药物排泄
药剂学中的药物排泄性研究
药剂学中的药物排泄性研究药物排泄性研究是药剂学领域中一个重要的研究方向,它涉及到药物在体内的代谢和排泄过程,对于药物治疗的安全性和疗效评估具有重要意义。
近年来,随着药物研发技术的不断进步和临床药理学的发展,药物排泄性研究引起了广泛关注。
一、药物排泄性的定义与意义药物排泄性是指药物在体内的转化代谢后通过尿液和粪便的排泄过程。
药物排泄过程对于维持体内药物浓度的平衡、减轻药物的毒副作用、保证药物治疗的安全性和疗效具有重要作用。
因此,研究药物排泄性对于药物研发及临床应用具有重要的意义。
二、药物排泄性的研究方法1. 药动学研究:药动学研究是研究药物在体内转化、分布和排泄等过程的学科。
通过采集血液、尿液、粪便等样本,结合药物动力学模型,可以推断药物在体内的排泄路径和速率常数等参数。
2. 排泄试验:通过给予被试者特定剂量的药物,然后采集尿液、粪便等样本进行分析,根据药物在样本中的浓度变化,可以研究药物的排泄过程。
3. 转运体研究:转运体是介导药物在肾脏、肠道等器官滤过、排泄的重要蛋白质。
研究转运体的结构、功能以及与药物的相互作用,可以为药物排泄性的研究提供重要的依据。
三、药物排泄性研究的应用1. 临床药物治疗:药物排泄性研究可以帮助临床医师更好地评估药物的剂量和给药方式,以及预测药物在不同人群中的排泄动力学差异,为个体化用药提供依据。
2. 新药研发:药物排泄性研究对药物的代谢途径、排泄通路以及与体内转运体的相互作用等提供了重要参考。
新药研发者可以通过药物排泄性的研究结果,优化药物的结构,以提高药物的药代动力学特性和疗效。
3. 药物相互作用研究:药物排泄性还可以研究多种药物的相互作用对药物排泄的影响。
通过研究药物的代谢和排泄途径,可以预测药物与其他药物的相互作用,进而指导合理的联合用药方案。
四、药物排泄性研究的现状与挑战目前,药物排泄性研究在药剂学领域取得了一系列重要的研究进展,然而仍存在一些挑战。
一方面,药物排泄性受到遗传、环境和年龄等多种因素的影响,因此需要开展大样本、多中心的研究以获得更准确的结果。
生物药剂学与药动学——药物的排泄
生物药剂学与药动学——药物的排泄一、概述药物的排泄系指体内药物以原形或代谢物的形式通过排泄器官排出体外的过程。
药物的作用一方面取决于给药剂量和吸收效率,另一方面也取决于药物的体内消除速度。
药物向体液中运行,再从体液中消失的过程,可简单表示如下:式中,k1为表观一级吸收速度常数,k2为表观一级消除速度常数。
药物的排泄与药效、药效维持时间及毒副作用等密切相关。
例如由于肾功能衰竭造成药物肾排泄减慢时,链霉素、庆大霉素、卡那霉素等氨基糖苷类抗生素在体内滞留时间延长,对肾病患者应用这些抗生素时,常比正常人容易引起毒副作用。
二、药物的肾排泄肾脏是人体排泄药物及其代谢物的最重要的器官。
药物的肾排泄是肾小球滤过、肾小管分泌和肾小管重吸收的综合结果,即肾排泄率=肾小球滤过率+肾小管分泌率-肾小管重吸收率。
1.肾小球滤过肾小球毛细血管内血压高,管壁上微孔较大,除血细胞和蛋白质外一般物质均可无选择性地滤过。
药物滤过方式以膜孔转运,即被动转运为主,滤过率较高。
药物若与血浆蛋白结合,则不能滤过。
肾小球滤过率(GFR)为单位时间肾小球滤过的血浆体积数,单位ml/min。
肾小球滤过作用的大小用肾小球滤过率(GFR)表示。
静脉注射菊粉溶液待其分布平衡后,设血浆中菊粉的浓度为Pin,设尿中菊粉浓度和每分钟排尿体积分别为Uin和V,则GFR=Uin×V/Pin。
GFR正常值为l25~130ml/min。
2.肾小管分泌该过程是一主动转运过程。
肾小管主动分泌属于载体介入系统,需要能量供应;该载体系统受到能量限制,可以被饱和,类似结构的药物可竞争同一载体。
3.肾小管重吸收(1)肾小管重吸收是指被肾小球滤过的药物,在通过肾小管时药物重新转运回血液的过程。
重吸收存在主动重吸收和被动重吸收两种形式。
用离子障原理,弱酸性或弱碱性药物在肾小管能通过单纯扩散重吸收。
(2)重吸收的程度与药物的脂溶性、pKa、尿液的pH和尿量有关。
1)药物脂溶性的影响:脂溶性大的药物易于重吸收;水溶性大的药物则不利于重吸收,易被肾脏排泄。
药物全身代谢和清除 -回复
药物全身代谢和清除-回复药物全身代谢和清除是指药物在体内的代谢过程和从体内排除的过程。
了解药物的全身代谢和清除对于合理用药和预防药物副作用具有重要意义。
本文将以药物全身代谢和清除为主题,介绍药物的代谢过程、代谢途径、影响因素以及药物的排泄方式等相关内容。
一、药物全身代谢药物的全身代谢是指药物在体内发生的化学反应,以改变其原始结构和化学性质,从而使其更容易被机体吸收、分布和排泄。
药物代谢通常发生在肝脏,但也可能在其他组织和器官中进行,如肺脏、肾脏和肠道等。
1. 代谢途径药物的代谢途径主要分为两类:化学转化和非化学转化。
化学转化是指药物在体内经过一系列的化学反应,将其原始结构改变成代谢产物。
这些化学反应通常可以分为氧化、还原、水解和酰胺水解等。
非化学转化主要指药物的分布过程,包括药物在体内的运输、吸收和分布。
这些过程通常与药物的脂溶性、离解平衡、蛋白结合率等因素有关。
2. 代谢酶系统药物的代谢主要由肝脏中的一系列酶系统完成,其中包括细胞色素P450(CYP450) 酶系统、酯酶、葡萄糖醛酸转移酶(UGT) 等。
细胞色素P450酶是药物代谢酶中最为重要的一类,它能催化药物的氧化和还原反应,从而改变药物的活性、毒性以及代谢产物的解药性质。
不同的细胞色素P450酶对不同的药物有不同的选择性和亲和力。
酯酶主要参与药物的水解反应,将药物中的酯键水解成相应的酸和醇。
UGT则参与药物的糖基化反应,将药物中的活性基团与葡萄糖结合,从而增加药物的水溶性和排泄性能。
3. 影响因素药物的全身代谢过程受到多种因素的影响,包括药物本身的性质、个体差异、环境因素等。
药物本身的性质如化学结构、脂溶性、分子量等特征会直接影响药物的代谢速度和途径。
一般来说,脂溶性较高的药物更容易被细胞内的酶代谢。
个体差异主要指不同个体之间对同一药物代谢的差异。
这些差异可能与人体的遗传因素、年龄、性别、肝功能等相关。
环境因素如同时使用其他药物、饮食习惯、吸烟、饮酒等也会影响药物的代谢过程。
《生物药剂学》课件——药物排泄
三、肾小管主动分泌—机制
有机弱酸、弱碱性药物分别通过两种不同机制分泌 排泄到尿中。此外,还有药泵蛋白转运。
有机酸:阴离子分泌机 制(磺胺类、马尿酸类 酰胺类、噻嗪类等)
Q: Why?
有机碱:阳离子分泌机 制(有机胺类化合物)
P-糖蛋白等药泵蛋白: 促进药物向小管液中转 运,增加药物排泄量
四、肾清除率(肾脏排泄血浆清除率)
第二节 药物的胆汁排泄
胆汁排泄是肾外排泄中最主要途径。 机体中重要的物质如VitA、D、E、B12、 性激素、甲状腺素以及一些药物经胆汁排 泄。
一、药物胆汁排泄的过程与特性
过程: 胆汁由肝实质细胞的分泌颗粒产生 分泌入毛细胆管
汇入胆管 流入胆囊贮存 饭后向十二指肠分泌 。
胆汁排泄是一个复杂的过程,包括在肝细胞中的摄取、 贮存、生物转化及向胆汁转运。
1、药物的脂溶性
脂溶性大的非解离型药物重吸收程度大。 多数药物经体内代谢后,变成极性大的水溶性 代谢物,使肾小管重吸收减少。 例:磺胺类药物
3、尿量
小管液中溶质浓度形成的渗透压是对抗肾小管重吸收水分的力量。
小管液中溶质浓度
渗透压
水的重吸收 尿量
如:糖尿病患者的血糖浓度升高,肾小管不能将葡萄 糖完全吸收回血,小管液中葡萄糖含量增多,小管液 渗透压增高,重吸收减少而引起多尿。
GFR (Uin V ) / Pin
Pin:血浆中菊粉浓度; Uin:尿中菊粉浓度; V:单位时间排出的尿量
菊粉清除率(GFR)
菊粉清除率可作为人和动物GFR的客观 指标,其平均数值有性别和动物种属差异。
正常男性:GFR 125 ml/min 正常女性:GFR较男性约低10%。
以菊粉清除率为指标,可以推测其他各种物质 通过肾单位的变化。
第六章 药物的排泄
体内过程。
实验上,以合理的实验设计揭示药物的体
内动态变化规律。
应用上,指导新药的研发及临床给药方案
的个体化。
第三节 药物动力学模型
一、房室模型(compartment model)
把药物体内分布与消除速率相似的部分用隔 室来表征。
1.单室模型 药物很快在体内达到动态平衡。
三、肾小管的重吸收
重吸收存在的依据:如水分和葡萄糖等。
-
重吸收的类型
分为主动重吸收和被动重吸收,
主动重吸收:
内源性物质的吸收,如水、葡萄糖、维生素 等。
被动重吸收:
大多数外源性物质如药物的重吸收。
对药物的重吸收是被动吸收。
-
1.影响药物被动吸收的因素
(1) 药物的脂溶性 脂溶性大易吸收,如硫喷妥几乎全部被重吸收, 季铵类药物脂溶性小,几乎不被吸收。
1924和1937年,分别提出了一室和二室动力学模型。
20世纪60年代,计算机及分析化学的发展推动数据处
理及体液中药物测定方法的发展。 国际上于1972年,在美国马里兰州波兹大国立卫生科 学研究所(N.I.H)召开了药理学与药物动力学国
际会议,第一次正式确认药物动力学为一门独立学科。
三、研究内容及基本任务
非线性动力学过程:
药物在体内的过程有酶和载体的参与。
具饱和过程。
也称米氏动力学过程。
VmC dC dt Km C
七、药物动力学参数
速率常数
描述速度过程。其大小反映药物转运的快 慢。其单位为min-1或h-1。
dX n kX dt
不同k的意义:
K:总消除速率常数。 ke : 肾排泄速率常数。 ka : 吸收匀
药物的其他排泄途径,2015
药物排泄:体内药物以原形或代谢物的形式通过 排泄器官排出体外的过程。 药物排泄过程的正常与否关系到药物在体内的浓 度和持续时间,从而严重影响到药物的作用。
肾脏排泄 胆汁排泄 乳汁 唾液 肺 汗液
大多药物能从乳汁排出,并能在乳汁中测出
药物浓度。
一般药物在乳汁中的浓度低 , 在乳汁中排
出量不足以引起婴儿的治疗效应。
有些药物从乳汁排出较大 , 如红霉素、卡
马西平、地西泮和巴比妥酸盐等。
(1)药物的浓度梯度:乳汁中药物浓度与母体的 血药浓度有关,未与蛋白结合的游离药物越高, 药物从血浆到乳汁转运的越快。
( 2 )药物的脂溶性 : 乳汁中脂肪含量比血浆高, 脂溶性大的药物容易穿过生物膜到乳汁中。
( 3 )血浆与乳汁的 pH :乳汁的正常 pH 范围是
6.4~7.6,比血浆低。通常弱酸性药物在乳汁 中的浓度比其血浆浓度低。 (4)药物分子大小:分子越小,越容易转运。
虽然大多数药物在乳汁中排出的药物量小, 但由于婴儿的肝、肾功能未发育完全 , 对药物 的代谢与排泄能力低, 有可能造成一些药物在婴儿体内累积, 使婴儿体内的血药浓度达到具有临床意义的水 平。
• 易挥发药物 • 吸入式麻醉剂 • 极微量的某些毒物
其排泄量视肺活量及吸收的气体得湿度而异 共同点:分子量小,沸点低
• 某些药物及机体正常代谢产物如:
磺胺类 盐(主要是氯化物) 苯甲酸,水杨酸,乳酸 氮的代Hale Waihona Puke 物(尿素等) 可随汗液向体外排泄。
• 药物由汗腺排泄主要依赖于分子型的 被动扩散。
乳母在哺乳期应禁用或慎用一些药物,如异烟肼、 甲丙氨醋、氯霉素、氢氯噻嗪、甲硝唑、四环素、 萘啶酸等。
第六章药物的排泄
肾小管分泌
指药物由血管一侧通过上皮细胞侧底膜摄入细胞,再从 细胞内通过刷状膜向管腔一侧流出。
近曲小管中分别具备有机阴离子和有机阳离子输送系统。 这一过程为主动转运,逆浓度梯度,需载体能量,有饱和与 竞争抑制现象。
三、肾清除率
肾清除率(renal clearance,Clr)
定义:指肾脏在单位时间内能将多少容量血浆中所含的 某物质完全清除出去。
肾排泄率 = 血浆浓度(C)×肾清除率(Clr)
尿中药物浓度×每分钟尿量
肾清除率(Clr)=
血浆药物浓度
血液透析
又称“人工肾”治疗,用于肾功能衰竭时从病人血液中 人为地将废物透析出来。该过程中血液流经离子溶液环境的 半透膜,含氮废物以及某些药物从血液中透析出来。
该技术对于符合下列条件的药物有重要意义:①有较好的 水溶性;②与血浆蛋白结合不紧密;③分子量低(小于500); ④分布容积小。
肝脏
P-gp MRP2 BSEP
肾脏和胆汁排泄彼 此存在互偿现象 肝肠循环 血药浓度双峰现象
高胆汁排泄的药物分子特征:能主动分泌、极性大、分 子量>300。
胆汁排泄多数为主动转运过程; 化学结构、脂溶性、分子量; 动物种属、性别、年龄、蛋白结合率; 药物间的相互作用;
25
• Empagliflozin (BI-10773), approved in the United States
• Sergliflozin etabonate, discontinued after Phase II trials
• Remogliflozin etabonate, in phase IIb trials
基于SGLT2抑制的糖尿病 • CanagliSfloozdiinu,ma/pGplruocvoesdeincothTeraUnsnpitoerdteSrt2ates 治疗 • Ipragliflozin (ASP-1941), in Phase III clinical trials
生物药剂学第六章 药物排泄
一、生理因素
(二)胆汁流量: ➢ 高蛋白和高脂肪的食物能引起胆汁的大量分泌和排出,而
碳水化合物类食物的作用较小。 ➢ 进食之后,迷走神经兴奋,是胆汁大量流入十二指肠 ➢ 胆囊收缩素引起胆囊的强烈收缩和括约肌的扩展 ➢ 促进激素刺激肝细胞分泌胆汁。 ➢ 胆汁量增加时,随其进入肠道内的药物量均增加。
一、生理因素
因素:药物的脂溶性、pKa、蛋白结合率、唾液pH等 ➢ 以唾液代替血浆样品,进行药物动力学研究。 ➢ 主动转运:锂。
三、药物从肺部的排泄
➢ 共同特性:分子量较小,沸点较低 ➢ 影响因素:肺部的血流量、呼吸的频率、挥
发性药物的溶解性等。
四、药物从汗腺和毛发的排泄
➢ 汗腺排泄主要依赖于药物分子型的被动扩散 ➢ 毛发中只有微量的药物排泄:汞和砷
➢ 也可以采用离体法:离体肾灌流技术
第二节 药物的胆汁排泄
第二节 药物的胆汁排泄
➢ 胆汁排泄是肾之外排泄中最主要的途径 ➢ 维生素A、D、E、B12、性激素、甲状腺素及这些
物质的代谢产物胆汁中排泄非常显著。 ➢ 高胆汁清除的药物具有的特点:能主动分泌;药物
是极性物质;相对分子量超过300
一、药物胆汁排泄的过程与特征
该药肾清除率等于肾小球的滤过率,值为125mL/min。 ➢ 若肾清除率低于fuxGFR,则表示从肾小球滤过后有一定的
肾小管重吸收。 ➢ 若高于该值,则表示除肾小球滤过外,分泌>重吸收
五、研究药物肾排泄的方法
➢ 多采用在体外法或体内法,对象是人或动物,通常 是在给药后不同时间收集尿样,记录尿量,测定尿 量浓度,计算累计排泄量,直至排泄完成。
第六章 药物排泄
Excretion
学习目标
1、熟悉药物排泄的特点 2、掌握药物肾排泄的机制和影响肾排泄的主要因素 3、掌握药物胆汁排泄的过程和影响药物胆汁排泄的因素 4、熟悉肝肠循环概念及对药物作用的影响 5、了解药物的其他排泄途径
药物的排泄
代谢笼
本章掌握的内容:
1. 肝肠循环,肾清除率的定义; 2. 结合转运体分析药物相互作用;
1. 药物的脂溶性是影响下列哪一步骤的最重要因素 A、肾小球过滤 B、肾小管分泌 C、肾小管重吸收 D、尿量 E、尿液酸碱性 2. 酸化尿液可能对下列药物中的哪一种肾排泄不利 A、水杨酸 B、葡萄糖 C、四环素 D、庆大霉素 E、麻黄碱 3. 药物排泄的主要器官 A、肝 B、肺 C、脾
复被利用,延长药物的半衰期和作用持续时间,加强
了药物的作用;
在某些药物中毒时,中断肠肝循环可促进药物排泄,
为解毒措施之一(强心苷中毒口服考来烯胺);
双峰现象
平台假象
尾点反跳现象
滞后现象
药物排泄的研究
物料平衡实验
肝肠循环实验
物料平衡实验
考察:肾排泄,胆汁排泄,粪排泄; 方法:液质联用,同位素标记
2. 未结合药物的比例分数Fu,且仅存在肾小 球滤过;
肾清除率= Fu*肾小球滤过率
3.肾清除率<例如:
尿素的肾清除率为78 ml/min ,肌酐175 ml/min
肾清除率
Clr = U *V / P(ml)
U尿中的药物浓度,V每分尿量;P每毫升血浆中的药物浓度
分。此外,还含有胆汁酸、胆色素、脂肪酸、胆固醇、卵
磷脂和少量蛋白质(包括黏蛋白、血浆蛋白)等有机成分。
胆汁清除率
胆汁清除率=胆汁流量*胆汁药物的浓度
血浆药物的浓度
药物胆汁排泄的转运方式:
1. 主动转运(占主要部分) 2. 被动转运(极少,主要是膜孔转运和易化扩散)
主动转运的特点:
被动重吸收
当药物的清除率小于肾小球的滤过率,则有 重吸收的过程存在
药师职称考试药理学知识点总结药物的排泄
药师职称考试药理学知识点总结药物的排泄一、概述药物的排泄系指体内药物以原形或代谢物的形式通过排泄器官排出体外的过程。
药物的作用一方面取决于给药剂量和吸收效率,另一方面也取决于药物的体内消除速度。
药物向体液中运行,再从体液中消失的过程,可简单表示如下:式中,k1为表观一级吸收速度常数,k2为表观一级消除速度常数。
药物的排泄与药效、药效维持时间及毒副作用等密切相关。
例如由于肾功能衰竭造成药物肾排泄减慢时,链霉素、庆大霉素、卡那霉素等氨基糖苷类抗生素在体内滞留时间延长,对肾病患者应用这些抗生素时,常比正常人容易引起毒副作用。
二、药物的肾排泄肾脏是人体排泄药物及其代谢物的最重要的器官。
药物的肾排泄是肾小球滤过、肾小管分泌和肾小管重吸收的综合结果,即肾排泄率=肾小球滤过率+肾小管分泌率-肾小管重吸收率。
1.肾小球滤过肾小球毛细血管内血压高,管壁上微孔较大,除血细胞和蛋白质外一般物质均可无选择性地滤过。
药物滤过方式以膜孔转运,即被动转运为主,滤过率较高。
药物若与血浆蛋白结合,则不能滤过。
肾小球滤过率(GFR)为单位时间肾小球滤过的血浆体积数,单位ml/min。
肾小球滤过作用的大小用肾小球滤过率(GFR)表示。
静脉注射菊粉溶液待其分布平衡后,设血浆中菊粉的浓度为Pin,设尿中菊粉浓度和每分钟排尿体积分别为Uin和V,则GFR=Uin×V/Pin。
GFR正常值为l25~130ml/min。
2.肾小管分泌该过程是一主动转运过程。
肾小管主动分泌属于载体介入系统,需要能量供应;该载体系统受到能量限制,可以被饱和,类似结构的药物可竞争同一载体。
3.肾小管重吸收(1)肾小管重吸收是指被肾小球滤过的药物,在通过肾小管时药物重新转运回血液的过程。
重吸收存在主动重吸收和被动重吸收两种形式。
用离子障原理,弱酸性或弱碱性药物在肾小管能通过单纯扩散重吸收。
(2)重吸收的程度与药物的脂溶性、pKa、尿液的pH和尿量有关。
1)药物脂溶性的影响:脂溶性大的药物易于重吸收;水溶性大的药物则不利于重吸收,易被肾脏排泄。
第六章药物排泄
慎用药物
虽然大多数药物在乳汁中排出的药物量是小的, 但由于婴儿的肝、肾功能未发育完全,对药物的代谢 与排泄能力低,有可能造成一些药物在婴儿体内累积 ,使婴儿体内的血药浓度达到具有临床意义的水平。
乳母在哺乳期应禁用或慎用一些药物,如异烟肼 、甲丙氨醋、氯霉素、氢氯噻嗪、甲硝唑、四环素 、萘啶酸等。
第四节 影响药物排泄的因素
一 、生理因素
(一)血流量的影响 ▪ 肾血流量增加,经肾小球滤过和肾小管主动分泌两种
机制排泄的药物量都将随之增加。 ▪ 肝提取率高的药物,肝血流量增加,药物经肝消除加快
;肝提取率低的,肝血流量对肝清除率影响不大。 ▪ 主动扩散被肝细胞摄取的药物,其胆汁排泄受血流量影
响大,主动转运机制的药物作用小。
管重吸收,分为主动与被 动两种,脂溶性药,非解 离性药物吸收多。
➢ 药物大多经被动重吸收返
回体内。
影响药物被动重吸收的因素
药物的脂溶性 尿液pH 尿量
药物的脂溶性
脂溶性大有利于
重吸收
大多药物代谢后
,水溶性大,重 吸收减少,有利 于机体将其清除 。
尿液pH
主要影响弱酸、弱碱药物的排泄 通常尿液pH接近6.3,可在一定范围内变化 弱酸性药物 碱化尿液 加速排泄
(二)胆汁流量的影响 胆汁流量增加,主要经胆汁排泄途径排出的 药物量增加。
(三)其他(年龄、种族、性别等) 幼儿和老年人药物消除能力低。
二、药物及其剂型因素
(一)药物理化性质
1.分子量
分子量<300
主要经肾排泄
分子量300 ~500 既经肾排泄也经胆汁排泄
弱碱性药物 酸化尿液 加速排泄
pH对磺胺类清除的影响很显著
药物排泄
药物排泄
药物的肾排泄
肾清除率
清除率的计算 Clr = Ke· Ke:尿药排泄速度常数:V:表观分布容积 V 通过肾清除率可推测药物的排泄机制: 设血浆中未结合药物的比例分数为fu, 则药物肾小球滤 过率为fu · GFR 若Clr = fu · GFR ,仅有肾小球滤过 若Clr > fu · GFR ,除肾小球滤过外,还存在肾小管分泌 ,或肾小管分泌 > 重吸收 若Clr < fu · GFR ,除肾小球滤过外,还存在肾小管重吸 收,或肾小管重吸收 > 分泌
汗液 途径 胆汁排泄
肺呼吸 肾排泄
消除=代谢+排泄
唾液
乳汁
药物排泄
药物的肾排泄
一、肾小球滤过 二、肾小管重吸收 三、肾小管主动分泌 四、肾清除率
药物排泄
药物的肾排泄
肾脏为成对的扁豆状器官,位于腹膜后脊柱两旁浅窝 中。约长10-12厘米、宽5-6厘米、厚3-4厘米、重 肾 脏120-150克;左肾较右肾稍大,肾纵轴上端向内、 下端向外,因此两肾上极相距较近,下极较远,肾纵 轴与脊柱所成角度为30度左右。肾脏的一侧有一凹陷, 叫做肾门,它是肾静脉、肾动脉出入 肾脏以及输尿管 与肾脏连接的部位。
药物排泄
肾小管主动分泌机制
药物的肾排泄
肾小管主动分泌
有机酸:阴离子分泌机 制(磺胺类、马尿酸类 酰胺类、噻嗪类等) 有机碱:阳离子分泌机制 (有机胺类化合物) P-糖蛋白等药泵蛋白:促 进药物向小管液中转运, 增加药物排泄量
药物排泄
药物的胆汁排泄
药物经胆汁排泄的过程和特点
肠肝循环(enterohepatic cycle)是指在胆汁中排泄的药物或其 代谢物在小肠中移动期间重新被吸收返回肝门静脉血的现象。 有肠肝循环的药物在体内能停留较长间:如卡马西平、氯霉素 引哚美辛、螺内醋等药物口服后都存在肠肝循环。
名词解释药物的消除
名词解释药物的消除药物的消除是指药物在体内的代谢与排泄过程,包括药物的生物转化、药物的分布以及药物的排泄。
药物的消除过程是一个复杂的生理过程,它决定了药物在体内的持续时间以及对机体产生的影响。
1. 药物的生物转化药物的生物转化是指药物在体内发生化学变化的过程。
它通常通过肝脏中的酶系统进行,包括细胞色素P450系统和几种酶的参与。
在药物的生物转化过程中,药物会经历氧化、还原、水解和酰化等反应。
这些反应可以使药物转化为活性代谢产物或无活性代谢产物。
2. 药物的分布药物的分布是指药物在体内各组织和器官之间的分布情况。
药物可以通过血液循环传输到不同的部位,在体内形成药物的药物浓度梯度。
某些药物具有亲水性,能更好地分布到水分较多的组织中,例如肌肉和肝脏。
而脂溶性药物则更易分布到脂肪组织中。
3. 药物的排泄药物的排泄是指药物从体内被移除的过程。
主要通过肾脏、肝脏、肺脏和肠道等途径进行。
其中,肾脏是主要的排泄途径,通过肾小球滤过、近曲小管分泌和肾小管重吸收等过程实现药物从血液中的排泄。
肝脏作为代谢器官,通过将药物代谢产物转化为水溶性化合物,从而通过胆汁排泄到肠道中。
肺脏将挥发性药物通过呼吸排出。
而小量的药物也可以通过汗液、乳汁和唾液等途径排出。
4. 影响药物消除的因素药物消除的速度和程度受到多种因素的影响,如个体的生理状态、年龄、性别、疾病状态、肝肾功能以及药物的特性等。
个体的生理状态对药物的代谢和排泄能力有直接的影响。
较高的肝脏代谢酶活性和健康的肾脏功能可以促进药物的消除。
5. 药物消除的临床应用了解药物的消除过程对临床用药具有重要意义。
在给药过程中,医生需要根据药物消除的特点来确定药物的剂量和给药频率。
对于肾脏功能不全的患者来说,需要调整药物的剂量,避免药物在体内积蓄过多导致不良反应。
综上所述,药物的消除是指药物在体内的代谢和排泄过程。
药物的生物转化、分布和排泄是决定药物消除速度和效果的重要因素。
了解药物消除的原理和影响因素对于合理用药和减少药物不良反应具有重要意义。
药物的代谢与排泄
肾小管重吸收
原尿中的药物在肾小管被重吸收返回血液,影响 因素包括药物浓度、pH值和尿量。
3
肾小管分泌
药物通过肾小管上皮细胞主动分泌进入尿液,影 响因素包括药物与转运蛋白的结合能力以及肾小 管上皮细胞的功能状态。
胆汁排泄途径及影响因素
改变胃肠道pH值
某些药物可改变胃肠道pH值,从而影 响其他药物的溶解度和吸收。
药物相互作用机制及实例分析
• 竞争血浆蛋白结合位点:某些药物可与血浆蛋白结合,从 而影响其他药物的游离浓度和效应。
药物相互作用机制及实例分析
实例分析
华法林与阿司匹林同时使用,可增加出血风险,因为阿司匹林可抑制血 小板聚集,从而增强华法林的抗凝作用。
某些药物可通过皮肤排泄,如出汗,影响因素包括药物浓度、皮 肤血流量和皮肤温度。
乳汁排泄
哺乳期妇女使用的药物可能通过乳汁排泄,影响因素包括药物浓 度、乳汁流量和婴儿吸吮力度。
05
药物代谢动力学参数及意义
消除半衰期(t1/2)
定义
药物在体内消除一半所需的时间。
影响因素
药物的吸收、分布、代谢和排泄过程。
酸等)结合,形成水溶性更强的结合物,有利于排泄。
甲基化反应
02
某些药物在甲基转移酶的催化下发生甲基化,改变其生物活性
或毒性。
乙酰化反应
03
某些药物在乙酰转移酶的催化下发生乙酰化,改变其生物活性
或毒性。
生物转化反应类型及特点
水解反应
还原反应
增加药物的生物活性;可能改变 药物的毒性。
改变药物的化学结构和药理活性 ;增加药物的水溶性和极性,有 利于排泄。
药物的排泄
主动转运
有些药物由血液向胆汁的转运存在着主动转运 机制,因此药物浓度显著高于血浆中的浓度。 主动转运系统:
①有机酸
特点:
①饱和现象;
②有机碱
③中性化合物
பைடு நூலகம்
②逆浓度梯度转运;
③竞争性抑制;
④胆酸及胆盐
⑤重金属
④受代谢抑制剂的抑制。
肝肠循环(enterohepatic cycle)
药物及其代谢物随胆汁排泄到十二指肠,在小肠又 被重新吸收回到门静脉,进入肝脏。
母体药物一般可被重吸收,代谢物因极性大,不易
重吸收;
药物与葡萄糖苷酸结合物,可在胃肠道被微生物分
解称为母体药物而被重吸收。 己烯雌酚、洋地黄毒甙、氨苄青霉素、卡马西平、 氯霉素、引哚美辛、螺内酯等口服后都存在肠肝循环。
己烯雌酚的肠肝循环
由于药物的葡萄糖醛酸结合物排泄到肠 道后,受到饮食和酶解过程的影响,有的 药物的血药浓度有时会出现双峰现象
肾小球是动静脉交汇的毛细血管团,这部分毛细 血管血压较其它部位高,又有较大的微孔,因 此除血球和蛋白外等高分子外,一般物质都可 滤过,输入肾小管。
近曲小管上皮细胞与小肠上皮细胞类似,在管腔 侧具有刷状缘结构,有利于吸收。
重吸收、分泌要经过刷状缘膜和侧底膜二步过程。
肾单位结构
肾脏排泄
肾小球滤过 肾小管分泌 肾小管重吸收
大多药物代 谢后,水溶 性大,重吸 收减少,有 利于机体将 其清除。
pH对磺胺类清除的影响很显著
尿pH值由5上升到8, 磺胺乙噻二唑在人体 中生物半衰期由11.4 减少到4.2小时。 服用碳酸氢钠后,磺 胺乙噻二唑消除速率 是原来的2倍。
尿量增加,清除率增大
尿量增加,重吸收减少
药物排泄的名词解释
药物排泄的名词解释药物排泄是指药物从人体体内经排泄器官(主要包括肾脏、肝脏、肺和肠道)排出体外的过程。
药物代谢和药物排泄是药物在体内经过的两个主要过程,其中代谢是药物在体内发生化学变化,而排泄则是将代谢产物和未代谢的药物从体内排出,从而维持体内药物浓度的平衡。
药物排泄主要通过肾脏完成,也受到肝脏、肺和肠道的影响。
肾脏是主要的药物排泄器官,通过肾小球滤过、肾小管分泌和肾小管重吸收等过程,药物被排出体外。
在肝脏中,药物主要经过肝细胞内的代谢酶代谢,然后通过胆汁经胆道进入肠道。
一部分药物在肠道中再次被吸收,回到循环系统,形成肠肝循环;而另一部分药物则随着粪便排出体外。
肺脏是通过呼吸作用排泄药物的主要途径。
药物排泄的速度受多种因素影响,包括药物的性质、剂量、给药途径和机体特征等。
药物的极性、脂溶性、分子大小等特征决定了药物通过肾小球滤过的能力和肾小管重吸收的程度。
药物在排泄过程中往往需要与排泄器官中的转运蛋白结合,才能被有效地排泄出体外。
因此,某些药物可能会与其他药物竞争或抑制转运蛋白的活性,从而影响药物排泄速度,增加其在体内的滞留时间。
药物排泄的研究对于药物的安全和效果具有重要意义。
了解药物在体内的代谢和排泄途径有助于预测药物的药效和药代动力学特征,从而用于优化给药剂量和给药方案。
此外,了解药物排泄机制还有助于预测药物的相互作用和不良反应,从而指导合理用药和减少药物不良事件的发生。
药物排泄异常可能导致药物在体内的滞留和积累,进而增加药物的毒性。
肾功能不全、肝功能不全、呼吸功能障碍等疾病会影响药物排泄的速度和途径,使得药物的药代动力学特征发生改变。
因此,在特殊人群中如儿童、老年人、孕妇以及肾、肝疾病患者等应格外谨慎选择药物的剂量和给药方案,以避免药物积累和不良反应的发生。
总结而言,药物排泄是药物在体内受到代谢后的最后一个环节,是药物从体内排出的过程。
药物排泄途径包括肾脏、肝脏、肺和肠道等,其中肾脏是主要的排泄器官。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
精品课件
弱酸:
pH,[A-] ,重吸收; pKa ≤2 ,完全解离,无重吸收 pKa > 8(苯妥英),在尿pH下,基本不解离
精品课件
3、尿量
例1:应用甘露醇等利尿剂来增加尿量而促进某些药 物的排泄,以达解毒的目的。
原因:甘露醇可被肾小球滤过而不能被肾小管重吸收,因此 提高了小管液中溶质浓度,引起尿量增多,这种利尿方式称 渗透性利尿。故甘露醇可作为利尿药应用于临床。
例2:碳酸氢钠能解救苯巴比妥中毒,并用利尿药可 缩短解毒时间。
精品课件
精品课件
三、肾小管主动分泌
肾小管和集合管上皮细胞可将自身代谢产生的物质,
以及进入体内的某些物质从肾小管周围的组织液转运入管腔,
称为分泌。
分泌属主动转运: 需载体参与 需要能量 逆浓度梯度转运 竞争抑制 饱和现象 血浆蛋白结合率不影响速度
精品课件
三、肾小管主动分泌—机制
有机弱酸、弱碱性药物分别通过两种不同机制分泌 排泄到尿中。此外,还有药泵蛋白转运。
肾脏排泄:代谢产物、原药
胆汁排泄:胆汁分泌肠道粪便排出
乳汁、唾液、呼气、汗腺等排泄。
肝脏药物排泄
肾脏药物排泄
药物
肝细胞 血液
代谢物 毛细胆管
全身
精品课件
第一节 药物的肾排泄
❖肾脏的功能: 排泄功能:由肾排泄的代谢终产物种类多,数量大。 内分泌功能:肾脏能分泌多种激素。
❖肾排泄的重要意义 :
➢排泄的代谢终产物种类多,数量大
浆中未结合药物、水和小分子物质全部滤过进入肾小 囊腔中。
精品课件
肾小球滤过率(GFR)
概念:单位时间内滤过的血浆容积 ;
表示肾小球滤过作用的大小。
精品课件
肾小球滤过率(GFR)的测定
其测定采用菊粉。
分子量约5000,水溶性多糖,不与血浆蛋白相结合 即不被肾小管分泌又不被肾小管重吸收,不代谢也不蓄积
有利于滤过 • 肾小管周围毛细血管:血
压低,有利于重吸收
精品课件
肾排泄
肾排泄是肾小球滤过、肾小管分泌和 肾小管重吸收三者的综合结果。 肾排泄率=滤过率+分泌率–重吸收率
精品课件
肾小管分泌 肾小管的重吸收
药物
1.肾小球滤过
2.肾小管分泌
3.肾小管重吸收
精品课件
一、肾小球滤过
➢ 肾小球是毛细血管团 ➢ 滤过面积大:总面积>1.6m2 ➢ 通透性高:毛细血管内皮极薄
、甲状腺素以及一些药物经胆汁排泄; 主动分泌的过程,所以要求必须能主动分泌,
为极性物质,分子量(300~5000)。
精品课件
一、药物胆汁排泄的过程与特性 过程:
胆汁由肝实质细胞的分泌颗粒产生 分泌入毛细胆管 汇入胆管 流入胆囊贮存 饭后向十二指肠分泌 。
胆汁排泄是一个复杂的过程,包括在肝细胞中的摄取、贮 存、生物转化及向胆汁转运。
第六章 药物排泄
药剂学教研室
精品课件
排 泄 (excretion)
排泄是指体内原型药物或其代谢物排出体外的过程;
与生物转化统称药物消除;与药效、药效持续时间以及毒副 作用等密切相关。
➢ 排泄速度 ➢ 排泄速度
血药浓度,药效或无效 血药浓度,药效或中毒
精品课件
排 泄 (excretion)
人体的排泄途径:
肠肝循环:己烯雌酚、氨苄青 霉素、卡马西平、氯霉素等。
精品课件
精品课件
有肠肝循环的药物可在体内停留较长 时
间,可使有些药物的不良反应显著。
例:非甾体抗炎药氟灭酸
正常状态 结扎胆 管
po, t 1/2 : 5.1 h
7.5 h
溃疡发生率:+
-
精品课件
第三节 药物的其他排泄途径 一、药物从乳汁排泄
,有较大的微孔 (直径6-10 nm)
➢ 血压较高:为加压过滤
入球小动脉直径 出球小动脉
肾小球毛细血管内压力
肾小囊内压力 血浆胶体渗透压
精品课件
一、肾小球滤过
结果: ➢滤过速度快、量多:1/5血浆被滤过,每天滤过量可
达180L,成为原尿。 ➢除血细胞和大分子蛋白质 (分子量 > 69000)外,血
汁中的浓度 血浓 o 分子量
分子量,转运
精品课件
二、药物从唾液排出
药物在唾液中的浓度 血浆中游离药浓 转运机制:被动扩散 唾液排泄对药物的消除没有临床意义,但可利用唾液中
药浓与血浆药浓比值相对稳定的规律 (S/P 0.3~0.9) ,以药物唾液浓度代替血浓,研究药物动力学。
精品课件
三、药物从肺排泄
一些分子量较小、沸点较低的物质如吸入麻醉 剂、二甲亚砜以及某些代谢废气可随肺呼气排出。
四、药物从汗腺排泄
排泄机制:分子型的被动扩散 药物或代谢产物:磺胺、盐类、苯甲酸等。
精品课件
第6章 药物的排泄
小结
➢掌握药物肾排泄的机制,影响肾排泄的主要因素。 掌握肾清除率的意义及对药物作用的影响。
➢熟悉药物胆汁排泄过程及药物胆汁排泄的特点;肠肝循 环概念及对药物作用的影响。 ➢了解肾及肾单位的基本结构与功能,药物排泄的其他途 径。
正常男性:GFR 125ml/min 正常女性:GFR较男性约低10%。
以菊粉清除率为指标,可以推测其他各种物质 通过肾单位的变化。
精品课件
二、肾小管重吸收
溶解于血浆中机体必需的成分、药物 以及99%的水分将被重吸收回血液。
代谢产生的废物和尿素、尿酸几乎不被 重吸收,肌酐酸则完全不被重吸收。
精品课件
特性:
▪ 具分子量的阈值,分子量在300~5000范围内的药 物,可从胆汁排泄。
▪ 具一定的极性和化学基团,如卤素、羧基、磺酸 基或铵离子等。极性强,胆汁排泄多。
精品课件
原形药物 胆汁排泄的形式 葡萄糖醛酸结合物
谷胱甘肽结合物
转运机制
被动转运 (所占比重小) 主动转运 (至少有5个转运系统)
一般,药物从乳汁排泄的总量 < 2%。 有些药物如红霉素、地西泮、卡马西平、磺胺异 恶唑、巴比妥盐等从乳汁中排泄量较大。 注意:对婴儿产生毒副作用。
精品课件
影响因素:
o 药物的浓度梯度 血浆中游离药浓,转运
o 药物的脂溶性 高脂溶性药物,转运
o 血浆与乳汁pH 人乳pH 6.8~7.3,某些弱碱性药物在乳
Clr :表示药物通过肾的排泄效率。 单位:ml/min 或 L/h。
精品课件
四、肾清除率
Clr在数学上可定义为尿药排泄速率除以集 尿中点时间的血药浓度。 每分钟尿药排泄量 = 血浆药浓×肾清除率
Clr
dXu /dt C
精品课件
通过肾清除率可推测药物的排泄机制:
设血浆中未结合药物的比例分数为fu, 则药物肾小球滤 过率为fu ·GFR
代谢物,使肾小管重吸收减少。 例:磺胺类药物
精品课件
长效磺胺
磺胺的脂溶性和肾精品小课件管的重吸收
2、尿的pH值和药物的pKa值
尿液的pH约6.3,可在4.5~8.0变化。 弱酸、弱碱性药物的重吸收依赖于尿液的pH和药物的
pKa。 Henderson-Hasselbalch公式: 弱酸: pKa – pH = lg ( [HA] / [A-] )
o 若Clr = fu ·GFR ,仅有肾小球滤过 o 若Clr > fu ·GFR ,除肾小球滤过外,还存在肾小管分
泌,或肾小管分泌 > 重吸收 o 若Clr < fu ·GFR ,除肾小球滤过外,还存在肾小管重
吸收,或肾小管重吸收 > 分泌
精品课件
第二节 药物的胆汁排泄
胆汁排泄是肾外排泄中最主要途径; 机体中重要的物质如VitA、D、E、B12、性激素
➢调节机体的酸碱平衡
维持内环 境稳态
➢调节机体的水、盐平衡
精品课件
肾的结构
精品课件
肾的结构特点 ❖肾单位
肾小球 肾小体
肾小囊
近曲小管
粗段
肾 单 位
降支 细段
肾小管 髓袢 粗段
升支
细段 远曲小管
集合管
精品课件
❖皮质肾单位和近髓肾单位
精品课件
❖皮质肾单位和近髓肾单位
数目
•入出动脉口径比
•出球小动脉形成 的毛细血管
在肾。
所以进入体内的菊粉均通过肾小球虑过随尿排泄。
菊粉的清除率=血浆肾小球滤过率
精品课件
菊粉清除率
单位时间内 滤过的血浆中菊粉量=尿中菊粉的量
PinGFR UinV
GFR (UinV)/Pin
Pin:血浆中菊粉浓度; Uin:尿中菊粉浓度; V:单位时间排出的尿量
精品课件
菊粉清除率(GFR)
菊粉清除率可作为人和动物GFR的客观 指标,其平均数值有性别和动物种属差异。
有机酸:阴离子分泌机制 (磺胺类、马尿酸类、酰 胺类、噻嗪类等) 有机碱:阳离子分泌机制 (有机胺类化合物) P-糖蛋白等药泵蛋白:促 进药物向小管液中转运, 增加药物排泄量
精品课件
四、肾清除率(肾脏排泄血浆清除率)
Clr:指单位时间内由肾完全清除所含药物的血浆体积 ,即单位时间内肾脏能将多少毫升血浆中所含药 物全部清除排出。
精品课件
主动转运 (内源性物质:
重吸收机制
维生素、电解质、糖及氨基酸)
被动扩散 (外源性物质:药物)
取 决 于
药物的脂溶性、pKa、尿量和尿的pH值
重吸收符合pH-分配假说,脂溶性、非解离型药物 重吸收程度大。