的标准方程;(2)点P 是直线1y x =+上一定点,设直线,PM PN 的斜率分别为12,k k ,若12k k 为定值,求点P 的坐标.【解析】(1)由题意可知:双曲线()2222:10,0x y E a b a b-=>>过点()2±,(4,±,将其代入方程可得:222284116121a b a b⎧-=⎪⎪⎨⎪-=⎪⎩,解得:2244a b ⎧=⎨=⎩,∴双曲线E 的标准方程为:22144x y -=.(2)方法一:设()()1122,,,M x y N x y ,点()4,2与,M N 三点共线,12122244y y x x --∴=--,()()12124422x x y y λλ⎧-=-⎪∴⎨-=-⎪⎩(其中R λ∈,0λ≠),()()12124121x x y y λλλλ⎧=+-⎪∴⎨=+-⎪⎩,()()222241214x y λλλλ⎡⎤⎡⎤∴+--+-=⎣⎦⎣⎦,又22224x y -=,整理可得:()()2212420x y λλλλ--+-=,当1λ=时,12x x =,12y y =,不合题意;当1λ≠时,由222420x y λλλ-+-=得:22122y x λ=-+,设()00,P x y ,则001y x =+,()()102012102011y x y x k k x x x x -+-+∴⋅=⋅--()()()22220202202220222211243222y y x x x y x y x x x y x x ⎛⎫-+--++ ⎪-+⎝⎭=⋅-⎛⎫-+--+ ⎪⎝⎭()()()0220020020220031212223422x y x x x y x x x x y x x x ⎛⎫-+-- ⎪-+⎝⎭=⋅-⎛⎫-+-+- ⎪⎝⎭,若12k k 为定值,则根据约分可得:000121x x x --=-且000114222x x x --=--,解得:03x =;当03x =时,()3,4P ,此时22122226441322x y k k x y --=⋅=--;∴当()3,4P 时,124k k =为定值.方法二:设()()()112200,,,,,M x y N x y P x y ,直线()():420MN y k x k =-+≠,由()22424y k x x y ⎧=-+⎨-=⎩得:()224240x k x ⎡⎤--+-=⎣⎦,12,x x 为方程()224240x k x ⎡⎤--+-=⎣⎦的两根,()()()()222124241x k x k x x x x ⎡⎤∴--+-=---⎣⎦,则()()()()222001024241x k x k x x x x --+-=---⎡⎤⎣⎦,由()42y k x =-+得:24y x k-=+,由22244y x k x y -⎧=+⎪⎨⎪-=⎩可得:222440y y k -⎛⎫+--= ⎪⎝⎭,同理可得:()()()()222220001022441y k k y k k y y y y -+--=---,则()()()()()()()()()()201020102122121211k y y y y y y y y k k x x x x k x x x x -----==-----()()2222002200244424y k k y k x k x -+--=--+-⎡⎤⎣⎦()()()()2220000222000012816448164168y k y k y y x x k x k x -++-+-+=-+-+-++-,若12k k 为定值,则必有22000022000012816448164168y y y y x x x x -+--+==-+--+-,解得:0034x y =⎧⎨=⎩或00x y ⎧=⎪⎪⎨⎪=⎪⎩或00x y ⎧=⎪⎪⎨⎪=⎪⎩又点P 在直线1y x =+上,∴点P 坐标为()3,4;当直线MN 斜率为0时,,M N坐标为()2±,若()3,4P ,此时124k k ==;当直线MN 斜率不存在时,,M N坐标为(4,±,若()3,4P ,此时124443434k k -+=--;综上所述:当()3,4P 时,124k k =为定值.21.(2023·贵州黔西·校考一模)已知双曲线2222:1(0,0)x y C a b a b-=>>(3,P -在双曲线C 上.(1)求双曲线C 的方程;(2)设()1,0A -,M 为C 上一点,N 为圆221x y +=上一点(,M N 均不在x 轴上).直线,AM AN 的斜率分别记为12,k k ,且2140k k +=,判断:直线MN 是否过定点?若过定点,求出定点的坐标;若不过定点,请说明理由.【解析】(1)由双曲线2222:1(0,0)x y C a b a b-=>>可得222225,4c a b b a a a+=∴=∴=,又点(3,P -在双曲线C 上,即2293214a a-=,解得221,4a b ==,故双曲线C 的方程为2214y x -=.(2)由题意可知120,0k k ≠≠,且AM 的方程为11y k x k =+,联立112214y k x k y x =+⎧⎪⎨-=⎪⎩,可得2222111(4)240k x k x k ----=,2140k -≠,Δ640=>,设11(,)M x y ,由题意可知该方程有一根为1-,故221111221144(1),44k k x x k k --+-=∴=--,则111112184k y k x k k =+=-,AN 的方程为22y k x k =+,联立22221y k x k x y =+⎧⎨+=⎩,可得2222222(1)210k x k x k +++-=,40'∆=>,设2221(,),N x y x x ≠,由题意可知该方程有一根为1-,故222222222211(1),11k k x x k k ---=∴=++,则222222221k y k x k k =+=+,由于2140k k +=,即124k k =-,由于2140k -≠,故224160k -≠,故22122164416k x k +=-,212232416k y k -=-,所以直线MN 的斜率为222221222222212222232141611641416MNk k y y k k k k k x x k k ---+-==-+--+-2222222222222222222(416)(1)(32)401(1)(416)(1)(164)40k k k k k k k k k k k --+-===----++-,故直线MN 的方程为1121()y y x x k -=--,即22222222321641()416416k k y x k k k ++=----,即222(164)(1)0k x k y -+-=,由于224160k -≠,故210x k y +-=,即直线MN 过定点(1,0).22.(2023·上海宝山·统考二模)已知抛物线Γ:24y x =.(1)求抛物线Γ的焦点F 的坐标和准线l 的方程;(2)过焦点F 且斜率为12的直线与抛物线Γ交于两个不同的点A 、B ,求线段AB 的长;(3)已知点()1,2P ,是否存在定点Q ,使得过点Q 的直线与抛物线Γ交于两个不同的点M 、N (均不与点Р重合),且以线段MN 为直径的圆恒过点P ?若存在,求出点Q 的坐标;若不存在,请说明理由.【解析】(1)∵抛物线Γ:24y x =,则2p =,且焦点在x 轴正半轴,故抛物线Γ的焦点()1,0F ,准线:1l x =-.(2)由(1)可得:()1,0F ,可得直线()1:12AB y x =-,设()()1122,,,A x y B x y ,联立方程()21124y x y x⎧=-⎪⎨⎪=⎩,消去y 得21810x x -+=,可得()212184113200,18x x ∆=--⨯⨯=>+=,故1220AB x x p =++=.(3)存在,理由如下:设直线()()3443:,,,,MN x my n M x y N x y =+,联立方程24x my n y x=+⎧⎨=⎩,消去x 得2440y my n --=,则()23434160,4,4m n y y m y y n ∆=+>+==-,可得()()33441,2,1,2PM x y PN x y =--=--uuu r uuu r,若以线段MN 为直径的圆恒过点P ,则PM PN ⊥,。
决胜2021年全国高考数学备考二轮 解析几何 第4讲 圆锥曲线的综合问题(2) (江苏新高考)解析版
第4讲 圆锥曲线的综合问题(2)考点1建立目标不等式解最值或范围问题例1.(1)点A 、B 分别为椭圆2214x y +=的左、右顶点,直线65x my =+与椭圆相交于P 、Q 两点,记直线AP 、BQ 的斜率分别为1k 、2k ,则21221k k +的最小值为( ) A .14B .12C .2D .4【答案】B【解析】设点()11,P x y 、()22,Q x y ,联立226544x my x y ⎧=+⎪⎨⎪+=⎩,消去x 并整理得()22126440525m y my ++-=, 由韦达定理可得()1221254y y m +=-+,()12264254y y m =-+,设直线AQ 的斜率为k ,则222y k x =+,2222y k x =-, 所以,()222222222222212244444y y y y k k x x x y ⋅=⋅===-+----,214k k ∴=-, 而()12121212121212121625616162252555y y y y y y k k m x x m y y y y my my ⋅=⋅==++⎛⎫⎛⎫+++++ ⎪⎪⎝⎭⎝⎭()()()22222642541641922561625254254m m m m m -+==---+++,因此,222112211162k k k k +=+≥==, 当且仅当18k =±时,等号成立,因此,21221k k +的最小值为12.故选:B. 【点睛】本题考查了直线与椭圆的位置关系本题的关键在于求得214AQ k k =-,进而利用韦达定理法求得1AQ k k ⋅为定值,再结合基本不等式求得最值.(2)已知椭圆()2222:10x y C a b a b +=>>的离心率3,点在椭圆C 上.A 、B 分别为椭圆C 的上、下顶点,动直线l 交椭圆C 于P 、Q 两点,满足AP AQ ⊥,AH PQ ⊥,垂足为H .(1)求椭圆C 的标准方程; (2)求ABH △面积的最大值.【答案】(1)22164x y +=;(2)125【解析】(1)由题意知222223321c aa b a b c⎧=⎪⎪⎪+=⎨⎪=+⎪⎪⎩,解2a b c ⎧=⎪=⎨⎪=⎩,所以椭圆C 的标准方程为22164x y +=.(2)由题意知PQ 的斜率存在,设直线PQ 方程为y kx m =+,其中2m ≠由22164y kx m x y =+⎧⎪⎨+=⎪⎩得()2223263120k x kmx m +++-=,()()()22222236123242464k m k m k m =-+-=+-△,设()11,P x y ,()22,Q x y ,则122632km x x k -+=+,212231232m x x k -=+,因为AP AQ ⊥, 所以()()()()121212122222AP AQ x x y y x x kx m kx m ⋅=+--=++-+-()()()2212121(2)20k x x k m x x m =++-++-=,所以()()()22222312612203232m km k k m m k k --++-+-=++,即()()()()()222221312622320k m k m m m k +---+-+=因为2m ≠,所以()()()2221(36)62320k m k m m k ++-+-+=所以222223636632640k m k m k m k m m k +++-++--=,所以25m =-,满足0>△.所以直线PQ 的方程为25y kx =-,即直线PQ 的定点20,5⎛⎫- ⎪⎝⎭.(解法一)因为ABH △存在,所以0k ≠,所以AH 的斜率为1k -,方程为12y x k=-+,联立2512y kx y x k ⎧=-⎪⎪⎨⎪=-+⎪⎩,解得1215H x k k =⎛⎫+ ⎪⎝⎭,(H x 为H 点的横坐标), 所以1112241242251155ABHH SAB x k k k k =⨯=⨯⨯=≤⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭,当且仅当1k k =即1k =±时等号取得,即ABH △面积的最大值为125. 【点睛】本题考查了直线与椭圆的位置关系,本题的关键利用基本不等式求得最值. 【跟踪演练】1.(1)已知椭圆()221112211:10x y C a b a b +=>>与双曲线()222222222:10,0x y C a b a b -=>>有相同的焦点1F ,2F ,点P 是两曲线在第一象限的交点,且12F F 在1F P 上的投影等于1F P ,1e ,2e 分别是椭圆1C 和双曲线2C 的离心率,则22129e e +的最小值是( )A .4B .6C .8D .16【答案】C【解析】如图,设半焦距为c .∵点P 是两曲线在第一象限的交点,且12F F 在1F P 上 的投影等于1F P ,∴PF 1⊥PF 2.设1PF m =,2PF n =,则12m n a +=, 22m n a -=.∴22()()4m n m n mn +--==21a ﹣22a .在12PF F △中,由勾股定理可得:()()22222221124242c m n m n mn a a a =+=+-=--.∴222122c a a =+.两边同除以c 2,得2=221211+e e ,所以()()222222121212222212219111==1199++10+10+6=8222e e e e e e e e e e ⎛⎫⎛⎫≥ ⎪ ⎪⎝⎭⎝⎭++,当22123=e e 即16=3e 时取等号,因此9e 12+e 22的最小值是8.故选:C .(2)如图,已知椭圆22:142x y Γ+=,矩形ABCD 的顶点A ,B 在x 轴上,C ,D 在椭圆Γ上,点D 在第一象限.CB 的延长线交椭圆Γ于点E ,直线AE 与椭圆Γ、y 轴分别交于点F 、G ,直线CG 交椭圆Γ于点H ,DA 的延长线交FH 于点M.①设直线AE 、CG 的斜率分别为1k 、2k ,求证:12k k 为定值; ②求直线FH 的斜率k 的最小值; 【答案】①证明见解析;②62【解析】①由对称性,设0(,0)A x ,0(,0)B x -,()00,E x y --,()00,C x y - 则00:()2y AE y x x t =-,得00,2y G ⎛⎫- ⎪⎝⎭,故0102y k x =,02032y k x =-,则1213k k =-, ②由02:2y CG y k x =-,联立()202220220221224022240y y k x y k x k y x x y ⎧=-⎪⇒+-+-=⎨⎪+-=⎩, 由根与系数的关系可得200224212H y x k x -=+-⋅ ,所以()202024212H y x x k -=-+, 所以()22020242212H y k y y x k ⎛⎫- ⎪⎝⎭=--+,可得()()2200202202024422,21212y y k y H x k x k ⎛⎫⎛⎫- ⎪ ⎪-⎝⎭ ⎪- ⎪-+-+ ⎪ ⎪⎝⎭, 又01:2y AE y k x =-,联立()202210110221224022240y y k x y k x k y x x y ⎧=-⎪⇒+-+-=⎨⎪+-=⎩, 由根与系数的关系可得200214212F y x k x -=+-⋅ ,所以()220104212F y x x k -=-+, 所以()2021*******F y k y y x k ⎛⎫- ⎪⎝⎭=--+可得:()()2200102201014422,21212y y k y F x k x k ⎛⎫⎛⎫- ⎪ ⎪-⎝⎭ ⎪- ⎪-+-+ ⎪ ⎪⎝⎭, 所以()()()122211121212112212231121221112231212H F FHH F k k k k y y k k k k k x x k k k k k k ----++-====-+--++211111661444k k k k +==+≥=,由图知10k >,所以116144k k +≥=即FH k ≥, 当且仅当116144k k =即1k =取等,所以直线FH 的斜率k考点2 构建函数模型解最值或范围问题例2.(1)已知左、右焦点分别为12F F 、的椭圆()2222:10x y C a b a b+=>>与直线1y =相交于A B 、两点,使得四边形12ABF F为面积等于,过椭圆1C 上一动点P (不在x 轴上)作圆22:1O x y +=的两条切线PC PD 、,切点分别为C D 、,直线CD 与椭圆1C 交于E G 、两点,O 为坐标原点,则OEG 的面积OEGS的取值范围为______________.【答案】⎝⎦【解析】∵四边形12ABF F为面积等于∴12c ⨯=,故c =∴椭圆方程化为222212x y a a +=-,且点)A,∵点A 在椭圆上,∴222112a a +=-,整理得42540a a -+=,解得24a =. ∴椭圆1C 的方程为22142x y +=;设()()000,0P x y y ≠,则以线段OP 为直径的圆的方程为 ()222200001224x y x y x y ⎛⎫⎛⎫-+-=+ ⎪ ⎪⎝⎭⎝⎭, 又圆O 的方程为221x y +=,两式相减得直线CD 的方程为001xx yy +=.由0022124xx yy x y +=⎧⎨+=⎩消去y 整理得()2222000024240x y x x x y +-+-= ∵直线CD 与椭圆1C 交于E G 、两点,∴()()()2222220000001642242410x x y y y x ∆=-+-=+>,设()()1122,,,E x y G x y ,则12120EG x x x x =-=-又原点到直线CD的距离为d =∴1201122OEGSEG d x x y =⋅=-==设22200014=234t x y x =++, ∵204x ≤<,∴1182t <≤又OEG S =△11,82t ⎛⎤∈ ⎥⎝⎦上单调递增,∴82OEG S <≤△, 所以OEG 的面积OEGS △的取值范围为⎝⎦.故答案为:⎝⎦(2)已知椭圆C :22221x y a b +=(0a b >>),右顶点、上顶点分别为A 、B ,原点O 到直线AB 的距离为6ab .若P ,Q 为椭圆C 上两不同点,线段PQ 的中点为M . ①当M 的坐标为()1,1时,求直线PQ 的直线方程②当三角形OPQ 时,求OM 的取值范围.【答案】①230x y +-=,②OM ⎡∈⎣.【解析】设直线:1x yAB a b+=,即0bx ay ab +-=, 所以O 到直线AB==,所以226a b +=, 因为2222226c e a a b c a b ⎧==⎪⎪⎪=+⎨⎪+=⎪⎪⎩,所以2242a b ⎧=⎨=⎩,所以椭圆C 的方程为22142x y +=;①因为PQ 的中点为()1,1M ,且PQ 的斜率存在,设()()1122,,,P x y Q x y ,所以221122222424x y x y ⎧+=⎨+=⎩,所以()()222212122x x y y -=--,所以121212122x x y y y y x x +-=-+-,因为12122,2x x y y +=+=,所以121212PQ y y k x x -==--,所以PQ 的直线方程为()1112y x -=--,即230x y +-=; ②若直线PQ 垂直于x轴,则2221222222p p p p p x x y x x ⎛⎫⨯=⇒-=⇒= ⎪ ⎪⎝⎭22M x ⇒=,0M y =,所以OM =若直线PQ 不垂直于x 轴,设直线PQ 方程:()0y kx m m =+≠,()()1122,,,P x y Q x y ,()22222124240142y kx mk x kmx m x y =+⎧⎪⇒+++-=⎨+=⎪⎩, 所以122412km x x k +=-+,21222412-⋅=+m x x k ,()()()2224412240km k m∆=-+->,即2242k m +>,因为O 到PQ的距离为d =所以12OPQS===()()()2222222222241212012m k m k k m k m ⎡⎤⇒+-=+⇒+-=⇒+=⎣⎦, 且此时2242k m +>,即0∆>满足,而12222212M x x km k x k m+-===-+, 1M M y kx m m =+=,所以OM ===, 因为2212k m +=,所以21m ≥,所以21122m ≤-<,所以1OM ≤<综上可知OM ⎡∈⎣.【跟踪演练】2.(1)在圆224x y +=上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足,3DM DP =.当点P 在圆上运动时,点M 的轨迹为曲线E. (1)求曲线E 的方程;(2)过点()1,0Q -的两条相互垂直的直线分别交曲线E 于A ,B 和C 、D ,求四边形ABCD 面积的取值范围.【答案】(1)22143x y +=;(2)288649S ≤≤. 【解析】(1)设点M 的坐标为(),x y ,点P 的坐标为()00,x y , ∵3DM DP =,∴0x x =,0y y =,∴00,x x y y ==, ∴点P 在224x y +=上,∴2204x y +=,∴224x y ⎫+=⎪⎭,∴曲线C 的方程为22143x y +=.(2)①当直线AB 的倾斜角为0°,||4AB =,||3CD =,1||||62ABCD S AB CD ==四边形. 同理直线AB 的倾斜角为90︒, 1||||62ABCD S AB CD ==四边形. ②当直线AB 的倾斜角不为0°和90°, 设直线AB 的方程:1x my =-, 则直线CD 的方程为:11(0)x y m m=--≠, 联立1x my =-和22143x y +=,得()2234690m y my +--=,122634m y y m +=+,122934y y m -=+,12||AB y =-==22161234mm+==⨯+,用1m-换m得221||1243mCDm+=⨯+,∴四边形ABCD面积22221111||||1212223443m mS AB CDm m++==⨯⨯⨯⨯++,令21t m=+,0m≠,∴1t>,∴101t<<,2111727272111131413412t tSt tt t t t=⨯⨯=⨯⨯=⨯+-+-+-21721111224t=⨯⎛⎫--++⎪⎝⎭,∴288649S≤<.∴综上所述,288649S≤≤.(2)椭圆C:22221x ya b+=(0)a b>>的左、右焦点分别为F1、2F,过1F向圆2F:22(2)1x y-+=引切线F1T(T为切点),切线F1T23,①求椭圆C的方程;②设(,)M x y为圆2F上的动点,O为坐标原点,过F2作OM的平行线,交椭圆C于G,H 两点,求MGH的面积的最大值.【答案】①22195x y+=;②52.【解析】①连接2F T,则F1T⊥2F T,由题意得12||4F F==,所以c=2.因为23cea==,则a=3,b==C的方程为22195x y+=;②设1122(,),,()G x y H x y,直线GH的方程为x=my+2,由222,1,95x my x y =+⎧⎪⎨+=⎪⎩可得22(902)5250m y my ++-=,222(20)4(59)(25)900(1)0m m m ∆=-+-=+>则1222059m y y m +=-+,1222559y y m =-+.所以12||y y -===所以12||GH y y ===-2223030(1)5959m m m +==++. 因为//GH OM ,所以点M 到直线GH 的距离等于原点O 到直线GH的距离,距离为△MGH的面积为222130(1)25959m S m m +==++. 因为//GH OM ,所以直线OM :x my =,即0x my -=, 因为点(,)M x y 为圆2F 上的动点,所以点2F 到直线OM的距离1d =≤,解得23m ≥t =,则221(2)m t t =-≥,所以2230303045(1)9545t t S t t t t===-+++,因为4()5f t t t=+在[2,)+∞上单调递增,所以当t =2时,()f t 取得最小值,其值为12,所以△MGH 的面积的最大值为52.【仿真练习】一、单项选择题:本题共6小题,每小题5分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知点P ,Q 分别为圆()2231x y +-=和椭圆2212516y x +=上的点,则P ,Q 两点间的最大距离是( ) A .6 B .7C .8D .9【答案】D【解析】依题意可知圆心()0,3C ,半径是1r =.设椭圆2212516y x +=上的点()4cos ,5sin Q θθ[)()0,2θπ∈,此时Q 点到圆上的点的最大距离为QC r +,即()()224cos 5sin 31QC r θθ+-=++229sin 30sin 251(3sin 5)153sin 163sin θθθθθ=-++=-+=-+=-,由[)0,2θ∈π,得[]sin 1,1θ∈-,即363sin 9θ≤-≤所以QC r +的最大值为9,即P ,Q 两点间的最大距离是9.故选:D2.已知12,F F ,分别为椭圆22142x y +=的左右焦点,P 为椭圆上一动点,2F 关于直线1PF 的对称点为1,M F ,关于直线2PF 的对称点为N ,当MN 最大时,则点P 到x 轴的距离为( ) A .2 B .1C .63D .33【答案】C【解析】连接,PM PN ,则21,PM PF PN PF ==, 所以2124MN PM PN PF PF a ≤+=+==, 当且仅当,,M P N 三点共线时等号成立.如下图,当,,M P N 三点共线时,有1122MPF F PF NPF ∠=∠=∠,故当,,M P N 三点共线时,有11223MPF F PF NPF π∠=∠=∠=.因为124PF PF +=且2212122cos 4283PF PF PF PF π+-⨯⨯=⨯=,故1283PF PF ⨯=,所以121831222322F PF P S y =⨯⨯=⨯, 解得6P y =,故选:C. 3.若随机变量()2~3,2019N ξ,且(1)()P P a ξξ≤=≥.已知F 为抛物线24yx =的焦点,O 为原点,点P 是抛物线准线上一动点,若点A 在抛物线上,且||AF a =,则||||PA PO +的最小值为( ) A 5B 13C .5D .13【答案】D 【解析】随机变量()2~3,2019N ξ,且(1)()P P a ξξ≤=≥,∴1和a 关于3x =对称, ∴5a =即||5AF =,设A 为第一象限中的点,(),A x y , 抛物线方程为:24y x =,()1,0F ,∴15AF x =+= 解得4x =即()4,4A , ∴()4,4A 关于准线1x =-的对称点为()6,4A '-,根据对称性可得:PA PA '=∴()22||||||6452213PA PO PA PO A O ''+=+≥=-+==当且仅当,,A P O '三点共线时等号成立.如图故选:D4.已知双曲线C :22221x y a b-=(0a >,0b >)的渐近线方程为3y x =,若动点P 在C的右支上,1F ,2F 分别为C 的左,右焦点,2OP OF ⋅的最小值是2a (其中O 为坐标原点),则212||||PF PF 的最小值为( ) A .4 B .8C .16D .24【答案】B【解析】依题意知:22232ba c c ab ⎧=⎪⎪=⎨⎪=+⎪⎩, 解得1a =,3b =设2PF t =(1t ≥),则12PF t =+, 所以()22122444248PF t t t PF tt t+==++≥⨯=,(当4t t =即2t =时取等号),即212||||PF PF 的最小值为8. 故选:B . 5.已知椭圆22:12x C y +=,直线l 过椭圆C 的左焦点F 且交椭圆于A ,B 两点,AB 的中垂线交x 轴于M 点,则2||||FM AB 的取值范围为( )A .11,164⎛⎫⎪⎝⎭B .11,84⎡⎫⎪⎢⎣⎭C .11,162⎛⎫⎪⎝⎭D .11,82⎡⎫⎪⎢⎣⎭【答案】B【解析】椭圆22:12x C y +=的左焦点为()1,0F -,当l :0y =时,())(),,0,0A BM,1,FM AB ==所以2||1||8FM AB =,设():10l x my m =-≠与椭圆联立22112x my x y =-⎧⎪⎨+=⎪⎩,可得:()222210m y my +--=, 由韦达定理得:1221222212m y y m y y m ⎧+=⎪⎪+⎨-⎪=⎪+⎩,取AB 中点为222,22m D m m -⎛⎫ ⎪++⎝⎭,所以AB 的中垂线方程为:2212:22DM m l x y m m m ⎛⎫=--- ⎪++⎝⎭, 令0y = ,得21,02M m ⎛⎫- ⎪+⎝⎭,所以221||2m MF m +=+, 又()()2222281||2m AB m +==+, 所以2222||121111=1(,)||818184FM m AB m m ⎛⎫+⎛⎫=+∈ ⎪ ⎪++⎝⎭⎝⎭,综上所述2||11,||84FM AB ⎡⎫∈⎪⎢⎣⎭,故选:B. 二、多项选择题:本题共3小题,每小题5分,共15分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分.6.已知曲线C 的方程为2210()91y x x +<≤=,()()()0,3,0,3,1,0A B D --,点P 是C 上的动点,直线AP 与直线5x =交于点M ,直线BP 与直线5x =交于点N ,则DMN 的面积可能为( ) A .73 B .76C .68D .72【答案】ABD【解析】设()00,P x y ,则22002299919PA PBy y k k y x --⋅===--. 设(0)A p k k k =>,则9PB k k=-,直线AP 的方程为3y kx =-,则点M 的坐标为(5,53)k -,直线BP 的方程为93y x k =-+,则点N 的坐标为455,3k ⎛⎫-+ ⎪⎝⎭.所以4545||53356624MN k k k k ⎛⎫=---+=+-≥-= ⎪⎝⎭,当且仅当455k k=,即3k =时等号成立. 从而DMN 面积的最小值为1246722⨯⨯=. 故选:ABD .7.已知抛物线2:8C y x =的焦点为F ,准线l 与x 轴交于点M .点,P Q 是抛物线上不同的两点.下面说法中正确的是( )A .若直线PQ 过焦点F ,则以线段PQ 为直径的圆与准线l 相切;B .过点M 与抛物线C 有且仅有一个公共点的直线至多两条; C .对于抛物线内的一点(1,1)T ,则||||3PT PF +≥;D .若直线PQ 垂直于x 轴,则直线PM 与直线QF 的交点在抛物线C 上. 【答案】ACD【解析】如图一:过P 作PA ⊥准线于A ,过Q 作QB ⊥准线于B , 过PQ 中点C 作CD ⊥准线于D ,则()()111222CD PA QB PF QF PQ =+=+=, 故以线段PQ 为直径的圆与准线l 相切,A 正确;点M 与抛物线C 有且仅有一个公共点的直线包括两条切线和x 轴所在直线,B 错误; 如图二:过P 作PA ⊥准线于A ,过T 作TH ⊥准线于H ,准线方程为2x =-,3PT PF PT PA HT +=+≥=,当,,H P T 共线时等号成立,C 正确;设2,8yP y ⎛⎫⎪⎝⎭,2,8yQ y⎛⎫-⎪⎝⎭,()2,0M-,()2,0F,则直线PM:()2228yy xy=++,QF:()2228yy xy-=--,交点2003216,y y⎛⎫⎪⎝⎭,带入满足抛物线方程,故D正确.故选:ACD.三、填空题:本题共3小题,每小题5分,多空题,第一空2分,第二空3分,共15分.8.已知F为椭圆2222:1(0)x yC a ba b+=>>的右焦点,点()1,P m在C上,且PF x⊥轴,椭圆C的离心率为12,则椭圆C的方程为___________;若直线:2l y kx=+与椭圆C相交于A,B两点,且2OA OB⋅>(O为坐标原点),则k的取值范围为___________.【答案】22143x y+=2112,,2222⎛⎫⎛⎫--⋃⎪ ⎪⎪ ⎪⎝⎭⎝⎭.【解析】因为(c,0)F为椭圆2222:1(0)x yC a ba b+=>>的右焦点,点()1,P m在C上,且PF x⊥轴,所以1c=,又椭圆C的离心率为12,所以2a=,因此222413b a c=-=-=,所以椭圆C的方程为22143x y+=;设11(,)A x y,22(,)B x y,由222143y kxx y=+⎧⎪⎨+=⎪⎩,得22(34)1640k x kx+++=,所以1221634k x x k +=-+,122434x x k =+, 故2212121212228(2)(2)2()4434k y y kx kx k x x k x x k -=++=+++=++, 由2OA OB ⋅>,得12122x x y y +>,即224284234k k-+>+, 整理得212k <,解得22k -<<; 又因2221616(34)0k k ∆=-+>,整理得214k >,解得12k >或12k <-;综上,k的取值范围是11,,2222⎛⎫⎛⎫--⋃ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 故答案为:22143x y +=11,2222⎛⎫⎛--⋃ ⎪ ⎪ ⎝⎭⎝⎭. 9.已知双曲线2218:8x y C -=的左焦点为F ,点M 在双曲线C 的右支上,(0,4)A ,当MAF △的周长最小时,MAF △的面积为_________.【答案】12【解析】如图,设双曲线C 的右焦点为F '.由题意可得4040a F F '=-(,),(,). 因为点M 在右支上,所以2MF MF a '-==,所以MF MF '=+,则MAF △的周长为MA MF AF MA MF AF ''++=++≥+=即当M 在M '处时,MAF △的周长最小,此时直线AF '的方程为4y x =-+.联立224188y x x y =-+⎧⎪⎨-=⎪⎩,整理得10y -=,则1M y '=,故MAF △的面积为111'84112222M FF OA FF y ''-=⨯⨯-=(). 故答案为:1210.已知过抛物线C :28y x =的焦点F 的直线l 交抛物线C 于A 、B 两点,若P 为线段AB 的中点,O 为坐标原点,连接OP 并延长,交抛物线C 于点Q ,则OP OQ的取值范围为________.【答案】10,2⎛⎫ ⎪⎝⎭【解析】抛物线2:8C y x =的焦点(2,0)F ,直线l 的斜率存在且不为0, 设直线l 的方程为(2)y k x =-,联立2(2)8y k x y x=-⎧⎨=⎩,消去y ,整理得:22224(2)40k x k x k -++=,设1(A x ,1)y ,2(B x ,2)y ,0(P x ,0)y ,3(Q x ,3)y ,则21224(2)k x x k ++=,则212022(2)2x x k x k ++==,004(2)y k x k =-=, 02022OQ y kk x k ∴==+, 则直线OQ 的方程为222k y x k =+,联立22228k y x k y x⎧=⎪+⎨⎪=⎩,解得:22322(2)k x k +=, 由20k >,则023||1||212x OP OQ x k +==<, 所以OP OQ的取值范围为10,2⎛⎫ ⎪⎝⎭. 故答案为:10,2⎛⎫ ⎪⎝⎭四、解答题:本题共4小题,共40分。
专题5 圆锥曲线中的弦长问题(解析版)-2021年高考数学圆锥曲线中必考知识专练
PC 2 1 2
PC
1
1 PC 2
,
2
设 P4cos, 2sin , 0, 2 ,
学高为师,身正为范
小姚数学
可得
PC
2
4 cos
12 2sin
2
12 cos 2
8cos
5 12
cos
1 3
2
11 , 3
当 cos 1 时, PC 2 取得最小值为 11 ,此时 AB 取得最小值为 2 1 3 4 22 .故答案为: 4 22 .
3
3
11 11
11
7.已知抛物线 C: x2 2 py p 0 的焦点 F 与 y2 x2 1的一个焦点重合,过焦点 F 的直线与 C 交于 A,B 两
84
不同点,抛物线 C 在 A,B 两点处的切线相交于点 M,且 M 的横坐标为 2,则弦长 AB ______.
【答案】10 由题意可得 F 0, 2 ,则 p 4 ,抛物线方程为 x2 = -8y .
2
2
三、解答题
9.如图,在平面直角坐标系
xOy 中,已知椭圆 C1 :
x2 a2
y2 b2
1和椭圆 C2 :
x2 c2
y2 b2
1,其中 a
c
b
0,
a2 b2 c2 ,C1 ,C2 的离心率分别为 e1 ,e2 ,且满足 e1 : e2 2 : 3 ,A ,B 分别是椭圆 C2 的右、下顶点,直线 AB
(2)若直线 l : y x t 与曲线 C 交于 A 、 B 两点, AB 4 2 .求 t 的值 3
【答案】(1) x2 y2 1 ;(2) t 1.
2
解:(1)因为 PF1 PF2 2 2 ,所以动点 P 轨迹为椭圆,并且长轴长 2a 2 2 ,
专题18 圆锥曲线全国卷高考真题解答题24道(解析版)-2021年高考数学圆锥曲线中必考知识专练
专题18:圆锥曲线全国卷高考真题解答题24道(解析版)一、解答题1,2019年全国统一高考数学试卷(理科)(新课标Ⅲ)已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点: (2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.【答案】(1)见详解;(2) 3或【分析】(1)可设11(,)A x y ,22(,)B x y ,1(,)2D t -然后求出A ,B 两点处的切线方程,比如AD :1111()2y x x t +=-,又因为BD 也有类似的形式,从而求出带参数直线AB 方程,最后求出它所过的定点.(2)由(1)得带参数的直线AB 方程和抛物线方程联立,再通过M 为线段AB 的中点,EM AB ⊥得出t 的值,从而求出M 坐标和EM 的值,12,d d 分别为点,D E 到直线AB 的距离,则12d d ==,结合弦长公式和韦达定理代入求解即可.【详解】(1)证明:设1(,)2D t -,11(,)A x y ,则21112y x =. 又因为212y x =,所以y'x =.则切线DA 的斜率为1x , 故1111()2y x x t +=-,整理得112210tx y -+=. 设22(,)B x y ,同理得222210tx y -+=.11(,)A x y ,22(,)B x y 都满足直线方程2210tx y -+=.于是直线2210tx y -+=过点,A B ,而两个不同的点确定一条直线,所以直线AB 方程为2210tx y -+=.即2(21)0tx y +-+=,当20,210x y =-+=时等式恒成立.所以直线AB 恒过定点1(0,)2. (2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=, 于是2121212122,1,()121x x t x x y y t x x t +==-+=++=+212|||2(1)AB x x t =-==+.设12,d d 分别为点,D E 到直线AB的距离,则12d d ==因此,四边形ADBE 的面积()(2121||32S AB d d t =+=+设M 为线段AB 的中点,则21,2M t t ⎛⎫+⎪⎝⎭, 由于EM AB ⊥,而()2,2EM t t =-,AB 与向量(1,)t 平行,所以()220t t t +-=,解得0t =或1t =±.当0t =时,3S =;当1t =±时S =因此,四边形ADBE 的面积为3或. 【点睛】此题第一问是圆锥曲线中的定点问题和第二问是求面积类型,属于常规题型,按部就班的求解就可以.思路较为清晰,但计算量不小. 2.2019年全国统一高考数学试卷(理科)(新课标Ⅰ) 已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若3AP PB =,求|AB |. 【答案】(1)12870x y --=;(2)3.【分析】(1)设直线l :32y x m =+,()11,A x y ,()22,B x y ;根据抛物线焦半径公式可得1252x x +=;联立直线方程与抛物线方程,利用韦达定理可构造关于m 的方程,解方程求得结果;(2)设直线l :23x y t =+;联立直线方程与抛物线方程,得到韦达定理的形式;利用3AP PB =可得123y y =-,结合韦达定理可求得12y y ;根据弦长公式可求得结果. 【详解】(1)设直线l 方程为:32y x m =+,()11,A x y ,()22,B x y 由抛物线焦半径公式可知:12342AF BF x x +=++= 1252x x ∴+= 联立2323y x m y x ⎧=+⎪⎨⎪=⎩得:()229121240x m x m +-+= 则()2212121440m m ∆=--> 12m ∴<121212592m x x -∴+=-=,解得:78m =-∴直线l 的方程为:3728y x =-,即:12870x y --= (2)设(),0P t ,则可设直线l 方程为:23x y t =+联立2233x y t y x⎧=+⎪⎨⎪=⎩得:2230y y t --= 则4120t ∆=+> 13t ∴>-122y y ∴+=,123y y t =-3AP PB = 123y y ∴=- 21y ∴=-,13y = 123y y ∴=-则AB ===【点睛】本题考查抛物线的几何性质、直线与抛物线的综合应用问题,涉及到平面向量、弦长公式的应用.关键是能够通过直线与抛物线方程的联立,通过韦达定理构造等量关系. 3.2014年全国普通高等学校招生统一考试理科数学(新课标Ⅰ)已知点A (0,-2),椭圆E :22221x y a b += (a >b >0)的离心率为2,F 是椭圆E 的右焦点,直线AF,O 为坐标原点. (1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程.【答案】(1)2214x y += (2)2y x =-【解析】试题分析:设出F ,由直线AF的斜率为3求得c ,结合离心率求得a ,再由隐含条件求得b ,即可求椭圆方程;(2)点l x ⊥轴时,不合题意;当直线l 斜率存在时,设直线:2l y kx =-,联立直线方程和椭圆方程,由判别式大于零求得k 的范围,再由弦长公式求得PQ ,由点到直线的距离公式求得O 到l 的距离,代入三角形面积公式,化简后换元,利用基本不等式求得最值,进一步求出k 值,则直线方程可求. 试题解析:(1)设(),0F c ,因为直线AF的斜率为3,()0,2A -所以2c =c =又222c b a c a ==- 解得2,1a b ==,所以椭圆E 的方程为2214x y +=.(2)解:设()()1122,,,P x y Q x y 由题意可设直线l 的方程为:2y kx =-,联立221{42,x y y kx +==-,消去y 得()221416120k x kx +-+=,当()216430k ∆=->,所以234k >,即2k <-或2k >时1212221612,1414k x x x x k k +==++.所以PQ ===点O 到直线l 的距离d =所以21214OPQS d PQ k∆==+,0t =>,则2243k t =+,244144OPQ t S t t t∆==≤=++,当且仅当2t =2=,解得k =时取等号, 满足234k >所以OPQ ∆的面积最大时直线l 的方程为:2y x =-或2y x =-. 【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题(2)就是用的这种思路,利用均值不等式法求三角形最值的.4.2015年全国普通高等学校招生统一考试理科数学(新课标Ⅱ)已知椭圆222:9(0)C x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值;(Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率,若不能,说明理由. 【答案】(Ⅰ)详见解析;(Ⅱ)能,47-或47+. 【解析】试题分析:(1)设直线:l y kx b =+(0,0)k b ≠≠,直线方程与椭圆方程联立,根据韦达定理求根与系数的关系,并表示直线OM 的斜率,再表示;(2)第一步由 (Ⅰ)得OM 的方程为9y x k=-.设点P 的横坐标为P x ,直线OM 与椭圆方程联立求点P 的坐标,第二步再整理点的坐标,如果能构成平行四边形,只需,如果有值,并且满足0k >,3k ≠的条件就说明存在,否则不存在.试题解析:解:(1)设直线:l y kx b =+(0,0)k b ≠≠,11(,)A x y ,22(,)B x y ,(,)M M M x y .∴由2229y kx b x y m=+⎧⎨+=⎩得2222(9)20k x kbx b m +++-=, ∴12229M x x kbx k +==-+,299M M b y kx b k =+=+. ∴直线OM 的斜率9M OM M y k x k==-,即9OM k k ⋅=-. 即直线OM 的斜率与l 的斜率的乘积为定值9-. (2)四边形OAPB 能为平行四边形. ∵直线l 过点(,)3mm ,∴l 不过原点且与C 有两个交点的充要条件是0k >,3k ≠ 由 (Ⅰ)得OM 的方程为9y x k=-.设点P 的横坐标为P x . ∴由2229,{9,y x k x y m =-+=得,即将点(,)3m m 的坐标代入直线l 的方程得(3)3m k b -=,因此2(3)3(9)M mk k x k -=+. 四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即2P M x x =∴239k =+2(3)23(9)mk k k -⨯+.解得147k =-,247k =+. ∵0,3i i k k >≠,1i =,2,∴当l 的斜率为47-或47+时,四边形OAPB 为平行四边形. 考点:直线与椭圆的位置关系的综合应用【一题多解】第一问涉及中点弦,当直线与圆锥曲线相交时,点是弦的中点,(1)知道中点坐标,求直线的斜率,或知道直线斜率求中点坐标的关系,或知道求直线斜率与直线OM 斜率的关系时,也可以选择点差法,设,,代入椭圆方程,两式相减,化简为,两边同时除以得,而,,即得到结果,(2)对于用坐标法来解决几何性质问题,那么就要求首先看出几何关系满足什么条件,其次用坐标表示这些几何关系,本题的关键就是如果是平行四边形那么对角线互相平分,即2P M x x =,分别用方程联立求两个坐标,最后求斜率.5.2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ带解析)在直角坐标系xoy 中,曲线C :y=24x与直线(),0y kx a a =+>交与M,N 两点,(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由. 【答案】(Ⅰ0ax y a --=0ax y a ++=(Ⅱ)存在 【详解】试题分析:(Ⅰ)先求出M,N 的坐标,再利用导数求出M,N.(Ⅱ)先作出判定,再利用设而不求思想即将y kx a =+代入曲线C 的方程整理成关于x 的一元二次方程,设出M,N 的坐标和P 点坐标,利用设而不求思想,将直线PM ,PN 的斜率之和用a 表示出来,利用直线PM ,PN 的斜率为0,即可求出,a b 关系,从而找出适合条件的P 点坐标. 试题解析:(Ⅰ)由题设可得(2,)M a a ,(2,)N a -,或(22,)M a -,,)N a a .∵12y x '=,故24x y =在x =22a 处的导数值为a ,C 在(22,)a a 处的切线方程为(2)y a a x a -=-,即0ax y a --=.故24x y =在x =-22a 处的导数值为-a ,C 在(22,)a a -处的切线方程为(2)y a a x a -=-+,即0ax y a ++=.故所求切线方程为0ax y a --=或0ax y a ++=. (Ⅱ)存在符合题意的点,证明如下:设P (0,b )为复合题意得点,11(,)M x y ,22(,)N x y ,直线PM ,PN 的斜率分别为12,k k . 将y kx a =+代入C 得方程整理得2440x kx a --=. ∴12124,4x x k x x a +==-. ∴121212y b y b k k x x --+=+=1212122()()kx x a b x x x x +-+=()k a b a+.当=-b a 时,有12k k +=0,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故∠OPM=∠OPN ,所以(0,)P a -符合题意.考点:抛物线的切线;直线与抛物线位置关系;探索新问题;运算求解能力 6.2016年全国普通高等学校招生统一考试文科数学(新课标3)已知抛物线C :y 2=2x 的焦点为F ,平行于x 轴的两条直线l 1,l 2分别交C 于A ,B 两点,交C 的准线于P ,Q 两点.(Ⅰ)若F 在线段AB 上,R 是PQ 的中点,证明AR ∥FQ ;(Ⅱ)若ΔPQF 的面积是ΔABF 的面积的两倍,求AB 中点的轨迹方程. 【答案】(Ⅰ)见解析;(Ⅱ).【解析】试题分析:设A(a 22,0),B(b 22,b),P(−12,a),Q(−12,b),R(−12,a+b2) ⇒ l 的方程为2x −(a +b)y +ab =0.(1)由F 在线段AB 上⇒ 1+ab =0,又k 1=a−b1+a 2=a−ba 2−ab =1a =−ab a =−b =k 2 ⇒ AR//FQ ;(2)设l 与x 轴的交点为D(x 1,0) ⇒ S ΔABF =12|b −a||FD|=12|b −a||x 1−12|,S ΔPQF =|a−b|2⇒ 12|b −a||x 1−12|=|a−b|2⇒ x 1=0(舍去),x 1=1.设满足条件的AB 的中点为E(x,y).当AB 与x 轴不垂直时⇒2a+b=y x−1(x ≠1) ⇒a+b 2=y ⇒y 2=x −1(x ≠1).当AB 与x 轴垂直时⇒ E 与D 重合⇒所求轨迹方程为y 2=x −1. 试题解析:由题设F(12,0),设l 1:y =a,l 2:y =b ,则ab ≠0,且A(a 22,0),B(b 22,b),P(−12,a),Q(−12,b),R(−12,a+b2).记过A,B 两点的直线为l ,则l 的方程为2x −(a +b)y +ab =0.............3分 (1)由于F 在线段AB 上,故1+ab =0, 记AR 的斜率为k 1,FQ 的斜率为k 2,则k 1=a−b 1+a 2=a−b a 2−ab=1a=−ab a=−b =k 2,所以AR//FQ ..................5分 (2)设l 与x 轴的交点为D(x 1,0),则S ΔABF =12|b −a||FD|=12|b −a||x 1−12|,S ΔPQF =|a−b|2,由题设可得12|b −a||x 1−12|=|a−b|2,所以x 1=0(舍去),x 1=1.设满足条件的AB 的中点为E(x,y). 当AB 与x 轴不垂直时,由k AB =k DE 可得2a+b=y x−1(x ≠1).而a+b 2=y ,所以y 2=x −1(x ≠1).当AB 与x 轴垂直时,E 与D 重合,所以,所求轨迹方程为y 2=x −1.........12分 考点:1.抛物线定义与几何性质;2.直线与抛物线位置关系;3.轨迹求法.7.2016年全国普通高等学校招生统一考试理科数学(新课标2卷)已知椭圆E:2213x y t +=的焦点在x 轴上,A 是E 的左顶点,斜率为k (k > 0)的直线交E 于A ,M 两点,点N 在E 上,MA ⊥NA . (Ⅰ)当t=4,AM AN =时,求△AMN 的面积; (Ⅱ)当2AM AN =时,求k 的取值范围.【答案】(Ⅰ)14449;(Ⅱ))2.【解析】试题分析:(Ⅰ)先求直线AM 的方程,再求点M 的纵坐标,最后求AMN 的面积;(Ⅱ)设()11,M x y ,写出A 点坐标,并求直线AM 的方程,将其与椭圆方程组成方程组,消去y ,用,t k 表示1x ,从而表示AM ,同理用,t k 表示AN ,再由2AM AN =及t 的取值范围求k 的取值范围.试题解析:(Ⅰ)设()11,M x y ,则由题意知10y >,当4t =时,E 的方程为22143x y +=,()2,0A -.由已知及椭圆的对称性知,直线AM 的倾斜角为4π.因此直线AM 的方程为2y x =+. 将2x y =-代入22143x y +=得27120y y -=.解得0y =或127y =,所以1127y =.因此AMN 的面积AMNS11212144227749=⨯⨯⨯=. (Ⅱ)由题意3t >,0k >,()A .将直线AM的方程(y k x =代入2213x y t +=得()22222330tk xx t k t +++-=.由(221233t k tx tk -⋅=+得)21233tk x tk-=+,故1AM x =+=.由题设,直线AN 的方程为(1y x k =-+,故同理可得AN ==,由2AM AN =得22233k tk k t=++,即()()32321k t k k -=-. 当k =因此()33212k k t k -=-.3t >等价于()()232332122022k k k k k k k -+-+-=<--, 即3202k k -<-.由此得320{20k k ->-<,或320{20k k -<->2k <<. 因此k 的取值范围是)2.【考点】椭圆的性质,直线与椭圆的位置关系【名师点睛】由直线(系)和圆锥曲线(系)的位置关系,求直线或圆锥曲线中某个参数(系数)的范围问题,常把所求参数作为函数值,另一个元作为自变量求解.8.2016年全国普通高等学校招生统一考试理科数学(新课标1卷)设圆x2+y2+2x−15=0的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A 于C,D两点,过B作AC的平行线交AD于点E.(I)证明|EA|+|EB|为定值,并写出点E的轨迹方程;(II)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.【答案】(Ⅰ)答案见解析;(Ⅱ)[12,8√3).【解析】试题分析:(Ⅰ)利用椭圆定义求方程;(Ⅱ)把面积表示为关于斜率k的函数,再求最值。
2021年新高考数学专题复习-圆锥曲线专项练习(含答案解析)
2021年新高考数学专题复习-圆锥曲线专项练习1.已知椭圆22221(0)x y a b a bΓ+=>>:过点(02),,其长轴长、焦距和短轴长三者的平方依次成等差数列,直线l 与x 轴的正半轴和y 轴分别交于点Q P 、,与椭圆Γ相交于两点M N 、,各点互不重合,且满足12PM MQ PN NQ λλ==,. (1)求椭圆Γ的标准方程; (2)若直线l 的方程为1y x =-+,求1211λλ+的值;(3)若123,试证明直线l 恒过定点,并求此定点的坐标.2.已知动点M 到直线20x +=的距离比到点(1,0)F 的距离大1. (1)求动点M 所在的曲线C 的方程;(2)已知点(1,2)P ,A B 、是曲线C 上的两个动点,如果直线PA 的斜率与直线PB 的斜率互为相反数,证明直线AB 的斜率为定值,并求出这个定值;(3)已知点(1,2)P ,A B 、是曲线C 上的两个动点,如果直线PA 的斜率与直线PB 的斜率之和为2,证明:直线AB 过定点.3.已知椭圆2222:1(0)x y C a b a b +=>>经过点1,2P ⎛⎫ ⎪ ⎪⎝⎭,且离心率2e =. (1)求椭圆C 的标准方程;(2)若斜率为k 且不过点P 的直线l 交C 于,A B 两点,记直线PA ,PB 的斜率分别为1k ,2k ,且120k k +=,求直线l 的斜率k .4.如图,已知圆A :22(1)16x y ++=,点()10B ,是圆A 内一个定点,点P 是圆上任意一点,线段BP 的垂直平分线1l 和半径AP 相交于点Q .当点P 在圆上运动时,点Q 的轨迹为曲线C .(1)求曲线C 的方程;(2)设过点()4,0D 的直线2l 与曲线C 相交于,M N 两点(点M 在,D N 两点之间).是否存在直线2l 使得2DN DM =?若存在,求直线2l 的方程;若不存在,请说明理由.5.已知双曲线C 的方程为:22186x y -=,其左右顶点分别为:1A ,2A ,一条垂直于x轴的直线交双曲线C 于1P ,2P 两点,直线11A P 与直线22A P 相交于点P .(1)求点P 的轨迹E 的方程;(2)过点)Q的直线,与轨迹E 交于A ,B 两点,线段AB 的垂直平分线交x 轴于M 点,试探讨ABMQ是否为定值.若为定值,求出定值,否则说明理由. 6.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为1F ,2F ,过点2F 作直线l 交椭圆C 于M ,N 两点(l 与x 轴不重合),1F MN △,12F F M △的周长分别为12和8. (1)求椭圆C 的方程;(2)在x 轴上是否存在一点T ,使得直线TM 与TN 的斜率之积为定值?若存在,请求出所有满足条件的点T 的坐标;若不存在,请说明理由.7.已知椭圆C :22221x y a b +=(0a b >>)的离心率e =10x +-=被以椭圆C . (1)求椭圆C 的方程;(2)过点(4,0)M 的直线l 交椭圆于A ,B 两个不同的点,且||||||||MA MB MA MB λ+=⋅,求λ的取值范围.8.已知抛物线C :24y x =的焦点为F ,直线l :2y x a =+与抛物线C 交于A ,B 两点.(1)若1a =-,求FAB 的面积;(2)若抛物线C 上存在两个不同的点M ,N 关于直线l 对称,求a 的取值范围. 9.如图,直线l 与圆22:(1)1E x y ++=相切于点P ,与抛物线2:4C x y =相交于不同的两点,A B ,与y 轴相交于点(0,)(0)T t t >.(1)若T 是抛物线C 的焦点,求直线l 的方程;(2)若2||||||TE PA PB =⋅,求t 的值.10.在平面直角坐标系中,己知圆心为点Q 的动圆恒过点(1,0)F ,且与直线1x =-相切,设动圆的圆心Q 的轨迹为曲线Γ. (Ⅰ)求曲线Γ的方程;(Ⅱ)过点F 的两条直线1l 、2l 与曲线Γ相交于A 、B 、C 、D 四点,且M 、N 分别为AB 、CD 的中点.设1l 与2l 的斜率依次为1k 、2k ,若121k k +=-,求证:直线MN 恒过定点.11.已知椭圆()2222:10x y C a b a b +=>>的离心率为2,且直线1x y a b +=与圆222x y +=相切.(1)求椭圆C 的方程;(2)设直线l 与椭圆C 相交于不同的两点A ﹐B ,M 为线段AB 的中点,O 为坐标原点,射线OM 与椭圆C 相交于点P ,且O 点在以AB 为直径的圆上.记AOM ,BOP △的面积分别为1S ,2S ,求12S S 的取值范围. 12.已知抛物线2:2(0)E x py p =>的焦点为,F 点Р在抛物线E 上,点Р的横坐标为2,且2PF =.(1)求抛物线E 的标准方程;(2)若,A B 为抛物线E 上的两个动点(异于点P ),且AP AB ⊥,求点B 的横坐标的取值范围.13.如图,已知点F 为抛物线E :y 2=2px (p >0)的焦点,点A (2,m )在抛物线E 上,且|AF |=3.(1)求抛物线E 的方程;(2)已知点G (-1,0),延长AF 交抛物线E 于点B ,证明:GF 为∠AGB 的平分线.14.已知椭圆C :22221(0)x y a b a b +=>>的短轴长为2.(∠)求椭圆C 的方程;(∠)设过定点()02T ,的直线l 与椭圆C 交于不同的两点A 、B ,且∠AOB 为锐角,求直线l 的斜率k 的取值范围.参考答案1.(1)221124x y +=;(2)83-;(3)证明见解析,(2,0). 【分析】(1)由题意,得到2b =和222(2)(2)2(2)a b c +=,结合222a b c =+,求得2a 的值,即可求得椭圆Γ的标准方程;(2)由直线l 的方程为1y x =-+,根据12PM MQ PN NQ λλ==,,求得12121211x x x x λλ==--,,得到121212112x xx x λλ++=-,联立方程组,结合根与系数的关系,即可求解;(3)设直线l 的方程为()()0y k x m m =->,由1PM MQ ,得到111x m x λ=-和222xm xλ=-,联立方程组,结合根与系数的关系和123,求得2m =,得到直线l 的方程,即可求解. 【详解】(1)由题意,因为椭圆22221(0)x y a b a bΓ+=>>:过点(02),,可得2b =, 设焦距为2c ,又由长轴长、焦距和短轴长三者的平方依次成等差数列, 可得222(2)(2)2(2)a b c +=,即2222a b c +=又因为222a b c =+,解得212a =,所以椭圆Γ的标准方程为221124x y +=.(2)由直线l 的方程为1y x =-+,可得而(01)(10)P Q ,,,,设1122()()M x y N x y ,,,,因为12PM MQ PN NQ λλ==,,可得1111122222(1)(1)(1)(1)x y x y x y x y λλ-=---=--,,,,,, 从而111222(1)(1)x x x x λλ=-=-,,于是12121211x x x x λλ==--,,所以12121212111122x x x x x x λλ++=+-=-,由2211241x y y x ⎧+=⎪⎨⎪=-+⎩,整理得24690x x --=,可得12123924x x x x +==-,,所以1212121211118223x x x x x x λλ++=+-=-=-. (3)显然直线l 的斜率k 存在且不为零,设直线l 的方程为()()0y k x m m =->,1122()()M x y N x y ,,,,可得(0,)(,0)P km Q m -,,由1PMMQ ,可得11111()()x y km m x y λ+=--,,, 所以()111x x m λ=-,从而111x m x λ=-,同理222x m x λ=-, 又123,∠212122()30x x m x x m -++=①,联立221124()x y y k x m ⎧+=⎪⎨⎪=-⎩,得22222(13)63120k x k mx k m +-+-=, 则()42222222364(13)(312)121240k m k k m k k m -∆=+-=+->②,且2221212226312,1313k m k m x x x x k k -+==++③∠代入∠得2222222231263122300131313k m k m m m m k k k ---⋅+=⇒=+++,∠2m =,(满足∠)故直线l 的方程为()2y k x =-,所以直线l 恒过定点(20),. 2.(1)24y x =;(2)证明见解析,定值1-;(3)证明见解析.【分析】(1)根据题意转化为动点M 到直线1x =-的距离和到点(1,0)F 的距离相等,结合抛物线的定义,即可求得曲线C 的方程;(2)由:2(1)PA l y k x -=-和2(1)PB l y k x -=--:,分别联立方程组,求得()22242,k k A k k ⎛⎫-- ⎪ ⎪⎝⎭和()22242,k k B k k ⎛⎫+-- ⎪ ⎪⎝⎭,结合斜率公式,即可求解; (3)由::2(1)PA l y k x -=-,2(1)PB l y k x -=--:,分别联立方程组()22242,k k A k k ⎛⎫--⎪ ⎪⎝⎭和()222,22k k B k k ⎛⎫ ⎪ ⎪--⎝⎭,求得2(2)22AB k k k k k -=-+,求得直线AB l 的方程,即可求解. 【详解】(1)已知动点M 到直线20x +=的距离比到点(1,0)F 的距离大1,等价于动点M 到直线1x =-的距离和到点(1,0)F 的距离相等,由抛物线的定义可得曲线C 的轨迹时以(1,0)F 为焦点,以直线1x =-为准线的方程,且2p =,所以曲线C 的方程为24y x =.(2)设直线PA 的斜率为k ,因为直线PA 的斜率与直线PB 的斜率互为相反数,所以直线PB 的斜率为k -,则:2(1)PA l y k x -=-,2(1)PB l y k x -=--:联立方程组22(1)4y k x y x-=-⎧⎨=⎩,整理得24480ky y k --+=, 即()()2420ky k y +--=⎡⎤⎣⎦,可得()22242,k k A k k ⎛⎫-- ⎪ ⎪⎝⎭联立方程组22(1)4y k x y x-=--⎧⎨=⎩,整理得24480ky y k +--=,即()()2+420ky k y +-=⎡⎤⎣⎦,可得()22242,k k B k k ⎛⎫+-- ⎪ ⎪⎝⎭所以()()22224242122ABk kk k k k k k k ----==-+--,即直线AB 的斜率为定值1-. (3)设直线PA 的斜率为k ,所以直线PB 的斜率为2k -, 则2(1)PA l y k x -=-:,2(1)PB l y k x -=--:两类方程组22(1)4y k x y x-=-⎧⎨=⎩,整理得24480ky y k --+=, 即()()2420ky k y +--=⎡⎤⎣⎦,可得()22242,k k A k k ⎛⎫-- ⎪ ⎪⎝⎭, 联立方程组()222(1)4y k x y x⎧-=--⎨=⎩,可得()22440k y y k --+=,即()()2220k y k y ---=⎡⎤⎣⎦,可得()222,22k k B k k ⎛⎫⎪ ⎪--⎝⎭所以()()22222242(2)22222ABk kk k k k k k k k k k k ----==-+---, 所以()2222(2)2222AB k k k k l y x k k k k ⎛⎫--=- ⎪ ⎪--+-⎝⎭:,整理得()2(2)122k k y x k k -=+-+ 所以直线AB 恒过()1,0-.3.(1)2212x y +=;(2. 【分析】(1)由题意可得222221112a b c e a a b c ⎧+=⎪⎪⎪==⎨⎪=+⎪⎪⎩,解方程组即可求得,,a b c 的值,进而可得椭圆C 的标准方程;(2))设直线PA的方程为()112y k x -=-,()11,A x y ,()22,B x y ,与椭圆方程联立消元可得关于x 的一元二次方程,由韦达定理可得1x ,因为120k k +=,所以21k k =-,同理可得2x ,再利用1212y y k x x -=-即可求得直线l 的斜率k .【详解】(1)因为1,2P ⎛ ⎝⎭在椭圆C 上,所以221112a b +=,又2c e a ==,222a b c =+,由上述方程联立可得22a =,21b =,所以椭圆的标准方程为2212x y +=.(2)设直线PA的方程为()112y k x -=-, 设()11,A x y ,()22,B x y ,由122(1)12y k x x y ⎧=-⎪⎪⎨⎪+=⎪⎩消y 得: ())222111111222210k xk k x k +++--=,所以21112121112k x k --⨯=+,因为120k k +=,所以21k k =-,同理可得21122121112k x k +-⋅=+,因为2112214212k x x k -+=+,1122112x x k --=+,所以()111121112112121212222k x k k x k k x x k y y k x x x x x x ⎛-+--++ +--⎝⎭===---2242212k k k k --+=== 4.(1)22143x y+=(2)存在,(4)6y x =-或4)6y x =--.【分析】(1)结合垂直平分线的性质和椭圆的定义,求出椭圆C 的方程.(2)设出直线2l 的方程,联立直线2l 的方程和椭圆方程,写出韦达定理,利用2DN DM =,结合向量相等的坐标表示,求得直线2l 的斜率,进而求得直线2l 的方程.方法一和方法二的主要曲边是直线2l 的方程的设法的不同. 【详解】(1)因为圆A 的方程为22(1)16x y ++=,所以(1,0)A -,半径4r =.因为1l 是线段AP 的垂直平分线,所以||||QP QB =. 所以||||||||||4AP AQ QP AQ QB =+=+=.因为4||AB >,所以点Q 的轨迹是以(1,0)A -,(1,0)B 为焦点,长轴长24a =的椭圆.因为2a =,1c =,2223b a c =-=,所以曲线C 的方程为22143x y +=.(2)存在直线2l 使得2DN DM =.方法一:因为点D 在曲线C 外,直线2l 与曲线C 相交,所以直线2l 的斜率存在,设直线2l 的方程为(4)y k x =-.设112212(,),(,)()M x y N x y x x >,由22143(4)x y y k x ⎧+=⎪⎨⎪=-⎩ 得2222(34)32(6412)0k x k x k +-+-=. 则21223234k x x k +=+, ① 2122641234k x x k-=+, ② 由题意知2222(32)4(34)(6412)0k k k ∆=--+->,解得1122k -<<. 因为2DN DM =,所以2142(4)x x -=-,即2124x x =-. ③把③代入①得21241634k x k +=+,22241634k x k-+=+ ④ 把④代入②得2365k =,得6k =±,满足1122k -<<.所以直线2l的方程为:(4)6y x =-或4)6y x =--. 方法二:因为当直线2l 的斜率为0时,(2,0)M ,(2,0)N -,(6,0)DN =-,(2,0)DM =-此时2DN DM ≠.因此设直线2l 的方程为:4x ty =+.设112212(,),(,)()M x y N x y x x >,由221434x y x ty ⎧+=⎪⎨⎪=+⎩得22(34)24360t y ty +++=. 由题意知22(24)436(34)0t t ∆=-⨯+>,解得2t <-或2t >,则1222434ty y t +=-+, ① 1223634y y t =+, ②因为2DN DM =,所以212y y =. ③把③代入①得12834t y t =-+,221634ty t =-+ ④ 把④代入②得2536t =,t =±2t <-或2t >. 所以直线2l的方程为4)y x =-或4)y x =-. 5.(1)22186x y +;(2)为定值,4.【分析】(1)设直线为:0x x =,()100,P x y ,()200,P x y -,以及(),P x y,利用三点共线得到==,两式相乘化简得22022088y y x x =---,再利用点1P 在双曲线上代入整理即可得到答案;(2)显然直线l 不垂直x 轴,①当0k =时,易证4ABMQ=,②当0k ≠时,利用点斜式设出直线l 方程,联立直线l 与椭圆的方程消y ,得到关于x 的一元二次方程,利用韦达定理以及弦长公式求出AB ,求出AB 的中点坐标,利用点斜式求出线段AB 的垂直平分线的方程,求出点M 的坐标,利用两点间的距离公式求解MQ ,即可得出答案. 【详解】(1)由题意知:()1A -,()2A ,设直线为:0x x =,()100,P x y ,()200,P x y -,以及(),P x y , 由11,,A P P 三点以及22,,A P P 三点共线,则==,两式相乘化简得:22022088y y x x =---, 又2200186x y -=, 代入上式得轨迹E 的方程:22186x y +.(2)显然直线l 不垂直x 轴,①当0k =时,直线l 的方程为:0y =,线段AB 为椭圆的长轴,线段AB 的垂直平分线交x 轴于M 点,则AB =,()0,0M,MQ =所以4ABMQ=; ②当0k ≠时,设方程为:(y k x =,联立方程得(22186y k x x y ⎧=⎪⎨⎪+=⎩,化简整理得:()2222348240kxx k +-+-=,设()11,A x y ,()22,B x y ,212221223482434x x k k x x k ⎧+=⎪⎪+⎨-⎪=⎪+⎩,)2122143k AB x k +=-==+,线段AB的中点的坐标为222,3434P k k ⎛⎫- ⎪ ⎪++⎝⎭,线段AB的垂直平分线的方程为:22213434y x k k k ⎛⎫+=-- ⎪ ⎪++⎝⎭, 令0y =,则M ⎫⎪⎪⎝⎭,)22134k MQ k +==+,∴4ABMQ=. 综上:4ABMQ=. 6.(1)22198x y ;(2)存在,坐标为(3,0)-和(3,0).【分析】(1)由1F MN △,12F F M △的周长分别为12和8,可求椭圆基本量,进一步确定方程. (2)设直线代入消元,韦达定理整体代入定点满足的关系,探求恒成立的条件. 【详解】(1)设椭圆C 的焦距为2(0)c c >,由题意可得412228a a c =⎧⎨+=⎩,解得31a c =⎧⎨=⎩,所以b =因此椭圆C 的方程为22198x y .(2)因为直线l 过点2(1,0)F 且不与x 轴重合,所以设l 的方程为1x my =+,联立方程221198x my x y =+⎧⎪⎨+=⎪⎩,消去x 并整理得()228916640m y my ++-=,设()11,M x y ,()22,N x y ,则12212216896489m y y m y y m ⎧+=-⎪⎪+⎨⎪=-⎪+⎩,所以()1212218289x x m y y m +=++=+, ()()()2212121212272911189m x x my my m y y m y y m -+=++=+++=+. 设(,0)T t ,则直线TM 与TN 的斜率分别为11TM y k x t =-,22TN y k x t=-, 则()()1212TM TN y y k k x t x t ⋅=--()2122221212226489729188989y y m m x x t x x t t t m m -+==-+-++-⋅+++ ()222648729189t m t t -=-+-+.所以当28720t -=,即当3t =-时,m ∀∈R ,49TM TN k k ⋅=-; 当3t =时,m ∀∈R ,169TM TN k k ⋅=-. 因此,所有满足条件的T 的坐标为(3,0)-和(3,0).7.(1)2214x y +=;(2)2]3.【分析】(1)由直线与圆的位置关系可得1b =.由椭圆的离心率可得2a =,则椭圆C 的方程为2214x y +=. (2)当直线l 的斜率为0时,求出MA ,MB ,当直线l 的斜率不为0时,设直线l 方程为4x my =+,()11A x y ,,()22B x y ,,联立方程可得()2248120m y my +++=,满足题意时212m >,结合韦达定理以及弦长公式,化简整理,结合不等式的性质,据此即可所求范围. 【详解】(1)因为原点到直线10x +-=的距离为12,所以22212b ⎛⎫+= ⎪⎝⎭⎝⎭(0b >),解得1b =. 又22222314c b e a a ==-=,得2a =所以椭圆C 的方程为2214x y +=.(2)当直线l 的斜率为0时,12MA MB ⋅=,268MA MB +=+=,所以||||82||||123MA MB MA MB λ+===⋅,当直线l 的斜率不为0时,设直线l :4x my =+,()11A x y ,,()22B x y ,,联立方程组22414x my x y =+⎧⎪⎨+=⎪⎩,得()2248120m y my +++=, 由()22=644840m m ∆-+>,得212m >,所以122124y y m =+,12284my y m +=-+,()21221214m MA MB y y m +⋅==+,1212MA MB y y y +=+=+284mm =+,||||||||121MA MB MA MB m λ+====⋅+由212m >,得211113121m ∴<-<+,所以2233λ<<.23λ<≤,即2]3.8.(12)12a <- 【分析】(1)联立直线与抛物线,根据弦长公式求出||AB ,根据点到直线的距离公式求出点F 到直线的距离,根据三角形面积公式可求得结果;(2)设直线MN 的方程为12y x m =-+代入抛物线,利用判别式大于0可得2m >-, 根据韦达定理求出MN 的中点坐标,将其代入直线l 得到m 与a 的关系式,根据m 的范围可得a 的范围. 【详解】抛物线C :24y x =的焦点为F (1,0),(1)当1a =-时,直线:21l y x =-,联立2214y x y x=-⎧⎨=⎩,消去y 得21204x x -+=, 设11(,)A x y ,22(,)B x y ,则122x x +=,1214x x =,所以||AB ===点F 到直线:21l y x =-的距离d ==,所以FAB的面积为11||22AB d ==. (2)因为点M ,N 关于直线l 对称,所以直线MN 的斜率为12-, 所以可设直线MN 的方程为12y x m =-+, 联立2124y x m y x⎧=-+⎪⎨⎪=⎩,消去y 并整理得22(416)40x m x m -++=, 由22(416)160m m ∆=+->,得2m >-,设33(,)M x y ,44(,)N x y ,所以34416x x m +=+,所以343411()2(416)2822y y x x m m m +=-++=-⨯++=-, 所以MN 的中点为(28,4)m +-,因为点M ,N 关于直线l 对称,所以MN 的中点(28,4)m +-在直线:2l y x a =+上,所以42(28)m a -=++,得420a m =--,因为2m >-,所以12a <-.9.(1)1y =+;(2)12. 【分析】(1)由(0,)(0)T t t >为抛物线焦点,即可设直线l 的方程为1y kx =+,根据直线l 与圆相切可求k 值,写出直线方程.(2)设直线l 的方程为y kx t =+,()00,P x y ,()11,A x y ,()22,B x y ,由直线上两点距离公式可知()()0022||||14PA PB kxy ⋅==+-,根据直线l 与圆相切、2||||||TE PA PB =⋅求0y ,切线性质:直线l 与PE 互相垂直及00t y kx =-即可求t 的值.【详解】(1)因为(0,)(0)T t t >是抛物线2:4C x y =的焦点,所以1t =,即(0,1)T ,设直线l 的方程为1y kx =+,由直线l 与圆E1=,即k =,所以,直线l的方程为1y =+.(2)设直线l 的方程为y kx t =+,()00,P x y ,()11,A x y ,()22,B x y ,由24y kx tx y=+⎧⎨=⎩,得2440x kx t --=,124x x k +=,124x x t ⋅=-,∴1020||||PA PB x x ⋅=-⋅-()()221201201kx xx x x x ⎡⎤=+-++⎣⎦()()220014k x kx t ⎡⎤=+-+⎣⎦()()220014k x y =+-. 由直线l 与圆E1=,即221(1)k t +=+.由||1TE t =+,2||||||TE PA PB =⋅,得()()2220014(1)kxy t +-=+.所以20041x y -=,又()220011x y ++=,解得03y =-+.由直线l 与PE 互相垂直,得0011PE xk k y =-=-+, 200001i x t y kx y y =-=++220000001112x y y y y y ++-===++. 10.(Ⅰ)24y x =;(Ⅱ)证明见解析.【分析】(Ⅰ)设(,)Q x y,根据题意得到|1|x +=Γ的方程;(Ⅱ)设1l ,2l 的方程为12(1),(1)y k x y k x =-=-,联立方程组分别求得2121122,k M k k ⎛⎫+ ⎪⎝⎭,和2222222,k N k k ⎛⎫+ ⎪⎝⎭,进而得出MN k ,进而得出()111MN k k k =+,得出直线MN 的方程,即可判定直线MN 恒过定点. 【详解】(Ⅰ)由题意,设(,)Q x y ,因为圆心为点Q 的动圆恒过点(1,0)F ,且与直线1x =-相切,可得|1|x +=24y x =.(Ⅱ)设1l ,2l 的方程分别为1(1)y k x =-,2(1)y k x =-,联立方程组12(1)4y k x y x=-⎧⎨=⎩,整理得()2222111240k x k x k -++=, 所以21122124k x x k ++=,则2121122,k M k k ⎛⎫+ ⎪⎝⎭,同理2222222,k N k k ⎛⎫+ ⎪⎝⎭ 所以121222121222122222MNk k k k k k k k k k k -==+++-, 由121k k +=-,可得()111MN k k k =+,所以直线MN 的方程为()2111211221k y k k x k k ⎛⎫+-=+- ⎪⎝⎭ 整理得()1121(1)y k k x +=+-,所以直线MN 恒过定点(1,2)-.11.(1)22163x y +=;(2),33⎣⎦. 【分析】(1)依题意得到c a ==,再根据222c b a +=解方程即可;(2)由M 为线段AB 的中点,可得12OM S S OP=,对直线l 的斜率的斜率存在与否分两种情况讨论,当直线l 的斜率存在时,设直线():0l y kx m m =+≠,()11,A x y ,()22,B x y .联立直线与椭圆方程,消元列出韦达定理,根据0OA OB ⋅=,即可得到12120x x y y +=,从而得到m 与k 的关系,即可求出面积比的取值范围; 【详解】解:(1)∵椭圆的离心率为2,∴2c a =(c 为半焦距). ∵直线1x y a b+=与圆222x y +==.又∵222c b a +=,∴26a =,23b =.∴椭圆C 的方程为22163x y +=.(2)∵M 为线段AB 的中点,∴12AOM BOP OMS S S S OP==△△. (ⅰ)当直线l 的斜率不存在时,由OA OB ⊥及椭圆的对称性,不妨设OA 所在直线的方程为y x =,得22A x =.则22M x =,26P x =,∴123OM S S OP ==. (ⅱ)当直线l 的斜率存在时,设直线():0l y kx m m =+≠,()11,A x y ,()22,B x y .由22163y kx mx y =+⎧⎪⎨+=⎪⎩,消去y ,得()222214260k x kmx m ++-=+. ∴()()()2222221682138630k m k m k m ∆=-+-=-+>,即22630k m -+>.∴122421km x x k +=-+,21222621m x x k -=+. ∵点O 在以AB 为直径的圆上,∴0OA OB ⋅=,即12120x x y y +=. ∴()()221212121210x x y y kx xkm x x m +=++++=. ∴()22222264102121m km k km m k k -⎛⎫++-+= ⎪++⎝⎭. 化简,得2222m k =+.经检验满足0∆>成立.∴线段AB 的中点222,2121kmm M k k ⎛⎫-⎪++⎝⎭. 当0k =时,22m =.此时123S S ==. 当0k ≠时,射线OM 所在的直线方程为12y x k=-.由2212163y x k x y ⎧=-⎪⎪⎨⎪+=⎪⎩,消去y ,得2221221P k x k =+,22321P y k =+. ∴M P OM y OP y == ∴12S S ==12,33S S ⎛∈ ⎝⎭. 综上,12S S的取值范围为33⎣⎦.12.(1)24x y =;(2)[)(,)610--⋃∞+∞,. 【分析】()1由抛物线的定义可得022p y =-,再代入可求得p ,可得抛物线E 的标准方程为24x y =.()2由直线垂直的条件建立关于点A 、B 的坐标的方程,由根的判别式可求得范围.【详解】解:()1依题意得0,,2p F ⎛⎫ ⎪⎝⎭设()002,,22p P y y =-, 又点Р是E 上一点,所以4222p p ⎛⎫=-⎪⎝⎭,得2440p p -+=,即2p =, 所以抛物线E 的标准方程为24x y =.()2由题意知()2,1P , 设221212,,,,44x x A x B x ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭则()2111114224APx k x x -==+-,因为12x ≠-,所以142AB k x =-+,AB 所在直线方程为()2111442x y x x x --=-+,联立24x y =. 因为1x x ≠,得11(216(0))x x x +++=,即()21122160x x x x ++++=,因为()224216)0(x x ∆=+-+≥,即24600x x --≥,故10x ≥或6x ≤-经检验,当6x =-时,不满足题意.所以点B 的横坐标的取值范围是[)(,)610--⋃∞+∞,. 13.(1)y 2=4x ;(2)证明见解析. 【分析】(1)利用抛物线定义,由|AF |=2+2p=3求解. (2)根据点A (2,m )在抛物线E 上,解得m ,不妨设A (2,),直线AF 的方程为y(x -1),联立)214y x y x⎧=-⎪⎨=⎪⎩,然后论证k G A +k G B =0即可 【详解】(1)由抛物线定义可得|AF |=2+2p=3,解得p =2. ∠抛物线E 的方程为y 2=4x .(2)∠点A (2,m )在抛物线E 上, ∠m 2=4×2,解得m,由抛物线的对称性,不妨设A (2,),由A (2,,F (1,0),∠直线AF 的方程为y (x -1),由)214y x y x⎧=-⎪⎨=⎪⎩ 得2x 2-5x +2=0,解得x =2或12,∠B 1,2⎛ ⎝.又G (-1,0),∠k G A =3,k G B =3-∠k G A +k G B =0, ∠∠AGF =∠BGF . ∠GF 为∠AGB 的平分线. 【点睛】关键点点睛:由GF 为∠AGB 的平分线,即∠AGF =∠BGF ,转化为 k G A +k G B =0结合韦达定理证明.14.(∠)23x +y 2=1;(∠)11k ⎛⎫⎛∈-⋃ ⎪ ⎪ ⎝⎭⎝⎭. 【分析】(∠)根据椭圆短轴长公式、离心率公式,结合椭圆中,,a b c 的关系进行求解即可;(∠)根据平面向量数量积公式,结合一元二次方程根与系数关系、根的判别式进行求解即可. 【详解】(∠)由已知得 2b =2,所以1b =,又因为c a =所以有:2223c a =,而222c a b =-, 解得23a =,即椭圆C 的方程为23x +y 2=1.(∠)直线l 方程为y =kx +2,将其代入23x +y 2=1,得(3k 2+1)x 2+12kx +9=0,设A (x 1,y 1),B (x 2,y 2),∴△=(12k )2﹣36(1+3k 2)>0,解得k 2>1,由根与系数的关系,得x 1+x 2=21213kk -+,x 1x 2=2913k + ∵∠AOB 为锐角, ∴OA ⋅OB >0, ∴x 1x 2+y 1y 2>0,∴x 1x 2+(kx 1+2)(kx 2+2)>0, ∴(1+k 2)x 1x 2+2k (x 1+x 2)+4>0,化简得2213313k k -+>0,解得2133k <,由21k >且2133k <,解得1133k ⎛⎫⎛∈--⋃ ⎪ ⎪ ⎝⎭⎝⎭,.。
2021高考数学押题专练圆锥曲线(解析版)
由两圆方程作差即② ①得: 4x py 0 .
所以,切点弦 QR 所在直线的方程为 4x py 0 .
法二(求 Q、R 均满足的同一直线方程切点弦方程):
设 D 1, 0 , Q x1, y1 , R x2, y2 .
由 DQ PQ ,可得 Q 处的切线上任一点 T (x, y) 满足 QT DQ 0 (如图),
则 QR 恒过坐标原点 O 0, 0 .
4x py 0,
由 x 12 y2
消去 x 并整理得 4
16
p2
y2 8 py 48 0 .
设 Q x1,
y1
,
R x2,
y2
,则
y1
y2
8p 16 p2
.
点N
纵坐标
yN
y1 2
y2
4p 16 p2
.
因为 p 0 ,显然 yN 0 ,
由圆的性质,可得 DN QR ,即 DN ON (如图).
所以点
N
在以
OD
为直径的圆上,圆心为
G
1 2
,
0
,半径
r
1 2
.
因为直线 3x 4 y 6 分别与 x 轴、 y 轴交于点 E 、 F ,
所以
E
2,
0
,
F
0,
3 2
,
EF
5
.
2
又圆心
G
1 2
,
0
到直线
3x
4
y
6
0
的距离
d
【模拟专练】
21.(2021·山东高三二模)已知椭圆 C
:
x2 a2
y2 b2
1(a
2021高考数学专项预测《圆锥曲线大题专练》
1、(本小题满分13分)已知椭圆)0(1:2222>>=+b a b y a x C 的一个顶点为)0,2(A ,离心率为22.过点)0,1(G 的直线l 与椭圆C 相交于不同的两点,M N .(1)求椭圆C 的方程;(2)当AMN ∆的面积为524时,求直线l 的方程.1、解:(1)22,,22c a c a ==∴=2222b a c ∴=-=所以所求的椭圆方程是22142x y +=………………3分(2)①直线l 的斜率不存在时,直线方程为1x =,弦长6MN =,62AMN S ∆=,不满足条件;………………4分②直线l 的斜率存在时,设直线l 的方程为(1)(0)y k x k =-≠,代入C 的方程得:2222(21)4240k x k x k +-+-=4222164(21)(24)8(32)0k k k k ∆=-+-=+>设1122(,),(,)M x y N x y ,则22121222424,2121k k x x x x k k -+==++………………6分11221212(1),(1),()y k x y k x y y k x x =-=-∴-=-2222221212121212()()(1)()(1)[()4]MN x x y y k x x k x x x x ∴=-+-=+-=++-422222222168(2)2(1)[]2(1)(32)(21)2121k k k k k k k k -=+-+++++………………9分点A 到直线l 的距离为21k d k =+………………10分所以22222(1)(32)1222151MNAk k k S MN d k k ∆++==+,化简得42221114160,(2)(118)0k k k k --=-+=22,2k k ∴=∴=……12分所以所求的直线l 的方程为2(1)y x =-………………13分或解2121212111()()222MNA S y y k x x k x x ∆=-=-=-(下同)2.(本小题满分13分)已知椭圆C :22221(0)x y a b a b +=>>的离心率为12,左、右焦点分别为12,F F ,点G 在椭圆C 上,且021=⋅GF GF ,12G F F ∆的面积为3.(1)求椭圆C 的方程:(2)设椭圆的左、右顶点为A ,B ,过2F 的直线l 与椭圆交于不同的两点M ,N (不同于点A ,B ),探索直线AM ,BN 的交点能否在一条垂直于x 轴的定直线上,若能,求出这条定直线的方程;若不能,请说明理由。
2021年高考数学理试题分类汇编:圆锥曲线(含答案)
2021年高考数学理试题分类汇编:圆锥曲线(含答案)2021年高考数学理试题分类汇编——圆锥曲线一、选择题1.【2021年四川高考】设O为坐标原点,P是以F为焦点的抛物线y=2px(p>0)上任意一点,M是线段PF上的点,且PM=2MF,那么直线OM的斜率的最大值为?答案】C2.【2021年天津高考】双曲线x^2/a^2-y^2/b^2=1(b>0),以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A、B、C、D四点,四边形ABCD的面积为2b,那么双曲线的方程为?答案】D3.【2021年全国I高考】方程x^2/4-y^2/n^2=1表示双曲线,且该双曲线两焦点间的距离为4,那么n的取值范围是?答案】A4.【2021年全国I高考】以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点,|AB|=42,|DE|=25,那么C的焦点到准线的距离为?答案】B5.【2021年全国II高考】圆x+y-2x-8y+13=0的圆心到直线ax+y-1=0的距离为1,那么a=?答案】A6.【2021年全国II高考】圆F_1,F_2是双曲线E: x^2/4-y^2/9=1的左、右焦点,点M在E上,MF_1与x轴垂直,F_1F_2=b/a*sin∠MF_1F_2,那么E的离心率为?答案】A7.【2021年全国III高考】O为坐标原点,F是椭圆C:x^2/a^2+y^2/b^2=1(a>b>0)的左焦点,A、B分别为C的左、右顶点。
P为C上一点,且PF⊥x轴。
过点A的直线l与线段PF交于点M,与y轴交于点E。
假设直线BM经过OE的中点,那么C的离心率为?答案】A8.【2021年浙江高考】椭圆C_1: x^2/4+y^2/m^2=1(m>1)与双曲线C_2: x^2/4-y^2/n^2=1(n>0)的焦点重合,e_1,e_2分别为C_1,C_2的离心率,且e_1>e_2,那么m、n的大小关系是?答案】m>n2y-1由AN·BM = (x-a)(y-b)(x+c)(y+c) = (x+c)(y+c)得证。
专题2 圆锥曲线求解析式(解析版)-2021年高考数学圆锥曲线中必考知识专练
双曲线的虚轴长为16 2 c2 a2 2a ,可得 a 8 ,
当双曲线的焦点在 x 轴上时,双曲线的标准方程为 x2 y2 1 ; 64 64
当双曲线的焦点在 y 轴上时,双曲线的标准方程为 y2 x2 1 . 64 64
综上所述,所求双曲线的标准方程为 x2 y2 1 或 y2 x2 1 ;
B. x2 y2 1 34
C. x2 y2 1 16 9
D. x2 y2 1 9 16
【答案】D 解:由题可知, F1A F2F1 F2 A ,若 (F2F1 F2 A) F1A 0 ,即为 (F2F1 F2 A) F2F1 F2 A 0 ,
2 可得 AF2
【答案】A
由题意可得
2c
4
c2 a2
5 b2
a ,解得 b
6
,因此,椭圆的标准方程为
4
x2 36
y2 16
1.
7.若双曲线 C : mx2 y2 2 的实轴长等于虚轴长的一半,则 m ( )
1
A.
4
1 B.
2
C.4
D.2
【答案】C 解:双曲线 C : mx2
y2
2 化为标准方程是 C :
3
x2 9
y2 3
1;
(2)由双曲线的焦点在
y 轴上,可设双曲线的标准方程为
y2 a2
x2 b2
1a
0, b
0,
由双曲线的定义可得 2a 4
5 ,则 a 2
5
,所以,双曲线的标准为
y2 20
x2 b2
1,
将点 2, 5 的坐标代入双曲线的标准方程得
52
20
22 b2
1 ,解得 b
专题11 圆锥曲线基础检测2(解析版)-2021年高考数学圆锥曲线中必考知识专练
椭圆 E 的焦点在 y 轴上,得 a 4 , b 2 , c a2 b2 2 3 ,故椭圆 E 的离心率 e c 3 . a2
(2)由(1)得椭圆 E 的标准方程为 y2 x2 1,设与直线 MN 平行且与椭圆相切的直线 l 方程为: y 2x m , 16 4
)
9
A.6
B.3
C.1
D.2
【答案】D 因为椭圆 x2 y2 1 ,所以 b2 1,即 b 1,所以椭圆的短轴长为 2b 2 , 9
4.抛物线 x2 1 y 的焦点坐标是( ) 2
A.
0,
1 4
B.
0,
1 8
C.
0,
1 8
D.
0,
1 4
【答案】B 解:由题意,抛物线的焦点在 y 上,开口向下,且 2 p 1 , p 1 . 2 28
.
故 y1 y2 y1 y2 2 4 y1 y2 16 4 16 4 5 .
所以 SAOB
1 2
OF
y1 y2
1 24 2
54
5 .则 AOB 的面积为 4
5.
11.已知双曲线
x2 a2
y2 3
1(a
0) 的离心率为 2,则 a (
)
小姚数学
A.2
B. 6 2
C. 5 2
D.1
(1)这组直线何时与椭圆有公共点? (2)当它们与椭圆相交时,求这些直线被椭圆截得的线段的中点所在的直线方程.
【答案】(1)截距在[ 13, 13] 范围内;(2) 9x 4 y 0 . (1)设平行直线的方程为 y x b ,若直线与椭圆有公共点,则:
将 y x b 代入 x2 y2 1,整理得:13x2 8bx 4b2 36 0 , 49
圆锥曲线高考真题浙江卷(解析版)-2021年高考数学圆锥曲线中必考知识专练
专题21:圆锥曲线高考真题浙江卷(解析版)一、单选题1.渐近线方程为0x y ±=的双曲线的离心率是( )A .2B .1CD .2【答案】C【分析】 本题根据双曲线的渐近线方程可求得a b =,进一步可得离心率.容易题,注重了双曲线基础知识、基本计算能力的考查.【详解】根据渐近线方程为x ±y =0的双曲线,可得a b =,所以c =则该双曲线的离心率为 e c a ==, 故选C .【点睛】理解概念,准确计算,是解答此类问题的基本要求.部分考生易出现理解性错误.2.已知点O (0,0),A (–2,0),B (2,0).设点P 满足|PA |–|PB |=2,且P 为函数y =图像上的点,则|OP |=( )A .2B .5C D【答案】D【分析】根据题意可知,点P 既在双曲线的一支上,又在函数y =的图象上,即可求出点P 的坐标,得到OP 的值.【详解】因为||||24PA PB -=<,所以点P 在以,A B 为焦点,实轴长为2,焦距为4的双曲线的右支上,由2,1c a ==可得,222413b c a =-=-=,即双曲线的右支方程为()22103y x x -=>,而点P还在函数y =的图象上,所以,由()22103y x x y ⎧⎪⎨->==⎪⎩,解得22x y ⎧=⎪⎪⎨⎪=⎪⎩,即OP == 故选:D.【点睛】本题主要考查双曲线的定义的应用,以及二次曲线的位置关系的应用,意在考查学生的数学运算能力,属于基础题.3.椭圆2x 9+2y 4=1的离心率是( ) A.3 B.3 C .23 D .59【答案】B【解析】 椭圆22194x y +=中22222945a b c a b ===-=,,.离心率e c a ==,故选B. 4.双曲线221 3x y -=的焦点坐标是( ) A.(),) B .()2,0-,()2,0C.(0,,(D .()0,2-,()0,2 【答案】B【分析】 根据双曲线方程确定焦点位置,再根据222c a b =+求焦点坐标.【详解】 因为双曲线方程为2213x y -=,所以焦点坐标可设为(,0)c ±, 因为222314,2c a b c =+=+==,所以焦点坐标为(20),选B.【点睛】。
江苏高考中的圆锥曲线(解答题型)
即 4x21+9y21=36,4x22+9y22=36.
故 4x2+9y2=4(x21+λ2x22+2λx1x2)+9(y21+λ2y22+2λy1y2)=
(4x
2 1
+
9y
2 1
)
+
λ2(4x
2 2
+
9y
2 2
)
+
2λ(4x1x2
+
9y1y2)
=
36
+
36λ2
+
2λ(4x1x2+9y1y2).
所以 4x2+9y2=36+36λ2,即9+x29λ2+4+y24λ2=1,
又离心率为 22,即ac= 22,
bc=2, 由ac= 22,
a2=b2+c2,
解得 a2=4,b2=c2=2,
∴所求椭圆的方程为x42+y22=1.
高考专题辅导与测试·数学
创新方案系列丛书
(2)由(1)知 F2(
2,0),∴kMF2=-2
=- 2
2,
∴直线 l 的斜率等于 22,直线 l 的方程为 y= 22x+2.
所以点 P 是椭圆9+x29λ2+4+y24λ2=1 上的点.
设该椭圆的左、右焦点分别为 M,N,则由椭圆的定义 PM
+PN=18 得 18=2 9+9λ2,所以 λ=±2 2,
所以 M(-3 5,0),N(3 5,0).
即存在符合题意的 λ=±2 2,M(-3 5,0),N(3 5,0).
解题反思: 1.变量的选择是点还是直线的斜率。 2.求最值方法-----基本不等式(找和,积是否为定值) 3.体会点在椭圆上的应用。 4.记住一个小结论(点差法推导)
解题反思: 1.构建等式的方法。(线段长相等) 2.构建不等式的方法(判别式) 3.条件的等价应用。 4.设斜率时应注意的问题(分类思想)。
2021年高考数学理试题分类汇编:圆锥曲线(含答案)
2021年高考数学理试题分类汇编圆锥曲线一、选择题1、〔2021年四川高考〕设O 为坐标原点,P 是以F 为焦点的抛物线22(p 0)y px => 上任意一点,M 是线段PF 上的点,且PM =2MF ,那么直线OM 的斜率的最大值为〔A 〔B 〕23〔C 〕2 〔D 〕1 【答案】C2、〔2021年天津高考〕双曲线2224=1x y b -〔b >0〕,以原点为圆心,双曲线的实半轴长为半径长的圆与双曲线的两条渐近线相交于A 、B 、C 、D 四点,四边形的ABCD 的面积为2b ,那么双曲线的方程为〔 〕〔A 〕22443=1y x -〔B 〕22344=1y x -〔C 〕2224=1x y b -〔D 〕2224=11x y - 【答案】D3、〔2021年全国I 高考〕方程x 2m 2+n –y 23m 2–n =1表示双曲线,且该双曲线两焦点间的距离为4,那么n 的取值范围是〔A 〕(–1,3) 〔B 〕(–1,3) 〔C 〕(0,3) 〔D 〕(0,3)【答案】A4、〔2021年全国I 高考〕以抛物线C 的顶点为圆心的圆交C 于A ,B 两点,交C 的准线于D ,E 两点.|AB |=|DE|=C 的焦点到准线的距离为〔A 〕2 〔B 〕4 〔C 〕6 〔D 〕8 【答案】B5、〔2021年全国II 高考〕圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,那么a=〔 〕〔A 〕43- 〔B 〕34- 〔C 〔D 〕2 【答案】A6、〔2021年全国II 高考〕圆12,F F 是双曲线2222:1x y E a b-=的左,右焦点,点M 在E 上,1MF 与x 轴垂直,211sin 3MF F ∠=,那么E 的离心率为〔 〕〔A 〔B 〕32〔C 〔D 〕2【答案】A7、〔2021年全国III 高考〕O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,A ,B 分别为C 的左,右顶点.P为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .假设直线BM 经过OE 的中 点,那么C 的离心率为〔A 〕13〔B 〕12〔C 〕23〔D 〕34【答案】A8、〔2021年浙江高考〕 椭圆C 1:22x m +y 2=1(m >1)与双曲线C 2:22x n–y 2=1(n >0)的焦点重合,e 1,e 2分别为C 1,C 2的离心率,那么A .m >n 且e 1e 2>1B .m >n 且e 1e 2<1C .m <n 且e 1e 2>1D .m <n 且e 1e 2<1 【答案】A二、填空题1、〔2021年北京高考〕双曲线22221x y a b-=〔0a >,0b >〕的渐近线为正方形OABC 的边OA ,OC 所在的直线,点B 为该双曲线的焦点,假设正方形OABC 的边长为2,那么a =_______________. 【答案】22、〔2021年山东高考〕双曲线E :22221x y a b-= 〔a >0,b >0〕,假设矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,那么E 的离心率是_______. 【答案】2【解析】由题意c 2=BC ,所以3c =AB ,于是点),23(c c 在双曲线E 上,代入方程,得1492222=b c -a c , 在由2c b a =+22得E 的离心率为2==ace ,应填2.3、〔2021年上海高考〕平行直线012:,012:21=++=-+y x l y x l ,那么21,l l 的距离_______________【答案】2554、〔2021年浙江高考〕假设抛物线y 2=4x 上的点M 到焦点的距离为10,那么M 到y 轴的距离是_______. 【答案】95、(2021江苏省高考)如图,在平面直角坐标系xOy 中,F 是椭圆22221()x y a b a b+=>>0 的右焦点,直线2b y = 与椭圆交于B ,C两点,且90BFC ∠= ,那么该椭圆的离心率是 ▲ .(第10题)63三、解答题1、〔2021年北京高考〕 椭圆C :22221+=x y a b〔0a b >>〕的离心率为32 ,(,0)A a ,(0,)B b ,(0,0)O ,OAB ∆的面积为1.〔1〕求椭圆C 的方程;〔2〕设P 的椭圆C 上一点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N. 求证:BM AN ⋅为定值. 【解析】⑴由,31122c ab a ==,又222a b c =+, 解得2,1, 3.a b c ===∴椭圆的方程为2214x y +=. ⑵方法一:设椭圆上一点()00,P x y ,那么220014x y +=.直线PA :()0022y y x x =--,令0x =,得0022M y y x -=-. ∴00212y BM x =+- 直线PB :0011y y x x -=+,令0y =,得001N x x y -=-. ∴0021x AN y =+- 0000000000220000000000221122222214448422x y AN BM y x x y x y x y x y x y x y x y x y ⋅=+⋅+--+-+-=⋅--++--+=--+将220014x y +=代入上式得=4AN BM ⋅故AN BM ⋅为定值.方法二:设椭圆 上一点()2cos ,sin P θθ,直线PA:()sin 22cos 2y x θθ=--,令0x =,得sin 1cos M y θθ=-. ∴sin cos 11cos BM θθθ+-=-直线PB :sin 112cos y x θθ-=+,令0y =,得2cos 1sin N x θθ=-. ∴2sin 2cos 21sin AN θθθ+-=-2sin 2cos 2sin cos 11sin 1cos 22sin 2cos 2sin cos 21sin cos sin cos 4AN BM θθθθθθθθθθθθθθ+-+-⋅=⋅----+=--+=故AN BM ⋅为定值.2、〔2021年山东高考〕平面直角坐标系xOy 中,椭圆C :()222210x y a b a b+=>> 的离心率是32,抛物线E :22x y =的焦点F 是C 的一个顶点.〔I 〕求椭圆C 的方程;〔II 〕设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交与不同的两点A ,B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M . 〔i 〕求证:点M 在定直线上;〔ii 〕直线l 与y 轴交于点G ,记PFG △的面积为1S ,PDM △的面积为2S ,求12S S的最大值及取得最大值时点P 的坐标.【解析】(Ⅰ) 由离心率是23,有224=b a , 又抛物线y x 2=2的焦点坐标为)21,0(F ,所以21=b ,于是1=a , 所以椭圆C 的方程为1=4+22y x .(Ⅱ) 〔i 〕设P 点坐标为)0>(),2m m ,P 2m (, 由y x 2=2得x y =′,所以E 在点P 处的切线l 的斜率为m , 因此切线l 的方程为2=2m mx -y ,设),(),,(2211y x B y x A ,),(00y x D ,将2=2m mx -y 代入1=4+22y x ,得0=1+4)4+12322-m x m -x m (.于是23214+14=+m m x x ,232104+12=2+=m m x x x , 又)4+1(2=2=22200m -m m -mx y ,于是 直线OD 的方程为x m-y 41=. 联立方程x m -y 41=与m x =,得M 的坐标为)41M(m,-. 所以点M 在定直线41=y -上.〔ii 〕在切线l 的方程为2=2m mx -y 中,令0=x ,得2m =y 2-,即点G 的坐标为)2m G (0,-2,又)2m P(m,2,)21F(0,, 所以4)1+(=×21=S 21m m GF m ;再由)1)+2(4m -m ,1+4m 2m D(2223,得 )1+4(8)1+2(=1+4+2×41+2×21=S 2222322m m m m m m m 于是有 222221)1+2()1+)(1+4(2=S S m m m . 令1+2=2m t ,得222111+2=)1+)(21(2=S S t -t t t t - 当21=1t时,即2=t 时,21S S 取得最大值49.此时21=2m ,22=m ,所以P 点的坐标为)41,22P(. 所以21S S 的最大值为49,取得最大值时点P 的坐标为)41,22P(.3、〔2021年上海高考〕 有一块正方形菜地EFGH ,EH 所在直线是一条小河,收货的蔬菜可送到F 点或河边运走。
2021年高考数学专题10 圆锥曲线 (解析版)
专题10 圆锥曲线易错点1 混淆“轨迹”与“轨迹方程”如图,已知点0(1)F ,,直线:1l x =-,P 为平面上的动点,过P 作直线l 的垂线,垂足为点Q ,且QP QF FP FQ ⋅=⋅,求动点P 的轨迹.【错解】设点P (x ,y ),则Q (-1,y ),由QP QF FP FQ ⋅=⋅,得(x +1,0)·(2,-y )=(x -1,y )·(-2,y ),化简得y 2=4x .【错因分析】错解中求得的是动点的轨迹方程,而不是轨迹,混淆了“轨迹”与“轨迹方程”的区别. 【试题解析】设点P (x ,y ),则Q (-1,y ),由QP QF FP FQ ⋅=⋅,得(x +1,0)·(2,-y )=(x -1,y )·(-2,y ),化简得y 2=4x . 故动点P 的轨迹为焦点坐标为(1,0)的抛物线.【参考答案】动点P 的轨迹为焦点坐标为(1,0)的抛物线.1.求轨迹方程时,若题设条件中无坐标系,则需要先建立坐标系,建系时,尽量取已知的相互垂直的直线为坐标轴,或利用图形的对称性选轴,或使尽可能多的点落在轴上.求轨迹方程的方法有:(1)直接法:直接法求曲线方程时最关键的就是把几何条件或等量关系翻译为代数方程,要注意翻译的等价性.(2)定义法:求轨迹方程时,若动点与定点、定直线间的等量关系满足圆、椭圆、双曲线、抛物线的定义,则可直接根据定义先确定轨迹类型,再写出其方程.(3)相关点法:动点所满足的条件不易得出或转化为等式,但形成轨迹的动点,()P x y 却随另一动点(),Q x y ''的运动而有规律地运动,而且动点Q 的轨迹方程为给定的或容易求得的,则可先将x ',y '表示成关于x ,y 的式子,再代入Q 的轨迹方程整理化简即得动点P 的轨迹方程.(4)参数法:若动点,()P x y 坐标之间的关系不易直接找到,且无法判断动点,()P x y 的轨迹,也没有明显的相关动点可用,但较易发现(或经分析可发现)这个动点的运动受到另一个变量的制约,即动点,()P x y 中的x ,y 分别随另一变量的变化而变化,我们可称这个变量为参数,建立轨迹的参数方程,这种求轨迹方程的方法叫做参数法.2.求轨迹方程与求轨迹是有区别的,若是求轨迹,则不仅要求出方程,而且还要说明和讨论所求轨迹是什么样的图形,即说出图形的形状、位置等.1.已知定点(1,0)A -及直线:2l x =-,动点P 到直线l 的距离为d ,若||PA d =. (1)求动点P 的轨迹C 方程;(2)设,M N 是C 上位于x 轴上方的两点,B 坐标为(1,0),且AM BN ∥,MN 的延长线与x 轴交于点(3,0)D ,求直线AM 的方程.【答案】(1)2212x y +=;(2)(1)2y x =+.【解析】(1)设(,)P x y ,则由(1,0)A -,知||PA = 又:2l x =-,∴|2|d x =+,2=∴2221(1)(2)2x y x ++=+, ∴2222x y +=,∴点P 的轨迹方程为2212x y +=.(2)设1122(,),(,)M x y N x y ()120,0y y >>,∵(1,0)(1,0),(3,0)A B D -,, ∴B 为AD 中点, ∵//AM BN ,∴1212,322x x y y +==, ∴1223x x =-,又221112x y +=,∴()222223412x y -+=, 又222212x y +=,∴2151,42x x ==-,∵0y >,∴14y =,∴1112AM y k x ==+, ∴直线AM的方程为1)2y x =+. 【名师点睛】本题考查椭圆的轨迹方程,直线与椭圆的位置关系,求轨迹方程用的是直接法,另外还有定义法、相关点法、参数法、交轨法等.易错点2 求轨迹方程时忽略变量的取值范围已知曲线C :y=x 2-2x +2和直线l :y =kx (k ≠0),若C 与l 有两个交点A 和B ,求线段AB 中点的轨迹方程.【错解】依题意,由⎩⎨⎧y =x 2-2x +2,y =kx ,分别消去x 、y 得,(k 2-1)x 2+2x -2=0,① (k 2-1)y 2+2ky -2k 2=0.②设AB 的中点为P (x ,y ),则在①②中分别有12212212121x x x k y y k y k +⎧==⎪⎪-⎨+⎪==⎪-⎩,故线段AB 中点的轨迹方程为220x y x --=.【错因分析】消元过程中,由于两边平方,扩大了变量y 的允许范围,故应对x ,y 加以限制.【试题解析】依题意,由⎩⎨⎧y =x 2-2x +2y =kx,分别消去x 、y 得,(k 2-1)x 2+2x -2=0,① (k 2-1)y 2+2ky -2k 2=0.②设AB 的中点为P (x ,y ),则在①②中分别有⎩⎪⎨⎪⎧x =x 1+x 22=11-k 2, ③y =y 1+y 22=k1-k 2, ④又对②应满足222212221221044(2)(1)0201201k k k k k y y k k y y k ∆⎧-≠⎪=-⨯-⨯->⎪⎪⎨+=>-⎪⎪⎪=>-⎩,解得22<k <1.结合③④,则有x >2,y > 2.所以所求轨迹方程是x 2-y 2-x =0(x >2,y >2). 【参考答案】轨迹方程是x 2-y 2-x =0(x >2,y >2).1.一般地,在直角坐标系中,如果某曲线C (看作点的集合或适合某种条件的点的轨迹)上的点与一个二元方程(,)0f x y =的实数解建立了如下的关系: (1)曲线上点的坐标都是这个方程的解; (2)以这个方程的解为坐标的点都是曲线上的点.那么,这个方程叫做曲线的方程;这条曲线叫做方程的曲线.2.要注意有的轨迹问题包含一定的隐含条件,由曲线和方程的概念可知,在求曲线时一定要注意它的“完备性”和“纯粹性”,即轨迹若是曲线的一部分,应对方程注明x 的取值范围,或同时注明x ,y的取值范围.2.已知圆221:(3)1C x y ++=和圆222:(3)9C x y -+=,动圆M 同时与圆1C 及圆2C 相外切,则动圆圆心M的轨迹方程为A .2218y x -=B .221(1)8y x x -=≤-C .2218x yD .221(1)8y x x -=≥【答案】B【解析】设动圆的圆心M 的坐标为(,)x y ,半径为r , 则由题意可得121,3MC r MC r =+=+,相减可得21122MC MC C C -=<,所以点M 的轨迹是以12,C C 为焦点的双曲线的左支, 由题意可得22,3a c ==,所以b =,故点M 的轨迹方程为221(1)8y x x -=≤-,故选B.【名师点睛】本题主要考查了圆与圆的位置关系,以及双曲线的定义、性质和标准方程的应用,其中解答中根据圆与圆的位置关系,利用双曲线的定义得到动点的轨迹是以12,C C 为焦点的双曲线的左支是解答的关键,着重考查了转化思想,以及推理与计算能力,属于基础题.易错点3 忽略椭圆定义中的限制条件若方程22186x y k k +=--表示椭圆,则实数k 的取值范围为________________.【错解】由8060k k ->⎧⎨->⎩,可得68k <<,所以实数k 的取值范围为(6,8).【错因分析】忽略了椭圆标准方程中a >b >0这一限制条件,当a =b >0时表示的是圆的方程.【试题解析】由806086k k k k ->⎧⎪->⎨⎪-≠-⎩,可得68k <<且7k ≠,所以实数k 的取值范围为(6,7)∪(7,8).【方法点睛】准确理解椭圆的定义,明确椭圆定义中的限制条件,才能减少解题过程中的失误,从而保证解题的正确性.【参考答案】(6,7)∪(7,8).平面上到两定点12,F F 的距离的和为常数(大于两定点之间的距离)的点P 的轨迹是椭圆. 这两个定点叫做椭圆的焦点,两个定点之间的距离叫做椭圆的焦距,记作122F F c =. 定义式:12122(2)PF PF a a F F +=>. 要注意,该常数必须大于两定点之间的距离,才能构成椭圆.3.已知F 1,F 2为两定点,|F 1F 2|=8,动点M 满足|MF 1|+|MF 2|=8,则动点M 的轨迹是A .椭圆B .直线C .圆D .线段【答案】D【解析】虽然动点M 到两个定点F 1,F 2的距离为常数8,但由于这个常数等于|F 1F 2|,故动点M 的轨迹是线段F 1F 2,故选D .平面上到两定点12,F F 的距离的和为常数(大于两定点之间的距离)的点P 的轨迹是椭圆.若忽略了椭圆定义中|F 1F 2|<2a 这一隐含条件,就会错误地得出点M 的轨迹是椭圆.易错点4 忽略对椭圆焦点位置的讨论已知椭圆的标准方程为2221(0)36x ykk+=>,并且焦距为8,则实数k的值为_____________.1.解决已知椭圆的焦点位置求方程中的参数问题,应注意结合焦点位置与椭圆方程形式的对应关系求解.②表示焦点在y 轴上的椭圆⇔0,0m n >>且m n <; ③表示椭圆⇔0,0m n >>且m n ≠.对于形如:Ax 2+By 2=1(其中A >0,B >0,A ≠B )的椭圆的方程,其包含焦点在x 轴上和在y 轴上两种情况,当B >A 时,表示焦点在x 轴上的椭圆;当B <A 时,表示焦点在y 轴上的椭圆. 2.求椭圆的方程有两种方法:(1)定义法.根据椭圆的定义,确定a 2,b 2的值,结合焦点位置可写出椭圆方程. (2)待定系数法.这种方法是求椭圆的方程的常用方法,其一般步骤是:第一步,做判断.根据条件判断椭圆的焦点在x 轴上,还是在y 轴上,还是两个坐标轴都有可能(这时需要分类讨论).第二步,设方程.根据上述判断设方程为22221(0)x y a b a b +=>>或22221(0)y x a b a b+=>>.第三步,找关系.根据已知条件,建立关于,,a b c 的方程组(注意椭圆中固有的等式关系222c a b =-). 第四步,得椭圆方程.解方程组,将解代入所设方程,即为所求.3.用待定系数法求椭圆的方程时,要“先定型,再定量”,不能确定焦点的位置时,需要分焦点在x 轴上和在y 轴上两种情况讨论,也可设椭圆的方程为Ax 2+By 2=1(其中A >0,B >0,A ≠B ).求椭圆的标准方程的方法可以采用待定系数法,此时要注意根据焦点的位置选择椭圆的标准方程;也可以利用椭圆的定义及焦点位置或点的坐标确定椭圆的标准方程.4.关于曲线C :222214x y a a +=-性质的叙述,正确的是A .一定是椭圆B .可能为抛物线C .离心率为定值D .焦点为定点【答案】D【解析】因为曲线方程没有一次项,不可能为抛物线,故B 错误;因为24a -可正也可负,所以曲线可能为椭圆或双曲线.若曲线为椭圆,则()22244c a a =--=,∴2c =,2e a=,离心率不是定值,焦点()2,0,()2,0-,为定点. 若曲线为双曲线,方程为222214x y a a-=-,则()22244c a a =+-=,∴2c =,2e a =,离心率不是定值,焦点()2,0,()2,0-为定点,故选D.【名师点睛】本题考查了圆锥曲线的标准方程和性质,体现了分类讨论的思想.易错点5 忽略椭圆的范围设椭圆的中心是坐标原点,长轴在x 轴上,离心率32e =,已知点3(0,)2P 到椭圆的最远距离为7,求椭圆的标准方程.1.椭圆22221(0)x ya ba b+=>>的范围就是方程中变量x,y的范围,由22221x ya b+=得222211x ya b=-≤,则||x a≤;222211y xb a=-≤,则||y b≤.故椭圆落在直线x=±a,y=±b围成的矩形内,因此用描点法画椭圆的图形时就可以不取“矩形”范围以外的点了.同时,在处理椭圆的一些参数或最值问题时要注意x,y的取值范围.2.设椭圆22221(0)x y a b a b+=>>上任意一点,()P x y ,则当0x =时,||OP 有最小值b ,P 点在短轴端点处;当x a =±时,||OP 有最大值a ,P 点在长轴端点处. 3.(1)解决椭圆x 2a 2+y 2b 2=1(a >b >0)中的范围问题常用的关系有:①-a ≤x ≤a ,-b ≤y ≤b ; ②离心率0<e <1;③一元二次方程有解,则判别式0∆≥.(2)解决与椭圆有关的最值问题常用的方法有以下几种: ①利用定义转化为几何问题处理;②利用三角替代(换元法)转化为三角函数的最值问题处理; ③利用数与形的结合,挖掘数学表达式的几何特征,进而求解;④利用函数最值的研究方法,将其转化为函数的最值问题来处理,此时,应注意椭圆中x 、y 的取值范围,常常是化为闭区间上的二次函数的最值来求解.5.已知椭圆2222:1(0)x y C a b a b +=>>的上顶点为(0,1)B ,且过点2P . (1)求椭圆C 的方程及其离心率;(2)斜率为k 的直线l 与椭圆C 交于,M N 两个不同的点,当直线,OM ON 的斜率之积是不为0的定值时,求此时MON △的面积的最大值.【答案】(1)2214x y +=,2e =;(2)1. 【解析】(1)由题意可得1b =.又2P 在椭圆C 上,所以22212a +=,解得2a =,所以椭圆C 的方程为2214x y +=,所以c C 的离心率2c e a ==.(2)设直线l 的方程为()0y kx m m =+≠.由22,14y kx m x y =+⎧⎪⎨+=⎪⎩,消去y ,得()222418440k x kmx m +++-=, 所以22222(8)4(41)(44)6416160km k m k m ∆=-+-=-+>,设()()1122,,,M x y N x y ,则2121222844,4141km m x x x x k k --+==++. ()()()2212121212121212OM ONkx m kx m k x x km x x my y k k x x x x x x +++++===222222244841414441m kmk km m k k m k --⨯+⨯+++=-+222444m k m -=-, 由题意,OM ON k k 为定值,所以21444k -=-,即214k =,解得12k =±.此时MN===, 点O 到直线y kx m =+的距离|5m d =.11||22MON S MN d m ==△== 显然,当21m =(此时214k =,21m =满足226416160k m ∆=-+>),即1m =±时,S 取得最大值,最大值为1.易错点6 忽略双曲线定义中的限制条件已知F 1(-5,0),F 2(5,0),动点P 满足|PF 1|-|PF 2|=2a ,当a 为3和5时,点P 的轨迹分别为A .双曲线和一条直线B .双曲线和一条射线C .双曲线的一支和一条直线D .双曲线的一支和一条射线在求解与双曲线有关的轨迹问题时,准确理解双曲线的定义,才能正确解题.当||MF 1|-|MF 2||=2a <|F 1F 2|(a >0),即|MF 1|-|MF 2|=±2a ,0<2a <|F 1F 2|时,点M 的轨迹是双曲线,其中取正号时为双曲线的右(上)支,取负号时为双曲线的左(下)支;当||MF 1|-|MF 2||=2a =|F 1F 2|(a >0)时,点M 的轨迹是以点F 1,F 2为端点的两条射线; 当||MF 1|-|MF 2||=2a >|F 1F 2|(a >0)时,点M 的轨迹不存在.6.如图,在ABC △中,已知||AB =A ,B ,C 满足2sin sin 2sin A C B +=,以AB 边所在的直线为x 轴,AB 的垂直平分线为y 轴,建立平面直角坐标系,求顶点C 的轨迹方程.【答案】221(26x y x -=>.【解析】由题意可得(A -,B .因为2sin sin 2sin A C B +=,由正弦定理可得||||||22BC AB AC +=,故|||||12|||AC BC AB AB -=<=, 由双曲线的定义知,点C 的轨迹为双曲线的右支(除去与x 轴的交点).由题意,设所求轨迹方程为22221()x y x a a b-=>,因为a =c =2226b c a =-=,故所求轨迹方程为221(26x y x -=>.【名师点睛】求解与双曲线有关的轨迹问题时要特别注意:(1)双曲线的焦点所在的坐标轴;(2)检验所求的轨迹对应的是双曲线的一支还是两支.易错点7 忽略双曲线中的隐含条件已知M 是双曲线2216436x y -=上一点,F 1,F 2是双曲线的左、右焦点,且1||17MF =,则2MF =_____________.1.在求解双曲线上的点到焦点的距离d 时,一定要注意d c a ≥-这一隐含条件.2.双曲线方程中,a b 的大小关系是不确定的,但必有0,0c a c b >>>>.3.由22221(0,0)x y a b a b-=>>,知x 2a2≥1,所以x ≤-a 或x ≥a ,因此双曲线位于不等式x ≥a 和x ≤-a 所表示的平面区域内,同时,也指明了坐标系内双曲线上点的横坐标的取值范围.7.过双曲线的一个焦点2F 作垂直于实轴的直线,交双曲线于,P Q ,1F 是另一焦点,若1=3PFQ π∠,则双曲线的离心率e 等于 A 1 BC 1D 2+【答案】B【解析】由双曲线的对称性可知,12PF F △是以点2F 为直角顶点,且126PF F π∠=,则122PF PF =,由双曲线的定义可得1222PF PF PF a -==, 在12Rt PF F △中,212122tan 2PF a PF F F F c ∠===c e a∴== B. 【名师点睛】本题考查双曲线的离心率的求解,要充分研究双曲线的几何性质,在遇到焦点时,善于利用双曲线的定义来求解,考查逻辑推理能力和计算能力,属于中等题.易错点8 忽略双曲线的焦点所在位置的讨论已知双曲线的渐近线方程是23y x=±,焦距为226,求双曲线的标准方程. 2b1.求解双曲线的标准方程时,先确定双曲线的类型,也就是确定双曲线的焦点所在的坐标轴是x 轴还是y 轴,从而设出相应的标准方程的形式,然后利用待定系数法求出方程中的22,a b 的值,最后写出双曲线的标准方程.2.在求双曲线的方程时,若不知道焦点的位置,则进行讨论,或可直接设双曲线的方程为221(0)Ax By AB +=<.8.已知双曲线的一条渐近线方程为0x y ±=,且过点()12P ,--,则该双曲线的标准方程为__________.【答案】22133y x -=【解析】根据题意,双曲线的一条渐近线方程为0x y ±=,可设双曲线方程为()220x y λλ-=≠,∵双曲线过点()12P ,--,∴14λ-=,即3λ=-.∴所求双曲线方程为22133y x -=,故答案为22133y x -=.【名师点睛】本题考查双曲线的标准方程的求法,需要学生熟练掌握已知渐近线方程时,如何设出双曲线的标准方程.易错点9 忽略直线与双曲线只有一个公共点的特殊情况若过点(1,1)P 且斜率为k 的直线l 与双曲线2214y x -=只有一个公共点,则k =___________.【方法点睛】解决直线与双曲线的位置关系的题目时,要注意讨论联立直线与双曲线的方程消元后得到的方程是否为一元一次方程,即二次项系数是否为0,因为直线与双曲线有一个公共点包含直线与双曲线的渐21. 直线与双曲线有三种位置关系:(1)无公共点,此时直线有可能为双曲线的渐近线. (2)有一个公共点,分两种情况:①直线是双曲线的切线,特别地,直线过双曲线一个顶点,且垂直于实轴;②直线与双曲线的一条渐近线平行,与双曲线的一支有一个公共点. (3)有两个公共点,可能都在双曲线一支上,也可能两支上各有一点.2.研究直线与双曲线位置关系的一般思路仍然是联立二者的方程,解方程组或者转化为一元二次方程,依据根的判别式和根与系数的关系求解.要注意讨论转化以后的方程的二次项系数,即若二次项系数为0,则直线与双曲线的渐近线平行或重合;若二次项系数不为0,则进一步研究二次方程的根的判别式∆,得到直线与双曲线的交点个数.9.已知直线y kx =与双曲线22416x y -=.当k 为何值时,直线与双曲线: (1)有两个公共点;(2)有一个公共点;(3)没有公共点. 【答案】见解析.【解析】由22416x y y kx -==⎧⎨⎩消去y 得22(4)160k x --= ①,当240k -=,即2k =±时,方程①无解;当240k -≠时,2204(4)(16)64(4)k k ∆=---=-, 当0∆>,即22k -<<时,方程①有两解; 当0∆<,即2k <-或2k >时,方程①无解; 当0∆=,且240k -≠时,这样的k 值不存在.综上所述,(1)当22k -<<时,直线与双曲线有两个公共点; (2)不存在使直线与双曲线有一个公共点的k 值; (3)当2k ≤-或2k ≥时,直线与双曲线没有公共点.【名师点睛】研究直线与双曲线位置关系的一般思路仍然是联立二者的方程,解方程组或者转化为一元二次方程,依据根的判别式和根与系数的关系求解.要注意讨论转化以后的方程的二次项系数,即若二次项系数为0,则直线与双曲线的渐近线平行或重合;若二次项系数不为0,则进一步研究二次方程的根的判别式∆,得到直线与双曲线的交点个数.易错点10 忽略抛物线定义中的限制条件已知点P 到F (4,0)的距离与到直线5x =-的距离相等,求点P 的轨迹方程.【参考答案】2189y x =+.1.抛物线的标准方程是特殊的抛物线方程,对坐标轴的位置有严格的要求.若从题意中无法判断方程是否为标准方程,可按求曲线方程的一般步骤求解.2.抛物线定义中要求直线l 不经过点F ,若l 经过F 点,则轨迹为过定点F 且垂直于定直线l 的一条直线.因此当动点P 到定点F 的距离与它到定直线l 的距离相等时,不能盲目套用抛物线定义.10.已知圆C 的方程22100x y x +-=,求与y 轴相切且与圆C 外切的动圆圆心P 的轨迹方程.【答案】220(0)y x x =>或)00(y x =<.【解析】设P 点坐标为(x ,y ),动圆的半径为R ,∵动圆P 与y 轴相切,∴R x =,∵动圆与定圆C :2252)5(x y -+=外切,∴5PC R =+,∴5PC x =+.当点P 在y 轴右侧,即x >0时,5PC x =+,点P 的轨迹是以(5,0)为焦点的抛物线,则圆心P 的轨迹方程为220(0)y x x =>;当点P 在y 轴左侧,即x <0时, 5PC x =-+,此时点P 的轨迹是x 轴的负半轴,即方程)00(y x =<.故点P 的轨迹方程为220(0)y x x =>或)00(y x =<.【名师点睛】抛物线的轨迹问题,既可以用轨迹法直接求解,也可以转化为利用抛物线的定义求解,利用抛物线的定义求解的关键是找到条件满足动点到定点的距离等于到定直线的距离,需要依据条件进行转化.易错点11 忽略抛物线的焦点所在位置的讨论设抛物线y 2=mx 的准线与直线x =1的距离为3,求抛物线的方程.【错解】易知准线方程为x =-m4,因为准线与直线x =1的距离为3, 所以准线方程为x =-2, 所以-m4=-2,解得m =8,故抛物线方程为y 2=8x .【错因分析】题目条件中未给出m 的符号,当m >0或m <0时,抛物线的准线是不同的,错解中考虑问题欠周到.【试题解析】当m >0时,准线方程为x =-m4,由条件知1-(-m4)=3,所以m =8.此时抛物线方程为y 2=8x ; 当m <0时,准线方程为x =-m4,由条件知-m4-1=3,所以m =-16,此时抛物线方程为y 2=-16x .所以所求抛物线方程为y 2=8x 或y 2=-16x . 【参考答案】y 2=8x 或y 2=-16x .1.抛物线的四种标准方程与对应图形如下表所示:图 形标准方程22(0)y px p => 22(0)y px p =-> 22(0)x py p => 22(0)x py p =->焦点坐标(,0)2p (,0)2p -(0,)2p(0,)2p -准线方程2p x =-2p x =2p y =-2p y =注:抛物线标准方程中参数p 的几何意义是:抛物线的焦点到准线的距离,所以p 的值永远大于0. 2.求抛物线标准方程的常用方法是待定系数法,其关键是判断焦点的位置、开口方向,在方程的类型已经确定的前提下,由于标准方程只有一个参数p ,只需一个条件就可以确定抛物线的标准方程.用待定系数法求抛物线标准方程的步骤:若无法确定抛物线的位置,则需分类讨论.特别地,已知抛物线上一点的坐标,一般有两种标准方程.11.顶点在原点,且过点(1,1)-的抛物线的标准方程是A .2y x =-B .2x y =C .2y x =-或2x y =D .2y x =或2x y =-【答案】C【解析】当焦点在x 轴上时,设方程为2y ax =,将(1,1)-代入得1a =-,2y x ∴=-;当焦点在y 轴上时,设方程为2x ay =,将(1,1)-代入得1a =,2x y ∴=.故选C .本题若只考虑焦点在x 轴的负半轴上的情况,而忽略了焦点也可能在y 轴的正半轴上的情况,则会出现漏解.易错点12 忽略直线与抛物线有一个公共点的特殊情况求过定点(11)P -,,且与抛物线22y x =只有一个公共点的直线l 的方程.直线l y kx b =+:与抛物线22(0)y px p =>公共点的个数等价于方程组22y x p bxy k ⎧⎨==+⎩的解的个数.(1)若0k ≠,则当0∆>时,直线和抛物线相交,有两个公共点;当0∆=时,直线和抛物线相切,有一个公共点;当0∆<时,直线和抛物线相离,无公共点.(2)若0k =,则直线y b =与抛物线22(0)y px p =>相交,有一个公共点.特别地,当直线l 的斜率不存在时,设x m =,则当0m >时,直线l 与抛物线相交,有两个公共点;当0m =时,直线l 与抛物线相切,有一个公共点;当0m <时,直线l 与抛物线相离,无公共点.12.“直线与抛物线相切”是“直线与抛物线只有一个公共点”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】A【解析】“直线与抛物线相切”可得“直线与抛物线只有一个公共点”,“直线与抛物线只有一个公共点”时,直线可能与对称轴平行,此时不相切,故“直线与抛物线相切”是“直线与抛物线只有一个公共点”的充分不必要条件.故选A .本题易忽略直线平行于抛物线的对称轴时,直线与抛物线也只有一个交点,而漏掉k =0.一、曲线与方程 1.求曲线方程的步骤求曲线的方程,一般有下面几个步骤:(1)建立适当的坐标系,用有序实数对(x ,y )表示曲线上任意一点M 的坐标; (2)写出适合条件p 的点M 的集合{|()}P M p M =; (3)用坐标表示条件p (M ),列出方程(,)0f x y =; (4)化方程(,)0f x y =为最简形式;(5)说明以化简后的方程的解为坐标的点都在曲线上.一般地,化简前后方程的解集是相同的,步骤(5)可以省略不写.若遇到某些点虽适合方程,但不在曲线上时,可通过限制方程中x ,y 的取值范围予以剔除.另外,也可以根据情况省略步骤(2),直接列出曲线方程. 2.两曲线的交点(1)由曲线方程的定义可知,两条曲线交点的坐标应该是两个曲线方程的公共解,即两个曲线方程组成的方程组的实数解;反过来,方程组有几组解,两条曲线就有几个交点;方程组无解,两条曲线就没有交点.(2)两条曲线有交点的充要条件是它们的方程所组成的方程组有实数解.可见,求曲线的交点问题,就是求由它们的方程所组成的方程组的实数解问题.二、椭圆 1.椭圆的定义平面上到两定点12,F F 的距离的和为常数(大于两定点之间的距离)的点P 的轨迹是椭圆. 这两个定点叫做椭圆的焦点,两个定点之间的距离叫做椭圆的焦距,记作122F F c =. 定义式:12122(2)PF PF a a F F +=>. 要注意,该常数必须大于两定点之间的距离,才能构成椭圆. 2.椭圆的标准方程焦点在x 轴上,22221(0)x y a b a b +=>>;焦点在y 轴上,22221(0)y x a b a b+=>>.说明:要注意根据焦点的位置选择椭圆方程的标准形式,知道,,a b c 之间的大小关系和等量关系:222,0,0a c b a b a c -=>>>>.3.椭圆的几何性质标准方程22221x y a b +=(a >b >0) 22221y x a b +=(a >b >0) 图形范围 a x a -≤≤,b y b -≤≤ b x b -≤≤,a y a -≤≤对称性 对称轴:x 轴、y 轴;对称中心:原点焦点 左焦点F 1 (-c ,0),右焦点F 2 (c ,0)下焦点F 1 (0,-c ),上焦点F 2 (0,c )顶点1212(,0),(,0),(0,),(0,)A a A a B b B b -- 1212(0,),(0,),(,0),(,0)A a A a B b B b --三、双曲线 1. 双曲线的定义(1)定义:平面内与两个定点F 1,F 2的距离的差的绝对值等于常数(小于|F 1F 2|且大于零)的点的轨迹叫做双曲线.这两个定点叫做双曲线的焦点,两个焦点间的距离叫做双曲线的焦距.(2)符号语言:1212202,MF MF a a F F =<-<. (3)当122MF MF a -=时,曲线仅表示焦点2F 所对应的双曲线的一支; 当122MF MF a -=-时,曲线仅表示焦点1F 所对应的双曲线的一支;当12||2a F F =时,轨迹为分别以F 1,F 2为端点的两条射线; 当12||2a F F >时,动点轨迹不存在. 2.双曲线的标准方程(1)焦点在x 轴上的双曲线的标准方程为22221x y a b-=(a >0,b >0),焦点分别为F 1(-c ,0),F 2(c ,0),焦距为2c ,且222c a b =+.(2)焦点在y 轴上的双曲线的标准方程为22221y x a b-=(a >0,b >0),焦点分别为F 1(0,-c ),F 2(0,c ),焦距为2c ,且222c a b =+. 3.双曲线的几何性质标准方程22221x y a b -=(a >0,b >0) 22221y x a b -=(a >0,b >0) 图形范围 ||x a ≥,y ∈R ||y a ≥,x ∈R对称性 对称轴:x 轴、y 轴;对称中心:原点焦点 左焦点F 1(-c ,0),右焦点F 2(c ,0)下焦点F 1(0,-c ),上焦点F 2(0,c )顶点12(,0),(,0)A a A a - 12(0,),(0,)A a A a -轴线段A 1A 2是双曲线的实轴,线段B 1B 2是双曲线的虚轴;实轴长|A 1A 2|=2a ,虚轴长|B 1B 2|=2b渐近线 b y x a=±a y x b=±离心率e22c ce a a==(1)e >在解决双曲线中与焦点三角形有关的问题时,首先要注意定义中的条件12||||||2PF PF a -=的应用;其次是要利用余弦定理、勾股定理等知识进行运算,在运算中要注意整体思想和一些变形技巧的应用. 4.等轴双曲线四、抛物线 1.抛物线的定义平面内与一个定点F 和一条定直线l (l 不经过点F ) 距离相等的点的轨迹叫做抛物线.点F 叫做抛物线的焦点,直线l 叫做抛物线的准线.抛物线关于过焦点F 与准线垂直的直线对称,这条直线叫抛物线的对称轴,简称抛物线的轴.注意:直线l 不经过点F ,若l 经过F 点,则轨迹为过定点F 且垂直于定直线l 的一条直线. 2.抛物线的标准方程(1)顶点在坐标原点,焦点在x 轴正半轴上的抛物线的标准方程为22(0)y px p =>;(2)顶点在坐标原点,焦点在x 轴负半轴上的抛物线的标准方程为22(0)y px p =->;(3)顶点在坐标原点,焦点在y 轴正半轴上的抛物线的标准方程为22(0)x py p =>;(4)顶点在坐标原点,焦点在y 轴负半轴上的抛物线的标准方程为22(0)x py p =->.注意:抛物线标准方程中参数p 的几何意义是抛物线的焦点到准线的距离,所以p 的值永远大于0,当抛物线标准方程中一次项的系数为负值时,不要出现p <0的错误. 3.抛物线的几何性质标准方程22(0)y px p => 22(0)y px p =-> 22(0)x py p => 22(0)x py p =->图 形几 何 性质范 围 0,x y ≥∈R0,x y ≤∈R0,y x ≥∈R0,y x ≤∈R对称性 关于x 轴对称关于x 轴对称关于y 轴对称关于y 轴对称焦点(,0)2p F (,0)2p F -(0,)2p F(0,)2p F -准线方程 2p x =-2p x =2p y =-2p y =顶 点 坐标原点(0,0)离心率1e =4.抛物线的焦半径抛物线上任意一点00(),P x y 与抛物线焦点F 的连线段,叫做抛物线的焦半径. 根据抛物线的定义可得焦半径公式如下表:抛物线方程22(0)y px p => 22(0)y px p =-> 22(0)x py p => 22(0)x py p =->。
专题19 圆锥曲线全国卷高考真题综合1(解析版)-2021年高考数学圆锥曲线中必考知识专练
专题19:圆锥曲线全国卷高考真题综合1(解析版)一、单选题1,2020年全国统一高考数学试卷(理科)(新课标Ⅰ)已知A 为抛物线C :y 2=2px (p >0)上一点,点A 到C 的焦点的距离为12,到y 轴的距离为9,则p =( ) A .2 B .3 C .6 D .9【答案】C 【分析】利用抛物线的定义建立方程即可得到答案. 【详解】设抛物线的焦点为F ,由抛物线的定义知||122A p AF x =+=,即1292p=+,解得6p .故选:C. 【点晴】本题主要考查利用抛物线的定义计算焦半径,考查学生转化与化归思想,是一道容易题. 2,2020年全国统一高考数学试卷(理科)(新课标Ⅰ)已知⊙M :222220x y x y +---=,直线l :220x y ++=,P 为l 上的动点,过点P 作⊙M 的切线,PA PB ,切点为,A B ,当||||PM AB ⋅最小时,直线AB 的方程为( ) A .210x y --= B .210x y +-= C .210x y -+= D .210x y ++=【答案】D 【分析】由题意可判断直线与圆相离,根据圆的知识可知,四点,,,A P B M 共圆,且AB MP ⊥,根据 44PAMPM AB SPA ⋅==可知,当直线MP l ⊥时,PM AB ⋅最小,求出以 MP为直径的圆的方程,根据圆系的知识即可求出直线AB 的方程. 【详解】圆的方程可化为()()22114x y -+-=,点 M 到直线l 的距离为2d ==>,所以直线 l 与圆相离.依圆的知识可知,四点,,,A P B M 四点共圆,且AB MP ⊥,所以14442PAMPM AB SPA AM PA ⋅==⨯⨯⨯=,而PA =,当直线MP l ⊥时,min MP , min 1PA =,此时PM AB ⋅最小.∴()1:112MP y x -=-即 1122y x =+,由1122220y x x y ⎧=+⎪⎨⎪++=⎩解得,10x y =-⎧⎨=⎩. 所以以MP 为直径的圆的方程为()()()1110x x y y -++-=,即 2210x y y +--=, 两圆的方程相减可得:210x y ++=,即为直线AB 的方程. 故选:D. 【点睛】本题主要考查直线与圆,圆与圆的位置关系的应用,以及圆的几何性质的应用,意在考查学生的转化能力和数学运算能力,属于中档题.3,2020年全国统一高考数学试卷(文科)(新课标Ⅱ)若过点(2,1)的圆与两坐标轴都相切,则圆心到直线230x y --=的距离为( )ABC.5D.5【答案】B 【分析】由题意可知圆心在第一象限,设圆心的坐标为(),,0a a a >,可得圆的半径为a ,写出圆的标准方程,利用点()2,1在圆上,求得实数a 的值,利用点到直线的距离公式可求出圆心到直线230x y --=的距离. 【详解】由于圆上的点()2,1在第一象限,若圆心不在第一象限,则圆与至少与一条坐标轴相交,不合乎题意,所以圆心必在第一象限, 设圆心的坐标为(),a a ,则圆的半径为a ,圆的标准方程为()()222x a y a a -+-=.由题意可得()()22221a a a -+-=, 可得2650a a -+=,解得1a =或5a =, 所以圆心的坐标为()1,1或()5,5,圆心到直线的距离均为121132555d ⨯--==; 圆心到直线的距离均为225532555d ⨯--== 圆心到直线230x y --=的距离均为2255d -==; 所以,圆心到直线230x y --=25. 故选:B. 【点睛】本题考查圆心到直线距离的计算,求出圆的方程是解题的关键,考查计算能力,属于中等题. 4,2020年全国统一高考数学试卷(文科)(新课标Ⅱ)设O 为坐标原点,直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于,D E 两点,若ODE 的面积为8,则C 的焦距的最小值为( )A .4B .8C .16D .32【答案】B 【分析】因为2222:1(0,0)x y C a b a b -=>>,可得双曲线的渐近线方程是b y x a=±,与直线x a =联立方程求得D ,E 两点坐标,即可求得||ED ,根据ODE 的面积为8,可得ab 值,根据2222c a b =+. 【详解】2222:1(0,0)x y C a b a b-=>> ∴双曲线的渐近线方程是by x a=±直线x a =与双曲线2222:1(0,0)x y C a b a b-=>>的两条渐近线分别交于D ,E 两点不妨设D 为在第一象限,E 在第四象限联立x ab y x a =⎧⎪⎨=⎪⎩,解得x a y b =⎧⎨=⎩ 故(,)D a b联立x ab y x a =⎧⎪⎨=-⎪⎩,解得x a y b =⎧⎨=-⎩ 故(,)E a b -∴||2ED b =∴ODE 面积为:1282ODE S a b ab =⨯==△ 双曲线2222:1(0,0)x y C a b a b-=>>∴其焦距为28c =≥==当且仅当a b ==∴C 的焦距的最小值:8故选:B. 【点睛】本题主要考查了求双曲线焦距的最值问题,解题关键是掌握双曲线渐近线的定义和均值不等式求最值方法,在使用均值不等式求最值时,要检验等号是否成立,考查了分析能力和计算能力,属于中档题.5,2020年全国统一高考数学试卷(理科)(新课标Ⅲ) 设O 为坐标原点,直线2x =与抛物线C :22(0)y px p =>交于D ,E 两点,若OD OE ⊥,则C 的焦点坐标为( ) A .1,04⎛⎫⎪⎝⎭B .1,02⎛⎫ ⎪⎝⎭C .(1,0)D .(2,0)【答案】B【分析】根据题中所给的条件OD OE ⊥,结合抛物线的对称性,可知4DOx EOx π∠=∠=,从而可以确定出点D 的坐标,代入方程求得p 的值,进而求得其焦点坐标,得到结果. 【详解】因为直线2x =与抛物线22(0)y px p =>交于,E D 两点,且OD OE ⊥, 根据抛物线的对称性可以确定4DOx EOx π∠=∠=,所以()2,2D ,代入抛物线方程44p =,求得1p =,所以其焦点坐标为1(,0)2, 故选:B. 【点睛】该题考查的是有关圆锥曲线的问题,涉及到的知识点有直线与抛物线的交点,抛物线的对称性,点在抛物线上的条件,抛物线的焦点坐标,属于简单题目. 6,2020年全国统一高考数学试卷(理科)(新课标Ⅲ)设双曲线C :22221x y a b-=(a >0,b >0)的左、右焦点分别为F 1,F 2P 是C 上一点,且F 1P ⊥F 2P .若△PF 1F 2的面积为4,则a =( ) A .1 B .2C .4D .8【答案】A 【分析】根据双曲线的定义,三角形面积公式,勾股定理,结合离心率公式,即可得出答案. 【详解】5ca =,c ∴=,根据双曲线的定义可得122PF PF a -=, 12121||42PF F PF F S P =⋅=△,即12||8PF PF ⋅=, 12F P F P ⊥,()22212||2PF PF c ∴+=,()22121224PF PF PF PF c ∴-+⋅=,即22540a a -+=,解得1a =,故选:A. 【点睛】本题主要考查了双曲线的性质以及定义的应用,涉及了勾股定理,三角形面积公式的应用,属于中档题.7,2018年全国普通高等学校招生统一考试理科数学(新课标I 卷) 设抛物线C :y 2=4x 的焦点为F ,过点(–2,0)且斜率为23的直线与C 交于M ,N 两点,则FM FN ⋅= A .5 B .6C .7D .8【答案】D 【分析】首先根据题中的条件,利用点斜式写出直线的方程,涉及到直线与抛物线相交,联立方程组,消元化简,求得两点(1,2),(4,4)M N ,再利用所给的抛物线的方程,写出其焦点坐标,之后应用向量坐标公式,求得(0,2),(3,4)FM FN ==,最后应用向量数量积坐标公式求得结果. 【详解】根据题意,过点(–2,0)且斜率为23的直线方程为2(2)3y x =+, 与抛物线方程联立22(2)34y x y x⎧=+⎪⎨⎪=⎩,消元整理得:y y -+=2680, 解得(1,2),(4,4)M N ,又(1,0)F , 所以(0,2),(3,4)FM FN ==,从而可以求得03248FM FN ⋅=⨯+⨯=,故选D. 【点睛】该题考查的是有关直线与抛物线相交求有关交点坐标所满足的条件的问题,在求解的过程中,首先需要根据题意确定直线的方程,之后需要联立方程组,消元化简求解,从而确定出(1,2),(4,4)M N ,之后借助于抛物线的方程求得(1,0)F ,最后一步应用向量坐标公式求得向量的坐标,之后应用向量数量积坐标公式求得结果,也可以不求点M 、N 的坐标,应用韦达定理得到结果.8,2018年全国普通高等学校招生统一考试理科数学(新课标I 卷)已知双曲线C :2213x y -=,O 为坐标原点,F 为C 的右焦点,过F 的直线与C 的两条渐近线的交点分别为M 、N .若OMN 为直角三角形,则|MN |=A .32B .3C .D .4【答案】B 【详解】分析:首先根据双曲线的方程求得其渐近线的斜率,并求得其右焦点的坐标,从而得到30FON ︒∠=,根据直角三角形的条件,可以确定直线MN 的倾斜角为60︒或120︒,根据相关图形的对称性,得知两种情况求得的结果是相等的,从而设其倾斜角为60︒,利用点斜式写出直线的方程,之后分别与两条渐近线方程联立,求得3(,22M N -,利用两点间距离公式求得MN 的值.详解:根据题意,可知其渐近线的斜率为3±,且右焦点为(2,0)F , 从而得到30FON ︒∠=,所以直线MN 的倾斜角为60︒或120︒, 根据双曲线的对称性,设其倾斜角为60︒,可以得出直线MN 的方程为2)y x =-,分别与两条渐近线3y x =和3y x =-联立,求得3(,)22M N -,所以3MN ==,故选B. 点睛:该题考查的是有关线段长度的问题,在解题的过程中,需要先确定哪两个点之间的距离,再分析点是怎么来的,从而得到是直线的交点,这样需要先求直线的方程,利用双曲线的方程,可以确定其渐近线方程,利用直角三角形的条件得到直线MN 的斜率,结合过右焦点的条件,利用点斜式方程写出直线的方程,之后联立求得对应点的坐标,之后应用两点间距离公式求得结果.9,2018年全国普通高等学校招生统一考试理数(全国卷II )双曲线22221(0,0)x y a b a b-=>>A.y = B.y =C.2y x =±D.2y x =±【答案】A 【解析】分析:根据离心率得a,c 关系,进而得a,b 关系,再根据双曲线方程求渐近线方程,得结果.详解:2222221312,c b c a b e e a a a a-==∴==-=-=∴= 因为渐近线方程为by x a=±,所以渐近线方程为y =,选A. 点睛:已知双曲线方程22221(,0)x y a b a b-=>求渐近线方程:22220x y by x a b a -=⇒=±.10,2018年全国普通高等学校招生统一考试理数(全国卷II )已知1F ,2F 是椭圆22221(0)x y C a ba b+=>>:的左,右焦点,A 是C 的左顶点,点P 在过A12PF F △为等腰三角形,12120F F P ∠=︒,则C 的离心率为 A .23B .12C .13D .14【答案】D 【详解】分析:先根据条件得PF 2=2c,再利用正弦定理得a,c 关系,即得离心率. 详解:因为12PF F △为等腰三角形,12120F F P ∠=︒,所以PF 2=F 1F 2=2c, 由AP222tan sin cos PAF PAF PAF ∠=∴∠=∠=, 由正弦定理得2222sin sin PF PAF AF APF ∠=∠,所以22214,54sin()3c a c e a c PAF =∴==+-∠,故选D. 点睛:解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等. 11,2018年全国卷Ⅲ理数高考试题直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆()2222x y -+=上,则ABP △面积的取值范围是A .[]26,B .[]48,C.D.⎡⎣【答案】A 【解析】分析:先求出A ,B 两点坐标得到AB ,再计算圆心到直线距离,得到点P 到直线距离范围,由面积公式计算即可详解: 直线x y 20++=分别与x 轴,y 轴交于A ,B 两点()()A 2,0,B 0,2∴--,则AB =点P 在圆22x 22y -+=()上 ∴圆心为(2,0),则圆心到直线距离1d ==故点P 到直线x y 20++=的距离2d的范围为则[]2212,62ABPSAB d ==∈ 故答案选A.点睛:本题主要考查直线与圆,考查了点到直线的距离公式,三角形的面积公式,属于中档题.12,2018年全国卷Ⅲ理数高考试题设1F ,2F 是双曲线2222:1x y C a b-=()的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若16PF OP =,则C 的离心率为A 5B 3C .2D 2【答案】B 【详解】分析:由双曲线性质得到2PF b =,PO a =然后在2Rt PO F 和在12Rt PF F △中利用余弦定理可得.详解:由题可知22,PF b OF c ==PO a ∴=在2Rt PO F 中,222cos P O PF b F OF c∠==在12PF F △中,22221212212cos P O 2PF F F PF b F PF F F c+-∠==)2222246322b c abc a b cc+-∴=⇒=⋅ e 3∴=故选B .点睛:本题主要考查双曲线的相关知识,考查了双曲线的离心率和余弦定理的应用,属于中档题. 二、填空题1,2015年全国普通高等学校招生统一考试文科数学(新课标Ⅱ) 已知双曲线过点3),且渐近线方程为12y x =±,则该双曲线的标准方程为____________________.【答案】2214x y -=【详解】依题意,设所求的双曲线的方程为224x y λ-=. 点(4,3)M 为该双曲线上的点,16124λ∴=-=.∴该双曲线的方程为:2244x y -=,即2214x y -=.故本题正确答案是2214x y -=.2,2019年全国统一高考数学试卷(文科)(新课标Ⅲ)设12F F ,为椭圆22:+13620x y C =的两个焦点,M 为C 上一点且在第一象限.若12MF F △为等腰三角形,则M 的坐标为___________. 【答案】()3,15 【分析】根据椭圆的定义分别求出12MF MF 、,设出M 的坐标,结合三角形面积可求出M 的坐标. 【详解】由已知可得2222236,20,16,4a b c a b c ==∴=-=∴=,11228MF F F c ∴===.∴24MF =.设点M 的坐标为()()0000,0,0x y x y >>,则121200142MF F S F F y y =⋅⋅=△, 又12220148241544152MF F S y =⨯-=∴=△015y = 2201513620x ∴+=,解得03x =(03x =-舍去), M ∴的坐标为(15.【点睛】本题考查椭圆标准方程及其简单性质,考查数形结合思想、转化与化归的能力,很好的落实了直观想象、逻辑推理等数学素养.3,2020年全国统一高考数学试卷(理科)(新课标Ⅰ)已知F 为双曲线2222:1(0,0)x y C a b a b-=>>的右焦点,A 为C 的右顶点,B 为C 上的点,且BF 垂直于x 轴.若AB 的斜率为3,则C 的离心率为______________. 【答案】2 【分析】根据双曲线的几何性质可知,2b BF a=,AF c a =-,即可根据斜率列出等式求解即可.【详解】联立22222221x cx y a b a b c=⎧⎪⎪-=⎨⎪⎪=+⎩,解得2x c b y a =⎧⎪⎨=±⎪⎩,所以2bBF a =.依题可得,3BF AF =,AF c a =-,即()2223b c a a c a a c a -==--,变形得3c a a +=,2c a =, 因此,双曲线C 的离心率为2. 故答案为:2. 【点睛】本题主要考查双曲线的离心率的求法,以及双曲线的几何性质的应用,属于基础题. 4,2018年全国卷Ⅲ理数高考试题已知点()11M ,-和抛物线24C y x =:,过C 的焦点且斜率为k 的直线与C 交于A ,B 两点.若90AMB ∠=︒,则k =________. 【答案】2 【分析】利用点差法得到AB 的斜率,结合抛物线定义可得结果. 【详解】详解:设()()1122A ,,B ,x y x y 则2112224{4y x y x ==所以22121244y y x x -=-所以1212124k y y x x y y -==-+取AB 中点()00M'x y ,,分别过点A,B 作准线x 1=-的垂线,垂足分别为A ,B'' 因为AMB 90∠︒=,()()'111MM '222AB AF BF AA BB ∴==+=+', 因为M’为AB 中点, 所以MM’平行于x 轴 因为M(-1,1)所以01y =,则122y y +=即k 2= 故答案为2. 【点睛】本题主要考查直线与抛物线的位置关系,考查了抛物线的性质,设()()1122A ,,B ,x y x y ,利用点差法得到1212124k y y x x y y -==-+,取AB 中点()00M'x y ,, 分别过点A,B 作准线x 1=-的垂线,垂足分别为A ,B'',由抛物线的性质得到()'1MM '2AA BB '=+,进而得到斜率. 三、解答题1,2019年全国统一高考数学试卷(理科)(新课标Ⅲ)已知曲线C :y =22x ,D 为直线y =12-上的动点,过D 作C 的两条切线,切点分别为A ,B .(1)证明:直线AB 过定点:(2)若以E (0,52)为圆心的圆与直线AB 相切,且切点为线段AB 的中点,求四边形ADBE 的面积.【答案】(1)见详解;(2) 3或. 【分析】(1)可设11(,)A x y ,22(,)B x y ,1(,)2D t -然后求出A ,B 两点处的切线方程,比如AD :1111()2y x x t +=-,又因为BD 也有类似的形式,从而求出带参数直线AB 方程,最后求出它所过的定点.(2)由(1)得带参数的直线AB 方程和抛物线方程联立,再通过M 为线段AB 的中点,EM AB ⊥得出t 的值,从而求出M 坐标和EM 的值,12,d d 分别为点,D E 到直线AB 的距离,则12d d ==,结合弦长公式和韦达定理代入求解即可.【详解】(1)证明:设1(,)2D t -,11(,)A x y ,则21112y x =. 又因为212y x =,所以y'x =.则切线DA 的斜率为1x , 故1111()2y x x t +=-,整理得112210tx y -+=. 设22(,)B x y ,同理得222210tx y -+=.11(,)A x y ,22(,)B x y 都满足直线方程2210tx y -+=.于是直线2210tx y -+=过点,A B ,而两个不同的点确定一条直线,所以直线AB 方程为2210tx y -+=.即2(21)0tx y +-+=,当20,210x y =-+=时等式恒成立.所以直线AB 恒过定点1(0,)2. (2)由(1)得直线AB 的方程为12y tx =+. 由2122y tx x y ⎧=+⎪⎪⎨⎪=⎪⎩,可得2210x tx --=, 于是2121212122,1,()121x x t x x y y t x x t +==-+=++=+212|||2(1)AB x x t =-==+.设12,d d 分别为点,D E 到直线AB 的距离,则12d d ==因此,四边形ADBE 的面积()(2121||32S AB d d t =+=+. 设M 为线段AB 的中点,则21,2M t t ⎛⎫+⎪⎝⎭, 由于EM AB ⊥,而()2,2EM t t =-,AB 与向量(1,)t 平行,所以()220t t t +-=,解得0t =或1t =±.当0t =时,3S =;当1t =±时S =因此,四边形ADBE 的面积为3或【点睛】此题第一问是圆锥曲线中的定点问题和第二问是求面积类型,属于常规题型,按部就班的求解就可以.思路较为清晰,但计算量不小.2.2019年全国统一高考数学试卷(理科)(新课标Ⅰ) 已知抛物线C :y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P .(1)若|AF |+|BF |=4,求l 的方程; (2)若3AP PB =,求|AB |.【答案】(1)12870x y --=;(2. 【分析】(1)设直线l :32y x m =+,()11,A x y ,()22,B x y ;根据抛物线焦半径公式可得1252x x +=;联立直线方程与抛物线方程,利用韦达定理可构造关于m 的方程,解方程求得结果;(2)设直线l :23x y t =+;联立直线方程与抛物线方程,得到韦达定理的形式;利用3AP PB =可得123y y =-,结合韦达定理可求得12y y ;根据弦长公式可求得结果. 【详解】(1)设直线l 方程为:32y x m =+,()11,A x y ,()22,B x y由抛物线焦半径公式可知:12342AF BF x x +=++= 1252x x ∴+= 联立2323y x m y x ⎧=+⎪⎨⎪=⎩得:()229121240x m x m +-+= 则()2212121440m m ∆=--> 12m ∴<121212592m x x -∴+=-=,解得:78m =-∴直线l 的方程为:3728y x =-,即:12870x y --= (2)设(),0P t ,则可设直线l 方程为:23x y t =+联立2233x y t y x⎧=+⎪⎨⎪=⎩得:2230y y t --= 则4120t ∆=+> 13t ∴>-122y y ∴+=,123y y t =-3AP PB = 123y y ∴=- 21y ∴=-,13y = 123y y ∴=-则AB ===【点睛】本题考查抛物线的几何性质、直线与抛物线的综合应用问题,涉及到平面向量、弦长公式的应用.关键是能够通过直线与抛物线方程的联立,通过韦达定理构造等量关系. 3.2014年全国普通高等学校招生统一考试理科数学(新课标Ⅰ)已知点A (0,-2),椭圆E :22221x y a b += (a >b>0)的离心率为2,F 是椭圆E 的右焦点,直线AF 的斜率为3,O 为坐标原点. (1)求E 的方程;(2)设过点A 的动直线l 与E 相交于P ,Q 两点.当△OPQ 的面积最大时,求l 的方程.【答案】(1)2214x y += (2)2y x =-【解析】试题分析:设出F ,由直线AFc ,结合离心率求得a ,再由隐含条件求得b ,即可求椭圆方程;(2)点l x ⊥轴时,不合题意;当直线l 斜率存在时,设直线:2l y kx =-,联立直线方程和椭圆方程,由判别式大于零求得k 的范围,再由弦长公式求得PQ ,由点到直线的距离公式求得O 到l 的距离,代入三角形面积公式,化简后换元,利用基本不等式求得最值,进一步求出k 值,则直线方程可求. 试题解析:(1)设(),0F c ,因为直线AF,()0,2A -所以23c =,c =又222c b a c a ==- 解得2,1a b ==,所以椭圆E 的方程为2214x y +=.(2)解:设()()1122,,,P x y Q x y 由题意可设直线l 的方程为:2y kx =-,联立221{42,x y y kx +==-,消去y 得()221416120k x kx +-+=,当()216430k ∆=->,所以234k >,即k <或k > 1212221612,1414k x x x x k k+==++. 所以PQ ===点O 到直线l 的距离d =所以21214OPQS d PQ k∆==+,0t =>,则2243k t =+,244144OPQ t S t t t∆==≤=++,当且仅当2t =2=,解得2k =±时取等号, 满足234k >所以OPQ ∆的面积最大时直线l 的方程为:22y x =-或22y x =--. 【方法点晴】本题主要考查待定系数法求椭圆方程及圆锥曲线求最值,属于难题.解决圆锥曲线中的最值问题一般有两种方法:一是几何意义,特别是用圆锥曲线的定义和平面几何的有关结论来解决,非常巧妙;二是将圆锥曲线中最值问题转化为函数问题,然后根据函数的特征选用参数法、配方法、判别式法、三角函数有界法、函数单调性法以及均值不等式法,本题(2)就是用的这种思路,利用均值不等式法求三角形最值的.4.2015年全国普通高等学校招生统一考试理科数学(新课标Ⅱ)已知椭圆222:9(0)C x y m m +=>,直线l 不过原点O 且不平行于坐标轴,l 与C 有两个交点A ,B ,线段AB 的中点为M .(Ⅰ)证明:直线OM 的斜率与l 的斜率的乘积为定值; (Ⅱ)若l 过点(,)3mm ,延长线段OM 与C 交于点P ,四边形OAPB 能否为平行四边形?若能,求此时l 的斜率,若不能,说明理由.【答案】(Ⅰ)详见解析;(Ⅱ)能,47-或47+. 【解析】试题分析:(1)设直线:l y kx b =+(0,0)k b ≠≠,直线方程与椭圆方程联立,根据韦达定理求根与系数的关系,并表示直线OM 的斜率,再表示;(2)第一步由 (Ⅰ)得OM 的方程为9y x k=-.设点P 的横坐标为P x ,直线OM 与椭圆方程联立求点P 的坐标,第二步再整理点的坐标,如果能构成平行四边形,只需,如果有值,并且满足0k >,3k ≠的条件就说明存在,否则不存在.试题解析:解:(1)设直线:l y kx b =+(0,0)k b ≠≠,11(,)A x y ,22(,)B x y ,(,)M M M x y . ∴由2229y kx bx y m=+⎧⎨+=⎩得2222(9)20k x kbx b m +++-=,∴12229M x x kbx k +==-+,299M M b y kx b k =+=+. ∴直线OM 的斜率9M OM M y k x k==-,即9OM k k ⋅=-. 即直线OM 的斜率与l 的斜率的乘积为定值9-. (2)四边形OAPB 能为平行四边形. ∵直线l 过点(,)3mm ,∴l 不过原点且与C 有两个交点的充要条件是0k >,3k ≠ 由 (Ⅰ)得OM 的方程为9y x k=-.设点P 的横坐标为P x . ∴由2229,{9,y x k x y m =-+=得,即将点(,)3m m 的坐标代入直线l 的方程得(3)3m k b -=,因此2(3)3(9)M mk k x k -=+. 四边形OAPB 为平行四边形当且仅当线段AB 与线段OP 互相平分,即2P M x x = 239k =+2(3)23(9)mk k k -⨯+.解得147k =247k =.∵0,3i i k k >≠,1i =,2,∴当l 的斜率为47-或47+时,四边形OAPB 为平行四边形. 考点:直线与椭圆的位置关系的综合应用【一题多解】第一问涉及中点弦,当直线与圆锥曲线相交时,点是弦的中点,(1)知道中点坐标,求直线的斜率,或知道直线斜率求中点坐标的关系,或知道求直线斜率与直线OM 斜率的关系时,也可以选择点差法,设,,代入椭圆方程,两式相减,化简为,两边同时除以得,而,,即得到结果,(2)对于用坐标法来解决几何性质问题,那么就要求首先看出几何关系满足什么条件,其次用坐标表示这些几何关系,本题的关键就是如果是平行四边形那么对角线互相平分,即2P M x x =,分别用方程联立求两个坐标,最后求斜率.5.2015年全国普通高等学校招生统一考试理科数学(新课标Ⅰ带解析)在直角坐标系xoy 中,曲线C :y=24x与直线(),0y kx a a =+>交与M,N 两点,(Ⅰ)当k =0时,分别求C 在点M 和N 处的切线方程;(Ⅱ)y 轴上是否存在点P ,使得当k 变动时,总有∠OPM =∠OPN ?说明理由. 【答案】(Ⅰ0ax y a --=0ax y a ++=(Ⅱ)存在 【详解】试题分析:(Ⅰ)先求出M,N 的坐标,再利用导数求出M,N.(Ⅱ)先作出判定,再利用设而不求思想即将y kx a =+代入曲线C 的方程整理成关于x 的一元二次方程,设出M,N 的坐标和P 点坐标,利用设而不求思想,将直线PM ,PN 的斜率之和用a 表示出来,利用直线PM ,PN 的斜率为0,即可求出,a b 关系,从而找出适合条件的P 点坐标.试题解析:(Ⅰ)由题设可得(2,)M a a ,(2,)N a -,或(22,)M a -,(2,)N a a .∵12y x '=,故24x y =在x =22a 处的导数值为a ,C 在(22,)a a 处的切线方程为(2)y a a x a -=-,即0ax y a --=.故24x y =在x =-22a 处的导数值为-a ,C 在(22,)a a -处的切线方程为(2)y a a x a -=-+,即0ax y a ++=.故所求切线方程为0ax y a --=或0ax y a ++=. (Ⅱ)存在符合题意的点,证明如下:设P (0,b )为复合题意得点,11(,)M x y ,22(,)N x y ,直线PM ,PN 的斜率分别为12,k k . 将y kx a =+代入C 得方程整理得2440x kx a --=. ∴12124,4x x k x x a +==-. ∴121212y b y b k k x x --+=+=1212122()()kx x a b x x x x +-+=()k a b a+.当=-b a 时,有12k k +=0,则直线PM 的倾斜角与直线PN 的倾斜角互补, 故∠OPM=∠OPN ,所以(0,)P a -符合题意.考点:抛物线的切线;直线与抛物线位置关系;探索新问题;运算求解能力 6.2016年全国普通高等学校招生统一考试文科数学(新课标3) 已知抛物线:的焦点为,平行于轴的两条直线分别交于两点,交的准线于两点.(Ⅰ)若在线段上,是的中点,证明;(Ⅱ)若的面积是的面积的两倍,求中点的轨迹方程.【答案】(Ⅰ)见解析;(Ⅱ).【解析】试题分析:设 的方程为.(1)由在线段上,又;(2)设与轴的交点为(舍去),.设满足条件的的中点为.当与轴不垂直时.当与轴垂直时与重合所求轨迹方程为.试题解析:由题设,设,则,且.记过两点的直线为,则的方程为.............3分(1)由于在线段上,故,记的斜率为的斜率为,则,所以..................5分(2)设与轴的交点为,则,由题设可得,所以(舍去),.设满足条件的的中点为.当与轴不垂直时,由可得.而,所以.当与轴垂直时,与重合,所以,所求轨迹方程为.........12分考点:1.抛物线定义与几何性质;2.直线与抛物线位置关系;3.轨迹求法.。
压轴题09 圆锥曲线压轴小题常见题型(解析版)-2023年高考数学压轴题专项训练(江苏专用)
压轴题09圆锥曲线压轴小题常见题型1、圆锥曲线的定义、方程与几何性质是每年高考必考的内容.一是求圆锥曲线的标准方程;二是求椭圆或双曲线的离心率、与双曲线的渐近线有关的问题;三是抛物线的性质及应用问题.多以选择、填空题的形式考查,难度中等.2、通过对椭圆、双曲线、抛物线的定义、方程及几何性质的考查,着重考查了数学抽象、数学建模、逻辑推理与数学运算四大核心素养.考向一:阿波罗尼斯圆、蒙日圆与圆锥曲线考向二:离心率考向三:焦半径问题考向四:切线问题考向五:焦点三角形问题1、在利用圆锥曲线的定义求轨迹方程时,若所求的轨迹符合某种圆锥曲线的定义,则根据定义判定轨迹曲线并写出方程.有时还要注意轨迹是不是完整的曲线,如果不是完整的曲线,则应对其中的变量x或y进行限制.2、应用圆锥曲线的定义时,要注意定义中的限制条件.在椭圆的定义中,要求12>;2a F FF F;在抛物线的定义中,定直线不经过定点.此外,在双曲线的定义中,要求2a<12通过到定点和到定直线的距离之比为定值可将三种曲线统一在一起,称为圆锥曲线.3、圆锥曲线定义的应用主要有:求标准方程,将定义和余弦定理等结合使用,研究焦点三角形的周长、面积,求弦长、最值和离心率等.4、用解析法研究圆锥曲线的几何性质是通过方程进行讨论的,再通过方程来研究圆锥曲线的几何性质.不仅要能由方程研究曲线的几何性质,还要能运用儿何性质解决有关问题,如利用坐标范围构造函数或不等关系等.一、单选题1.(2023·湖南·校联考二模)已知()2,0A ,点P 为直线50x y -+=上的一点,点Q 为圆221x y +=上的一点,则12PQ AQ +的最小值为()AB.22-CD【答案】D【解析】设()()110,,,M x Q x y ,令12AQ MQ =,则()22211148144233x x x xy --=⇒++=2211112x y x ⇔+=⇒=,则M 1,02⎛⎫⇒ ⎪⎝⎭12PQ AQ +=PQ MQ +.如图,当,,P Q M 三点共线时,且PM 垂直于直线50x y -+=时,PQ MQ +有最小值,为PM ,即直线50x y -+=到点M4=.故选:D2.(2023·河南商丘·商丘市实验中学校联考模拟预测)已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为12,F F ,点,M N 是C 的一条渐近线上的两点,且2MN MO =(O 为坐标原点),12MN F F =.若P 为C 的左顶点,且135MPN ∠=︒,则双曲线C 的离心率为()A 3B .2C 5D 7【答案】C【解析】设双曲线的焦距为2(0)c c >,因为2MN MO = ,所以ON MO = ,所以,M N 关于原点对称,所以四边形12MF NF 为平行四边形,又12MN F F =,所以四边形12MF NF 为矩形,因为以12F F 为直径的圆的方程为222x y c +=,不妨设,M N 所在的渐近线方程为()00,,by x M x y a=,则()00,N x y --,由222,,b y x a x yc ⎧=⎪⎨⎪+=⎩解得,x a y b =⎧⎨=⎩或,.x a y b =-⎧⎨=-⎩,不妨设()(),,,M a b N a b --,因为P 为双曲线的左顶点,所以(),0P a -,所以,PM PN b ==,又2,135MN c MPN ∠==︒,由余弦定理得222||||||2||||cos135MN MP NP MP NP ︒=+-⋅,即22224()c a a b b =+++2b a =,所以离心率c e a ==.故选:C.3.(2023·河北沧州·统考模拟预测)已知A 、B 是椭圆()222210x y a b a b +=>>与双曲线()222210,0x y a b a b -=>>的公共顶点,P 是双曲线上一点,PA ,PB 交椭圆于M ,N .若MN 过椭圆的焦点F ,且tan 3AMB ∠=-,则双曲线的离心率为()A .2BC D 【答案】D【解析】如图,设00(,)P x y ,点,,P M A 共线,点,,P B N 共线,所在直线的斜率分别为,PA PB k k,点P 在双曲线上,即2200221x y a b -=,有200200y y b x a x a a ⋅=-+,因此22PA PB b k k a⋅=,点11(,)M x y 在椭圆上,即2211221x y a b +=,有211211y y b x a x a a⋅=--+,直线,MA MB 的斜率,MA MB k k ,有22MA MBb k k a⋅=-,即22PA MBb k k a⋅=-,于是MB PB BN k k k =-=-,即直线MB 与NB 关于x 轴对称,又椭圆也关于x 轴对称,且,M N 过焦点F ,则MN x ⊥轴,令(c,0)F ,由22221x c x y a b =⎧⎪⎨+=⎪⎩得2||b y a=,显然222tan a c a ac AMF b b a ++∠==,222tan a c a acBMF b b a--∠==,22222222222tan tan 2tan 31tan tan 1a ac a acAMF BMF a b b AMB a ac a ac AMF BMF b a b b +-+∠+∠∠====-+--∠⋅∠--⋅,解得2213b a =,所以双曲线的离心率233e a ===.故选:D4.(2023·辽宁·校联考二模)已知双曲线()2222:10,0x y E a b a b -=>>的左、右焦点分别为1F ,2F ,P 是双曲线E 上一点,212PF F F ⊥,12F PF ∠的平分线与x 轴交于点Q ,1253PF Q PF Q S S =△△,则双曲线E 的离心率为()AB .2CD【答案】B【解析】∵212PF F F ⊥,则122122152132△△PF Q PF QPF F Q S S PF F Q ⋅==⋅,可得1253F Q F Q =,分别在12,PQF PQF 中,由正弦定理可得:12121122sin sin ,sin sin PF PF PQF PQF FQ QPF F Q QPF ∠∠==∠∠∵PQ 平分12F PF ∠,可得12QPF QPF ∠=∠,即12sin sin QPF QPF ∠=∠,且()122sin sin πsin PQF PQF PQF ∠=-∠=∠,故1212sin sin sin sin PQF PQF QPF QPF ∠∠=∠∠,则1212PF PF F Q F Q=,所以112253PF F Q PF F Q==,又∵22b PF a =,则21222b PF PF a a a =+=+,所以22253b aa b a+=,整理得223b a =,故2223c a a -=,得224c a =,即2c a =,所以2ce a==.故选:B.5.(2023·江西宜春·统考一模)已知双曲线221927x y -=的左、右焦点分别为12,F F ,过右焦点2F 的直线l 与双曲线的右支交于,A B 两点,若1212,AF F BF F 的内心分别为,I K ,则12IF F △与12KF F 面积之和的取值范围是()A .36,3⎡⎣B .36,483⎡⎣C .[)18π,30πD .[)18π,36π【答案】A 【解析】由双曲线方程得:3a =,33b =226c a b +=,设12AF F △内切圆与三边相切于点,,M N E ,AM AN = ,11F M F E =,22F N F E =,12121226AF AF F M F N F E F E a ∴-=-=-==,又12212F E F E c +==,19F E ∴=,23F E =,设(),0E t ,则6963t t +=⎧⎨-=⎩,解得:3t =,即()3,0E ;同理可知:12KF F 内切圆与x 轴相切于点()3,0E ;22,IF KF 分别为212,AF F BF F ∠∠的角平分线,2121π2IF F KF F ∴∠+∠=,又12IK F F ⊥,2IF E ∴ ∽2F KE ,则22IE EF EF KE=,设1212,AF F KF F 内切圆半径分别为12,r r ,2633EF =-= ,229IE KE EF ∴⋅==,即129r r =,()12121212111962IF F KF F S S F F r r r r ⎛⎫∴+=⋅+=+ ⎪⎝⎭,双曲线的渐近线斜率k =,∴直线l 的倾斜角π2π,33θ⎛⎫∈⎪⎝⎭,()2211π22IF E AF E θ∴∠=∠=-,则2ππ,63IF E ⎛⎫∠∈ ⎪⎝⎭,122tan 3IE r IF E F E∴∠==∈⎝,解得:1r ∈,又119r r +在)上单调递减,在(上单调递增,当1r =119r r +=1r =时,119r r +=;当13r =时,1196r r +=;1196,r r ⎡∴+∈⎣,1212119636,IF F KF F S S r r ⎛⎫⎡∴+=+∈ ⎪⎣⎝⎭.故选:A.6.(2023·江西吉安·统考一模)椭圆()2222:10x y E a b a b +=>>的内接四边形ABCD 的对角线,AC BD 交于点()1,1P ,满足2AP PC = ,2BP PD = ,若直线AB 的斜率为14-,则椭圆的离心率等于()A .14BC .12D .13【答案】B【解析】设点()()()1122,,,,,A x y B x y C x y ,()1,1P ,且2AP PC =,可得()()111,121,1x y x y --=--,即()()11121121x x y y ⎧-=-⎪⎨-=-⎪⎩,解得1133,22x y C --⎛⎫⎪⎝⎭,由,A C 两点在椭圆E 上,有()()()()22112222112211331244x y a b x y a b ⎧+=⎪⎪⎨--⎪+=⎪⎩,()()124-⨯得:()()11223233233x y ab--+=-,即2222221122330b x a y a b a b ++--=,同理可得2222222222330b x a y a b a b ++--=,因此,直线AB 的方程为22222222330b x a y a b a b ++--=,从而直线AB 的斜率为2214b a -=-,由222131144b e a =-=-=,可得e =故选:B7.(2023·广东汕头·金山中学校考模拟预测)已知双曲线22221(0,0)x y a b a b-=>>的右焦点为F ,过点F 且斜率为()0k k ≠的直线l 交双曲线于A 、B 两点,线段AB 的中垂线交x 轴于点D .若AB ≥,则双曲线的离心率取值范围是()A.⎛ ⎝⎦B.(C.)+∞D.⎫+∞⎪⎪⎣⎭【答案】A【解析】设双曲线的右焦点为()()()1122,0,,,,F c A x y B x y ,则直线():l y k x c =-,联立方程()22221x y a b y k x c ⎧-=⎪⎨⎪=-⎩,消去y 得:()()222222222220b a k x a k cx a k c b -+-+=,则可得()222222222121222222220,0,,a k c b a k cb a k x x x x b a k b a k+-≠∆>+=-=---,则()2222221ab k AB b k a +==-,设线段AB 的中点()00,M x y ,则()2222212000222222222,2x x a k c a k c b kcx y k x c k c b a k b a k b a k ⎛⎫+==-=-=--=- ⎪---⎝⎭,即222222222,a k c b kc M b a k b a k ⎛⎫-- ⎪--⎝⎭,且0k ≠,线段AB 的中垂线的斜率为1k-,则线段AB 的中垂线所在直线方程为2222222221b kc a k c y x b a k k b a k ⎛⎫+=-+ ⎪--⎝⎭,令0y =,则2222222221b kc a k c x b a k k b a k ⎛⎫=-+ ⎪--⎝⎭,解得23222k c x b a k =--,即23222,0k c D b a k ⎛⎫- ⎪-⎝⎭,则()22232222221b c k k c DF c b a k b a k +=--=--,由题意可得:AB ≥,即()()2222222222121ab k b a k c k b a k +≥-+-,整理得2a ,则c e a=注意到双曲线的离心率1e >,∴双曲线的离心率取值范围是⎛ ⎝⎦.故选:A.8.(2023·河南·校联考模拟预测)已知实数a ,b 满足22122a b a b ++=+,则()2341a b +-的最小值是()A .1B .2C .4D .16【答案】A 【解析】依题意可知曲线(),0f a b =表示一个以()1,1为圆心,1为半径的圆,求()2341a b +-的最小值相当于先求341a b d +-==的最小值,即求圆()()22111a b -+-=上一点到直线3410x y +-=的距离d 的最小值,所以min 314111155d ⨯+⨯-=-=,即()2341a b +-的最小值为1.故选:A .9.(2023·全国·模拟预测)已知O 为坐标原点,椭圆22:142x y C +=上两点A ,B 满足12OA OB k k ⋅=-.若椭圆C 上一点M 满足OM OA OB λμ=+ ,则λμ+的最大值为()A .1BCD .2【答案】B【解析】设()()001122(,),,,,M x y A x y B x y ,则220022112222142142142x y x y x y ⎧+=⎪⎪⎪+=⎨⎪⎪+=⎪⎩,由OM OA OB λμ=+ ,得01212x x x y y y λμλμ=+⎧⎨=+⎩,222222222200121211221212()()()()424242422x y x x y y x y x y x x y y λμλμλμλμλμ+++=++++++221212()2x xy y λμλμ=+++,由12OA OBk k ⋅=-,得121212y y x x =-,即121202x x y y +=,又2200142x y +=,因此221λμ+=,而2222()()2()2λμλμλμ++-=+=,于是||λμλμ+≤+≤λμ==“=”,所以λμ+.故选:B10.(2023·山东潍坊·统考模拟预测)已知双曲线()22122:10,0x y C a b a b-=>>的左,右焦点分别为1F ,2F ,点2F 与抛物线()22:20C y px p =>的焦点重合,点P 为1C 与2C 的一个交点,若△12PF F 的内切圆圆心的横坐标为4,2C 的准线与1C 交于A ,B 两点,且92AB =,则1C 的离心率为()A .94B .54C .95D .74【答案】B【解析】由题设12(,0),(,0)F c F c -,又点2F 与抛物线的焦点重合,即02pc =>,由()22222221c y a ba b c ⎧-⎪-=⎨⎪+=⎩,则2b y a =±,故2292b AB a ==,即249b a =,如下图示,内切圆与△12PF F 各边的切点为,,D E K,所以1122,,PD PE DF KF EF KF ===,又12||||2PF PF a -=,则121212()()2PD DF PE EF DF EF KF KF a+-+=-=-=,所以K 为双曲线右顶点,又△12PF F 的内切圆圆心的横坐标为4,即4a =,故29b =,则5c =,所以离心率为54c e a ==.故选:B11.(2023·河南·开封高中校考模拟预测)已知直线l 与椭圆221:12x C y +=相切于点P ,与圆222:4C x y +=交于A ,B 两点,圆2C 在点A ,B 处的切线交于点Q ,O 为坐标原点,则OPQ △的面积的最大值为()A .22B .1C D .2【答案】A【解析】设()00,P x y ,(,)Q m n ,由AQ AO ⊥,BQ BO ⊥,可得四点Q ,A ,O ,B 共圆,可得以OQ 为直径的圆,方程为2222((224m n m n x y +-+-=,联立圆222:4C x y +=,相减可得AB 的方程为40mx ny +-=,又AB 与椭圆相切,若AB 不与x 轴垂直时,当0y >时,2212x y +=可化为y =,设y '=P 的切线方程为00000)()2x y y x x x x y -=--=-,即220000122x x x y y y +=+=,同理可得0y >时,在P 的切线方程为0012x x y y +=,若AB x ⊥轴时,在点()P 处的切线方程为x =0012x xy y +=故过P 的切线方程为0012x xy y +=,即为002440x x y y +-=,由两直线重合的条件可得02m x =,04n y =,由于P 在椭圆上,可设0x α,0sin y α=,02απ≤<,即有m α=,4sin n α=,可得22004cos 4sin 4OP OQ mx ny αα⋅=+=+=uu u r uuu r,且||OP ||OQ =即有1sin ,2OPQ S OP OQ OP OQ =△==22α==≤,当sin 21α=±即π4α=或3π4或5π4或7π4时,OPQ S .故选:A .12.(2023·全国·模拟预测)中国结是一种盛传于民间的手工编织工艺品,它身上所显示的情致与智慧正是中华民族古老文明中的一个侧面.已知某个中国结的主体部分可近似地视为一个大正方形(内部是16个全等的边长为1的小正方形)和凸出的16个半圆所组成,如图,点A 是大正方形的一条边的四等分点,点C 是大正方形的一个顶点,点B 是凸出的16个半圆上的任意一点,则AC AB ⋅的最大值为()A .333172+B .332172+C .332D .9172【答案】C【解析】AC AB ⋅ 等于AB 在AC 上的投影向量与AC 的数量积,因此当AB在AC 上的投影向量与AC同向,且投影向量的模最大时,AC AB ⋅取到最大值,此时点B 在以点C 为半圆弧端点且在AC 上方的半圆上,以大正方形的相邻两边分别为x ,y 轴建立平面直角坐标系xOy ,如图,(0,1),(4,0)A C,则直线AC 的方程为14x y +=,以点C 为半圆弧端点且在AC 上方的半圆圆心为1(4,)2M ,半圆M 的方程为22119(4)()(4)242x y x -+-=≤≤,显然半圆M 在点B 处切线l 垂直于直线AC 时,AC AB ⋅取得最大值,设切线l 的方程为40x y b -+=1|16|122b -+=,而点M 在切线l的左上方,解得b =,即切线l:40x y -=,由4014x y x y ⎧-=⎪⎪⎨⎪+=⎪⎩解得x y ⎧=⎪⎪⎨⎪=⎪⎩,因此切线l 与直线AC 的交点2(1733)117(,)1734D +-,此时33171734AD =,又AC =,所以AC AB ⋅的最大值为3317173317342=.故选:C13.(2023·陕西咸阳·校考模拟预测)设双曲线()2222:10,0x y E a b a b -=>>的右焦点为F ,()0,3M b ,若直线l 与E 的右支交于A ,B 两点,且F 为MAB △的重心,则直线l 斜率的取值范围为()A.)3∞⎛⎫⋃+ ⎪ ⎪⎝⎭B.)⋃+∞⎝C.(,∞⎛-⋃- ⎝⎭D.(,∞⎛-⋃- ⎝⎭【答案】C【解析】设D 为AB 的中点,根据重心性质可得2MF FD =,因为()(),0,0,3F c M b ,则33,22c b D ⎛⎫-⎪⎝⎭,因为直线l 与E 的右支交于,A B 两点,所以点D 在双曲线右支内部,故有222299441c b a b ->,解得c a >,当直线l 斜率不存在时,AB 的中点D 在x 轴上,故,,M F D 三点不共线,不符合题意舍,设直线l 斜率为AB k ,设()()1122,,,A x y B x y ,所以123x x c +=,123y y b +=-,因为,A B 在双曲线上,所以22112222222211x y a b x y a b ⎧-=⎪⎪⎨⎪-=⎪⎩,两式相减可得:2222121222x x y a b y =--,即()()()()1212121222x x x x y y y y a b -+-+=,即有()()12122233c x x b y y a b --=-成立,即有2AB bck a =-,因为,,,M F A B 不共线,即23AB MF bc b k k a c=-≠=-,即223c a ≠,即e ≠,所以E 的离心率的取值范围为)∞⎫⋃+⎪⎪⎝⎭,因为2ABbc k a =-===-因为)3e ∈+∞⎝,即()213,33,9e ⎛⎫∈+∞ ⎪⎝⎭,所以()221152,66,2481e ⎛⎫⎛⎫--∈+∞ ⎪ ⎪⎝⎭⎝⎭ ,所以(,ABk ⎛⎫=∈-∞ ⎪ ⎪⎝⎭.故选:C14.(2023·重庆·统考模拟预测)如图,椭圆()2222:10x y C a b a b+=>>的左焦点为1F ,右顶点为A ,点Q 在y 轴上,点P 在椭圆上,且满足PQ y ⊥轴,四边形1F APQ 是等腰梯形,直线1F P 与y 轴交于点N ⎛⎫⎪ ⎪⎝⎭,则椭圆的离心率为().A .14B 3C 2D .12【答案】D【解析】由题意,做PM x ⊥轴于点M ,因为四边形1F APQ 是等腰梯形,则1FO AM c ==,OM a c =-则点P 的横坐标为P x a c =-,代入椭圆方程()2222:10x yC a b a b+=>>,可得22p b y ac c a =-,即22bPM ac c a-因为34N ⎛⎫ ⎪ ⎪⎝⎭,则3ON =,由11F NO F PM ,则121342F O ON cb F M PM a ac c a=⇒=-,化简可得,434332160a ac c -+=,同时除4a 可得,43163230e e -+=即()()3221812630e e e e ----=,对于()3281263f e e e e =---当1e =时,()1130f =-<,当2e =时,()210f =>,在()1,2e ∈时,方程()()3221812630e e e e ----=有根,且()0,1e ∈,故应舍,所以12e =.故选:D二、多选题15.(2023·湖南·校联考二模)已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为1F 、2F ,过2F A 、B 两点(A 在第一象限),1AB BF =,P 为线段AB 的中点,O 为坐标原点,则下列说法正确的是()A .122AF AF =B .双曲线C 的离心率为2C .12AF F △D .直线OP 的斜率为7【答案】AD【解析】如下图所示:对于A 选项,因为1AB BF =,所以,22122AF AB BF BF BF a =-=-=,由双曲线的定义可得12122AF AF AF a a -=-=,所以,1242AF a AF ==,A 对;对于B 选项,设直线AB 设直线AB 的倾斜角为α,则α为锐角且tan α=由22sin tan cos sin cos 1cos 0αααααα⎧==⎪⎪+=⎨⎪>⎪⎩可得cos α=()21cos cos πcos 4AF F αα∠=-=-=-,在12AF F △中,由余弦定理得2222222121212124416cos 284AF F F AF a c a AF F AF F F ac +-+-∠===-⋅,即22260c a -=,等式22260c a -=两边同时除以2a可得2260e +-=,因为1e >,解得e B 错;对于C选项,因为21cos AF F ∠=21AF F ∠为钝角,所以,21sin 4AF F ∠=,1222122111sin 2222244AF F S AF F F AF F a c a =⋅∠=⨯⨯⨯=⨯=△,C 错;对于D 选项,设()11,A x y ,()22,B x y ,则1212,22x x y y P ++⎛⎫⎝⎭,可得121212120202OPy y y y k x x x x +-+==++-,因为c =,则b a ,由22112222222211x y a b x y a b⎧-=⎪⎪⎨⎪-=⎪⎩得22221212220x x y y a b ---=,所以,2221212122221212121AB OP OP y y y y y yb k k x x x x x x a --+=⋅====--+,则OP k =,则直线OP,D 正确.故选:AD .16.(2023·浙江宁波·统考二模)三支不同的曲线()|1|0,1,2,3i i y a x a i =⋅->=交抛物线24y x =于点,(1,2,3)i i A B i =,F 为抛物线的焦点,记i i A FB △的面积为i S ,下列说法正确的是()A .11(1,2,3)i i i FA FB +=为定值B .112233////A B A B A B C .若1232S S S +=,则1232a a a +=D .若2123S S S =,则2123a a a =【答案】AD【解析】如图,设直线()1i y a x =-与抛物线24y x =的交于点,i i C B ,则i A 与i C 关于x 轴对称,设()()1122,,,i i A x y B x y -,则()11,i C x y ,联立()214i y a x y x ⎧=-⎨=⎩,消x 得2440i y y a --=,则12124,4iy y y y a +==-,又()1i y a x =-,则()()()()212121212411,114i i i iy y a x a x y y a x x a +=-+-==--=-,则21212224,1i i a x x x x a ++==,对于A ,()1,0F ,2212212121221111124221241111i i ii i i FA FB x x a a x x a x x x x a ++++++++++=+===+++,故A 正确;对于B ,212122212121444i i A B y y y y k y y x x y y ++===---因为i a 不是定值,所以i iA B k 不是定值,故B 错误;对于C ,设直线()1i y a x =-的倾斜角为i θ,则tan i i a θ=,则22222sin cos 2tan 2sin 2cos sin 1tan 1i i i ii i i i i a a θθθθθθθ===+++,所以()()122211sin 211221i i i i i i a S A F B F x x a θ==++⋅+()2121222222414111211i i i i i i ia a a x x x x a a a a ⎛⎫+=+++⋅=++= ⎪++⎝⎭,又因1232S S S +=,所以123448a a a +=,所以()1232a a a +=,故C 错误;对于D ,因为2123S S S =,所以21234416a a a ⋅=,所以2123a a a =,故D 正确.故选:AD.17.(2023·全国·校联考三模)已知直线:l y kx m =+与椭圆22:134x y C +=交于,A B 两点,点F 为椭圆C 的下焦点,则下列结论正确的是()A .当1m =时,k ∃∈R ,使得3FA FB +=B .当1m =时,k ∀∈R ,2FA FB +>C .当1k=时,m ∃∈R ,使得4FA FB +=D .当1k =时,m ∀∈R ,65FA FB +>【答案】BC【解析】在椭圆C 中,2a =,b =1c =,由题意可得()0,1F -,上焦点记为()01F ,',对于A 选项,设点()11,A x y ,()22,B x y ,联立2214312y kx x y =+⎧⎨+=⎩,消去y 得()2234690k x kx ++-=,()()22236363414410k k k ∆=++=+>,由韦达定理可得122634kx x k +=-+,122934x x k =-+,()2212134k AB k +==+[)2443,434k =-∈+,所以,(]484,5FA FB a AB AB +=-=-∈,选项A 错;对于B 选项,设线段AB 的中点为(),M x y ,由题意可得22112222134134x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,两式作差可得22221212034x x y y --+=,因为直线AB 的斜率存在,则12x x ≠,所以,121212122423y y y y y k x x x x x -+⋅=⋅=--+,整理可得43ky x =-,又因为1y kx =+,消去k 可得224330x y y +-=,其中0y >,所以,()()()()11221212,1,1,22,22FA FB x y x y x x y y x y +=+++=+++=+,所以,FA FB +=2=>,选项B 对;对于C 选项,当1k =时,直线l 的方程为y x m =+,即x y m =-,联立224312x y mx y =-⎧⎨+=⎩可得22784120y my m -+-=,()()2226428412162130m m m ∆=--=->,解得m <<由韦达定理可得1287m y y +=,2124127m y y -=,112222y y FA =+=+ ,同理222y FB =+,所以,124444,427y y m FA FB ⎛⎫++=+=+∈ ⎪ ⎪⎝⎭,因为544277⎛∈-+ ⎪ ⎪⎝⎭,所以,当1k =时,m ∃∈R ,使得52FA FB += ,选项C 对;对于D 选项,设线段AB 的中点为(),M x y ,由B 选项可知,121212122423y y y y y x x x x x -+⋅==--+,即43y x =-,即430x y +=,由22434312y x x y ⎧=-⎪⎨⎪+=⎩可得x =M的横坐标的取值范围是77⎛⎫- ⎪ ⎪⎝⎭,,而点F 到直线430x y +=的距离为35d =,由430314x y y x +=⎧⎪⎨=-⎪⎩可得1225x ⎛=∈- ⎝⎭,当且仅当点1216,2525M ⎛⎫- ⎪⎝⎭时,FA FB + 取最小值65,选项D 错.故选:BC.18.(2023·云南·统考二模)已知抛物线C :()220x py p =>的焦点为F ,过F 作直线l与抛物线C 交于A 、B 两点,分别以A 、B 为切点作抛物线C 的切线,两切线交于点T ,设线段AB 的中点为M .若点T 的坐标为12,2⎛⎫- ⎪⎝⎭,则()A .点M 的横坐标为2B .点M 的纵坐标为3C .直线l 的斜率等于2D .5TM =【答案】ACD【解析】抛物线C :()220x py p =>,直线AB :y kx b =+,2p b ⎛⎫= ⎪⎝⎭,设()()1122:,,:,A x y B x y 显然当12x x =时,根据对称性易得T 点位于x 轴上,不合题意,故12x x ≠,且均大于0,22p x xy y p '=⇒=,1AT k p x =,11:()x AT y y x x P-=-,整理:211111()2p y y x x x x x py -=--=,得:()11:AT p y y x x +=⋅,①同理()22:BT p y y x x +=⋅,②①-②:1212()()p y y x x x -=-,1212,T y y x ppk x x -==-1122:y y x y y x +=+①②()()()1221211221121212,kx b x kx b x b x x y x y x y b x x x x x x +-+--⇒====----又因为直线y kx b =+,2pb =,由此知:1122p =故22x y =;因为22x y =,所以y x'=设交点1122(,),(,)A x y B x y ,过点A 的切线斜率为11k x =,所以切线方程为111()y y x x x -=-,整理得1112y y x x y -=-,即11y x x y =-,同理,过点B 的切线的方程为22y x x y =-,又点T 在直线上,代入得AB 直线方程:12,2y x =+故选项C 正确;由21222y x x y⎧=+⎪⎨⎪=⎩消去y 整理得2410x x --=,因为直线与抛物线相交,设()()1122,,,A x y B x y ,则12124,1,x x x x +==-,故点M 的横坐标()1212,2x x x =+=故A 正确,因为点M 的横坐标()1212,2x x x =+=所以1922,22y =⨯+=5TM ==,故选项B 错误,D 正确;故选:ACD19.(2023·浙江杭州·统考一模)设F 为抛物线C :22(0)y px p =>的焦点,过点F 的直线l 与抛物线C 交于()()1122,,A x y B x y 两点,过B 作与x 轴平行的直线,和过点F 且与AB 垂直的直线交于点N ,AN 与x 轴交于点M ,则()A .1212x x y y +为定值B .当直线l 的斜率为1时,OAB (其中O 为坐标原点)C .若Q 为C 的准线上任意一点,则直线QA ,QF ,QB 的斜率成等差数列D .点M 到直线FN 的距离为2p 【答案】ACD【解析】A.,02p F ⎛⎫ ⎪⎝⎭,设直线l 的方程为2p ty x =-,联立222y px p ty x ⎧=⎪⎨=-⎪⎩,化为2220y pty p --=,212y y p ∴=-,122y y pt +=,22412124()p x x y y p == ,2124p x x ∴=,2121234x x y y p ∴+=-为定值,因此A 正确.B.当直线l 的斜率为1时,直线l 的方程为2p y x =-,代入椭圆方程可得:22304p x px -+=,123x x p ∴+=,124AB x x p p ∴=++=,点O 到直线l的距离24pd =,OAB ∴的面积为214242p p ⨯=,因此B 不正确.C.设,2p Q m ⎛⎫- ⎪⎝⎭,则22QF m mk p p p ==---,112211222QA y m py pm k p y p x --==+⎛⎫-- ⎪⎝⎭,222222QB py pm k y p -=+,12222212222222QF QA QB py pm py pm m k k k p y p y p --∴--=--++,通分后分子()()()()()()222222221212212m y p y p p py pm y p p py pm y p ⎡⎤=-+++-++-+⎣⎦,()()()()2224222222222212121212122212m y y mp y y mp p y y y p my mp p y y y p my mp ⎡⎤=-+++++--++--⎢⎥⎣⎦()()2224121222[m y y mp y y mp =-+++()()()242224121212122]p y y y y p y y mp y y mp ++-+-++,()()()1224412122122m y y p y y y y p y y mp ⎡⎤++⎢⎥+-⎣-+⎦=,()()()()2222442202pt pt m p p p p mp =+⎡⎤---+⎢-=⎥⎣⎦即2QF QA QB k k k --0=,则直线QA ,QF ,QB 的斜率成等差数列,因此C 正确.D.如图所示,过点M 作MH FN ⊥,垂足为H ,12AM y MNy =-,122AN y y MN y -∴=-,又AN AF MN MH =,122AF y y MH y -∴=-,22121221212121222222y p py p y p y y x p p p MH y y y y y y ⎛⎫-⎛⎫+++⎪ ⎪⎝⎭⎝⎭∴====---,因此D 正确.故选:ACD .20.(2023·安徽滁州·统考二模)在平面直角坐标系xOy 中,△OAB 为等腰三角形,顶角OAB θ∠=,点()3,0D 为AB 的中点,记△OAB 的面积()S f θ=,则()A .()18sin 54cos f θθθ=-B .S 的最大值为6C .AB 的最大值为6D .点B 的轨迹方程是()22400x y x y +-=≠【答案】ABD【解析】由OAB θ∠=,OA AB =,()3,0D 为AB 的中点,若(,)A x y 且0y ≠,则(6,)B x y --,故222222(62)(2)4(3)4x y x y x y +=-+-=-+,整理得:22(4)4x y -+=,则A 轨迹是圆心为(4,0),半径为2的圆(去掉与x 轴交点),如下图,由圆的对称性,不妨令A 在轨迹圆的上半部分,即02A y <≤,令22OA AB AD a ===,则222||||2cos OD OA AD OA AD θ=+-,所以2254cos 9a a θ-=,则2954cos a θ=-,所以2118sin sin 2sin 254cos OAB OAD OBD S S S OA AB a θθθθ=+===- ,A 正确;由113(0,6]22OAB OAD OBD A B A S S S y OD y OD y =+=⋅+⋅=∈ ,则S 的最大值为6,B 正确;由下图知:(2,6)OA AB =∈,所以AB 无最大值,C 错误;令(,)B m n ,则60A A x my n =-⎧⎨=-≠⎩代入A 轨迹得22(2)4m n -+=,即2240m m n -+=,所以B 轨迹为2240x x y -+=且0y ≠,D 正确;故选:ABD21.(2023·广东深圳·深圳中学校联考模拟预测)已知()11,P x y ,()22,Q x y 是椭圆229144x y +=上两个不同点,且满足121292x x y y +=-,则下列说法正确的是()A .1122233233x y x y +-++-的最大值为65+B .1122233233x y x y +-++-的最小值为35-C .11223535x y x y -++-+的最大值为21025+D .11223535x y x y -++-+的最小值为1022-【答案】AD【解析】由229144x y +=,可得2294x y +=,又()11,P x y ,()22,Q x y 是椭圆2294x y +=上两个不同点,可得2222112294,94x y x y +=+=,设,3x m y n ==,则224m n +=,设1122(,),(,)C m n D m n ,O 为坐标原点,可得11(,)OC m n =,22(,)OD m n = ,可得222211224,4m n m n +=+=,且12122m m n n +=-,所以2OC OD ⋅=-,1cos ,2OC OD OC OD OC OD⋅==-⋅,又[],0,πOC OD ∈ ,可得C D 、两点均在圆224m n +=的圆上,且2π3COD ∠=,设CD 的中点为E ,则π2cos 13OE ==,点C D 、两点到直线230x y +-=的距离12d d 、之和,设E 到直线230x y +-=的距离3d ,由题可知圆心到直线230x y +-=的距离为=,则12322(2(12d d d EO =≤==+1232)1)2d d d EO =≥==+可得12d d +的最大值为2+12d d +2;可得112212233233)x y x y d d +-++-+,可得1122233233x y x y +-++-的最大值为(26=,最小值为6-,故A 正确,B 错误;C D 、两点到直线50x y -+=的距离45d d 、之和,设E 到直线50x y -+=的距离6d ,由题可知圆心到直线50x y -+==则45621)2d d d =≤=+,45621)2d d d =≥-=-+,可得1122453535)x y x y d d -++-+=+,可得1122233233x y x y +-++-的最大值为10+10-C 错误,D 正确.故选:AD.三、填空题22.(2023·浙江·统考二模)已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F .若1F 关于直线2y x =的对称点P 恰好在C 上,且直线1PF 与C 的另一个交点为Q ,则12cos FQF ∠=__________.【答案】1213【解析】设1(,0)F c -关于直线2y x =的对称点11(,)P x y ,由111121222y x c y x c ⎧⋅=-⎪+⎪⎨-⎪=⋅⎪⎩,得34(,)55c c P -,可知1PF =,2PF =,又知122F F c =,所以2221212PF PF F F +=,则12F PF ∠为直角,由题意,点P 恰好在C 上,根据椭圆定义122PF PF a +=,得a =,122QF QF a +=,设1QF m =,则225QF a m c m =-=-,在直角三角形2QPF △中,222())()m m +=-,解得25m c =,从而225QF =,25QP =,所以22112cos 13F QP QF F Q ∠==.故答案为:121323.(2023·山东枣庄·统考二模)已知点()1,2A 在抛物线22y px =上,过点A 作圆()2222x y -+=的两条切线分别交抛物线于B ,C 两点,则直线BC 的方程为____________.【答案】330x y ++=【解析】因为点()1,2A 在抛物线22y px =上,则2221p =⨯,解得2p =,即抛物线方程为24y x =,显然过点A 作圆()2222x y -+=的两条切线斜率存在,设此切线方程为2(1)y k x -=-,即20kx y k --+=,,解得1222k k ==-221212(,),()44y y B y C y ,不妨令直线,AB AC 的斜率分别为12,k k,于是1211242214y y y -==++-,12y =,同理22y =,直线BC 的斜率122212124414432244y y k y y y y -====-+---,而点,B ,直线BC的方程为1(3y x +=-,即330x y ++=.故答案为:330x y ++=24.(2023·陕西商洛·统考二模)已知椭圆22:143x y C +=,()12,0A -,()11,0F -,斜率为(0)k k ≠的直线与C交于P ,Q 两点,若直线1A P 与1AQ 的斜率之积为14-,且1PFQ ∠为钝角,则k 的取值范围为_______.【答案】3737,00,77⎛⎫⎛⎫-⋃ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭【解析】设:PQ l y kx m =+,()11,P x y ,()22,Q x y ,联立方程组22143x y y kx m ⎧+=⎪⎨⎪=+⎩,消去y 得()2223484120k x kmx m +++-=,由0∆>,即22430k m -+>,所以122834km x x k -+=+,212241234m x x k -=+,122634m y y k +=+,2212231234m k y y k -=+,所以()()1122122212312122416164A P A Qy y m k k k x x m km k -⋅===-++-+,解得2m k =(舍去)或m k =-.由1PFQ ∠为钝角,得110F РFQ ⋅<,即()()11221212121,1,10x y x y x x x x y y +⋅+=++++<,所以2222222241289791034343434k k k k k k k k---+++=<++++,解得k <因为0k ≠,所以0,77k ⎛⎫⎛∈-⋃ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭.故答案为:,00,77⎛⎫⎛-⋃ ⎪ ⎪ ⎝⎭⎝⎭.25.(2023·辽宁葫芦岛·统考一模)已知双曲线2222:1(0,0)x y M a b a b-=>>的左、右焦点分别为1F ,2F ,P 为双曲线右支上的一点,Q 为12F F P 的内心,且12234QF QF PQ +=,则M 的离心率为______.【答案】4【解析】如图所示,在焦点三角形中,处长PQ 交12F F 于点A ,因为Q 为12F F P 的内心,所以有111122=,=PF PQ PF AF AF QA PF AF ,()()1111111111PF PF PQ QA PQ QF F A AF PQ PF QF F AAF AF =⋅⇒=⋅+⇒⋅=⋅+ 11111111111212AF AF PQ PF QF PF F A AF PQ PF QF PF F F F F ⎛⎫⇒⋅=⋅+⋅⇒⋅=⋅+⋅⋅ ⎪ ⎪⎝⎭ ()111111212AF AF PQ PF QF PF FQ QF F F ⇒⋅=⋅+⋅⋅+()11211211112AF F F PQ PF F F QF PF AF F Q QF ⇒⋅⋅=⋅⋅+⋅⋅+1121121111112AF F F PQ PF F F QF PF AF F Q PF AF QF ⇒⋅⋅=⋅⋅+⋅⋅+⋅⋅112121112AF F F PQ PF AF QF PF AF QF ⇒⋅⋅=⋅⋅+⋅⋅12121121PF AF F F PQ QF PF QF AF ⋅⇒⋅=⋅+⋅12121121PF PF F F PQ QF PF QF PF ⋅⇒⋅=⋅+⋅122112F F PQ PF QF PF QF ⇒⋅=⋅+⋅,因为12234QF QF PQ += ,所以有12124,3,2F F k PF k PF k ===,因此M 的离心率为1212242F F c ca a PF PF ===-,故答案为:426.(2023·浙江嘉兴·统考二模)已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为12,F F ,离心率为e ,点P 在椭圆上,连接1PF 并延长交C 于点Q ,连接2QF ,若存在点P使2PQ QF =成立,则2e 的取值范围为___________.【答案】)8211,1⎡-⎣【解析】设11,QF m PF n ==,则22QF a m =-.显然当P 靠近右顶点时,2PQ QF >,所以存在点P 使2PQ QF =等价于()22min0,22PQ QF PQ QF m n a -≤-=+-,在12PF F △中由余弦定理得22221121122cos PF PF F F PF F F θ=+-⋅⋅,即()2222422cos a n n c n c θ-=+-⋅⋅,解得2cos b n a c θ=-,同理可得2cos b m a c θ=+,所以2112a m n b +=,所以()(222322112223222b b b n m m n m n a m n a m n a +⎛⎫⎛⎫+=++=++≥ ⎪ ⎪⎝⎭⎝⎭,所以22min(21)(22)22b m n a a a+-=-,当且仅当2n m =时等号成立.由221)202b a a-≤得2212b a ≤-,所以2111e -≤<.故答案为:)11,1⎡⎣27.(2023·全国·东北师大附中校联考模拟预测)已知双曲线()2222:10,0x y C a b a b-=>>的右焦点为(),0F c ,过点F 且斜率为2的直线与双曲线C 的两条渐近线分别交于M 、N 两点,若P 是线段MN的中点,且5PF c =,则双曲线的离心率为___________.【答案】()()()222111.8?1211.7?1211.9?1220⎡⎤⨯+++⎣⎦【解析】设直线MN 为()2y x c =-,双曲线的渐近线方程为by x a=±,联立()2b y x a y x c ⎧=⎪⎨⎪=-⎩可得,22ac x a b =-,22bc y a b =-,不妨令22,22c M acb a b a b ⎛⎫ ⎝-⎭-,同理可得22,22b N ac c a b a b ⎛⎫⎪⎝-+⎭+,设()00,P x y ,则20222242224ac ac a c a b a b x a b +-+==-,2222222224bc bcb c a b a b y a b --+==-,故22222242,44a c b cP a b a b⎛⎫ ⎪--⎝⎭,故PF ==,解得4224320b a b a +-=,方程两边同时除以4a 得,42320b b a a ⎛⎫⎛⎫+-= ⎪ ⎪⎝⎭⎝⎭,令22b t a =,可得2320t t +-=,解得23t =或-1(舍去),故c e a =.28.(2023·陕西汉中·统考二模)已知()30A -,,()3,0B ,P 为平面内一动点(不与,A B 重合),且满足2PA PB=,则PA PB ⋅的最小值为______.【答案】8-【解析】设(),P x y ,∵2PA PB=2=,整理得221090x y x +-+=,即()22516x y -+=,可得[]22109,1,9x y x x +=-∈,又∵()()3,,3,PA x y PB x y =---=--uu r uu r,则()()()()22233910991018PA PB x x y x y x x ⋅=---+-=+-=--=-uu r uu r ,∵[]1,9x ∈,可得当1x =时,PA PB ⋅取到最小值101188⨯-=-.故答案为:8-.29.(2023·辽宁丹东·统考一模)经过坐标原点O 的直线与椭圆C :()222210x y a b a b+=>>相交于A ,B 两点,过A 垂直于AB 的直线与C 交于点D ,直线DB 与y 轴相交于点E ,若22OB OE OE ⋅=,则C 的离心率为_______.【解析】设直线BD 的方程为()11(0),,y kx m k B x y =+≠,()22,D x y ,则()()11,,0,A x y E m --,由22221y kx m x y ab =+⎧⎪⎨+=⎪⎩,得()22222222220b a k x kma x a m a b +++-=,显然存在,k m ,使得0∆>,故由韦达定理得222121222222222,2kma k ma x x y y m b a k b a k +=-+=-+++,因为22OB OE OE ⋅= ,则212y m m =,即12y m =,则2211222212,,2,2,AB y m m k ma x B m k k y k k x b a k ⎛⎫====- ⎪+⎝⎭,因为AB AD ⊥,所以121212ADy y k x x k +==-+,即22222222221222k ma kma m b a k k b a k ⎛⎫-+=-- ⎪++⎝⎭,即222222222k a b k a a -++=,化简得222a b =,所以2c e a ===,故答案为:2.30.(2023·山西·校联考模拟预测)抛物线的光学性质是:位于抛物线焦点处的点光源发出的每一束光经抛物线反射后的反射线都与抛物线的对称轴平行或重合.设抛物线C :24y x =的焦点为F ,过点()7,0的直线交C 于A ,B 两点,且AF BF ⊥,若C 在A ,B 处的切线交于点P ,Q 为PAB 的外心,则QAB 的面积为______.【答案】108【解析】如图,易知C 的焦点为()1,0F ,显然当AB ⊥x 轴时,AF 不垂直于BF ,设过点()7,0的直线l 的斜率为k (0k >).则l :()7y k x =-,将()7y k x =-代入24y x =,得()2274k x x -=,即22222(72)490k x k x k -++=.设()11,A x y ,()22,B x y ,则()2122272k x x k++=,1249x x=,又()111,FA x y =- ,()221,FB x y =-,所以()()1212110FA FB x x y y ⋅=--+= ,所以()()()()121211770x x k x k x --+-⨯-=,即()()()22212121171490kx x k x x k+-++++=,所以()()()22222272149171490k k k kk ++⨯-+⨯++=,即2840k -=,解得212k =,所以()222222121212227211()41()449k AB k x kx x x x kk+=+-=++-=+-⨯242161121123k k k=++=,设PA ,PB 与x 轴正方向的夹角分别为,αβ,由抛物线的光学性质可知APB αβ∠=+,π222AFB αβ∠=+=,故π4APB αβ∠=+=,且由圆的性质可知π22AQB APB ∠=∠=,所以QAB 是等腰直角三角形,其中22AQ BQ ==,故221|108224QAB AQ S AQ BQ AB∆=⋅===.故答案为:108.。
高考真题与模拟训练 专题25 圆锥曲线综合(解析版)
专题25 圆锥曲线综合第一部分 真题分类1.(2021·江苏高考真题)已知双曲线()222210,0x y a b a b-=>>的一条渐近线与直线230x y -+=平行,则该双曲线的离心率是( )A B C .2 D 【答案】D【解析】双曲线的渐近线为b y x a =±,易知by x a=与直线230x y -+=平行,所以=2b e a ⇒==故选:D.2.(2021·全国高考真题)已知1F ,2F 是椭圆C :22194x y +=的两个焦点,点M 在C 上,则12MF MF ⋅的最大值为( ) A .13 B .12C .9D .6【答案】C【解析】由题,229,4a b ==,则1226MF MF a +==,所以2121292MF MF MF MF ⎛+⎫⋅≤= ⎪⎝⎭(当且仅当123MF MF ==时,等号成立).故选:C .3.(2021·全国高考真题(理))设B 是椭圆2222:1(0)x y C a b a b+=>>的上顶点,若C 上的任意一点P 都满足||2PB b ≤,则C 的离心率的取值范围是( )A .⎫⎪⎪⎣⎭B .1,12⎡⎫⎪⎢⎣⎭C .⎛ ⎝⎦D .10,2⎛⎤⎥⎝⎦【答案】C【解析】设()00,P x y ,由()0,B b ,因为 2200221x y a b+=,222a b c =+,所以()()2223422222220000022221y c b b PB x y b a y b y a b b b c c ⎛⎫⎛⎫=+-=-+-=-++++ ⎪ ⎪⎝⎭⎝⎭,因为0b y b -≤≤,当32b b c-≤-,即 22b c ≥时,22max 4PB b =,即 max 2PB b =,符合题意,由22b c ≥可得222a c ≥,即 0e <≤当32b b c ->-,即22b c <时, 42222max b PB a b c=++,即422224b a b b c ++≤,化简得, ()2220c b -≤,显然该不等式不成立. 故选:C .4.(2021·天津高考真题)已知双曲线22221(0,0)x y a b a b-=>>的右焦点与抛物线22(0)y px p =>的焦点重合,抛物线的准线交双曲线于A ,B 两点,交双曲线的渐近线于C 、D 两点,若|CD AB =.则双曲线的离心率为( )A B C .2 D .3【答案】A【解析】设双曲线22221(0,0)x y a b a b-=>>与抛物线22(0)y px p =>的公共焦点为(),0c ,则抛物线22(0)y px p =>的准线为x c =-,令x c =-,则22221c ya b-=,解得2b y a =±,所以22b AB a =,又因为双曲线的渐近线方程为b y x a =±,所以2bcCD a=,所以2bc a c =,所以222212a cbc =-=,所以双曲线的离心率ce a==故选:A.5.(2021·全国高考真题(文))已知12,F F 为椭圆C :221164x y +=的两个焦点,P ,Q 为C 上关于坐标原点对称的两点,且12PQ F F =,则四边形12PFQF 的面积为________. 【答案】8【解析】因为,P Q 为C 上关于坐标原点对称的两点, 且12||||PQ F F =,所以四边形12PFQF 为矩形, 设12||,||PF m PF n ==,则228,48m n m n +=+=, 所以22264()2482m n m mn n mn =+=++=+,8mn =,即四边形12PFQF 面积等于8.故答案为:8.6.(2021·全国高考真题(理))已知双曲线22:1(0)x C y m m-=>0my +=,则C 的焦距为_________. 【答案】40my +=化简得y =,即b a 2223b a m =,又双曲线中22,1a m b ==,故231m m=,解得3,0m m ==(舍去),2223142c a b c =+=+=⇒=,故焦距24c =. 故答案为:4.7.(2021·全国高考真题)已知O 为坐标原点,抛物线C :22y px =(0p >)的焦点为F ,P 为C 上一点,PF 与x 轴垂直,Q 为x 轴上一点,且PQ OP ⊥,若6FQ =,则C 的准线方程为______. 【答案】32x =-【解析】抛物线C :22y px = (0p >)的焦点,02p F ⎛⎫ ⎪⎝⎭,∵P 为C 上一点,PF 与x 轴垂直, 所以P 的横坐标为2p,代入抛物线方程求得P 的纵坐标为p ±, 不妨设(,)2pP p ,因为Q 为x 轴上一点,且PQ OP ⊥,所以Q 在F 的右侧, 又||6FQ =, (6,0),(6,)2pQ PQ p ∴+∴=- 因为PQ OP ⊥,所以PQ OP ⋅=2602pp ⨯-=, 0,3p p >∴=,所以C 的准线方程为32x =-故答案为:32x =-.8.(2021·江苏高考真题)已知椭圆()2222:10x y C a b a b +=>>.(1)证明:3a b ;(2)若点9,10M ⎛ ⎝⎭在椭圆C 的内部,过点M 的直线l 交椭圆C 于P 、Q 两点,M 为线段PQ 的中点,且OP OQ ⊥. ①求直线l 的方程; ②求椭圆C 的标准方程.【答案】(1)证明见解析;(20y --=;②2213x y +=.【解析】(1)cea====,ba∴=,因此,3a b;(2)①由(1)知,椭圆C的方程为22221 3x ybb+=,即22233x y b+=,当9,10⎛⎝⎭在椭圆C的内部时,22293310b⎛⎛⎫+⋅<⎪⎝⎭⎝⎭,可得b>设点()11,P x y、()22,Q x y,则121292102x xy y+⎧=⎪⎪⎨+⎪=⎪⎩,所以,1212y yx x+=+由已知可得22211222223333x y bx y b⎧+=⎨+=⎩,两式作差得()()()()1212121230x x x xy y y y+-++-=,所以()12121212133y y x xx x y y-+⎛=-=-⨯=-+⎝所以,直线l方程为910yx⎛⎫-=-⎪⎭⎝⎭,即y=所以,直线ly-;②联立)222331x y by x⎧+=⎪⎨=-⎪⎩,消去y可得221018930x x b-+-=.()222184093120360b b∆=--=->,由韦达定理可得1295x x+=,2129310bx x-=,又OP OQ⊥,而()11,OP x y=,()22,OQ x y=,))()12121212121211433OP OQ x x y y x x x x x x x x∴⋅=+=--=-++()2229327156655b b--+-===,解得21b=合乎题意,故2233a b==,因此,椭圆C的方程为2213xy+=.9.(2021·湖南高考真题)已知椭圆()2222:10xyC a ba b+=>>经过点()20A,(1)求椭圆C的方程;(2)设直线1y x=-与椭圆C相交于P Q,两点,求AP AQ⋅的值.【答案】(1)2214xy+=;(2)15.【解析】(1)椭圆()2222:10x y C a b a b+=>>经过点()20A ,,所以2a =,2c ca ==,所以c =222431b a c =-=-=, 所以椭圆C 的方程为2214x y +=.(2)由22141x y y x ⎧+=⎪⎨⎪=-⎩得2580x x ,解得128,05x x ==,所以118583155x y ⎧=⎪⎪⎨⎪=-=⎪⎩,或110011x y =⎧⎨=-=-⎩,可得83,55P ⎛⎫ ⎪⎝⎭,()0,1Q -,或者83,55Q ⎛⎫⎪⎝⎭,()0,1P -,所以()834312,02,155555AP AQ ⎛⎫⋅=-⋅--=-= ⎪⎝⎭. 10.(2021·天津高考真题)已知椭圆()222210x y a b a b+=>>的右焦点为F ,上顶点为B,离心率为,且BF (1)求椭圆的方程;(2)直线l 与椭圆有唯一的公共点M ,与y 轴的正半轴交于点N ,过N 与BF 垂直的直线交x 轴于点P .若//MP BF ,求直线l 的方程.【答案】(1)2215x y +=;(2)0x y -+.【解析】(1)易知点(),0F c 、()0,B b,故BF a ==因为椭圆的离心率为c e a ==2c =,1b =, 因此,椭圆的方程为2215x y +=;(2)设点()00,M x y 为椭圆2215x y +=上一点, 先证明直线MN 的方程为0015x xy y +=, 联立00221515x xy y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,消去y 并整理得220020x x x x -+=,2200440x x ∆=-=,因此,椭圆2215x y +=在点()00,M x y 处的切线方程为0015x x y y +=.在直线MN 的方程中,令0x =,可得01y y =,由题意可知00y >,即点010,N y ⎛⎫⎪⎝⎭, 直线BF 的斜率为12BF b k c =-=-,所以,直线PN 的方程为012y x y =+,在直线PN 的方程中,令0y =,可得012x y =-,即点01,02P y ⎛⎫-⎪⎝⎭, 因为//MP BF ,则MPBF k k =,即20000002112122y y x y x y ==-++,整理可得()20050x y +=, 所以,005x y =-,因为222000615x y y +==,00y ∴>,故06y =,056x =, 所以,直线l 的方程为661y =,即60x y -.第二部分 模拟训练一、单选题1.已知P (x 0,y 0)是椭圆C :24x +y 2=1上的一点,F 1,F 2分别是椭圆C 的左、右焦点,若12PF PF ⋅<0,则x 0的取值范围是A .2626⎛ ⎝⎭B .2323⎛ ⎝⎭C .3333⎛- ⎝⎭D .66,33⎛- ⎝⎭【答案】A【解析】如图,设以O 为原点、半焦距3c =x 2+y 2=3与椭圆交于A ,B 两点.由2222314x y x y ⎧+⎪⎨+⎪⎩==得263x ±=, 要使12PF PF ⋅<0,则点P 在A 、B 之间, ∴x 0的取值范围是2626,33⎛⎫- ⎪ ⎪⎝⎭.故选A .2.已知抛物线C 1:21615y x =和圆C 2:(x -6)2+(y -1)2=1,过圆C 2上一点P 作圆的切线MN 交抛物线C ,于M ,N 两点,若点P 为MN 的中点,则切线MN 的斜率k >1时的直线方程为( )A .4x -3y -22=0B .4x -3y -16=0C .2x -y -11+5=0D .4x -3y -26=0【答案】D【解析】画出曲线图像如下图:由题意知,切线MN 的斜率k 存在且不为0,设点00(,)P x y , 设直线MN 的方程为:(0)x my n m =+≠,其中11k m=>,则01m <<, 联立21615x my ny x =+⎧⎪⎨=⎪⎩,可得2161601515y my n --=, 则有,121615y y m +=,2121216()2215x x m y y n m n +=++=+, 根据中点坐标公式可得,20815x m n =+,0815y m =,又直线MN 与圆C 21=,即22(6)1m n m --=+①,依题意,直线C 2P 与直线MN 垂直,则28111518615m m mn -⋅=-+-, 整理得218861515n m m =--+②, 将②代入①并整理得,43264240642402250m m m m -+-+=, 降次化简可得,32(43)(16482075)0m m m m ----=③, 令32()16482075g m m m m =---,则222()48962048(1)68g m m m m '=--=--,因为01m <<, 所以2()48(1)680g m m '=--<,即()g m 在(0,1)单调递减,则()(0)750g m g <=-<在(0,1)上恒成立,即()=0g m 在(0,1)无解, 从而③式的解只有一个,34m =,代入②式可得,132n =, 所以,直线MN 的方程为:31342x y =+,整理得,4x -3y -26=0. 故选:D.3.已知1F ,2F 是椭圆和双曲线的公共焦点,P 是它们的一个公共点,且123F PF π∠=,记椭圆和双曲线的离心率分别为1e ,2e ,则221213e e +的值为( ) A .1 B .2512C .4D .16【答案】C【解析】如图,设椭圆的长半轴长为1a ,双曲线的半实轴长为2a ,则根据椭圆及双曲线的定义1211222,2PF PF a PF PF a +=-=,112212,PF a a PF a a ∴=+=-, 设12122,3F F c F PF π=∠=,则在12PF F ∆中由余弦定理得()()()()2221212121242cos3c a a a a a a a a π=++--+-,∴化简2221234a a c +=,该式变成2221314e e +=,故选: C.4.已知双曲线2221(0)x y a a -=>的离心率为233,抛物线22(0)y px p =>的焦点与双曲线的右焦点F重合,其准线与双曲线交于点(),0,2M M N y MF FQ >=,点R 在x 轴上.若||||RN RQ -最大,则点R 的坐标为( ) A .(6,0) B .(8,0)C .(9,0)D .(10,0)【答案】D【解析】因为双曲线2221(0)x y a a -=>的离心率为233,即233c a =,又221a c +=,所以3,2a c ==,即(20)F ,, 因此抛物线的准线方程为2x =-,联立22133(2,),(2,)3332x y M N x ⎧-=⎪⇒---⎨⎪=-⎩, 设(,)Q x y ,由2MF FQ =可得()()2(2)223(4,)360203x Q y ⎧--=-⎪⇒-⎨-=-⎪⎩, 结合下图可知,当R 点运动到R ',即,,N Q R 三点共线时,||||RN RQ -最大,设此时(,0)R r ',则有//NQ QR ',即33363610424r r +=⇒=+-, 因此(10,0)R , 故选:D.5.已知抛物线2:4C y x =和点(2,0)D ,直线2x ty =-与抛物线C 交于不同两点A ,B ,直线BD 与抛物线C 交于另一点E .给出以下判断: ①以BE 为直径的圆与抛物线准线相离; ②直线OB 与直线OE 的斜率乘积为2-;③设过点A ,B ,E 的圆的圆心坐标为(,)a b ,半径为r ,则224a r -=. 其中,所有正确判断的序号是( ) A .①② B .①③C .②③D .①②③【答案】D【解析】如图,设F 为抛物线C 的焦点,以线段BE 为直径的圆为M ,则圆心M 为线段BE 的中点.设B ,E 到准线的距离分别为1d ,2d ,M 的半径为R ,点M 到准线的距离为d ,显然B ,E ,F 三点不共线, 则12||||||222d d BF EF BE d R ++==>=.所以①正确. 由题意可设直线DE 的方程为2x my =+, 代入抛物线C 的方程,有2480y my --=. 设点B ,E 的坐标分别为()11,x y ,()22,x y , 则124y y m +=,128y y =-.所以()()()21212121222244x x my my m y y m y y =++=+++=.则直线OB 与直线OE 的斜率乘积为12122y y x x =-.所以②正确. 将2x ty =-代入抛物线C 的方程可得,18A y y =,从而,2A y y =-.根据抛物线的对称性可知,A ,E 两点关于x 轴对称,所以过点A ,B ,E 的圆的圆心N 在x 轴上.由上,有124y y m +=,21244x x m +=+,则()()2224212121212||44164832BE x x x x y y y y m m =+-++-=++.所以,线段BE 的中垂线与x 轴的交点(即圆心N )横坐标为224m +,所以224a m =+.于是,222222421212||||244128222BE x x y y r MN m m m ++⎛⎫⎛⎫⎛⎫=+=+-++++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 代入21244x x m +=+,124y y m +=,得24241612r m m =++, 所以()()22224224416124a r m m m -=+-++=.所以③正确.故选:D 6.已知(0,3)A ,若点P 是抛物线28x y =上任意一点,点Q 是圆22(2)1x y +-=上任意一点,则2||||PA PQ 的最小值为( ) A .434-B .221-C .232-D .421+ 【答案】A【解析】设点,由于点P 是抛物线上任意一点,则20008(0)x y y =≥, 点(0,3)A ,则22222000000(3)8(3)29PA x y y y y y =+-=+-=++,由于点Q 是圆22(2)1x y +-=上任意一点,所以要使2||PA PQ 的值最小,则PQ 的值要最大,即点P 到圆心的距离加上圆的半径为PQ 的最大值,则22200000max (2)18(2)13PQ x y y y y =+-=+-=+ ,∴22002000000()4()12||129333)3(3243y y y y P P y y y Q y A -++++≥==+++++-+, 0000333(31212()2())43y y y y +++⋅++≥= ∴2||PA PQ的最小值为34, 故答案选A .7.以正方形的四个顶点分别作为椭圆的两个焦点和短轴的两个端点,A ,B ,M 是椭圆上的任意三点(异于椭圆顶点),若存在锐角θ,使cos sin OM OA OB θθ=⋅+⋅,(0为坐标原点)则直线OA ,OB 的斜率乘积为___.【答案】12-或-2【解析】由题意可设椭圆方程为2222x y 12b b+=, 又设A (1x ,1y ),B (2x ,2y ),()1212OM cos θOA sin θOB M cos θx sin θx cos θy sin θy =⋅+⋅⇒⋅+⋅⋅+⋅, 因为M 点在该椭圆上,∴()()22121222cos θx sin θx cos θy sin θy 12b b ⋅+⋅⋅+⋅+=,则12121222122sin θcos θ2sin θcos θ102b b 2x x y y y y x x ⋅⋅+=⇒=- 又因为A 、B 点在也该椭圆上, ∴221122x y 12b b +=,222222x y 12b b+= ∴1x 12<<,即直线OA 、OB 的斜率乘积为12-, 同理当椭圆方程为2222y x 12b b+=时直线OA 、OB 的斜率乘积为﹣2. 故答案为12-或﹣2. 8.在平面直角坐标系xOy 中,椭圆()222139x y a a +=>与为双曲线22214x y m -=有公共焦点1F ,2F .设P 是椭圆与双曲线的一个交点,则12PF F △的面积是_____________.【答案】6.【解析】根据对称性,不妨设P 在第一象限.由题设可知()()22221249444F F a m c =-=+=.即2213a m -=,229a c -=,224c m -=.根据椭圆与双曲线的定义得,在12PF F △中,由余弦定理得 ()()222222222222513a c c m a m c a m a m ---+-===--. 所以,1212sin 13F PF ∠=,()122212121112sin 62213PF F S PF PF F PF a m =⋅∠=⨯-⨯⋅⋅=△.故答案为:69.已知1F ,2F 是双曲线22:1259x y Γ-=的左、右焦点,点P 为Γ上异于顶点的点,直线l 分别与以1PF ,2PF 为直径的圆相切于A ,B 两点,若向量AB ,12F F 的夹角为θ,则cos θ=___________.【答案】33434【解析】如图,设以PF 1,PF 2为直径的圆的圆心分别为C ,D ,连接AC ,BD ,过D 作DE ⊥AC 于点E ,连接CD ,则22||||||DE CD CE =-,因为直线AB 是圆C 和圆D 的公切线,且切点分别是A ,B ,所以AC ⊥AB ,BD ⊥AB ,则四边形ABDE 是矩形,所以|AB |=|DE |,|AE |=|BD |. 且1||2PF AC =,2||2PF BD =,易知|CE |=|AC |-|AE |=|AC |-|BD |=1222PF PF -, 根据双曲线的定义知,|PF 1|-|PF 2|=10,所以|CE |=5. 因为12||342F F CD ==222||||+||CD CE DE =|可得||3DE =, 即|AB |=3,因为向量12,AB F F 的夹角θ即为,ED CD 的夹角,所以||334cos ||3434DE CD θ==.334.10.在直角坐标系xOy 中,双曲线22221x y a b -=(00a b >>,)的离心率2e >,其渐近线与圆22(2)4x y +-= 交x 轴上方于A B ,两点,有下列三个结论:①||||OA OB OA OB →→→→-<+ ;②||OA OB →→-存在最大值;③ ||6OA OB →→+>.则正确结论的序号为_______.【答案】①③ 【解析】21()23c b b e a a a==+>⇒>,∴60AOB ∠<,对①,根据向量加法的平行四边形法则,结合60AOB ∠<,可得||||OA OB OA OB →→→→-<+成立,故①正确; 对②,||||OA OB AB →→-=,由于60AOB ∠<,∴AOB ∠没有最大值,∴||AB 没有最大值, 故②错误;对③,当60AOB ∠=时,||||22cos 3023OA OB ==⋅= ∴21||12122362OA OB OA OB →→+=++⋅⋅⋅=,又60AOB ∠<,∴2||36OA OB →→+>, ∴,故③正确;故答案为:①③.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题22:圆锥曲线高考真题江苏卷(解析版)
一、填空题
1.在平面直角坐标系xOy 中,若双曲线2
2
21(0)y x b b
-=>经过点(3,4),则该双曲
线的渐近线方程是_____.
【答案】y =. 【分析】
根据条件求b ,再代入双曲线的渐近线方程得出答案. 【详解】
由已知得2
2
2431b
-=,
解得b =b =
因为0b >,所以b =因为1a =,
所以双曲线的渐近线方程为y =. 【点睛】
双曲线的标准方程与几何性质,往往以小题的形式考查,其难度一般较小,是高考必得分题.双曲线渐近线与双曲线标准方程中的,a b 密切相关,事实上,标准方程中化1为0,即得渐近线方程.
2.在平面直角坐标系xOy 中,若双曲线2
2x a
﹣25y =1(a >0)的一条渐近线方程为
y=
2
x ,则该双曲线的离心率是____. 【答案】32
【分析】
根据渐近线方程求得a ,由此求得c ,进而求得双曲线的离心率. 【详解】
双曲线22215x y a -=,故b =由于双曲线的一条渐近线方程为y x =,即
22
b a a =⇒=
,所以3c ===,所以双曲线的离心率为32c a =.
故答案为:3
2
【点睛】
本小题主要考查双曲线的渐近线,考查双曲线离心率的求法,属于基础题.
3.在平面直角坐标系xOy 中,若双曲线22
221(0,0)x y a b a b
-=>>的右焦点(c,0)F 到一
,则其离心率的值是________. 【答案】2 【解析】
分析:先确定双曲线的焦点到渐近线的距离,再根据条件求离心率. 详解:因为双曲线的焦点(c,0)F 到渐近线,b
y x a
=±
即0bx ay ±=
的距离为,bc
b c =
=
所以b =,因此22222231,44a c b c c c =-=-=1
, 2.2
a c e ==
点睛:双曲线的焦点到渐近线的距离为b ,焦点在渐近线上的射影到坐标原点的距离为a .
4.在平面直角坐标系xOy 中,双曲线2
213
x y -= 的右准线与它的两条渐近线分
别交于点
P ,Q ,其焦点是F 1 ,F 2 ,则四边形F 1 P F 2 Q 的面积是________.
【答案】【解析】
右准线方程为10x =
=,
渐近线方程为3y x =±,
设(1010P ,
则(
1010Q
,1(F
,2F
,则10
S == 点睛:(1)已知双曲线方程22221x y a b -=求渐近线:22220x y b y x a b a -=⇒=±;
(2)已知渐近线y mx =可设双曲线方程为222m x y λ-=;(3)双曲线的。