现代分子生物学要点总结(朱玉贤版)

合集下载

分子生物学总结(朱玉贤版)(2020年10月整理).pdf

分子生物学总结(朱玉贤版)(2020年10月整理).pdf

结合着下载的资料复习吧~~~~绪论分子生物学的发展简史Schleiden和Schwann提出“细胞学说”孟德尔提出了“遗传因子”的概念、分离定律、独立分配规律Miescher首次从莱茵河鲑鱼精子中分离出DNAMorgan基因存在于染色体上、连锁遗传规律Avery证明基因就是DNA分子,提出DNA是遗传信息的载体McClintock首次提出转座子或跳跃基因概念Watson和Crick提出DNA双螺旋模型Crick提出了“中心法则”Meselson与Stah用N重同位素证明了DNA复制是一种半保留复制Jacob和Monod提出了著名的乳糖操纵子模型Arber首次发现DNA限制性内切酶的存在Temin和Baltimore发现在病毒中存在以RNA为模板,逆转录成DNA的逆转录酶哪几种经典实验证明了DNA是遗传物质? (Avery等进行的肺炎双球菌转化实验、Hershey 利用放射性同位素35S和32P分别标记T2噬菌体的蛋白质外壳和DNA)第二章染色体与DNA第一节染色体一、真核细胞染色体的组成DNA:组蛋白:非组蛋白:RNA = 1:1:(1-1.5):0.05 (一)蛋白质(组蛋白、非组蛋白)(1)组蛋白:H1、H2A、H2B、H3、H4功能:①核小体组蛋白(H2A、H2B、H3、H4)作用是将DNA分子盘绕成核小体②不参加核小体组建的组蛋白H1,在构成核小体时起连接作用(2)非组蛋白:包括以DNA为底物的酶、作用于组蛋白的酶、RNA聚合酶等。

常见的有(HMG蛋白、DNA结合蛋白)二、染色质染色体:分裂期由染色质聚缩形成。

染色质:线性复合结构,间期遗传物质存在形式。

常染色质(着色浅)具间期染色质形态特征和着色特征染色质异染色质(着色深)结构性异染色质兼性异染色质(在整个细胞周期内都处于凝集状态)(特定时期处于凝集状态)三、核小体由H2A、H2B、H3、H4各2 分子组成的八聚体和绕在八聚体外的DNA、一分子H1组成。

生物学考研资料课后答案朱玉贤《现代分子生物学》(第5版)笔记和课后习题

生物学考研资料课后答案朱玉贤《现代分子生物学》(第5版)笔记和课后习题

朱玉贤《现代分子生物学》(第5版)笔记和课后习题(含考研真题)详解完整版>精研学习网>无偿试用20%资料全国547所院校视频及题库资料考研全套>视频资料>课后答案>往年真题>职称考试试读(部分内容)隐藏第1章绪论1.1复习笔记【知识概览】【重难点归纳】一、分子生物学概述分子生物学是从分子水平研究生物结构、组织和功能的一门学科,以核酸、蛋白质等生物大分子的结构、形态及其在遗传信息和细胞信息传递中的作用和功能为研究对象。

1进化论1859年,达尔文提出“物竞天择,适者生存”的进化论思想。

2细胞学说(1)细胞的发现17世纪末叶,荷兰的Leeuwenhoek用自制的世界上第一架光学显微镜,首次发现了单细胞生物。

(2)细胞学说的建立19世纪德国人Schleiden和Schwann提出细胞学说。

其基本内容为:①细胞是有机体,一切动植物都是由细胞发育而来,并由细胞和细胞产物所构成。

②细胞是一个相对独立的单位,既有它“自己”的生命,又对与其他细胞共同组成的整体的生命起作用。

③新的细胞可以通过已存在的细胞繁殖产生。

3经典遗传学①孟德尔(Gregor Mendel)发现并提出遗传学定律:分离定律和自由组合定律。

②摩尔根(Morgan)提出遗传学第三定律:连锁交换定律。

4DNA的发现(1)肺炎链球菌转化实验①1928年,英国科学家Griffith等人通过肺炎链球菌转化感染小鼠实验提出“转化因子”。

②1944年,Avery证明DNA是遗传物质。

(2)噬菌体侵染实验1952年,Hershey和Chase通过噬菌体侵染细菌实验证明DNA是遗传物质。

二、分子生物学的发展简史本部分只列出部分常考的重要事件,如表1-1所示。

表1-1分子生物学发展的重要事件三、分子生物学主要研究内容现代分子生物学研究内容主要包括:DNA重组技术;基因表达调控研究;结构分子生物学;基因组、功能基因组与生物信息学。

分子生物学课件整理朱玉贤

分子生物学课件整理朱玉贤

1、广义分子生物学:在分子水平上研究生命本质的科学,其研究对象是生物大分子的结构和功能。

22、狭义分子生物学:即核酸(基因)的分子生物学,研究基因的结构和功能、复制、转录、翻译、表达调控、重组、修复等过程,以及其中涉及到与过程相关的蛋白质和酶的结构与功能3、基因:遗传信息的基本单位。

编码蛋白质或RNA等具有特定功能产物的遗传信息的基本单位,是染色体或基因组的一段DNA序列(对以RNA作为遗传信息载体的RNA病毒而言则是RNA序列)。

4、基因:基因是含有特定遗传信息的一段核苷酸序列,包含产生一条多肽链或功能RNA所必需的全部核苷酸序列。

5、功能基因组学:是依附于对DNA序列的了解,应用基因组学的知识和工具去了解影响发育和整个生物体的特定序列表达谱。

6、蛋白质组学:是以蛋白质组为研究对象,研究细胞内所有蛋白质及其动态变化规律的科学。

7、生物信息学:对DNA和蛋白质序列资料中各种类型信息进行识别、存储、分析、模拟和转输8、蛋白质组:指的是由一个基因组表达的全部蛋白质9、功能蛋白质组学:是指研究在特定时间、特定环境和实验条件下细胞内表达的全部蛋白质。

10、单细胞蛋白:也叫微生物蛋白,它是用许多工农业废料及石油废料人工培养的微生物菌体。

因而,单细胞蛋白不是一种纯蛋白质,而是由蛋白质、脂肪、碳水化合物、核酸及不是蛋白质的含氮化合物、维生素和无机化合物等混合物组成的细胞质团。

11、基因组:指生物体或细胞一套完整单倍体的遗传物质总和。

12、C值:指生物单倍体基因组的全部DNA的含量,单位以pg或Mb表示。

13、C值矛盾:C值和生物结构或组成的复杂性不一致的现象。

14、重叠基因:共有同一段DNA序列的两个或多个基因。

15、基因重叠:同一段核酸序列参与了不同基因编码的现象。

16、单拷贝序列:单拷贝顺序在单倍体基因组中只出现一次,因而复性速度很慢。

单拷贝顺序中储存了巨大的遗传信息,编码各种不同功能的蛋白质。

17、低度重复序列:低度重复序列是指在基因组中含有2~10个拷贝的序列18、中度重复序列:中度重复序列大致指在真核基因组中重复数十至数万(<105)次的重复顺序。

现代分子生物学笔记朱玉贤

现代分子生物学笔记朱玉贤

第一章绪论分子生物学分子生物学的基本含义 (p8)分子生物学是研究核酸、蛋白质等所有生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学,是人类从分子水平上真正揭开生物世界的奥秘,由被动地适应自然界转向主动地改造和重组自然界的基础学科。

分子生物学与其它学科的关系分子生物学是由生物化学、生物物理学、遗传学、微生物学、细胞学、以至信息科学等多学科相互渗透、综合融会而产生并发展起来的,凝聚了不同学科专长的科学家的共同努力。

它虽产生于上述各个学科,但已形成它独特的理论体系和研究手段,成为一个独立的学科。

生物化学与分子生物学关系最为密切 :生物化学是从化学角度研究生命现象的科学,它着重研究生物体内各种生物分子的结构、转变与新陈代谢。

传统生物化学的中心内容是代谢,包括糖、脂类、氨基酸、核苷酸、以及能量代谢等与生理功能的联系。

分子生物学则着重阐明生命的本质----主要研究生物大分子核酸与蛋白质的结构与功能、生命信息的传递和调控。

细胞生物学与分子生物学关系也十分密切:传统的细胞生物学主要研究细胞和亚细胞器的形态、结构与功能。

探讨组成细胞的分子结构比单纯观察大体结构能更加深入认识细胞的结构与功能,因此现代细胞生物学的发展越来越多地应用分子生物学的理论和方法。

分子生物学则是从研究各个生物大分子的结构入手,但各个分子不能孤立发挥作用,生命绝非组成成分的随意加和或混合,分子生物学还需要进一步研究各生物分子间的高层次组织和相互作用,尤其是细胞整体反应的分子机理,这在某种程度上是向细胞生物学的靠拢。

第一章序论1859年发表了《物种起源》,用事实证明“物竞天择,适者生存”的进化论思想。

指出:物种的变异是由于大自然的环境和生物群体的生存竞争造成的,彻底否定了“创世说”。

达尔文第一个认识到生物世界的不连续性。

意义:达尔文关于生物进化的学说及其唯物主义的物种起源理论,是生物科学史上最伟大的创举之一,具有不可磨灭的贡献。

细胞学说细胞学说的建立及其意义德国植物学家施莱登和德国动物学家施旺共同提出:一切植物、动物都是由细胞组成的,细胞是一切动植物的基本单位。

朱玉贤《现代分子生物学》(第4版)笔记和课后习题(含考研真题)详解

朱玉贤《现代分子生物学》(第4版)笔记和课后习题(含考研真题)详解

目录第1章绪论 (4)1.1复习笔记 (4)1.2课后习题详解 (5)1.3名校考研真题详解 (7)第2章染色体与DNA (10)2.1复习笔记 (10)2.2课后习题详解 (17)2.3名校考研真题详解 (22)第3章生物信息的传递(上)——从DNA到RNA (36)3.1复习笔记 (36)3.2课后习题详解 (44)3.3名校考研真题详解 (49)第4章生物信息的传递(下)——从mRNA到蛋白质 (62)4.1复习笔记 (62)4.2课后习题详解 (71)4.3名校考研真题详解 (78)第5章分子生物学研究法(上)——DNA、RNA及蛋白质操作技术 (90)5.1复习笔记 (90)5.2课后习题详解 (96)5.3名校考研真题详解 (101)第6章分子生物学研究法(下)——基因功能研究技术 (114)6.1复习笔记 (114)6.2课后习题详解 (120)6.3名校考研真题详解 (124)第7章原核基因表达调控 (132)7.1复习笔记 (132)7.2课后习题详解 (138)7.3名校考研真题详解 (140)第8章真核基因表达调控 (147)8.1复习笔记 (147)8.2课后习题详解 (154)8.3名校考研真题详解 (158)第9章疾病与人类健康 (168)9.1复习笔记 (168)9.2课后习题详解 (174)9.3名校考研真题详解 (177)第10章基因与发育 (182)10.1复习笔记 (182)10.2课后习题详解 (183)10.3名校考研真题详解 (185)第11章基因组与比较基因组学 (186)11.1复习笔记 (186)11.2课后习题详解 (189)11.3名校考研真题详解 (192)第1章绪论1.1复习笔记一、分子生物的概念分子生物学是从分子水平研究生物结构、组织和功能的一门学科,以核酸、蛋白质等生物大分子的结构、形态及其在遗传信息和细胞信息传递中的作用和功能为研究对象。

朱玉贤分子生物学重点

朱玉贤分子生物学重点

朱玉贤分子生物学重点等位基因:同一座位存在的两个以上不同状态的基因。

变性:双链DNA因加温, 极端pH, 尿素, 酰胺等变成单链DNA的过程。

复性:变性DNA在一定条件下恢复天然DNA的结构的过程。

熔点:OD增加值的中点温度。

增色效应:由于DNA变性而引起的光吸收的增加称为增色效应。

1.DNA与RNA结构上的主要区别是什么?1)核糖2)碱基3)单链/双链4)稳定性5)数量和长度2.Watson & Crick DNA 双螺旋模型的要点?1)脱氧核糖和磷酸基通过3’,5’磷酸二酯键交互连接,成为螺旋链的骨架。

螺旋的直径20Å。

主链处于螺旋的外侧,核糖平面与螺旋轴平行,碱基处于螺旋的内侧。

2)嘌呤和嘧啶相配,碱基平面与螺旋轴基本垂直。

3)螺距为34 Å,包含10个核苷酸。

4)双螺旋中存在大沟和小沟。

5)蛋白质因子与DNA 的特异结合依赖于氨基酸与DNA 间的氢键的形成。

6)蛋白质因子沿大沟与DNA形成专一性结合的机率与多样性高于沿小沟的结合。

3.影响DNA双螺旋结构稳定性的主要因素有那些?1)氢键,碱基堆积力(范德华力,疏水作用),磷酸酯键,核苷酸序列(从嘌呤到嘧啶的方向的碱基堆集作用显著大于同样组成的嘧啶到嘌呤方向的碱基堆集作用)2)磷酸基团间的静电斥力4.了解超螺旋的概念(83), 区分DNA拓扑异构酶I 和 II的不同作用机理。

(91)双螺旋线状分子再度螺旋化成为超螺旋结构。

Top I催化DNA链的断裂和重新连接,每次只作用于一条链,消除负超螺旋。

Top II同时断裂并连接双股DNA链,通常需要能量辅因子ATP。

分二类,DNA 旋转酶引入负超螺旋,另一类转变超螺旋DNA成为没有超螺旋的松弛形式。

Top I ~ Top II 含量的平衡严格控制体内负超螺旋维持在5%水平,保证DNA 的各种遗传活动。

2基因组:C值:单倍体基因组总DNA 的含量。

C值矛盾:1)生物体进化程度高低与大C值不成明显相关(非线性)2)亲缘关系相近的生物大C值相差较大3)一种生物内大C值与小c值相差极大。

分子生物学课件重点整理 朱玉贤

分子生物学课件重点整理      朱玉贤

分子生物学课件重点整理朱玉贤分子生物学课件重点整理--朱玉贤第二章染色体和DNA染色质是一种纤维状结构,称为染色质丝,它是由最基本的单元核小体排列而成。

原核生物(prokaryote):dna形成一系列的环状附着在非组蛋白上形成类核.蛋白质由非组蛋白和组蛋白(h1,h2a,h2b,h3,h4)dna和组蛋白构成核小体。

组蛋白的一般特性:p24①进化上的保守性②无组织特异性③ 肽链中氨基酸分布的不对称性:碱性氨基酸集中在N端链的一半。

④ 组蛋白可修饰性:甲基化、乙基化、磷酸化和ADP核糖基化。

⑤h5组蛋白的特殊性:富含赖氨酸(24%)(鸟类、鱼类及两栖类红细胞染色体不含h1而带有h5)组蛋白的可修饰性甲基化、乙酰化、磷酸化和ADP核糖基化可在细胞周期的特定时间发生。

H3和H4的改性是常见的。

H2B具有乙酰化,H1具有磷酸化。

所有这些修饰作用都有一个共同的特点,即降低组蛋白所携带的正电荷。

这些组蛋白修饰的意义:一是改变染色体的结构,直接影响转录活性;二是核小体表面发生改变,使其他调控蛋白易于和染色质相互接触,从而间接影响转录活性。

2、dna1)变性是指DNA双链的氢键断裂,最终完全变成单链的过程,称为变性。

■ 增色效应在变性过程中,260nm的紫外吸收值先缓慢上升,达到一定温度后突然上升,称为增色效应。

■融解温度(meltingtemperature,tm)变性过程紫外线吸收值增加的中点称为融解温度。

生理条件下为85-95℃影响因素:G+C含量、pH值、离子强度、尿素、甲酰胺等■复性(renaturation)热变性的dna缓慢冷却,单链恢复成双链。

■ 减色效应:随着DNA的复性,260 nm紫外光的吸收值降低。

2)c值反常现象(c-valueparadox)c值是一种生物的单倍体基因组dna的总量。

真核细胞基因组的最大特点是它含有大量的重复序列,而且功能dna序列大多被不编码蛋白质的非功能dna所隔开,这就是著名的dc值反常现象‖。

(NEW)朱玉贤《现代分子生物学》(第5版)笔记和课后习题(含考研真题)详解

(NEW)朱玉贤《现代分子生物学》(第5版)笔记和课后习题(含考研真题)详解

4.3 名校考研真题详解 第5章 分子生物学研究法(上)——DNA、RNA及蛋白质操作技术
5.1 复习笔记 5.2 课后习题详解 5.3 名校考研真题详解 第6章 分子生物学研究法(下)——基因功能研究技术 6.1 复习笔记 6.2 课后习题详解 6.3 名校考研真题详解 第7章 原核基因表达调控 7.1 复习笔记 7.2 课后习题详解 7.3 名校考研真题详解 第8章 真核基因表达调控 8.1 复习笔记 8.2 课后习题详解 8.3 名校考研真题详解
② T2噬菌体感染大肠杆菌实验
a.在分别含有35S和32P的培养基中培养大肠杆菌。
b.用上述大肠杆菌培养T2噬菌体,分别制备含35S的T2噬菌体和32P的
T2噬菌体。
c.分别用含35S的T2噬菌体和32P的T2噬菌体感染未被放射性标记的大 肠杆菌。
d.培养一段时间后,将混合液离心,检测子代噬菌体放射性。上清液 主要是噬菌体,沉淀物主要是大肠杆菌。
(4)基因组、功能基因组与生物信息学研究
基因组计划是一项国际性的研究计划,其目标是确定生物物种基因组所 携带的全部遗传信息,并确定、阐明和记录组成生物物种基因组的全部 DNA序列。
功能基因组学相对于测定DNA核苷酸序列的结构基因组学,其研究内容 是在利用结构基因组学丰富信息资源的基础上,应用大量的实验分析方 法并结合统计学和计算机分析方法来研究基因的表达、调控与功能,以 及基因间、基因与蛋白质之间和蛋白质与底物、蛋白质与蛋白质之间的 相互作用和生物的生长发育等规律。功能基因组学的研究目标是对所有 基因如何行使其职能从而控制各种生命现象的问题作出回答。
严格地说,重组DNA技术并不完全等于基因工程,因为后者还包括其他
可能使生物细胞基因组结构得到改造的体系。

现代分子生物学朱玉贤

现代分子生物学朱玉贤

现代分子生物学朱玉贤一、教学内容本节课的教学内容选自现代分子生物学教材,主要涵盖第五章“基因表达的调控”的相关内容。

具体包括:基因表达的概念、转录和翻译的过程、调控元件的作用及其在生物体内的意义。

二、教学目标1. 让学生理解基因表达的概念,掌握转录和翻译的过程。

2. 培养学生了解调控元件的作用,理解基因表达调控在生物体内的意义。

3. 提高学生运用分子生物学知识分析问题和解决问题的能力。

三、教学难点与重点重点:基因表达的概念、转录和翻译的过程、调控元件的作用。

难点:基因表达调控的机制和意义。

四、教具与学具准备教具:多媒体教学设备、黑板、粉笔。

学具:教材、笔记本、彩色笔。

五、教学过程1. 实践情景引入:通过介绍医学领域中基因治疗的应用,引发学生对基因表达调控的兴趣。

2. 知识讲解:详细讲解基因表达的概念、转录和翻译的过程,以及调控元件的作用。

3. 例题讲解:分析具体的基因表达调控实例,引导学生理解调控机制。

4. 随堂练习:设计相关的练习题目,巩固所学知识。

5. 小组讨论:分组讨论基因表达调控在生物体内的意义,分享各自的见解。

六、板书设计板书内容主要包括:基因表达的概念、转录和翻译的过程、调控元件的作用、基因表达调控的意义。

七、作业设计1. 作业题目:(1)简述基因表达的概念及其意义。

(2)请画出转录和翻译的过程示意图。

(3)举例说明调控元件在基因表达调控中的作用。

2. 答案:(1)基因表达是指基因在生物体内转化为蛋白质的过程,其意义在于实现生物体的遗传信息传递和生物学功能的执行。

(2)转录是指DNA模板链上的核苷酸序列转化为mRNA的过程,翻译是指mRNA上的核苷酸序列转化为蛋白质的过程。

(3)调控元件是指在基因表达过程中,能够影响基因转录和翻译的DNA序列,如启动子、增强子等。

八、课后反思及拓展延伸本节课通过实践情景引入、知识讲解、例题讲解、随堂练习、小组讨论等形式,使学生掌握了基因表达的概念、转录和翻译的过程,以及调控元件的作用。

[VIP专享]现代分子生物学笔记朱玉贤

[VIP专享]现代分子生物学笔记朱玉贤

第一章绪论分子生物学分子生物学的基本含义 (p8)分子生物学是研究核酸、蛋白质等所有生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学,是人类从分子水平上真正揭开生物世界的奥秘,由被动地适应自然界转向主动地改造和重组自然界的基础学科。

分子生物学与其它学科的关系分子生物学是由生物化学、生物物理学、遗传学、微生物学、细胞学、以至信息科学等多学科相互渗透、综合融会而产生并发展起来的,凝聚了不同学科专长的科学家的共同努力。

它虽产生于上述各个学科,但已形成它独特的理论体系和研究手段,成为一个独立的学科。

生物化学与分子生物学关系最为密切 :生物化学是从化学角度研究生命现象的科学,它着重研究生物体内各种生物分子的结构、转变与新陈代谢。

传统生物化学的中心内容是代谢,包括糖、脂类、氨基酸、核苷酸、以及能量代谢等与生理功能的联系。

分子生物学则着重阐明生命的本质----主要研究生物大分子核酸与蛋白质的结构与功能、生命信息的传递和调控。

细胞生物学与分子生物学关系也十分密切:传统的细胞生物学主要研究细胞和亚细胞器的形态、结构与功能。

探讨组成细胞的分子结构比单纯观察大体结构能更加深入认识细胞的结构与功能,因此现代细胞生物学的发展越来越多地应用分子生物学的理论和方法。

分子生物学则是从研究各个生物大分子的结构入手,但各个分子不能孤立发挥作用,生命绝非组成成分的随意加和或混合,分子生物学还需要进一步研究各生物分子间的高层次组织和相互作用,尤其是细胞整体反应的分子机理,这在某种程度上是向细胞生物学的靠拢。

第一章序论1859年发表了《物种起源》,用事实证明“物竞天择,适者生存”的进化论思想。

指出:物种的变异是由于大自然的环境和生物群体的生存竞争造成的,彻底否定了“创世说”。

达尔文第一个认识到生物世界的不连续性。

意义:达尔文关于生物进化的学说及其唯物主义的物种起源理论,是生物科学史上最伟大的创举之一,具有不可磨灭的贡献。

细胞学说细胞学说的建立及其意义德国植物学家施莱登和德国动物学家施旺共同提出:一切植物、动物都是由细胞组成的,细胞是一切动植物的基本单位。

分子生物学课件重点整理__朱玉贤

分子生物学课件重点整理__朱玉贤

分子生物学课件重点整理__朱玉贤一, 名词解释冈崎片段:在DNA复制过程中,前导链能连续合成,而滞后链只能是断续的合成5→'3 '的多个短片段,这些不连续的小片段称为冈崎片段。

复制子:从复制原点到终点,组成一个复制单位,叫复制子复制叉:复制时,解链酶等先将DNA的一段双链解开,形成复制点,这个复制点的形状象一个叉子,故称为复制叉前导链:在DNA复制时,合成方向与复制叉移动的方向一致并连续合成的链为前导链;滞后链:合成方向与复制叉移动的方向相反,形成许多不连续的片段,最后再连成一条完整的DNA链为滞后链。

编码链:与mRNA 序列相同的那条DNA链称为编码链;模板链:将另一条根据碱基互补原则指导mRNA合成的DNA链称为模板链。

结构基因:DNA分子上转录出RNA的区段,称为结构基因转录单元:一段从启动子开始至终止子结束的DNA序列。

启动子:指能被RNA聚合酶识别、结合并启动基因转录的一段DNA序列。

TATA区:酶的紧密结合位点(富含AT碱基,利于双链打开)TTGACA区:提供了RNA聚合酶全酶识别的信号终止子:位于基因的末端,在转录终止点之前有一段回文序列(反向重复序列)约6-20bp。

顺式作用元件:影响自身基因表达活性的非编码DNA序列。

例:启动子、增强子、弱化子增强子:在启动区存在的能增强或促进转录的起始的DNA序列。

转录因子:能直接、间接辨认和结合转录上游区段DNA的蛋白质翻译:指将mRNA链上的核甘酸从一个特定的起始位点开始,按每三个核甘酸代表一个氨基酸的原则,依次合成一条多肽链的过程。

沉默子Silencer:某些基因含有负性调节元件——沉默子,当其结合特异蛋白因子时,对基因转录起阻遏作用 . 绝缘子insulator:通常位于启动子与正调控元件(增强子)或负调控因子(为异染色质)之间的一种调控序列。

其明显特征是能够绝缘或保护启动子免受上游增强子的影响。

负调控:在没有调节蛋白质存在时基因是表达的,加入某种调节蛋白质后基因活性就被关闭,这样的控制系统就叫做负控系统。

分子生物学(朱玉贤第四版)复习纲要

分子生物学(朱玉贤第四版)复习纲要

绪论一、名词1、分子生物学Molecular Biology 2、中心法则Central Dogma 二、问答1、简述孟德尔、摩尔根、Avery、沃森和克里克、雅各布和莫诺,尼伦伯格和科拉纳等人对分子生物学发展的贡献2、早期验证遗传物质是DNA的实验有哪些,具体过程是?3、分子生物研究的内容包括哪些?l DNA的复制、转录与翻译l DNA重组技术l基因表达调控研究l生物大分子的结构功能研究—结构分子生物学l基因(组)、功能基因(组)与生物信息学研究第1章、染色体与DNA第一节、染色体与DNA名词1、DNA双螺旋:两条多核苷酸链反向平行盘绕所生成的双链结构. 2、DNA三级结构:DNA 双螺旋进一步扭曲盘绕形成的特定空间结构。

3、核小体:是由核心颗粒(H2A、H2B、H3、H4各两个分子生成的八聚体)和连接区DNA各两个分子生成的八聚体)和连接区(大约200bpDNA)组成4、卫星DNA:又称随体DNA。

因为真核细胞DNA的一部分是不被转录的异染色质成分,其碱基组成与主体DNA不同,因而可用密度梯度离心。

卫星DNA通常是高度串联重复的DNA 5、端粒(Telomere):是位于真核细胞线性染色体末端的特殊结构,由一段重复串联的DNA序列与端粒结合蛋白构成. 6、端粒T环结构:端粒形成T环结构使染色体末端封闭起来,免遭破坏. 7、单顺反子:真核基因转录产物为单顺反子,即一条mRNA模板只含有一个翻译起始点和一个终止点,因而一个基因编码一条多肽链或RNA链。

8、断裂基因(spli ng gene):真核生物结构基因,由若干个编码区和非编码区互相间隔开但又连续镶嵌而成,去除非编码区再连接后,可翻译出由连续氨基酸组成的完整蛋白质,这些基因称为断裂基因9、间隔基因(Interrupted gene):由于这组基因发生突变时会导致果蝇体节模式发生间隔缺失现象,所以将它们称为间隔基因10、外显子(Exon) 是真核生物基因的一部分,它在剪接(Splicing)后仍会被保存下来,并可在蛋白质生物合成过程中被表达为蛋白质11、内含子(Intron ) 在转录后的加工中,从最初的转录产物除去的内部的核苷酸序列12、单核苷酸多态性Single Nucleo de Polymorphism,SNP:主要是指在基因组水平上由单个核苷酸的变异所引起的DNA序列多态性。

现代分子生物学(朱贤玉)

现代分子生物学(朱贤玉)

分子生物学笔记完全版第一章基因的结构第一节基因和基因组一、基因(gene)是合成一种功能蛋白或RNA分子所必须的全部DNA序列.一个典型的真核基因包括①编码序列—外显子(exon)②插入外显子之间的非编码序列—内合子(intron)③5'-端和3'-端非翻译区(UTR)④调控序列(可位于上述三种序列中)绝大多数真核基因是断裂基因(split-gene),外显子不连续。

二、基因组(genome)一特定生物体的整套(单倍体)遗传物质的总和,基因组的大小用全部DNA的碱基对总数表示。

人基因组3X1 09(30亿bp),共编码约10万个基因。

每种真核生物的单倍体基因组中的全部DNA量称为C值,与进化的复杂性并不一致(C-value Paradox)。

人类基因组计划(human genome project, HGP)基因组学(genomics),结构基因组学(structural genomics)和功能基因组学(functional genomics)。

蛋白质组(proteome)和蛋白质组学(proteomics)第二节真核生物基因组一、真核生物基因组的特点:,①真核基因组DNA在细胞核内处于以核小体为基本单位的染色体结构中.②真核基因组中,编码序列只占整个基因组的很小部分(2—3%),二、真核基因组中DNA序列的分类 &#8226;(一)高度重复序列(重复次数>lO5)卫星DNA(Satellite DNA)(二)中度重复序列1.中度重复序列的特点①重复单位序列相似,但不完全一样,②散在分布于基因组中.③序列的长度和拷贝数非常不均一,④中度重复序列一般具有种属特异性,可作为DNA标记.⑤中度重复序列可能是转座元件(返座子),2.中度重复序列的分类①长散在重复序列(long interspersed repeated segments.) LINES②短散在重复序列(Short interspersed repeated segments) SINESSINES:长度<500bp,拷贝数>105.如人Alu序列LINEs:长度>1000bp(可达7Kb),拷贝数104-105,如人LINEl(三)单拷贝序列(Unique Sequence)包括大多数编码蛋白质的结构基因和基因间间隔序列,三、基因家族(gene family)一组功能相似且核苷酸序列具有同源性的基因.可能由某一共同祖先基因(ancestral gene)经重复(duplication)和突变产生。

分子生物学总结(朱玉贤版)

分子生物学总结(朱玉贤版)

分子生物学总结(朱玉贤版)核小体的定位对转录有促进作用中期染色体由着丝粒、染色体臂、次缢痕、随体、端粒(由重复的寡核苷酸序列构成)5部分组成。

核型:指染色体组在有丝分裂中期的表型, 是染色体数目、大小、形态特征的总和。

第二节DNAChargaff定则:(1) 同一生物的不同组织的DNA碱基组成相同(2) 一种生物DNA碱基组成不随生物体的年龄、营养状态或者环境变化而改变(3) [A]=[T]、[G]=[C],总的嘌呤摩尔含量与总的嘧啶摩尔含量相同([A+G]=[C+T])(4)不同生物来源的DNA碱基组成不同,表现在A+T/G+C比值的不同(一)DAN的结构一级结构:四种脱氧核糖核苷酸dAMP、dGMP、dCMP、dTMP,通过3',5'-磷酸二酯键连接起来的直线形或环形多聚体。

某DNA分子的一条多核苷酸链由100个不同的碱基组成,其可能的排列方式有4^100种右手螺旋:A-DNA 、B-DNA(最常见)二级结构:双螺旋结构左手螺旋:Z-DNAB-DNA:(Watson-Crick)92%湿度下的钠盐结构碱基平面与双螺旋的长轴相垂直,碱基间符合碱基互补配对原则,相邻碱基对平面间的距离为0.34nm,双旋旋的螺距为3.4nm,每圈螺旋有10个碱基对,螺旋直径为2.0nm。

A=T(两个氢键),G=C(三个氢键),具大沟和小沟。

A-DNA:相对湿度75%以下的结构,每圈螺旋有11个碱基对,螺体较宽而短,碱基对与中心轴的倾角也不同,呈19°大沟变窄、变深,小沟变宽、变浅。

若DNA 双链中一条链被相应RNA替换,则变构为A-DNA。

(基因表达)Z-DNA:左手螺旋,螺距延长(4.5nm左右),直径变窄(1.8nm),每个螺旋含12个碱基对。

螺旋骨架呈Z字形。

(转录调控)正超螺旋(左旋、双螺旋圈数增加而拧紧)三级结构:双螺旋进一步扭曲形成超螺旋负超螺旋(右旋、减少而拧松,绝大多数)White方程:L=T+WL(Linking number):连环数或称拓扑环绕数,指cccDNA中一条链绕另一条链的总次数。

此刻分子生物学(笔记)朱玉贤第三版

此刻分子生物学(笔记)朱玉贤第三版

第一章绪论分子生物学分子生物学的大体含义(p8)分子生物学是研究核酸、蛋白质等所有生物大分子的形态、结构特征及其重要性、规律性和彼此关系的科学,是人类从分子水平上真正揭开生物世界的奥秘,由被动地适应自然界转向主动地改造和重组自然界的基础学科。

分子生物学与其它学科的关系分子生物学是由生物化学、生物物理学、遗传学、微生物学、细胞学、以至信息科学等多学科彼此渗透、综合融会而产生并进展起来的,凝聚了不同窗科专长的科学家的一路尽力。

它虽产生于上述各个学科,但已形成它独特的理论体系和研究手腕,成为一个独立的学科。

生物化学与分子生物学关系最为紧密:生物化学是从化学角度研究生命现象的科学,它着重研究生物体内各类生物分子的结构、转变与新陈代谢。

传统生物化学的中心内容是代谢,包括糖、脂类、氨基酸、核苷酸、和能量代谢等与生理功能的联系。

分子生物学则着重阐明生命的本质----主要研究生物大分子核酸与蛋白质的结构与功能、生命信息的传递和调控。

细胞生物学与分子生物学关系也十分紧密:传统的细胞生物学主要研究细胞和亚细胞器的形态、结构与功能。

探讨组成细胞的分子结构比单纯观察大体结构能加倍深切熟悉细胞的结构与功能,因此现代细胞生物学的进展愈来愈多地应用分子生物学的理论和方式。

分子生物学则是从研究各个生物大分子的结构入手,但各个分子不能孤立发挥作用,生命绝非组成成份的随意加和或混合,分子生物学还需要进一步研究各生物分子间的高层次组织和彼此作用,尤其是细胞整体反映的分子机理,这在某种程度上是向细胞生物学的靠拢。

第一章序论1859年发表了《物种起源》,用事实证明“物竞天择,适者生存”的进化论思想。

指出:物种的变异是由于大自然的环境和生物群体的生存竞争造成的,完全否定了“创世说”。

达尔文第一个熟悉到生物世界的不持续性。

意义:达尔文关于生物进化的学说及其唯物主义的物种起源理论,是生物科学史上最伟大的创举之一,具有不可磨灭的奉献。

细胞学说细胞学说的成立及其意义德国植物学家施莱登和德国动物学家施旺一路提出:一切植物、动物都是由细胞组成的,细胞是一切动植物的大体单位。

现代分子生物学要点总结(朱玉贤版)

现代分子生物学要点总结(朱玉贤版)

现代分子生物学要点总结(朱玉贤版)一、绪论两个经典实验1、肺炎球菌在老鼠体内的毒性实验:先将光滑型致病菌(S型)烧煮杀活性以后、以及活的粗糙型细菌(R型)分别侵染小鼠发现这些细菌自然丧失了治病能力;当他们将经烧煮杀死的S型细菌和活的R型细菌混合再感染小鼠时,实验小鼠每次都死亡。

解剖死鼠,发现有大量活的S型细菌。

实验表明,死细菌DNA进行了可遗传的转化,从而导致小鼠死亡。

2、T2噬菌体感染大肠杆菌:当细菌培养基中分别带有35S或32P标记的氨基酸或核苷酸,子代噬菌体就相应含有35S标记的蛋白质或32P标记的核酸。

分别用这些噬菌体感染没有放射性标记的细菌,经过1~2个噬菌体DNA复制周期后进行检测,子代噬菌体中几乎不含带35S标记的蛋白质,但含30%以上的32P标记。

说明在噬菌体传代过程中发挥作用的可能是DNA而不是蛋白质。

基因的概念:基因是产生一条多肽链或功能RNA分子所必需的全部核苷酸序列。

二、染色体与DNA嘌呤嘧啶腺嘌呤鸟嘌呤胞嘧啶尿嘧啶胸腺嘧啶染色体性质:1、分子结构相对稳定;2、能够自我复制,使亲、子代之间保持连续性;3、能指导蛋白质的合成,从而控制生命过程;4、能产生可遗传的变异。

组蛋白一般特性:1、进化上极端保守,特别是H3、H4;2、无组织特异性;3、肽链上氨基酸分布的不对称性;4、存在较普遍的修饰作用;5、富含赖氨酸的组蛋白H5非组蛋白:HMG蛋白;DNA结合蛋白;A24非组蛋白真核生物基因组DNA真核细胞基因组最大特点是它含有大量的重复序列,而且功能DNA序列大多被不编码蛋白质的非功能蛋白质所隔开。

人们把一种生物单倍体基因组DNA的总量称为C值,在真核生物中C值一般是随着生物进化而增加的,高等生物的C值一般大于低等动物,但某些两栖类的C值甚至比哺乳动物还大,这就是著名的C值反常现象。

真核细胞DNA序列可被分为3类:不重复序列、中度重复序列、高度重复序列。

真核生物基因组的特点:1、真核生物基因组庞大,一般都远大于原核生物的基因组;2、真核基因组存在大量的的重复序列;3、真核基因组的大部分为非编码序列,占整个基因组序列的90%以上,这是真核生物与细菌和病毒之间的最主要的区别;4、真核基因组的转录产物为单顺反之;5、真核基因组是断裂基因,有内含子结构;6、真核基因组存在大量的顺式元件,包括启动子、增强子、沉默子等;7、真核基因组中存在大量的DNA多态性;8、真核基因组具有端粒结构。

现代分子生物学全部重点(朱玉贤院士版)

现代分子生物学全部重点(朱玉贤院士版)

现代分子生物学笔记(朱玉贤版)现代分子生物学笔记(朱玉贤版)第一讲序论二、现代分子生物学中的主要里程碑分子生物学是研究核酸、蛋白质等所有生物大分子的形态、结构特征及其重要性、规律性和相互关系的科学,是人类从分子水平上真正揭开生物世界的奥秘,由被动地适应自然界转向主动地改造和重组自然界的基础学科。

当人们意识到同一生物不同世代之间的连续性是由生物体自身所携带的遗传物质所决定的,科学家为揭示这些遗传密码所进行的努力就成为人类征服自然的一部分,而以生物大分子为研究对像的分子生物学就迅速成为现代社会中最具活力的科学。

从1847年Schleiden和Schwann提出"细胞学说",证明动、植物都是由细胞组成的到今天,虽然不过短短一百多年时间,我们对生物大分子--细胞的化学组成却有了深刻的认识。

孟德尔的遗传学规律最先使人们对性状遗传产生了理性认识,而Morgan的基因学说则进一步将"性状"与"基因"相耦联,成为分子遗传学的奠基石。

Watson和Crick所提出的脱氧核糖酸双螺旋模型,为充分揭示遗传信息的传递规律铺平了道路。

在蛋白质化学方面,继Sumner在1936年证实酶是蛋白质之后,Sanger利用纸电泳及层析技术于1953年首次阐明胰岛素的一级结构,开创了蛋白质序列分析的先河。

而Kendrew和Perutz利用X射线衍射技术解析了肌红蛋白(myoglobin)及血红蛋白(hemoglobin)的三维结构,论证了这些蛋白质在输送分子氧过程中的特殊作用,成为研究生物大分子空间立体构型的先驱。

1910年,德国科学家Kossel第一个分离了腺嘌呤,胸腺嘧啶和组氨酸。

1959年,美国科学家Uchoa第一次合成了核糖核酸,实现了将基因内的遗传信息通过RNA翻译成蛋白质的过程。

同年,Kornberg实现了试管内细菌细胞中DNA的复制。

1962年,Watson(美)和Crick(英)因为在1953年提出DNA的反向平行双螺旋模型而与Wilk ins共获Noble生理医学奖,后者通过X射线衍射证实了Watson-Crick模型。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

现代分子生物学要点总结(朱玉贤版)一、绪论两个经典实验1、肺炎球菌在老鼠体内的毒性实验:先将光滑型致病菌(S型)烧煮杀活性以后、以及活的粗糙型细菌(R型)分别侵染小鼠发现这些细菌自然丧失了治病能力;当他们将经烧煮杀死的S型细菌和活的R型细菌混合再感染小鼠时,实验小鼠每次都死亡。

解剖死鼠,发现有大量活的S型细菌。

实验表明,死细菌DNA进行了可遗传的转化,从而导致小鼠死亡。

2、T2噬菌体感染大肠杆菌:当细菌培养基中分别带有35S或32P标记的氨基酸或核苷酸,子代噬菌体就相应含有35S标记的蛋白质或32P标记的核酸。

分别用这些噬菌体感染没有放射性标记的细菌,经过1~2个噬菌体DNA复制周期后进行检测,子代噬菌体中几乎不含带35S标记的蛋白质,但含30%以上的32P标记。

说明在噬菌体传代过程中发挥作用的可能是DNA而不是蛋白质。

基因的概念:基因是产生一条多肽链或功能RNA分子所必需的全部核苷酸序列。

二、染色体与DNA嘌呤嘧啶腺嘌呤鸟嘌呤胞嘧啶尿嘧啶胸腺嘧啶染色体性质:1、分子结构相对稳定;2、能够自我复制,使亲、子代之间保持连续性;3、能指导蛋白质的合成,从而控制生命过程;4、能产生可遗传的变异。

组蛋白一般特性:1、进化上极端保守,特别是H3、H4;2、无组织特异性;3、肽链上氨基酸分布的不对称性;4、存在较普遍的修饰作用;5、富含赖氨酸的组蛋白H5非组蛋白:HMG蛋白;DNA结合蛋白;A24非组蛋白真核生物基因组DNA真核细胞基因组最大特点是它含有大量的重复序列,而且功能DNA序列大多被不编码蛋白质的非功能蛋白质所隔开。

人们把一种生物单倍体基因组DNA的总量称为C值,在真核生物中C值一般是随着生物进化而增加的,高等生物的C值一般大于低等动物,但某些两栖类的C值甚至比哺乳动物还大,这就是著名的C值反常现象。

真核细胞DNA序列可被分为3类:不重复序列、中度重复序列、高度重复序列。

真核生物基因组的特点:1、真核生物基因组庞大,一般都远大于原核生物的基因组;2、真核基因组存在大量的的重复序列;3、真核基因组的大部分为非编码序列,占整个基因组序列的90%以上,这是真核生物与细菌和病毒之间的最主要的区别;4、真核基因组的转录产物为单顺反之;5、真核基因组是断裂基因,有内含子结构;6、真核基因组存在大量的顺式元件,包括启动子、增强子、沉默子等;7、真核基因组中存在大量的DNA多态性;8、真核基因组具有端粒结构。

原核生物基因组的特点:1、结构简练,绝大部分用来编码蛋白质,只有很少一部分控制基因表达的序列不转录;2、存在转录单元,原核生物DNA序列中功能相关的RNA和蛋白质基因,往往丛集在基因组的一个或者几个特定部位,形成功能单位或转录单元,可以被一起转录为含多个mRNA的分子;3、有重叠基因,所谓重叠基因就是同一段DNA携带两种或以上不同的蛋白质的编码信息。

DNA的结构DNA又称脱氧核糖核酸,是deoxyribonucleic acid的简称。

L=T+W,L指环形DNA分子两条链间交叉的次数,只要不发生断裂,L是一个常量。

T为双螺旋的盘绕数,W为超螺旋数。

双螺旋DNA的松开导致负超螺旋,而拧紧则导致正超螺旋。

双螺旋碱基间距(nm)螺旋直径(nm)每轮碱基数螺旋方向A-DNA0.26 2.611右B-DNA0.34 2.010右Z-DNA0.37 1.812左DNA的复制半保留复制:Semi-conservative replication;半不连续复制:Semi-discontinuous replication把生物体的复制单位称为复制子,一个复制子只含一个复制起始点。

归纳起来,无论是原核生物还是真核生物,复制起点是固定的,表现为固定的序列,并识别参与复制起始的特殊蛋白质。

复制叉移动的方向和速度虽是多种多样的,但以双向等速方式为主。

复制的几种主要方式双链DNA的复制大都以半包六复制方式进行的,通过“眼”型、θ型、滚环型或D-环型等以复制叉的形式进行。

1、线性DNA双链进行双向复制时,由于已知的DNA聚合酶和RNA聚合酶都只能从5’到3’移动,所以,复制叉呈眼型;2、环状双链DNA复制可分为θ型、滚环型和D-环形几种类型Ⅰ、θ型,大肠杆菌染色体DNA是环状双链DNA,它的复制是典型的θ型复制,从一个起点开始,同时向两个方向进行复制,当两个复制叉相遇时,复制就停止Ⅱ、滚环型,是单向复制的一种特殊方式,在噬菌体中很常见。

DNA的合成由对正链原点的专一切割开始,所形成的自由5’端被从双链环中置换出来并为单链DNA结合蛋白所覆盖,使其3’-OH端在DNA聚合酶的作用下不断延伸Ⅲ、D-环形,也是单向复制的一种特殊方式,双链环在固定点解开进行复制,但两条链的合成是高度不对称的,最初仅以一条母链作为新链合成的模板,迅速合成出互补链,另一条链则称为游离的单链环。

原核生物和真核生物DNA复制的特点原核生物DNA复制特点DNA双螺旋的解旋拓扑异构酶(DNA topoisomerase):消除解链造成的正超螺旋的堆积,消除阻碍解链继续进行的这种压力,使复制得以延伸。

拓扑异构酶Ⅰ,催化DNA链的断裂和重新连接,每次只作用于一条链,不需要辅助因子如ATP等;拓扑异构酶Ⅱ能同时断裂和连接两条DNA链,通常需要辅助因子。

DNA解链酶(DNA helicase):解开双链DNA(DnaB蛋白:解螺旋酶;DnaA蛋白:辨认复制起始点;DnaC蛋白:辅助DnaB在起始点上结合并打开双链)单链结合蛋白(SSB):保证被解链酶解开的单链在复制完成前能保持单链结构DNA复制的引发所有的DNA复制都是从一个固定起点开始的,而且目前所知的DNA聚合酶都只能延长DNA链而不能从头合成DNA链。

DNA复制时,往往先由RNA聚合酶在DNA模板上合成一段RNA引物,再由DNA聚合酶从RNA引物3’末端开始合成新的DNA链。

DNA聚合酶功能DNA聚合酶ⅠDNA聚合酶Ⅱ(修复)DNA聚合酶Ⅲ聚合作用5’→3’有有有外切酶活性5’→3’有无无外切酶活性3’→5’有有有生物学活性10.0515聚合酶Ⅲ部分亚基的功能亚基αεθβ功能聚合活性3’→5’核酸外切酶活性组建核心酶两个β亚基形成滑动夹子,提高酶的持续合成能力真核生物DNA复制的特点真核生物DNA复制与原核生物DNA复制有很多不同,例如,真核生物每条染色体上可以有多个复制起点,而原核生物只有一个复制起点;真核生物DNA的复制只能在分裂期进行,原核细胞在整个细胞周期都能进行;真核生物的染色体在全部完成复制前,各个起点上DNA 不能再开始,而在快速生长的原核生物中,复制起点可以连续开始新的DNA复制,表现虽然只有一个复制单元,但却可有多个复制叉。

真核生物DNA复制叉的移动速度不到大肠杆菌的1/20,因此,人类DNA中每隔30000~300000个碱基就有一个复制起始点;真核生物DNA聚合酶有15种以上,大肠杆菌中存在的聚合酶有5种DNA复制的调控真核细胞中DNA复制有3个水平的调控:1、细胞生活水平调控,也称限制点调控,决定细胞停留在G1期还是进入S期;2、染色体水平调控;3、复制子水平调控,决定复制的起始与否。

DNA的修复错配修复一旦复制通过复制起点,母链就会在开始DNA合成前的几秒至几分钟内被甲基化,此后只要两条DNA链上碱基配对出现错误,错配系统就会根据“保存母链,修正子链”的原则,找出错误碱基所在的DNA链,并在对应于母链甲基化腺苷酸上游鸟苷酸的5’位置切开子链,合成新的子链片段。

切除修复切除修复是DNA损伤最为普遍的方式,主要分为碱基切除修复和核苷酸切除修复重组修复(复制后修复)先从同源DNA母链上将相应核苷酸序列片段移至子链缺口,然后再用新合成的序列补上母链空缺,主要作用是重新启动停滞的复制叉。

DNA直接修复DNA直接修复不需要切除碱基或核苷酸,最常见的例子是DNA光解酶把在光下或经外线光照射形成的环丁烷胸腺嘧啶二体及6-4光化物还原成单体的过程。

SOS反应细胞DNA受到损伤或复制系统受到抑制的紧急情况下,细胞为求生存而产生的一种应急措施,当DNA两条链的损伤邻近时,损伤不能被切除修复或重组修复,这时损伤处的DNA 出现空缺,再随机加上核苷酸,容易造成突变。

DNA的转座DNA的转座或称移位,是由可移位因子介导的遗传物质重排的现象,频率很低。

转座子(Tn)是存在于染色体DNA上可自主复制和移位的基本单位,原核生物的转座子包含4类:1、插入序列(IS);2、类转座子因子;3、复合转座子,两端由IS或类IS构成,带有某些抗药性基因或其他宿主基因,一旦形成复合式转座子,IS序列就不能再单独移动;4、TnA转座子家族,两端为IR,可编码转座酶,解离酶和抗性物质。

真核生物中的转座子主要包括转座子和反转座子。

玉米细胞内存在自主型和非自主型两类转座子,非自主型转座子单独存在时是稳定的,不能转座,当基因组同时含有属于同一家族的自主型转座子时,它才具备转座功能。

转座子可分为复制型和非复制型,转座酶和解离酶分别作用于原始转座子和复制转座子。

转座作用的遗传学效应1、引起插入突变;2、产生新的基因;3、产生染色体畸变(DNA重复、缺失或倒位);4、引起生物进化组蛋白的种类、修饰类型及其生物学意义根据电泳性质可以把组蛋白分为H1、H2A、H2B、H3、H4,这些组蛋白都含有大量赖氨酸和精氨酸。

组蛋白的修饰作用包括甲基化,乙酰化,磷酸化以及ADP核糖基化等。

一般来说,组蛋白乙酰化能选择地使某些染色质区域的结构从紧密变的松弛,开放某些基因的转录,增强其表达水平;而组蛋白甲基化即可抑制也可增强基因表达,乙酰化修饰和甲基化修饰往往是相互排斥的。

简述DNA聚合酶Ⅰ和Klenow的结构和功能占DNA聚合酶Ⅰ蛋白2/3的C端区域,相对分子质量68000,具有DNA聚合酶活性和3’→5’核酸外切酶活性,即可合成也可降解DNA,保证DNA复制的准确性;占DNA聚合酶Ⅰ蛋白1/3的N端区域,相对分子质量35000,具有5’→3’核酸外切酶活性,可做用于双链DNA,又可水解5’端或距5’端几个核苷酸处的磷酸二酯键。

DNA聚合酶Ⅰ在DNA直接修复、除去冈崎片段5’端RNA引物方面具有重要作用。

Klenow大片段是用蛋白酶水解DNA聚合酶Ⅰ所得的大片段区域,具有5’→3’聚合酶活性和3’→5’核酸外切酶活性,在基因工程中有广泛应用,主要有:修复反应、制备平末端;标记DNA3’突出末端;双脱氧末端终止法进行DNA序列分析等。

三、生物信息的传递(上)RNA转录的基本过程模板识别真核细胞中的模板识别与原核细胞不同,真核生物RNA聚合酶不能直接识别基因的启动子区,需要转录因子的辅助蛋白质按特定的顺序结合于启动子上,RNA聚合酶才能与之相合并形成复杂的前起始复合物(PIC),以保证有效的起始转录。

相关文档
最新文档