双因素可重复方差分析
双因素试验的方差分析
i 1
j 1
要判断因素A,B及交互作用AB对试验结果是否 有显著影响,即为检验如下假设是否成立:
H01 :1 2 a 0
H02 : 1 2 b 0
H03 : ij 0 i 1, 2, , a; j 1, 2, ,b
➢ 总离差平方和的分解定理 仿单因素方差分析的方法,考察总离差平方和
a
Ti.2
b,
i1
p T 2 ab ,
DB
b
T.
2 j
a,
j1
ab
R
X
2 ij
i1 j1
例1 设甲、乙、丙、丁四个工人操作机器Ⅰ、Ⅱ、Ⅲ各一天, 其产品产量如下表,问工人和机器对产品产量是否有显著 影响?
机器 B 工人 A
ⅠⅡ
Ⅲ
甲
50 63 52
乙
47 54 42
丙
47 57 41
F值
F 值临介值
因素A 因素B
SS A SSB
df A
MS A
SS A df A
FA
MS A MSE
df B
MSB
Байду номын сангаас
SSB df B
FB
MSB MSE
F (a 1 ,
ab n 1) F (b 1 ,
ab n 1)
A B
误差 总和
SS AB
SSE SST
df AB df E dfT
MS AB SS AB
F0.01 3,6 9.78 F0.05 3,6 4.76 F0.01 2,6 10.92
FB F0.01 2,6
结论:工人对产品的产量有显著影响, 机器对产品的产量有极显著影响。
双因素方差分析
y ij ij ij 2 , ij ~ N ( 0, )
假定 ij 相互独立
i 1,2,, r , j 1,2,, s
沿用有重复试验的有关记号,模型可以改写为
yij i j ij ij ~ N (0, 2 ) i 0, j 0, j i
FA B
S A B ( r 1)( s 1) S E rs( t 1)
~ F (( r 1)( s 1), rs( t 1))
表1 双因素方差分析表
来源
因子A 因子B 交互作用 误差 总和
平方和
自由度
均方
SA SA r 1 SB SB s 1
S A B S A B ( r 1)(s 1)
1 t yij yijk t k 1 1 r t y j yijk rt i 1 k 1
引入总的偏差平方和(总变差):
ST yijk y
i 1 j 1 k 1 r s t
2
可以证明
其中
ST S E S A S B S AB
S E yijk yij
§4.2
双因素方差分析
有重复试验的方差分析
无重复试验的方差分析
一、有重复试验的双因素方差分析
设有两个因素A,B作用于试验指标。
因素A有r个水平 A1 , A2 , Ar , 因素B有s个水平B1 , B2 ,, Bs , 现对因素A,B的每对组合 ( Ai , B j ) 都作 t (t 2)次试 验(称为等重复试验)。
表2 方差分析表
来源
因子A 因子B 误差 总和
平方和
双因素重复测量方差分析spss
双因素重复测量方差分析spss
一、双因素重复测量方差分析(two-way repeated measures ANOVA)
双因素重复测量方差分析(Two-Way repeated measures ANOVA)可以用来检测一个
变量的变化在两个或多个独立变量的作用下是否发生变化。
在双因素重复测量方差分析中,变量1是因素1,因素1有若干水平,变量2是因素2,因素2也有若干水平。
双因素重
复测量方差分析可以检验两个因素是否共同影响变量1的变化,或者检测某个因素是否单
独地影响变量1的变化。
1、打开spss统计软件,点击文件、数据,从窗口中打开需要分析数据文件;
2、点击“分析”菜单,然后从子菜单中点击“多维分析”,再单击“双因素重复测
量方差分析”;
3、在弹出的窗口中,在“变量”框中选择需要分析的变量;
4、在“因素”框中,选择双因素,比如实验组和对照组;
5、点击“定义”按钮,设定因素的水平,比如实验组的水平为A,对照组的水平为B;
6、在“多重比较”框中,勾选“重复测量”框,并且可以设定多重比较的参数;
7、选择“显著性水平”框,设定检验的显著性,通常设定为0.05;
8、单击“OK”按钮,查看分析结果,该分析结果将显示两个因素及其交互作用对变
量1的影响情况。
论文—双因素试验的方差分析
X ijk ~ N (ij , 2 ) ( ij 和 2 未 知 ), 记 X ijk i = ijk , 即 有
ijk X ij ijk ~ N (0, 2 ), 故 X ijk ijk 可视为随机误差. 从而得到如下数学模型
X ijk ij ijk, ijk ~ N(0, 2), 各 ijk 相互独立, i 1, , r; j 1, , s; k 1, , t;
1 st
1 rt
X
j 1 k 1
r t
s
t
ijk
,i=1,2, ,r,
X
j =
X
i 1 k 1
类似地,引入记号: , i , j , i , j , 易见
i 1
r
i 0 ,
j 1
s
j
0.
为水平 B j 的效应. 这样可以将
仍称 为总平均,称 i 为水平 A i 的效应,称 成
ij
j
ij
表示
= + i + j +
ij
( i 1, , r; j 1, , s ) ,
(3)
与无重复试验的情况类似,此类问题的检验方法也是建立在偏差平方和的分解上的。 2. 偏差平方和及其分解 引入记号: X =
1 rst
X
i 1 j 1 k 1
r
s
t
ijk
,
X
ij =
1 X ijk ,i=1,2, ,r,j=1,2, ,s, t k 1
t
X
i =
试 验 结 因 素 果 A 因 素 B
Excel数据管理与图表分析 双因素方差分析
Excel 数据管理与图表分析 双因素方差分析在实际问题的研究中,有时需要考虑两个因素对实验结果的影响。
例如饮料销售,除了关心饮料颜色之外,还需要了解销售地区的不同是否影响销售量。
若把饮料的颜色看作影响销售量的因素A ,饮料的销售地区则是影响因素B 。
对因素A 和因素B 同时进行分析,就属于双因素方差分析的内容。
双因素方差分析的类型主要有两种,下面具体介绍其应用。
1.无重复双因素分析无重复双因素分析是指在假设两个因素之间是相互独立、不存在任何关系的情况下,对其进行分析。
与单因素方差分析类似,在分析前需将试验数据按一定的格式输入工作表中。
例如,对A 、B 、C 和D 地区上半年和下半年的销售额进行统计,其数据信息如图13-6所示。
图13-6 创建表格 图13-7 设置无重复双因素参数单击【分析】组中的【数据分析】按钮,在弹出的【数据分析】对话框中,选择【方差分析:无重复双因素分析】选项。
然后,在【方差分析:无重复双因素分析】对话框中,设置相关的参数,如图13-7所示。
其中,在【方差分析:无重复双因素分析】对话框中,各选项功能如下: ●输入区域 输入无重复双因素分析的数据区域。
● 标志 启用该复选框,则生成的分析数据结果工作表中包含数据标志。
若禁用该复选框,则选择的分析数据中只能是数值类型,不能为文本类型,且生成的分析数据结果工作表中不包含数据标志。
●α 显著性水平,一般输入0.05,即95%的置信度。
● 输出选项 输出无重复双因素分析数据的结果。
提 示 【方差分析:无重复双因素分析】对话框中的参数与【方差分析:单因素方差分析】对话框中的参数相同。
单击【方差分析:无重复双因素分析】对话框中的【确定】按钮,即可得到如图13-8所示的方差分析结果。
创建表格 选择分析结果图13-8 无重复双因素方差分析在生成的Sheet4无重复双因素方差分析工作表中,分为上下两部分。
其中,上部分为4个地区及上、下半年的计数、求和、平均和方差。
双因素试验方差分析
SS E df E
SST
注意
df E dfT df A f B , SSE SST SSA SSB
各因素离差平方和的自由度为水平数减一,总平方 和的自由度为试验总次数减一。
双因素(无交互作用)试验的方差分析表
简便计算式:
SS A DA p, SSB DB p
双因素试验的方差分析
在实际应用中,一个试验结果(试验指标)往往 受多个因素的影响。不仅这些因素会影响试验结果, 而且这些因素的不同水平的搭配也会影响试验结果。 例如:某些合金,当单独加入元素A或元素B时, 性能变化不大,但当同时加入元素A和B时,合金性 能的变化就特别显著。 统计学上把多因素不同水平搭配对试验指标的 影响称为交互作用。交互作用在多因素的方差分析 中,把它当成一个新因素来处理。 我们只学习两个因素的方差分析,更多因素的 问题,用正交试验法比较方便。
双因素无重复(无交互作用)试验资料表
因素 B 因素 A
B1
X 11 ... X a1
B2
X 12 ... X a2
... Bb
... ... ... X 1b ... X ab
Ti. X ij X i. T b i.
j 1
b
A1 ... Aa
a b i 1 j 1
1 b i ij i 水平Ai对试验结果的效应 a j 1 1 a j ij j 水平Bj对试验结果的效应 b i 1 试验误差 ij X ij ij
特性:
i 1
a
i
0;
j 1
b
j
0; ij ~ N 0,
双因素试验方差分析课件
未来将结合其他统计方法,如回归 分析、聚类分析等,以更全面地揭 示多因素对试验结果的影响。
THANKS
感谢您的观看
重复原则
在相同条件下重复进行试 验,提高试验的可靠性和 准确性。
对照原则
设置对照组,以消除非试 验因素的影响,突出试验 因素的作用。
试验的分类
STEP 02
STEP 03
多因素试验
同时考虑多个因素对试验 结果的影响。
STEP 01
双侧双因素试验
同时考虑两个因素对试验 结果的影响。
单侧双因素试验
只考虑两个因素中的一个 因素对试验结果的影响。
结果解释
根据方差分析的结果,解释各因素 对观测值的影响程度和显著性,得 出结论。
双因素试验方差分析的注意事项
数据的正态性和同方差性
样本量和试验精度
在进行方差分析之前,需要检验数据 是否符合正态分布和同方差性,以确 保分析结果的准确性。
适当增加样本量可以提高试验精度和 降低误差,对方差分析的结果产生积 极影响。
方差分析的步 骤
01
02
03
04
计算平均值和方差
计算各组的平均值和方差。
检验假设条件Βιβλιοθήκη 检查是否满足方差分析的假设 条件。
进行方差分析
使用适当的统计软件或公式进 行方差分析,并解释结果。
结论与建议
根据分析结果得出结论,并提 出相应的建议。
双因素试验方差分析
双因素试验方差分析的步骤
确定试验因素
明确试验的两个因素,并确定每个 因素的取值水平。
试验设计
根据试验目的和因素水平进行试验 设计,确保每个因素的每个水平都 被充分考虑。
数据收集
两因素重复方差测量结果解读
两因素重复方差测量结果解读重复方差分析(RFA)是统计学中常用的一种分析方法,用于研究两种或多种因素变量之间的相互作用效果。
近年来,重复方差分析的应用越来越广泛,已成为社会科学研究领域中最常用的分析方法之一。
本文将针对重复方差分析中两因素的情形,对重复方差分析的概念、意义以及其在社会科学研究中的应用进行深入分析,最终提供一种有效的解释方案。
一、重复方差分析概述重复方差分析(RFA)是一种统计学方法,用于研究两个因素或多个因素之间的相互作用效果,常用来检验一个因素对另一个因素的影响程度,或者多个因素是否同时影响一个结果。
重复方差分析的基本原理是,将可以解释总变差的部分拆解成各个自变量和共同变量,以便研究它们之间的关系。
重复方差分析关注的是总变差的分配,以及那些变差是由自变量引起而不是其他因素引起。
二、两因素重复方差分析原理两因素重复分析(RFA)是其中一种重复分析方法,被认为是社会科学研究中最常用的分析方法之一。
两因素重复方差分析是指将总变差分解成自变量和共同变量的影响,仅使用两个因素:一个主要因素和一个控制变量,来检验假设模型的差异。
两因素重复方差分析可以用来检验主要变量对被观察变量的影响,以及它们之间的交互作用效果是否具有显著性。
三、两因素重复方差分析在社会科学研究中的应用重复方差分析不仅可以检验参与者之间的因素和变量之间的关系,也可以检验因素和变量之间的交互作用是否对结果有重要影响。
由于重复方差分析方法具有完整性和便捷性,因此在社会科学研究中被广泛用于各种社会和心理学概念的研究,以进一步了解影响变量的影响力以及它们之间的关系。
四、解释重复方差分析的措施重复方差分析的解释依赖于该研究的实际意义和研究设计,以利用上述因素和变量之间的关系提供准确的解释。
重复方差分析的解释包括以下几个方面:(1)检验双方变量;(2)检验主要变量的影响;(3)验双方变量的交互作用;(4)使用多元分析确定变量的重要性。
重复测量资料的方差分析
重复测量资料的方差分析什么是重复测量资料?重复测量资料是指在同一物件上,经过多次测量所得的一组数据。
它可以用于评估测量装置或人员的准确度和可靠性,或对同一样品在不同时间或不同实验条件下的实验测量结果进行比较。
方差分析方差分析是一种分析比较不同组别之间差异的统计方法,它可以判断一个因素对实验结果的影响是否显著。
在重复测量资料的分析中,方差分析可以用于确定是否存在个体之间的显著差异。
重复测量资料的方差分析方法在重复测量资料的方差分析中,采用的是双因素重复测量资料的方差分析方法。
这种方法包括两个因素:测量因素和重复因素。
测量因素是要分析的因素,重复因素是指对同一物件进行多次测量,每次测量之间都存在一定程度的差异,重复因素会产生误差。
以下是双因素重复测量资料的方差分析步骤:步骤一:确定方差来源方差来源包括测量因素、重复因素以及随机误差。
其中测量因素和重复因素可以用于计算方差,而随机误差则不能。
步骤二:计算平方和平方和是指每个因素所产生的方差之和。
计算平方和的公式如下:•总平方和(TSS):TSS=SSA+SSB+SSAB+SSE•因素A的平方和(SSA):SSA=n∑(yij-y··)2/a-1•因素B的平方和(SSB):SSB=n∑(yij-y··)2/b-1•因素AB的平方和(SSAB):SSAB=n∑(yij-yi·-y·j+y··)2/(a-1)(b-1)•误差平方和(SSE):SSE=TSS-SSA-SSB-SSAB其中,n是每组数据的测量次数,a和b是因素A和因素B的水平数,yij是第i个个体在第j次测量中的数据,yi·是第i个个体在所有测量中的均值,y·j是所有个体在第j次测量中的均值,y··是所有测量数据的均值。
步骤三:计算自由度自由度是指某一因素或误差中可变的部分,计算自由度的公式如下:•总自由度(DFS):dfs=nab-1•因素A的自由度(DFA):DFA=a-1•因素B的自由度(DFB):DFB=b-1•因素AB的自由度(DFAB):DFAB=(a-1)(b-1)•误差自由度(DFE):DFE=dfs-DFA-DFB-DFAB步骤四:计算均方值均方值是平方和与自由度的比值,计算均方值的公式如下:•因素A的均方值(MSA):MSA=SSA/DFA•因素B的均方值(MSB):MSB=SSB/DFB•因素AB的均方值(MSAB):MSAB=SSAB/DFAB•误差的均方值(MSE):MSE=SSE/DFE步骤五:计算F值F值是均方值之比,计算F值的公式如下:•因素A的F值(FA):FA=MSA/MSE•因素B的F值(FB):FB=MSB/MSE•因素AB的F值(FAB):FAB=MSAB/MSE步骤六:计算P值P值是指一个F分布的概率值,计算P值需要使用F分布表。
双因素重复测量方差应用条件
双因素重复测量方差应用条件1.引言1.1 概述双因素重复测量方差是一种统计分析方法,常用于研究实验中的重复测量数据。
在某些情况下,我们需要考察两个或两个以上因素对实验结果的影响,并希望了解这些因素之间是否存在相互作用。
双因素重复测量方差方法的应用条件是实验数据需要满足一定的前提条件,才能准确地使用该方法进行数据分析。
在具体的应用中,我们需要关注以下几个方面。
首先,实验数据需要满足正态性的要求。
正态性是指数据呈现出类似于正态分布的特征,即数据点在均值附近分布,并且两侧分布的形状对称。
如果数据违背了正态性的假设,那么双因素重复测量方差的应用结果可能会失真。
其次,实验数据需要满足独立性的要求。
独立性是指实验数据的观测值之间相互独立,彼此之间的测量结果不会互相影响。
如果实验数据存在相关性或序列效应,那么我们需要采取相应的方法来处理这种相关性,以确保研究结果的准确性。
此外,实验数据还需要满足方差齐性的要求。
方差齐性是指在不同水平或条件下,方差具有相同的性质,即方差的大小不会因为因素或条件的变化而改变。
如果实验数据的方差缺乏齐性,那么我们需要进行方差分析的修正,以确保分析结果的可靠性。
综上所述,双因素重复测量方差的应用条件包括正态性、独立性和方差齐性。
只有在满足这些条件的情况下,我们才能准确地使用双因素重复测量方差方法进行数据分析,并得出相关的结论。
这种方法的应用对于揭示实验因素对结果的影响以及因素之间的相互作用具有重要意义,可以帮助研究人员更加准确地理解实验结果的含义。
1.2文章结构1.2 文章结构本文将分为三个部分来探讨双因素重复测量方差的应用条件。
首先,我们将在引言中概述本文的背景和目的,为读者提供一个整体的了解。
接下来,将详细介绍双因素重复测量方差的定义和计算方法,以便读者能够理解其数学原理和计算过程。
最后,在结论部分将阐述双因素重复测量方差的应用条件和其对实际问题的实际意义。
在每个部分中,我们将提供清晰的解释和示例,以帮助读者更好地理解和应用所述概念。
实验5——双因素方差分析(有重复)
6 ) 燃料多重比较
Dependent Variable: 火 箭 射 程 Tamhane
Multiple Comparisons
(I) 燃 料 (J) 燃 料
1
2
Mean Difference
(I-J)
6.3000
3
-1.3500
4
-2.0500
2
1
-6.3000
3
-7.6500
4
-8.3500
22.9701
-16.2754
13.0004
-6.2972
21.0972
-22.9701
4.8951
-21.0972
6.2972
8 ) 燃料与助推器的多重比较
3. 燃料 * 助推器
Dependent Variable: 火箭射程
燃料 助推器
1
1
2
3
2
1
2
3
3
1
2
3
4
1
2
3
Mean 55.400 48.700 63.050 45.950 52.300 50.000 59.200 72.050 39.950 73.650 54.600 45.050
2. SPSS输入数据格式: 3列24行 因素A取值有4个,因素B取值有3个。
3. SPSS程序选项
1)Analyze=>GeneralLinearModel=>Univariate; 2)将“火箭射程”设置为因变量(Dependent), 将“燃料”、“推进器”设置为固定因素 (Fixed Factor(s));
Std. Error 3.142 3.142 3.142 3.142 3.142 3.142 3.142 3.142 3.142 3.142 3.142 3.142
双因素方差分析方法
(
)
dfT , df A , df B , df E ,则
SS A df A MS A = ~ F ( ( a 1) , ( a 1)( b 1) ) FA = SS E df E MS E
SS B df B MS B = ~ F ( ( b 1) , ( a 1)( b 1) ) FB = SS E df E MS E
结论:工人对产品的产量有显著影响, 结论:工人对产品的产量有显著影响, 机器对产品的产量有极显著影响. 机器对产品的产量有极显著影响.
例1的上机操作 的上机操作
原始数据,行因素水平, 原始数据,行因素水平,列因素水平
对应例1 对应例 的数据输入方式
工人对产品产量有显著影响,而机器对产品产量的影响极显著. 工人对产品产量有显著影响,而机器对产品产量的影响极显著.
1 b 水平A α i = ∑ ij = i i 水平 i对试验结果的效应 a j =1 1 a 水平 β j = ∑ ij = i j 水平Bj对试验结果的效应 b i =1 试验误差 ε ij = X ij ij
特性: 特性:
∑ α i = 0;
i =1
a
β j = 0; ε ij ~ N ( 0, σ 2 ) ∑
SST = ∑∑ X ij X
i =1 j =1
a
b
(
)
2
可分解为: 可分解为:SST = SS A + SS B + SS E
SS A = b∑ X i. X
SS B = a ∑ X . j X
j =1 a b
a
i =1 b
(
)
2
称为因素A的离差平方和, 称为因素 的离差平方和, 的离差平方和 对试验指标的影响. 反映因素 A 对试验指标的影响. 称为因素B的离差平方和, 称为因素 的离差平方和, 的离差平方和 对试验指标的影响. 反映因素 B 对试验指标的影响.
可重复双因素方差分析_Excel 2010 商务数据分析与处理(第2版)_[共2页]
(2)方差分析:返回标准的无重复双因素方差分析表,包括离差平方和(SS)、自由度(df)、 均方(MS)、F 统计量、概率值(P-value)、F 临界值(F crit)。
商 务 数 据 分 析 与 处 理 ︵ 第 2版 ︶
220
图 7.43 “无重复双因素”方差分析数据模型及分析结果
通过分析行间、列间和误差的离差平方和在总离差平方和中所占的比重,可以直观地看出 因素与水平的变化对总体指标变动的影响。将 F 统计量的值与临界值比较,可以判定是否接受 等均值的假设。其中 F 临界值是用 FINV 函数计算出来的。
本例中行间、列间和误差的离差平方和水平接近。 行间 F 统计值是 3.4277081,略小于 F 临界值 3.86254。显著性分析的概率值 0.06583 也大 于 0.05,所以接受行间等均值假设,即认为不同广告媒体对销售业绩的影响无明显区别。不过 当置信度稍稍降低时,F 统计量将大于 F 临界值,所以建议对不同媒体做进一步研究分析。 列间 F 统计值是 30.004038,远大于 F 临界值 3.86254。显著性分析的概率值只有 0.000051, 所以拒绝列间等均值假设,即认为不同的广告投放力度对销售有明显的影响。
【例 7-14】为了考察不同的 CPU 和不同的主板搭配是否有不同的效果,在保证其他配置相 同的条件下,将三种 CPU 和四种主板搭配后各自进行三次试分析
可重复双因素方差分析是使两个有协同作用的因素同时作用于考察对象,并重复试验,然 后通过统计分析判断不同的因素组合在多次试验中对指标的影响是否相同。从理论上讲,这仍 然是在检验几组等方差正态总体下的均值假设。可重复双因素方差分析的基本假设是三个,分 别是各行、各列和各行列(可以假设是各“平面”)的均值相等。
双因素试验的方差分析
设:
X ijk ~ N ij , 2 , i 1,2,, r, j 1,2,, s, k 1,2,, t ,
各
X ijk
独立, ij , 2 均为未知参数。或写成:
2 ijk ~ N 0, , 各 ijk 独立 i 1,2,, r , j 1,2,, s, k 1,2,, t.
双因素试验的方差分析
影响试验结果的因素不止一个,要用双因素
或 多因素的方差分析;
确定哪些因素是主要的,它们对试验结果的
影响是否显著; 它们之间是否有交互作用。
(一)双因素等重复试验(有交互作用)的方差分析设有两个因
素A,B作用于试验的指标。 因素A有r个水平
因素B有s个水平
A1 , A2 ,, Ar
X . j.
1 r t X ijk , j 1,2,, s. rt i 1 k 1
总偏差平方和(称为总变差)
ST X ijk X .
2 i 1 j 1 k 1 r s t
ST写成:
S T X ijk X
i 1 j 1 k 1 s t r
1 1319 .82 2 2 2 S A B 110.8 91.9 90.1 2 24 S A S B 1768 .69250 , S E ST S A S B S A B 236.95000 .
得方差分析表如下:
表9.11 例1的方差分析表 方差来源 平方和 自由度 均 方 F 值
A1 A2
X 121 , X 122, , X 12t
…
X 211 , X 212, X 221 , X 222, , X 21t , X 22t
双因素重复试验方差分析
S I /((r 1)( s 1)) 从而有FB ~ F ((r 1)( s 1), rs (l 1)) Se /(rs(l 1))
对给定的显著性水平 ,拒绝域分别为
WA {FA : FA F ((r 1), rs(l 1))} WB {FB : FB F (( s 1), rs(l 1))} WI {FI : FI F ((r 1)( s 1), rs(l 1))}
行面和-平方-和-均值
列面和-平方-和-均值
纵向和-平方-和-均值 总平方和
1 R xijk l i 1 j 1 k 1
r s l
2 W xijk i 1 j 1 k 1 r s l
2
可以证明:
S A QA P S B QB P
r
s
l
l ( X ij X i X j X ) 2
i 1 j 1
r
ST [( X ijk X ij ) ( X i X ) ( X j X )
i 1 j 1 k 1
r
s
l
( X ij X i X j X )]2
第k次试验的结果列表如下:
B1 A1 A2 Ar
B2
Bs X 1sk X 2 sk X rsk
X 11k X 12 k X 21k X 22 k X r 1k X r 2 k
假设 X ijk ~N ( ij , 2 ), i 1,, r , j 1,, s, k 1,, t .
(3)
S A /(r 1) 从而有FA ~ F (r 1, rs(l 1)) Se /(rs(l 1)) S 2 当H 02成立时, B ~ ( s 1).且S B与Se相互独立 2