表面活性剂的润湿性能

合集下载

表面活性剂润湿作用

表面活性剂润湿作用

固体表面上的原子或分子的价键力是未饱和的,与内部原子或分子比较有多余的能量。

所以,固体表面与液体接触时,其表面能往往会减小。

通常,暴露在空气中的固体表面积总是吸附气体的,当它与液体接触时,气体如被推斥而离开表面,则固体与液体直接接触,这种现象称为润湿。

一、润湿过程在清洁的玻璃板上滴一滴水,水在玻璃表面上立即铺展开来;而在石蜡上滴一滴水,水则不能铺展而保持滴状,如图1所示。

从水面与固体面的接触点沿水面引切线,切线与固体面之间的夹角θ称为接触角。

水与玻璃的接触角接近于零,而与石蜡的接触角约为1100。

接触角小的固体易为液体润湿,反之,接触角大的固体则不易被液体润湿。

因此,接触角的大小可作为润湿的直观尺度。

又如,在玻璃板上滴一滴酒精,酒精滴也会在玻璃板上铺展开来,其接触角为零,铺展情形与水的情况没有什么差异。

当固体物质不是玻璃时,其润湿情况有显著不同。

因此,在研究润湿时,接触角是一个重要判据。

为对润湿尺度给以更严格的规定,下面讨论润湿过程。

图1.接触角润湿即固体表面吸附的气体为液体所取代的现象,这就是说发生润湿时,固一气界面消失,形成新的固-液界面。

在这种过程中能量(自由能)必发生变化,自由能变量的大小可作为润湿作用的尺度。

固一气界面消失,新的固-液界面产生有多种方式,所以润湿的类型也相应有多种。

图2为三种类型润湿。

图2(a)为铺展润湿,水、酒精等在玻璃表面上铺展即为这种铺展润湿。

发生这种润湿时能量变化由式一决定:(式一)式中y s——固体的表面张力;Y L——液体的表面张力;Y SL——固体和液体的界面张力;W S——铺展功,亦称做铺展系数。

W S的物理意义从图可以清楚地看出:在固体表面上铺展的液体膜,在逆过程中减少单位面积所需的能量。

经过这种过程后,固体产生lcm2的新表面,同时消失1cm2液体表面和lcm2固-液界面,所以从式一由表面张力和界面张力立即算出W s。

在发生这种润湿的过程中,释放出的能量和W s相等,W s≥0时发生润湿。

表面活性剂的润湿

表面活性剂的润湿

因此,在溶液浓度较稀时,-SO4—基在链端的 比在链中间的化合物其表血张力较低;而在浓 度较高时,-SO4—基在链中间的化合物(15-8) 降低表面张力的有效值则较强,显示出较好的 润湿性能。
(2)非离子聚氧乙烯类表面活性剂的EO数:
R一般以C7-C12的润湿性最好,C12以上润湿性 下降。以C8及C9为例,EO数变化时,润湿性 不断变化、EO=10~12时,润湿性最好;EO >12时,润湿性急剧下降;EO数较低时,润 湿性也差。
非离子型表面活性剂中主要是壬基苯酚和辛基 苯酚的环氧乙烯加成物和低碳脂肪醇和低聚氧 乙烯加成物如渗透剂JFC。
6.2强碱性溶液的润湿剂 强碱性溶液的润湿剂
丝光与煮练要求碱液能均匀而且很快地润湿织物, 有些润湿剂是不溶解的。
煮练
棉纤维生长时,有天然杂质(果胶质、蜡状物质、 含氮物质等)一起伴生。棉织物经退浆后,大部分 浆料及部分天然杂质已被去除,但还有少量的浆料 以及大部分天然杂质还残留在织物上。这些杂质的 存在,使绵织布的布面较黄,渗透性差。同时,由 于有棉籽壳的存在,大大影响了棉布的外观质量。 故需要将织物在高温的浓碱液中进行较长时间的煮 练,以去除残留杂质。煮练是利用烧碱和其他煮练 助剂与果胶质、蜡状物质、含氮物质、棉籽壳发生 化学降解反应或乳化作用、膨化作用等,经水洗后 使杂质从织物上退除。
6.润湿剂的选用 润湿剂的选用
在印染加工过程中,要迅速得到润湿效果,润 湿剂必须能迅速的吸附到界面上去。实际上, 具有最大表(界)面活性的物质,并不都是最好 的润湿剂。 而能促使最快吸附到界面而润湿的表面活性剂 才是最好的润湿剂。
6.1弱酸和弱碱性溶液的润湿剂 弱酸和弱碱性溶液的润湿剂
润试剂在弱酸性和弱碱性以及中性溶液的应用 最为普遍,在染整工业中如退浆、漂白、染色、 树脂整理、织布行业的上浆、上油等。 阴离子表面活性剂中可作为润湿剂和渗透剂用 的如渗透剂T(琥珀酸双异辛酯磺酸钠)、十二 烷基硫酸酯钠盐、十二烷基苯磺酸钠、丁基萘 磺酸钠(Nakal BX)、太古油(磺化油AH油酸丁 酯硫酸酯钠盐)等,其中以渗透剂T为最佳。

表面活性剂润湿力(渗透力)的测定方法(纯棉帆布片润湿沉降法)

表面活性剂润湿力(渗透力)的测定方法(纯棉帆布片润湿沉降法)

表面活性剂润湿力(渗透力)的测定方法
(纯棉帆布片润湿沉降法)
1 适用范围
对润湿力(渗透力)有要求的制革用表面活性剂。

2 试验材料
21支3股×21支4股纯棉帆布,直径35mm,每块重量在0.38g~0.39 g之间。

3 试验仪器
3.1秒表:精确度0.01秒;
3.2带手柄的铁丝圈(直径30mm)。

4 测定步骤
4.1配制所需浓度的助剂(根据需要一般为1g/L或2g/L)150mL于200mL烧杯中,搅拌均匀,调节温度为(25±1)℃。

4.2将棉帆布片放在洗净的铁丝圈上,小心移置于烧杯液面上,同时开启秒表计时,至帆布圈完成润湿时记录时间,继续至帆布圈刚刚持续沉降时,记下时间。

4.3每种浓度的试液平行测定3次,测定结果相对误差在20%以内。

5 结果表示
以各次所测润湿时间和沉降时间的算术平均值来表示。

时间越短,表面活性剂的润湿力越好。

表面活性剂润湿力(渗透力)的测定方法(纯棉帆布片润湿沉降法)

表面活性剂润湿力(渗透力)的测定方法(纯棉帆布片润湿沉降法)

表面活性剂润湿力(渗透力)的测定方法(纯棉帆布片润湿沉降法)
1适用范围
对润湿力(渗透力)有要求的制革用表面活性剂。

2试验材料
21支3股×21支4股纯棉帆布,直径35mm,每块重量在0.38g~0.39 g之间。

3试验仪器
3.1秒表:精确度0.01秒;
3.2带手柄的铁丝圈(直径30mm)。

4测定步骤
4.1配制所需浓度的助剂(根据需要一般为1g/L或2g/L)150mL于200mL烧杯中,搅拌均匀,调节温度为(25±1)℃。

4.2将棉帆布片放在洗净的铁丝圈上,小心移置于烧杯液面上,同时开启秒表计时,至帆布圈完成润湿时记录时间,继续至帆布圈刚刚持续沉降时,记下时间。

4.3每种浓度的试液平行测定3次,测定结果相对误差在20%以内。

5结果表示
以各次所测润湿时间和沉降时间的算术平均值来表示。

时间越短,表面活性剂的润湿力越好。

乙氧基化乙炔基 润湿剂

乙氧基化乙炔基 润湿剂

乙氧基化乙炔基润湿剂是一种表面活性剂,具有良好的润湿性能和较低的刺激性,广泛应用于纺织、印染、皮革、造纸等领域。

以下是乙氧基化乙炔基润湿剂的特点:
1.润湿性能:乙氧基化乙炔基润湿剂具有良好的润湿性能,能够
降低表面张力,提高液体的渗透性和润湿性,使其更容易在固体表面扩散和铺展。

2.刺激性低:相对于其他表面活性剂,乙氧基化乙炔基润湿剂的
刺激性较低,对皮肤和眼睛的刺激较小,因此更加安全和温和。

3.稳定性好:乙氧基化乙炔基润湿剂的化学稳定性较好,不易与
其他物质发生反应,也能够在较宽的温度范围内保持稳定性。

4.配伍性好:乙氧基化乙炔基润湿剂与其他表面活性剂、染料、
油墨等物质的配伍性好,能够形成稳定的溶液或乳液。

5.生物降解性好:乙氧基化乙炔基润湿剂容易生物降解,不会对
环境造成长期污染。

表面活性剂的润湿性能

表面活性剂的润湿性能

表面活性剂的润湿性能一、润湿功能例子:水润湿玻璃,加入表面活性剂润湿容易;水滴在石蜡上,石蜡几乎不被润湿,加入少量表面活性剂石蜡就容易被润湿了;较厚的毛毡或棉絮放入水中,很难渗透,加入一些表面活性剂就容易浸透了。

表面活性剂具有渗透作用或润湿作用所谓润湿是指一种流体被另一种流体从固体表面或固液界面所取代的过程。

润湿过程往往涉及三相,其中至少两相为流体。

1.润湿过程润湿作用是一个过程。

润湿过程主要分为三类:沾湿、浸湿和铺展。

产生的条件不同。

其能否进行和进行的程度可根据此过程热力学函数变化判断。

在恒温恒压条件下可方便使用润湿过程体系自由能变化表征。

(1)沾湿主要指液-气界面和固-气界面上的气体被液体取代的过程,在此过程中消失的固-气界面的大小与其后形成的固-液界面的大小是相等的。

如喷洒农药,农药附着于植物的枝叶上。

沾湿附着发生条件:△G A=γSL-γSG-γLG<0W A=γSG-γSL+γLG≥0 (沾湿)式中:γSG、γSL和γLG分别为气-固、液-固和气-液界面的表面张力(2)浸湿浸湿是指固体浸入液体的过程,原有的固气界面空气被固液取代。

如洗衣时衣物泡在水中;织物染色前先用水浸泡过程浸湿发生条件:△G i=γSL-γSG≤0W i=γSG-γSL≥0 (W i:浸湿功)(3)铺展液体取代固体表面上的气体,固-气界面被固-液界面取代的同时液体表面能够扩展的现象。

铺展发生条件为:△G S=γSL+γLG-γSG≤0S=γSG-γSL-γLG≥0 (S:铺展功)一般,若液体能够在固体表面铺展,则沾湿和浸湿现象必然能够发生。

从润湿方程可以看出:固体自由能γSG越大,液体表面张力γLG越低,对润湿越γLG COS θ γSG θ S γSL 有利。

2. 接触角和润湿方程(杨氏方程)接触角:固、液、气三相交界处自固-液界面经过液体内部到气液界面处的夹角。

接触角与固-液,固-气和液-气表面张力的关系可表示为: γSG -γSL =γLG COS θ 杨氏方程 COS θ=(γSG -γSL )/γLG加入表面活性剂,γLG ↓ γSL ↓ COS θ↑ θ↓θ>90°不润湿 θ<90°润湿 θ越小润湿越好 θ=0°或不存在→铺展将杨氏方程代入W A W i SW A =γLG (1+ COS θ)≥0 θ≤180° W i =γLG COS θ ≥0 θ≤90° S =γLG ( COS θ-1) ≥0 θ≤0° 纤维特性2r γSG =γSL +γLG COS θ θ前进接触角由于液体表面曲率,液体在毛细管中提升力大小 L 为2πr γLG COS θ。

表面活性剂的润湿作用

表面活性剂的润湿作用

表面活性剂的润湿作用作者:xhh指导教师:作者单位:学科专业:2010年11月摘要表面活性剂是指在溶剂中加入很少量即能显著降低溶剂表面张力,改变体系界面状态的物质。

表面活性剂可以产生润湿或反润湿,乳化或破乳,分散或凝集,起泡或消泡,增溶等一系列作用。

素有"工业味精"之美称,广泛应用于洗涤剂、纺织、皮革、造纸、塑料、橡胶、农药、冶金、矿业、医药、建筑、化妆品等工业。

它是精细化工最重要的产品之一。

表面活性剂能够显著降低体系的表面或表面张力,当浓度超过临界胶束浓度时,在溶液内部形成胶束,从而产生日常生活中的多种作用,其中破乳与乳化作用就是其各种重要作用之一。

表面活性剂的发展十分迅速,其应用领域很广,如食品、制药、纺织、金属加工、石油、建筑等行业。

关键字:表面活性剂、润湿功能、作用原理、影响因素、应用实例目录前言 (4)一、润湿过程 (4)二、表面活性剂的润湿作用 (5)1.在固体表面发生定向吸附 (5)2.提高液体的润湿能力 (5)三、润湿剂 (6)四、表面活性剂在润湿方面的应用 (6)1.矿物的泡沫浮选 (6)(1)定义 (6)(2)浮选法原理 (6)(3)浮选过程 (7)2.金属的防锈与缓蚀 (8)3.织物的防水防油处理 (8)(1)防水处理 (8)(2)防油处理 (8)参考文献: (10)前言润湿广泛存在于自然界的一种现象,最为普通的润湿是固体表面的气体被液体所取代,或是固-液界面上的一种液体被另一种液体取代。

例如:洗涤.印染.润滑.农药喷洒等;还有一些场合往往不希望润湿发生,例如:防水.防油.防锈等。

润湿:是指一种流体被另一种流体从固体表面或固-液界面所取代的过程。

即润湿过程往往涉及三相,其中至少两相为流体。

润湿是一种十分普遍的现象,常见的润湿过程是固体表面的气体被液体取代,或是固-液界面上的一种液体被另一种液体所取代。

例如洗涤、印染、润滑、原油开采等润湿是前提。

但有些场合又要防止润湿,如防水、防油等。

表面活性剂的功能

表面活性剂的功能

表面活性剂的功能
凡是能吸附在溶液的表面上,较低浓度就能极高的降低表面张力的能力和效率的物质称为表面活性剂。

表面活性剂的分子结构可分为两部分,一部分是亲水基团,另一部分是疏水基团。

表面活性剂的性质主要由亲水基团决定,而亲水基团的结构变化多端,所以总体上可分为两大类:离子型表面活性剂和非离子型表面活性剂。

表面活性剂的功能主要有五类:润湿作用、乳化作用、悬浮分散作用、增溶作用、发泡作用。

1.润湿作用。

所谓润湿就是当固体与液体接触时,原来的固-气和液-气表面消失而形成新的固-液界面的现象。

表面活性剂以极性基团朝向固体,非极性基团朝向气、液体吸附于固体表面,形成定向排列的吸附层,使自由能较高的固体表面被碳氢链覆盖而转化为低能表面,达到改变润湿性能的目的。

2.乳化作用。

乳化作用是指两种不相混溶的液体中的一种以极小的粒子(粒径1-10微米)均匀地分散到另一种液体中形成乳状液的作用。

乳化过程中,表面活性剂可起两种主要作用,一是降低两种液体间界面张力的稳定作用;二是保护作用。

3.悬浮分散作用。

把固体微粒均匀、稳定地分散到液体介质中,形成悬浮体的作用叫做分散作用。

表面活性剂在固体颗粒表面的吸附,能够增加固体微粒重新聚积的能障,降低粒子聚积的倾向,提高分散体系的稳定性。

4.增溶作用。

增溶作用指表面活性剂有增加难溶性或不溶性物质在水中的溶解度的作用。

5.发泡作用。

气体分散在液体中的状态称为气泡。

向含有表面活性剂的水溶液中充气或施以搅拌,可形成被溶液包围的气泡。

表面活性剂之润湿剂

表面活性剂之润湿剂

表面活性剂之润湿剂院系:化学化工学院专业:化学工程与工艺班级:化工092班姓名:***学号:***********摘要:能使固体物料更易被水浸湿的物质。

通过降低其表面张力或界面张力,使水能展开在固体物料表面上,或透入其表面,而把固体物料润湿。

通常是一些表面活性剂,如磺化油、肥皂、拉开粉BX等。

也可用大豆卵磷脂、硫醇类、酰肼类和硫醇缩醛类等。

润湿剂正日益被陶瓷工业所使用,一般通用的是一种具有很高耐水硬度的聚氧化乙烯烷化醚类。

而磺化油、肥皂等都具有中等的润湿性能、优良的去垢能力和增溶的倾向。

关键词:表面活性剂,医药,润湿。

一、润湿剂的分类1.根据作用强弱可分为两类:(1)表面张力小并能与水混溶的溶剂,包括乙醇、丙二醇、甘油、二甲基亚砜等。

(2)表面活性剂,如阴离子表面活性剂、某些多元醇型表面活性剂(斯盘类)、聚氧乙烯型表面活性剂(吐温类)2.根据给药途径可分为三类:(1)在外用制剂使用的润湿剂,包括表面活性剂和表面张力小并能与水混溶得到的醇类。

(2)口服制剂使用的润湿剂,包括表面张力小并能与水混溶的乙醇、甘油、吐温类等。

(3)注射给药的润湿剂,包括表面张力小并能与水混溶的乙醇、丙二醇、甘油、聚乙二醇200~400等以及吐温-80。

3.根据性质分为两类润湿剂有阴离子型和非离子型表面活性剂。

阴离子型表面活性剂包括烷基硫酸盐、磺酸盐、脂肪酸或脂肪酸酯硫酸盐、羧酸皂类、磷酸酯等。

非离子型表面活性剂包括聚氧乙烯烷基酚醚,聚氧乙烯脂肪醇醚,聚氧乙烯聚氧丙烯嵌段共聚物等。

目前市面上还有一类最新型的硅醇类非离子表面活性剂,也称润湿剂,特点:分子量低,多疏水基呈伞形对称结构,与传统活性剂相比较,润湿、渗透性表现极为优异、高效,是革命性的新一代表面活性剂。

动、静态表面张力极低,含双羟基,反应型活性剂,化学性质为惰性,一般不参与体系的化学反应,耐酸碱性好,化学性质稳定。

典型的型号是:GSK-588/582/585等系列。

表面活性剂HLB值、溶解性、润湿等知识详解

表面活性剂HLB值、溶解性、润湿等知识详解

表面活性剂HLB值、溶解性、润湿等知识详解1.表面活性剂的HLB值与应用关系表面活性剂分子是同时具有亲水基和亲油基的两亲分子,不同类型的表面活性剂的亲水基和亲油基是不同的,其亲水亲油性便不同。

表面活性剂的亲水性可以用亲水亲油平衡值(hydrophile and lipophile balance ,values,HLB)来衡量,HLB值是表示表面活性剂亲水性大小的相对数值,HLB值越大,则亲水性越强;HLB值越小,则亲水性越弱,亲油性越强。

表面活性剂的HLB值直接影响到它的性质和应用。

在应用时,根据不同的应用领域、应用对象选择具有不同HLB值的表面活性剂。

例如,在乳化和去污方面,按照油或污的极性、温度的不同选择合适HLB值的表面活性剂。

表1-2列出了具有不同HLB值表面活性剂的适用场合。

表1-2 表面活性剂的HLB值与应用关系不同类型的表面活性剂,HLB值可能不同,根据应用的需要,可以通过改变表面活性剂的分子结构得到不同HLB值的产品。

对于离子型表面活性剂,可以通过亲油基碳数的增减或亲水基的种类的变化来调节HLB 值;对于非离子型表面活性剂,则可以采取一定亲油基上连接的环氧乙烷链长或经基数目的增减来细微地调节HLB值。

表面活性剂的HLB值可以由计算得到,也可以测定得出。

常见的表面活性剂的HLB值可以从有关手册或著作中查得。

2.表面活性剂溶解性与温度的关系离子型表面活性剂低温时在水中的溶解度一般较小。

如果增加表面活性剂在水溶液中的浓度,达到饱和状态,表面活性剂便会从水中析出。

但是,如果加热水溶液,溶解度将会增大,当达到一定的温度时,表面活性剂在水中的溶解度会突然增大。

这个使表面活性剂在水中的溶解度突然增大的温度点叫克拉夫特点(Krafft point),也称为临界溶解温度。

这个温度相当于水和固体表面活性剂的溶点,故临界溶解温度为各种离子型表面活性剂的特征常数,并随烃链的增长而增加。

而非离子型表面活性剂(特别是聚乙二醇型)与离子型表面活性剂正好相反,在低温时易与水混溶,将其溶液加热,达到某一温度时,表面活性剂会析出、分层,透明的溶液会突然变浑浊,这一析出、分层并发生浑浊的温度点叫该表面活性剂的浊点(cloud point)。

实验3.润湿力的测定

实验3.润湿力的测定

实验3 润湿力的测定一、实验目的掌握表面活性剂润湿力测定的方法和原理。

二、基本原理液体润湿固体表面的能力称为润湿力。

对于光滑的固体表面,液体的润湿程度通常可用接触角的大小来衡量。

对于固体粉末则用润湿热来表示润湿的程度。

对于织物(纺织品)则用液体润湿织物所需要的时间来润湿程度。

最常用的是纱带沉降法和帆布沉降法以及爬布法。

由于润湿在洗涤去污中非常重要,本实验介绍纺织品润湿性的测定——帆布沉降法。

该法的原理是:一定规格和大小帆布浸入液体中,在液体未浸透帆布前,由于浮力的作用,帆布交悬浮在液体中:一定时间后帆布被浸透,其比重大于液体的比重而下沉。

显然不同液体对帆布润湿力的大小将表现在沉降时间和长短上,沉降时间越短,则润湿力越强,所以沉降时间可作为润湿力比较标准。

三、仪器和试剂表面活性剂:直链烷基苯磺酸钠(LSA)或十二烷基硫酸钠(SDS)帆布:21支3股*21支4股的标准细帆布四、实验步骤1.将标准细帆剪成直径约为35mm的圆片,每块经感量为1/1000克的天平称量,重量应在0.38-0.39克之间。

2.取鱼钩一只:每个重量在20-40毫克之间,也可用同重量的细钢针制成鱼钩状使用。

3.用直径为2毫米的镀锌铁丝弯制如图中所示的我丝架。

将鱼钩的一端缚以丝线,丝线的末端打一个小圈,套入铁丝架中心处。

4.配制0.25、0.5、0.75克/升LAS或十二烷基硫酸钠水溶液。

5.取全高140-150mm,外径110-120mm1000ml烧杯一只,装入1000ml水。

调节温度至20±1。

C。

将鱼钩尖端钩入帆布圈距边约2-3mm处,然后将铁丝架搁在烧杯边上,使帆布圈浸浮于试液中,其顶点应在液面下10-20mm处(图3-1)。

立即开启秒表,至帆布圈沉至烧杯底部时,停表,记下沉降所需要的时间。

如果帆布圈在0.5小时后仍不沉降,也结束实验,记沉降时间为>0.5小时。

图3-2 帆布沉降法测定润湿力6.将烧杯中换上表面活性剂水溶液(浓度由低到高),重复(4)的操作,计下沉降时间。

第四章_表面活性剂的润湿功能

第四章_表面活性剂的润湿功能

(3)铺展:以固液界面取代固气界面同时,液体表面 扩展的过程。
铺展系数S = γsg -(γlg + γsl) = -∆G ≥ 0 时液体可以在固体表 面上自动展开,连续地从固体表面上取代气体。
又可写成:S = Wi-γlg ,则: 若要铺展系数大于0,则Wi必须大于γlg。
γlg是液体表面张力,表征液体收缩表面的能力。与之 相应,Wi则体现了固体与液体间粘附的能力。因此,又称 之为黏附张力。用符号A表示。
(1)沾湿:液体与固体由不接触到接触,变液气界面和固 气界面为固液界面的过程
Wa = γlg +γsg – γsl = -∆G Wa: 粘附功 > 0 自发
(2)浸湿:固体浸入液体的过程。(洗衣时泡衣服)固气 界面为固液界面替代, 液体表面并无变化。
-∆G = γsg - γsl = Wi
Wi: 浸润功 >0 是浸湿过程能否自动进行的依据
(2)对比三者发生的条件
沾湿: Wa = γlg +γsg - γsl≥ 0 浸湿: γsg - γsl ≥ 0 铺展: S = γsg -(γlg + γsl) ≥ 0 (3)固气和固液界面能对体系的三种润湿作用的贡献是一致的。
2 接触角与润湿方程
将液体滴于固体表面 上,液体或铺展或覆 盖于表面,或形成一 液滴停于其上,此时 在三相交界处,自固 液界面经液体内部到 气液界面的夹角就叫 做接触角。
因此当表面层的基团相同时不管基体是否相同其高能表面的自憎现象虽然许多液体可在高能表面上铺展如煤油等碳氢化合物可在干净的玻璃钢上铺展但也有一些低表面张力的液体不能在高能表面上铺出现这种现象的原因在于这些有机液体的分子在高能表面上吸附并形成定向排列的吸附膜被吸附的两亲分子以极性基朝向固体表面而非极性基朝外排列从而使高能表面的组成和结构发生变化

表面活性剂溶液润湿性质的实验研究进展

表面活性剂溶液润湿性质的实验研究进展
系 的界 面 状 态 影 响 其 润 湿 、铺 展 及 黏 附 等 过 程 , 活性剂溶 液浓 度 的变 化 ,即表 面张 力随 表 面活性 使之产 生 润 湿 、乳化 、起 泡 、增 溶 及分 散 等 一 系 剂 浓度增 加 而 急 剧 下 降 , 以后 则 大 体 保 持 不 变 ; 列作用 ,从而 达到 实 际应 用 的要 求 。表 面 活性 剂 若再 提高 浓度 ,则溶 液 中 的表 面 活性 剂 分子 就 各 之所 以具 有 降低溶 液 表面 张 力 的能 力 ,与 其 分子 自以几 十 、几百 地 聚集 在 一 起 ,排列 成憎 水 基 向
在 水 中发 生 电离 以及 电离 出的 离子 类 型 ,分 为 阳 离 子型 、阴离子型 、非 离子 型 和 两性 表 面活性 剂
表面活性剂是一类即使在很低浓度时也能显 四大类 。 活性 剂溶液 的表 面 张力 在 很大 程度 上 取决 于 著 降低溶 液表 ( ) 面 张力 的物 质 ,通 过 改 变物 界
Re i ws o x e i e t lr s a c n we tn fs r a t n o u i n v e n e p rm n a e e r h o ti g o u f ca ts l to s
YE Xu — i e m n,W ANG a Hu n, MA h o d n S a — o g,L u — i I Ch n x
结 构 的特 点密 不 可 分 ,其 分 子 结 构 的共 同特征 为 里 、亲水基 向外 的胶束 ;当活 性 剂 浓度 大 于 临界 C ) 两 亲性 :分子 一端 为亲 油性 基 团 ( 又称 疏 水基 团 胶束 浓 度 ( MC ,胶 束 虽 然 增 加 ,但 溶 液表 面
p e e t inf a t i e e tc a a trs c n df r n y tms h c o s me e tn ,l t g t e s o e o p l a r s n g i c n l df r n h rc e t s i i e e t s s i y f i i f s e ,w ih t o xe t i i h c p fa pi — midMeh n a E g er g N a hn l tcPw r nvri , adn 70 3 C ia Sho o eg Pw r n cai l ni e n , o hC i Ee r o e U i sy B oig 10 , hn ) E y c n i a ci e t 0

表面活性剂的润湿作用

表面活性剂的润湿作用
通常,液体的表面张力都在100mN/m以下。
Cos = (SG - SL)/ LG
有机固体及高聚物的表面能则与一般液体不相上下,不易
被润湿,被称为低能表面(SV 100mJ/m2 )。
无机固体易被润湿,如常见的金属及其氧化物、硫化物、
无机盐等,其表面被称为高能表面。通常,硬度大、熔点 高的固体表面能也较高(SG = 1(见图6-11),Ø 愈大表面愈粗糙。 **浓度为3mol/L的CaCl2水溶液。
2.影响接触角滞后的因素 (1)表面粗糙度
杨氏方程:SG - SL = LG cos0
粗糙表面的杨氏方程: r(SG - SL) = LG cosW
Wentzel 方程:粗糙度 r = cosW/cos0> 1
有时为不相溶的液相-液相-固相,即在固液界面上一种液
体被另一种液体所取代, 例如:洗涤时,水洗液取代织 物表面的油污。 润湿剂是指能促进水或水溶液将空气从液体或固体表面上 取而之的物质。 润湿过程与相关相的表面和界面性质有密切的关系,故表 面活性剂必然在此过程中显示出它的作用。
第一节 润湿过程
4.粉末测定法 (1)Bartell静态法
H 2 LG cos Rgρ
(2)Washburn动态法 h2 CR LG cos t
式中η为液体的粘度; C为校正因子, R为仪器常数, 对指定系统CR为定值, 可选用一种渗入速率最 快的液体作标准样品来标定。
二.接触角滞后现象
1.角度测量法 直接量角法
斜板法
2.长度测量法-滴高法和最高滴高法 sin = 2HR/(H2+R2) or tg(/2) = H/R 当
R H m
cos 1 gHm2 /2 LG

表面活性剂润湿力的测定

表面活性剂润湿力的测定

书山有路勤为径;学海无涯苦作舟
表面活性剂润湿力的测定
测定润湿力的方法通常有帆布沉降法[GB ll9831989浸没法,GB 55581985丝光浴法,GB 55571985鱼钩法、纱带沉降法、沙带沉降法和接触法等。

这里介绍浸没法、丝光浴法和接触角法。

【方法一】浸没法
本方法参照标准GB ll9831989。

在许多纺织应用中,诸如处理或洗涤纺织品以及冲洗或净洗这些硬表面,
所有过程都是以液相(水或有机溶剂)取代空气、油或污垢相。

因此,了解
所用润湿剂的润湿力以及达到完全润湿所需的时间都是有用而且重要的。

润湿力(浸没法):棉布浸没于表面活性剂溶液时,溶液取代棉布中包藏的
空气的能力。

测定原棉布圆片浸没于被测表面活性剂溶液,或已知浓度的标准润湿剂
溶液中的润湿时间,对相应的浓度绘制润湿时间.浓度曲线可评价表面活
性剂的润湿力。

本标准规定了一种用原棉布圆片浸没法测定表面活性剂溶液润湿力的方
法。

本标准适用于在中性、弱酸性或弱碱性浴中用作纺织润湿剂的所有表面
活性剂(不管其离子特性如何).不适用于丝光助剂(强碱性浴)或碳化助剂
(强酸性浴)。

(一)方法概述
将已知特性的棉布圆片夹在浸没夹内,浸没于已知浓度的表面活性剂溶
液中。

由于棉布中包藏空气。

棉布圆片趋向于浮到液面,可借助特制的浸
没夹,使棉布圆片保持完全浸没于溶液中。

空气被取代,溶液渗透迸棉布
专注下一代成长,为了孩子。

表面活性剂的润湿性能

表面活性剂的润湿性能

表面活性剂的润湿性能一、润湿功能例子:水润湿玻璃,加入表面活性剂润湿容易;水滴在石蜡上,石蜡几乎不被润湿,加入少量表面活性剂石蜡就容易被润湿了;较厚的毛毡或棉絮放入水中,很难渗透,加入一些表面活性剂就容易浸透了。

表面活性剂具有渗透作用或润湿作用所谓润湿是指一种流体被另一种流体从固体表面或固液界面所取代的过程。

润湿过程往往涉及三相,其中至少两相为流体。

1.润湿过程润湿作用是一个过程。

润湿过程主要分为三类:沾湿、浸湿和铺展。

产生的条件不同。

其能否进行和进行的程度可根据此过程热力学函数变化判断。

在恒温恒压条件下可方便使用润湿过程体系自由能变化表征。

(1)沾湿主要指液-气界面和固-气界面上的气体被液体取代的过程,在此过程中消失的固-气界面的大小与其后形成的固-液界面的大小是相等的。

如喷洒农药,农药附着于植物的枝叶上。

沾湿附着发生条件:△G A=γSL-γSG-γLG<0W A=γSG-γSL+γLG≥0 (沾湿)式中:γSG、γSL和γLG分别为气-固、液-固和气-液界面的表面张力(2)浸湿浸湿是指固体浸入液体的过程,原有的固气界面空气被固液取代。

如洗衣时衣物泡在水中;织物染色前先用水浸泡过程浸湿发生条件:△G i=γSL-γSG≤0W i=γSG-γSL≥0 (W i:浸湿功)(3)铺展液体取代固体表面上的气体,固-气界面被固-液界面取代的同时液体表面能够扩展的现象。

铺展发生条件为:△G S=γSL+γLG-γSG≤0S=γSG-γSL-γLG≥0 (S:铺展功)一般,若液体能够在固体表面铺展,则沾湿和浸湿现象必然能够发生。

从润湿方程可以看出:固体自由能γSG越大,液体表面张力γLG越低,对润湿越有利。

2.接触角和润湿方程(杨氏方程)接触角:固、液、气三相交界处自固-液界面经过液体内部到气液界面处的夹角。

接触角与固-液,固-气和液-气表面张力的关系可表示为:γSG-γSL=γLG COSθ杨氏方程COSθ=(γSG-γSL)/γLG加入表面活性剂,γLG↓γSL↓COSθ↑θ↓θ>90°不润湿θ<90°润湿θ越小润湿越好θ=0°或不存在→铺展将杨氏方程代入W A W i SW A =γLG (1+ COS θ)≥0 θ≤180°W i =γLG COS θ ≥0 θ≤90°S =γLG ( COS θ-1) ≥0 θ≤0°纤维特性γSL +γLG COS θ θ前进接触角由于液体表面曲率,液体在毛细管中提升力大小为2πr γLG COS θ。

表面活性剂润湿力(渗透力)的测定方法 (织物毛细管效应法)

表面活性剂润湿力(渗透力)的测定方法  (织物毛细管效应法)

表面活性剂润湿力(渗透力)的测定方法
(织物毛细管效应法)
1 方法来源
《织物毛细管效应的测定方法》。

2适用范围
对润湿力(渗透力)有要求的制革用表面活性剂。

3 测试原理
将织物悬挂于一定浓度的表面活性剂的溶液中,据溶液在一定时间在织物上的上升高度或溶液在织物上上升到一定高度所需的时间来评价表面活性剂润湿力的好坏。

4 试验仪器
LFY-45织物毛细管效应仪或其它等效的仪器。

5测试步骤
5.1 配制所需浓度的表面活性剂溶液2L。

5.2试验材料的准备
试验材料应在标准环境下[相对湿度为(65±2)%,温度为(20±1)℃]放置2h,测定时也在该条件下进行。

沿试验材料经向剪取长25~30cm,纬向宽3cm(或5cm)的布样共3条,在布条的一端距边缘约1.0cm处划一横线,挂一个重量为3g的夹子,纬向布条如法剪取。

5.3测定
将配制好的表面活性剂溶液注入毛效仪的盛液槽中[溶液温度应为(27±2)℃],将已准备好的试验材料条悬挂到液槽上,使划线处与溶液平齐。

开始计时,并定时测量溶液在布条上的上升高度。

注:可根据具体情况,仅测经向或纬向的毛细管效应。

6结果表示
6.1 5min、15min、30min时溶液上升的高度单位cm。

6.2溶液上升2cm所需的时间(Sec)。

注:①上述数据为3条布样的算术平均值;
②如果溶液上升高度参差不齐,宜读取最低值。

表面活性剂的润湿性及增注机理研究

表面活性剂的润湿性及增注机理研究

石 油 天 然 气 学 报 * 油 气 田开 发 工程
21 0 2年 4月
8 ,再用 地层 水 驱 ,注入煤 油 ,再测 定处 理后 岩心 的油 水相 对渗 透率 。 h
O O O O 0 O O O 0
, 9 8 7 6 5 4 3 2 l 0
[ 稿 日 期 ] 2 1 一o —2 收 02 1 O [ 金项目]中国石油化工股份有限公司重点科技攻关项 目 ( 009。 基 P 5 4 )
[ 作者简介]胡荣 ( 9 3一 ,女 ,18 16 ) 9 3年江汉石油学院毕业 ,工程硕士 ,高级工程 师 , 现主要从事油气田开发与管理工作。
1 2 3 岩 心 模 拟 增 注 试 验 ..
油 水相 对渗 透率 曲线 的测定 方 法参 照标 准 S T 5 4 — 9 9进 行 。用 地层 水 测定 岩 心 原 始 渗 透 率 , T/ 3 51 9 用 煤油饱 和 岩 心 ,测 油 水 相 对 渗 透 率 曲线 后 ,注 入 表 面 活 性 剂 溶 液 2 V,地 层 温 度 6 ℃ 下 恒 温 吸 附 P O
践 打 下理 论基 础 。
1 试 验 部 分
1 1 试 剂及 仪器 .
1 试剂 重烷 基 苯 磺 酸 盐 AB ) S,非 离 子 表 面 活 性 剂 P 2 4 、OS 1 、 O T,阳 离子 表 面 活 性 剂 E 00 一 5 P
1 3 ,阴离 子 表面 活性 剂 ] C,均 为 工 业 品 两 性 Ge n 表 面 活 性 剂 GC 6 分 子 式 : C 一 P 61 F mii 2, H 。 o 一 ( H )一 N。 C )C C 。( H。 H。;河 南双 河 油 田模 拟 地层 水 、岩 心 。

表面活性剂的润湿性能

表面活性剂的润湿性能

表面活性剂的润湿性能一、润湿功能例子:水润湿玻璃,加入表面活性剂润湿容易;水滴在石蜡上,石蜡几乎不被润湿,加入少量表面活性剂石蜡就容易被润湿了;较厚的毛毡或棉絮放入水中,很难渗透,加入一些表面活性剂就容易浸透了。

表面活性剂具有渗透作用或润湿作用所谓润湿是指一种流体被另一种流体从固体表面或固液界面所取代的过程。

润湿过程往往涉及三相,其中至少两相为流体。

1.润湿过程润湿作用是一个过程。

润湿过程主要分为三类:沾湿、浸湿和铺展。

产生的条件不同。

其能否进行和进行的程度可根据此过程热力学函数变化判断。

在恒温恒压条件下可方便使用润湿过程体系自由能变化表征。

(1)沾湿主要指液-气界面和固-气界面上的气体被液体取代的过程,在此过程中消失的固-气界面的大小与其后形成的固-液界面的大小是相等的。

如喷洒农药,农药附着于植物的枝叶上。

沾湿附着发生条件:△G A=γSL-γSG-γLG<0W A=γSG-γSL+γLG≥0 (沾湿)式中:γSG、γSL和γLG分别为气-固、液-固和气-液界面的表面张力(2)浸湿浸湿是指固体浸入液体的过程,原有的固气界面空气被固液取代。

如洗衣时衣物泡在水中;织物染色前先用水浸泡过程浸湿发生条件:△G i=γSL-γSG≤0W i=γSG-γSL≥0 (W i:浸湿功)(3)铺展液体取代固体表面上的气体,固-气界面被固-液界面取代的同时液体表面能够扩展的现象。

铺展发生条件为:△G S=γSL+γLG-γSG≤0S=γSG-γSL-γLG≥0 (S:铺展功)一般,若液体能够在固体表面铺展,则沾湿和浸湿现象必然能够发生。

从润湿方程可以看出:固体自由能γSG越大,液体表面张力γLG越低,对润湿越有利。

2.接触角和润湿方程(杨氏方程)接触角:固、液、气三相交界处自固-液界面经过液体内部到气液界面处的夹角。

接触角与固-液,固-气和液-气表面张力的关系可表示为:γSG-γSL=γLG COSθ杨氏方程COSθ=(γSG-γSL)/γLG加入表面活性剂,γLG↓γSL↓ COSθ↑θ↓θ>90°不润湿θ<90°润湿θ越小润湿越好θ=0°或不存在→铺展将杨氏方程代入W A W i SW A =γLG (1+ COS θ)≥0 θ≤180° W i =γLG COS θ ≥0 θ≤90° S =γLG ( COS θ-1) ≥0 θ≤0° 纤维特性=γSL +γLG COS θ θ前进接触角 由于液体表面曲率,液体在毛细管中提升力大小为2πr γLG COS θ。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

表面活性剂的润湿性能
一、润湿功能
例子:水润湿玻璃,加入表面活性剂润湿容易;水滴在石蜡上,石蜡几乎不被润湿,加入少量表面活性剂石蜡就容易被润湿了;较厚的毛毡或棉絮放入水中,很难渗透,加入一些表面活性剂就容易浸透了。

表面活性剂具有渗透作用或润湿作用
所谓润湿是指一种流体被另一种流体从固体表面或固液界面所取代的过程。

润湿过程往往涉及三相,其中至少两相为流体。

1.润湿过程润湿作用是一个过程。

润湿过程主要分为三类:沾湿、浸湿和铺展。

产生的
条件不同。

其能否进行和进行的程度可根据此过程热力学函数变化判断。

在恒温恒压条件下可方便使用润湿过程体系自由能变化表征。

(1)沾湿主要指液-气界面和固-气界面上的气体被液体取代的过程,在此过程中消失的固-气界面的大小与其后形成的固-液界面的大小是相等的。

如喷洒农药,农药附着于植物的枝叶上。

沾湿附着发生条件:△G A=γSL-γSG-γLG<0
W A=γSG-γSL+γLG≥0 (沾湿)
$
式中:γSG、γSL和γLG分别为气-固、液-固和气-液界面的表面张力
(2)浸湿浸湿是指固体浸入液体的过程,原有的固气界面空气被固液取代。

如洗衣时衣物泡在水中;织物染色前先用水浸泡过程
浸湿发生条件:△G i=γSL-γSG≤0
W i=γSG-γSL≥0 (W i:浸湿功)
(3)铺展液体取代固体表面上的气体,固-气界面被固-液界面取代的同时液体表面能够扩展的现象。

铺展发生条件为:△G S=γSL+γLG-γSG≤0
S=γSG-γSL-γLG≥0 (S:铺展功)
一般,若液体能够在固体表面铺展,则沾湿和浸湿现象必然能够发生。

从润湿方程可以看出:固体自由能γSG越大,液体表面张力γLG越低,对润湿越有利。

2.接触角和润湿方程(杨氏方程)
]
接触角:固、液、气三相交界处自固-液界面经过液体内部到气液界面处的夹角。

接触角与固-液,固-气和液-气表面张力的关系可表示为:
γSG-γSL=γLG COSθ杨氏方程
COSθ=(γSG-γSL)/γLG
加入表面活性剂,γLG↓γSL↓COSθ↑θ↓
θ>90°不润湿 θ<90°润湿 θ越小润湿越好 θ=0°或不存在→铺展
将杨氏方程代入W A W i S W A =γLG (1+ COS θ)≥0 θ≤180°
?
W i =γLG COS θ ≥0 θ≤90° S =γLG ( COS θ-1) ≥0 θ≤0° 纤维特性
=γSL +γLG COS θ θ前进接触角 由于液体表面曲率,液体在毛细管中提升力大小
为2πr γLG COS θ。

其值等于液柱重力πr 2△P (压强) 液体进入毛细管产生压强为:
△ P=2πr γLG COS θ/πr 2=2γLG COS θ/r=2(γSG -γSL ) /r 90°,
△P 才能为正值,液体润湿毛细管。

加入表面活性剂γSG ↓→COS θ↑;θ>0°,△P 取决于γSG -γSL ,γSG 不变,γSL ↓ △P ↑有利于毛细管润湿。

3. 表面活性剂润湿作用
表面活性剂具有双亲分子结构,纯移在界面发生定向吸附,降低液体的表面张力→导致润湿作用 (1) 在固体表面发生定向吸附

疏水基固体 高表面自由能 气固
硅酸盐矿物
表面活性剂在固体表面吸附状态是影响表面 特性的重要因素。

(2)提高液体的润湿能力 ~
水不能在低能固体铺展,加入表面活性剂,降低水表面张力 γLG ,使其润湿固体的
表面。

4. 影响润湿作用的因素
(1) 温度 一般来说温度↑,润湿性能↑。

高温下短链表面活性剂润湿性能不如长链表面
活性剂。

(原因:温度↑长链表面活性剂溶解度↑);低温下短链表面活性剂润湿性能好于长链表面活性剂。

非离子表面活性剂,温度接近浊点,润湿性能最佳 % OP-15: 25℃ 润湿性能50s
a 单分子吸附
O
O
70℃ 润湿性能17s
(2) 表面活性剂浓度
c <cmc 润湿时间对数与㏑c 呈线性关系。

㏑c ↑润湿性能↑
原因:c <cmc 表面活性剂未达到饱和吸附,增加润湿性能浓度需要大些 c >cmc 不再呈线形 。

浓度对固/液界面吸附影响不大,故一般浓度略高于cmc 即可 (3) ]
(4) 分子结构
a. 疏水基:直链烷烃亲水基在链末端,直链碳原子数为C 12-C 18润湿性能最佳;相同亲
水基团,随C ↑ HLB ↓ HLB :7-15润湿性能最佳,例如烷基硫酸酯R-OSO 3Na R 为C 12-C 14润湿性能最佳;直链烷基苯磺酸钠以C 10润湿性能最佳;支链烷基苯磺酸钠润湿性能较直链好,其中以2-丁基辛基最有效;磷酸酯盐以烷基为双亲基的润湿性能最好。

b. 亲水基:亲水基在分子中间者的润湿性能比末端的好,如琥珀酸二异辛酯磺酸钠结构、
渗透剂OT ;
非离子表面活性剂:R :C 7-C 10润湿能力最佳, EO 不同润湿性能也有变化 C 8-C 9 EO=10-12润湿能力最佳
EO >12润湿能力急剧变差 EO 较低润湿性能也差 聚丙二醇环氧乙烷加成物,EO 使用分数为40-50%为好 当聚丙二醇相对质量约为1600最好 5. ( 6. 润湿剂
分子结构要求:①碳氢链应具有分支结构
②亲水基应位于长链碳的中部
目前,润湿剂主要有阴离子和非离子型表面活性剂
(1) 阴离子型润湿剂
烷基苯磺酸盐-SO 3Na a-烯烃磺酸盐 a-烯烃经磺化制得 ① 磺酸盐型 琥珀酸酯磺酸盐 琥珀酸单酯磺酸盐
琥珀酸双酯磺酸盐

高级脂肪酰胺磺酸盐 C 17H 33-C-N-CH 2CH 2SO 3Na
烷基萘磺酸盐 ② 硫酸盐型 R-OSO 3Na

羧酸盐型 R-COOH 如:硬脂酸钠 月桂酸钠
④ 磷酸酯 以磷酸单酯为主C 9H 19- 2O )P-OH
(2) 非离子型润湿剂 ① \
② 烷基酚聚氧乙烯醚 R- (CH 2CH 2O )H
③ 脂肪醇聚氧乙烯醚(CH 2CH 2O )H ④ 失水山梨醇聚氧乙烯醚单硬脂酸酯

聚氧乙烯-聚氧丙烯嵌段共聚物H ()()(OCH 2CH 2)OH
7. 纤维加工渗透剂要求
^
强碱性 丝光用的渗透剂
弱碱性 一般煮练用的渗透剂
pH 接近于中性 树脂加工、退浆及抗菌整理加工用渗透剂 弱酸性 次氯酸漂白用渗透剂
碳化(carbonization )用渗透剂
强碱性渗透剂不能带酯基(COOR )。

如渗透剂OT (原因是化学反应)
强酸性渗透剂不能用硫酸酯基型表面活性剂。

如C 12H 25OSO 3Na 在强酸性条件下会分解为十二醇与硫酸
溶液的pH 和渗透剂种类的关系 中性——碱性用阴离子渗透剂较好 ,
中性——酸性用非离子渗透剂较好
(1阴离子型: 渗透剂OT C 492OOCCH 2
C OOCCHSO 3Na
十二烷基苯磺酸钠-SO 3Na
十二烷基硫酸钠C 12H 25OSO 3Na 拉开粉
油酸丁酯硫酸钠CH 3(CH 2)7)7COOC 4H 9
非离子型:OP-7,OP-10 壬基酚聚氧乙烯醚 TX-7辛基酚聚氧乙烯醚
酶退浆:一般用非离子,OP 类较多,因阴、阳离子对酶有影响 树脂整理、次氯酸钠漂白:一般用非离子型,TX-10类较多 (2)适用于强酸性液的渗透剂:以非离子型为主
(3)适用于强碱性液的渗透剂:5-10个碳原子低烷基磺酸盐或硫酸酯盐;阴离子渗透剂;
另外,目前开发的磷酸酯类。

渗透力测定:沙袋沉降法和帆布沉降法
① 润湿时间 ② 沉降时间(润湿后,开始沉降至沉降到底部的时间)—
③。

相关文档
最新文档