中考函数专题复习(知识点+试题)含答案

合集下载

中考数学复习《二次函数》专题训练-附带有参考答案

中考数学复习《二次函数》专题训练-附带有参考答案

中考数学复习《二次函数》专题训练-附带有参考答案一、选择题1.下列函数中,是二次函数的是()A.y=x2+1x B.y=12x(x-1) C.y=-2x-1 D.y=x(x2+1).2.抛物线y=(x−2)2−3的顶点坐标是()A.(2,−3)B.(−2,3)C.(2,3)D.(−2,−3)3.把抛物线y=5x2向左平移2个单位,再向上平移3个单位,得到的抛物线是()A.y=5(x−2)2+3B.y=5(x+2)2−3C.y=5(x+2)2+3D.y=5(x−2)2−34.函数y=ax2与y=﹣ax+b的图象可能是()A. B. C. D.5.函数y=kx2-6x+3的图象与x轴有交点,则k的取值范围是()A.k<3 B.k<3且k≠0 C.k≤3且k≠0 D.k≤36.若A(−5,y1),B(1,y2),C(2,y3)为二次函数y=x2+2x+m的图象上的三点,则y1,y2,y3的大小关系是()A.y1<y2<y3B.y2<y3<y1C.y2<y1<y3D.y3<y1<y27.二次函数y=ax2+bx+c的图象如图所示,对称轴是直线x=1.下列结论:①b>0;②当x>0,y随着x 的增大而增大;③(a+c)2﹣b2<0;④a+b≥m(am+b)(m为实数).其中结论正确的个数为()A.4个B.3个C.2个D.1个8.某服装店购进单价为15元的童装若干件,销售一段时间后发现:当销售价为25元时,平均每天能售出8件,而当销售价每降低2元时,平均每天能多售出4件,为使该服装店平均每天的销售利润最大,则每件的定价为()A.21元B.22元C.23元D.24元二、填空题9.将二次函数y=x2-2x化为y=(x-h)2+k的形式,结果为10.若抛物线y=ax2+bx+c与x轴的两个交点坐标是(-1,0),(3,0),则此抛物线的对称轴是直线.11.将二次函数y=x2﹣4x+a的图象向左平移1个单位,再向上平移1个单位,若得到的函数图象与直线y=2有两个交点,则a的取值范围是.12.飞机着陆后滑行的距离y (单位:m)关于滑行时间t (单位:s)的函数解析式是y=60t-65t2,从飞机着陆至停下来共滑行米.13.已知如图:抛物线y=ax2+bx+c与直线y=kx+n相交于点A(−52,74)、B(0,3)两点,则关于x的不等式ax2+bx+c<kx+n的解集是三、解答题14.如图,在平面直角坐标系中,一次函数y1=kx−7的图象与二次函数y2=2x2+bx+c的图象交于A(1,−5)、B(3,t)两点.(1)求y1与y2的函数关系式;(2)直接写出当y1<y2时,x的取值范围;(3)点C为一次函数y1图象上一点,点C的横坐标为n,若将点C向右平移2个单位,再向上平移4个单位后刚好落在二次函数y2的图象上,求n的值.15.某品牌服装公司新设计了一款服装,其成本价为60(元/件).在大规模上市前,为了摸清款式受欢迎状况以及日销售量y(件)与销售价格x(元/件)之间的关系,进行了市场调查,部分信息如表:销售价格x(元/件)80 90 100 110日销售量y(件)240 220 200 180(1)若y与x之间满足一次函数关系,请直接写出函数的解析式(不用写自变量x的取值范围);(2)若该公司想每天获利8000元,并尽可能让利给顾客,则应如何定价?(3)为了帮助贫困山区的小朋友,公司决定每卖出一件服装向希望小学捐款10元,该公司应该如何定价,才能使每天获利最大?(利润用w表示)16.如图,抛物线y=−x2+bx+c与x轴交于A,B两点(A在B的左侧),与y轴交于点N,过A点的直线:l:y=−x−1与y轴交于点C,与抛物线y=−x2+bx+c的另一个交点为D(5,−6),已知P点为抛物线y=−x2+bx+c上一动.点(不与A、D重合).(1)求抛物线的解析式;(2)当点P在直线l上方的抛物线上时,过P点作PE∥x轴交直线l于点E,作PF∥y轴交直线l于点F,求PE+PF的最大值;(3)设M为直线l上的动点,以NC为一边且顶点为N,C,M,P的四边形是平行四边形,直接写出所有符合条件的M点坐标.17.如图是北京冬奥会举办前张家口某小型跳台滑雪训练场的横截面示意图,取某一位置的水平线为x轴,过跳台终点作水平线的垂线为y轴,建立平面直角坐标系,图中的抛物线C1:y=−18x2+32x+32近似表示滑雪场地上的一座小山坡,某滑雪爱好者小张从点O正上方A点滑出,滑出后沿一段抛物线C2:y=−14x2+bx+c 运动.(1)当小张滑到离A处的水平距离为8米时,其滑行高度为10米,求出b,c的值;(2)在(1)的条件下,当小张滑出后离的水平距离为多少米时,他滑行高度与小山坡的竖直距离为是5米?2(3)若小张滑行到坡顶正上方,且与坡顶距离不低于4米,求b的取值范围.18.如图,在平面直角坐标系中,抛物线y=ax2+bx−4与x轴交于A(4,0)、B(−3,0)两点,与y轴交于点C.(1)求这条抛物线所对应的函数表达式.(2)如图①,点D是x轴下方抛物线上的动点,且不与点C重合.设点D的横坐标为m,以O、A、C、D 为顶点的四边形面积为S,求S与m之间的函数关系式.(3)如图②,连结BC,点M为线段AB上一点,点N为线段BC上一点,且BM=CN=n,直接写出当n为何值时△BMN为等腰三角形.参考答案 1.B 2.A 3.C 4.B 5.D 6.B 7.B 8.B9.y =(x −1)2−1 10.x =1 11.a <5 12.75013.x <−52或x >014.(1)解:把点A(1,−5)代入y 1=kx −7得−5=k −7 ∴y 1=2x −7;把点B(3,t)代入y 1=2x −7中,得t =−1 ∴A(1,−5)把点A 、B 分别代入y 2=2x 2+bx +c 中,得{−2=2+b +c−1=18+3b +c 解得{b =−6c =−1∴y 2=2x 2−6x −1; (2)x <1或x >3(3)解:∵点C 为一次函数y 1图象上一点,∴C(n ,2n −7)将点C 向右平移2个单位,再向上平移4个单位后得到点C ′(n +2,2n −3) 把C ′代入y 2=2x 2−6x −1,得2n −3=2(n +2)2−6(n +2)−1 解得n =±1 所以n 的值为1或-1 15.(1)y=-2x+400(2)解:由题意,得:(x −60)(−2x +400)=8000解得x 1=100,x 2=160 ∵公司尽可能多让利给顾客 ∴应定价100元(3)解:由题意,得w =(x −60−10)(−2x +400)=−2x 2+540x −28000 =−2(x −135)2+8450∵−2<0∴当x =135时,w 有最大值,最大值为8450. 答:当一件衣服定为135元时,才能使每天获利最大. 16.(1)解:∵直线l :y =−x −1过点A∴A(−1,0)又∵D(5,−6)将点A ,D 的坐标代入抛物线表达式可得:{−1−b +c =0−25+5b +c =−6 解得{b =3c =4.∴抛物线的解析式为:y =−x 2+3x +4. (2)解:如图设点P(x ,−x 2+3x +4) ∵PE ∥x 轴,PF ∥y 轴则E(x 2−3x −5,−x 2+3x +4),F(x ,−x −1) ∵点P 在直线l 上方的抛物线上∴−1<x <5∴PE =|x −(x 2−3x −5)|=−x 2+4x +5,PF =|−x 2+3x +4−(−x −1)|=−x 2+4x +5 ∴PE +PF =2(−x 2+4x +5)=−2(x −2)2+18. ∴当x =2时,PE +PF 取得最大值,最大值为18.(3)符合条件的M 点有三个:M 1(4,−5),M 2(2+√14,−3−√14), M 3(2−√14,−3+√14). 17.(1)解:由题意可知抛物线C 2:y=−14x 2+bx+c 过点(0, 4)和(8, 10) 将其代入得:{4=c10=−14×82+8b +c解得 ∴b=114,c=4(2)解:由(1)可得抛物线Cq 解析式为: y=−14x 2+114x+4设运动员运动的水平距离为m 米时,运动员与小山坡的竖直距离为52米,依题意得: −14m 2+114m +4−(−18m 2+32m +32)=52解得: m 1=10,m 2=0(舍)故运动员运动的水平距离为10米时,运动员与小山坡的竖直距离为为52米. (3)解:∵抛物线C 2经过点(0, 4) ∴c=4抛物线C 1: y=−18x 2+32x +32=−18(x −6)2+6 当x=6时,运动员到达坡项 即−14×62+6b+4≥4+6. ∴b ≥15618.(1)解:把A(4,0)、B(−3,0)代入y =ax 2+bx −4中 得{16a +4b −4=09a −3b −4=0解得{a =13b =−13∴这条抛物线所对应的函数表达式为y =13x 2−13x −4. (2)解:当x =0时y =−4∴C(0,−4)当−3<m <0时S =S △ODC +S △OAC =12×4×(−m)+12×4×4=−2m +8当0<m <4时S =S △ODC +S △OAD =12×4×m +12×4×(−13m 2+13m +4)=−23m 2+83m +8. (3)解:n =52,n =2511,n =3011.。

中考数学考点:专题(50)函数的应用(含答案)

中考数学考点:专题(50)函数的应用(含答案)

专题50 函数的应用 聚焦考点☆温习理解1.函数的应用主要涉及到经济决策、市场经济等方面的应用.2.利用函数知识解应用题的一般步骤: (1)设定实际问题中的变量;(2)建立变量与变量之间的函数关系,如:一次函数,二次函数或其他复合而成的函数式;(3)确定自变量的取值范围,保证自变量具有实际意义;(4)利用函数的性质解决问题;(5)写出答案.3.利用函数并与方程(组)、不等式(组)联系在一起解决实际生活中的利率、利润、租金、生产方案的设计问题.名师点睛☆典例分类考点典例一、一次函数相关应用题【例1】 (2015.陕西省,第21题,7分)(本题满分7分)胡老师计划组织朋友暑假去革命圣地延安两日游,经了解,现有甲、乙两家旅行社比较合适,报价均为每人640元,且提供的服务完全相同,针对组团两日游的游客,甲旅行社表示,每人都按八五折收费;乙旅行社表示,若人数不超过20人,每人都按九折收费,超过20人,则超出部分每人按七五折收费。

假设组团参加甲、乙两家旅行社两日游的人数均为x 人。

(1)请分别写出甲、乙两家旅行社收取组团两日游的总费用y (元)与x (人)之间的函数关系式;(2)若胡老师组团参加两日游的人数共有32人,请你通过计算,在甲、乙两家旅行社中,帮助胡老师选择收取总费用较少的一家。

【答案】(1)甲旅行社:x 85.0640y ⨯==x 544.乙旅行社:当20x ≤时,x 9.0640y ⨯==x 576.当x>20时,20)-x 0.75640209.0640y (⨯+⨯⨯==1920x 480+.(2)胡老师选择乙旅行社.【解析】×人数;乙总费用y=20个人九折的费用+超过的人数×报价×打折率,列出y关于x的函数关系式,(2)根据人数计算出甲乙两家的费用再比较大小,哪家小就选择哪家.考点:一次函数的应用、分类思想的应用.【点睛】本题根据实际问题考查了一次函数的运用.解决本题的关键是根据题意正确列出两种方案的解析式,进而计算出临界点x的取值,再进一步讨论.【举一反三】(2015·黑龙江哈尔滨)小明家、公交车站、学校在一条笔直的公路旁(小明家到这条公路的距离忽略不计)。

中考数学《函数基础知识》专项练习题(带答案)

中考数学《函数基础知识》专项练习题(带答案)

中考数学《函数基础知识》专项练习题(带答案)一、单选题1.弹簧挂上物体后会伸长,测得一弹簧的长度y (cm)与所挂的物体的质量x(kg)之间有下面的关系:x/kg 0 1 2 3 4 5 y/cm1010.51111.51212.5A .x 与y 都是变量,且x 是自变量,y 是因变量B .弹簧不挂重物时的长度为0 cmC .物体质量每增加1 kg ,弹簧长度y 增加0.5 cmD .所挂物体质量为7 kg 时,弹簧长度为13.5 cm2.若矩形的面积为125,则矩形的长y 关于宽x(x >0)的函数关系式为( )A .y =125xB .y =512xC .y =12x 5D .y =5x 123.如图是某蓄水池的横断面示意图,分为深水池和浅水池,如果向这个蓄水池以固定的流量注水,下面能大致表示水的最大深度 ℎ 与时间 t 之间的关系的图象是( )A .B .C .D .4.小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时间后到达学校,小刚从家到学校行驶路程s(m)与时间t(min)之间函数关系的图象大致是( )A .B .C.D.5.若代数式√x−1x−2有意义,则x的取值范围是()A.x>1且x≠2B.x≥1C.x≠2D.x≥1且x≠26.等腰三角形ABC中,AB=CB=5,AC=8,P为AC边上一动点,PQ⊥AC,PQ与△ABC的腰交于点Q,连结CQ,设AP为x,△CPQ的面积为y,则y关于x的函数关系的图象大致是()A.B.C.D.7.若直线y=kx上每一点都能在直线y=−6x上找到关于x轴对称的点,则它的解析式是()A.y=6x B.y=16x C.y=−6x D.y=−1 6x8.如图,在正方形ABCD中,AB=3cm,动点M自A点出发沿AB方向以每秒1cm的速度运动,同时动点N自A点出发沿折线AD﹣DC﹣CB以每秒3cm的速度运动,到达B点时运动同时停止.设△AMN的面积为y(cm2).运动时间为x(秒),则下列图象中能大致反映y与x之间函数关系的是()A.B.C.D.9.函数y=√2−x+1x+1中,自变量x的取值范围是()A.x⩽2B.x⩽2且x≠−1 C.x⩾2D.x⩾2且x≠−110.在下列四个图形中,能作为y是x的函数的图象的是()A.B.C.D.11.如图,小磊老师从甲地去往10千米的乙地,开始以一定的速度行驶,之后由于道路维修,速度变为原来的四分之一,过了维修道路后又变为原来的速度到达乙地.设小磊老师行驶的时间为x(分钟),行驶的路程为y(千米),图中的折线表示y与x之间的函数关系,则小磊老师从甲地到达乙地所用的时间是()A.15分钟B.20分钟C.25分钟D.30分钟12.下列图象中,y是x的函数的是()A.B.C.D.二、填空题13.如图1,在平面直角坐标系中,将▱ABCD(AB>AD)放置在第一象限,且AB∥x轴,直线y=−x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2所示,则平行四边形ABCD的面积为.14.甲、乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地. 如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系式;折线B−C−D表示轿车离甲地距离y(千米)与x(小时)之间的函数关系.下几种说法:①货车的速度为60千米/小时;②轿车与货车相遇时,货车恰好从甲地出发了3. 9小时;③若轿车到达乙地后,马上沿原路以CD段速度返回,则轿车从乙地出发317小时再次与货车相遇;其中正确的个数是. (填写序号)15.某商城为促进同一款衣服的销量,当同一个人购买件数达到一定数目的时候,超过的件数,每件打8折,现任意挑选5个顾客的消费情况制定表格,其中x表示购买件数,y表示消费金额,根据表格数据请写出一个y关于x的函数解析式是:.x(件)23456y(元)10015020024028016.函数y=2√x−1的自变量x的取值范围是.17.甲、乙两个车间接到加工一批零件的任务,从开始加工到完成这项任务共用了9天.其间,乙车间在加工2天后停止加工,引入新设备后继续加工,直到与甲车间同时完成这项任务为止,设甲、乙两个车间各自加工零件总数y(单位:件)与加时间x(单位:天)的对应关系如图1所示,由工厂统计数据可知,甲车间与乙车间加工零件总数之差z(单位:件)与加时间x(单位:天)的对应关系如图2所示,请根据图象提供的信息回答:(1)图中m的值是;(2)第天时,甲、乙两个车间加工零件总数相同.18.如图,△O的半径为5,点P在△O上,点A在△O内,且PA=3,过点A作AP的垂线交△O于点B,C.设PB= x ,PC=y,则y与x之间的函数解析式为三、综合题19.某旅客携带xkg的行李乘飞机,登机前,旅客可选择托运或快递行李,托运费y1(元)与行李重量xkg的对应关系由如图所示的一次函数图象确定,下表列出了快递费y2(元)与行李重量xkg的对应关系.行李的重量xkg快递费不超过1kg10元超过1kg但不超过5kg的部分3元/kg超过5kg但不超过15kg的部分5元/kg(1)如果旅客选择单托运,求可携带的免费行李的最大重量为多少kg?(2)如果旅客选择快递,当1<x≤15时,直接写出快递费y2(元)与行李的重量xkg之间的函数关系式;(3)某旅客携带25kg的行李,设托运mkg行李(10≤m<24,m为正整数),剩下的行李选择快递,当m为何值时,总费用y的值最小?并求出其最小值是多少元?20.小明一家利用元旦三天驾车到某景点旅游.小汽车出发前油箱有油36L,行驶,若干小时后,途中在加油站加油若干升,油箱中余油量Q(L)与行驶时间t(h)之间的关系,如图所示,根据图象回答下列问题;(1)小汽车行驶小时后加油,中途加油升;(2)求加油前邮箱余油量Q与行驶时间t的函数关系式;(3)如果小汽车在行驶过程中耗油量速度不变,加油站距景点300km,车速为80km/h,要到达目的地,油箱中的油是否够用请说明理由.21.一农民带了若干千克自产的萝卜进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售.售出萝卜千克数与他手中持有的钱数(含备用零钱)的关系如图所示,结合图象回答下列问题:(1)降价前他每千克萝卜出售的价格是多少?(2)降价后他按每千克0.4元将剩余萝卜售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克萝卜?22.某景区今年对门票价格进行动态管理.节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打折;非节假日期间全部打折.设游客为x人,非节假日门票费用y1(元)及节假日门票费用y2(元)与游客x(人)之间的函数关系如图所示.(1)求不打折的门票价格;(2)求y1、y2与x之间的函数关系式;(3)导游小王5月2日(五一假日)带A旅游团,5月8日(非节假日)带B旅游团到该景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?(温馨提示:节假日的折扣与非节假日的折扣不同)23.在“世界读书日”这周的周末,小张同学上午8时从家里出发,步行到公园锻炼了一段时间后以相同的速度步行到图书馆看书,看完书后直接回到了家里,如图是他离家的距离s(米)与时间t(时)的函数关系,根据图象回答下列问题:(1)小张同学家离公园的距离是多少米?锻炼身体用了多少分钟?在图书馆看了多少分钟的书?从图书馆回到家里用了多少分钟?(2)图书馆离小张同学的家多少米?(3)小张同学从图书馆回到家里的速度是多少千米/时?24.甲、乙两车早上从A城车站出发匀速前往B城车站,在整个行程中,两车离开A城的距离s与时间t的对应关系如图所示.(1)A,B两城之间距离是多少?(2)求甲、乙两车的速度分别是多少?(3)乙车出发多长时间追上甲车?(4)从乙车出发后到甲车到达B城车站这一时间段,在何时间点两车相距40km?参考答案1.【答案】B 2.【答案】A 3.【答案】C 4.【答案】B 5.【答案】D 6.【答案】D 7.【答案】A 8.【答案】B 9.【答案】B 10.【答案】B 11.【答案】B 12.【答案】B 13.【答案】8 14.【答案】①②③15.【答案】{y =50x(0≤x ≤4)y =40x +40(x >4)16.【答案】x >1 17.【答案】(1)770(2)818.【答案】y =30x19.【答案】(1)解:设托运费y 1(元)与行李重量xkg 的函数关系式为y 1=kx+b将(30,300)、(50,900)代入y 1=kx+b , {30k +b =30050k +b =900 ,解得: {k =30b =−600 ∴托运费y 1(元)与行李质量xkg 的函数关系式为y 1=30x ﹣600. 当y 1=30x ﹣600=0时,x =20.答:可携带的免费行李的最大重量为20kg . (2)解:根据题意得:当0<x≤1时,y 2=10; 当1<x≤5时,y 2=10+3(x ﹣1)=3x+7;当5<x≤15时,y 2=10+3×(5﹣1)+5(x ﹣5)=5x ﹣3.综上所述:快递费y 2(元)与行李重量xkg 的函数关系式为y 2= {10(0<x ≤1)3x +7(1<x ≤5)5x −3(5<x ≤15) .(3)解:当10≤m <20时,5<25﹣m≤15∴y =y 1+y 2=0+5×(25﹣m)﹣3=﹣5m+122. ∵10≤m <20 ∴22<y≤72;当20≤m <24时,1<25﹣m≤5∴y =y 1+y 2=30m ﹣600+3×(25﹣m)+7=27m ﹣518. ∵20≤m <24 ∴22≤y <130.综上可知:当m =20时,总费用y 的值最小,最小值为22.答:当托运20kg 、快递5kg 行李时,总费用最少,最少费用为22元.20.【答案】(1)3;24(2)解:设直线解析式为Q=kt+b ,把(0,36)和(3,6)代入得: {3k +b =6b =36解得 {k =−10b =36 ∴Q=-10t+36,(0≤t≤3);(3)解:根据题意,每小时耗油量为10升 ∵加油站到景点用时间为:300÷80=3.75(小时) ∴需要的油量为:3.75×10=37.5升>30升 故不够用.21.【答案】(1)解:设降价前每千克萝卜价格为k 元则农民手中钱y 与所售萝卜千克数x 之间的函数关系式为:y=kx+5 ∵当x=30时,y=20 ∴20=30k+5 解得k=0.5.答:降价前每千克萝卜价格为0.5元. (2)解:(26-20)÷0.4=15 15+30=45kg.所以一共带了45kg 萝卜.22.【答案】(1)解: 800÷10=80 (元 / 人)答:不打折的门票价格是80元 / 人; (2)解:设 y 1=10k 解得: k =48 ∴y 1=48x当0⩽x⩽10时,设y2=80x 当x>10时,设y2=mx+b则{10m+b=80020m+b=1440解得:m=64∴y2=64x+160∴y2={80x(0⩽x⩽10)64x+160(x>10);(3)解:设A旅游团x人,则B旅游团(50−x)人若0⩽x⩽10,则80x+48(50−x)=3040解得:x=20,与x⩽10不相符若x>10,则64x+160+48(50−x)=3040解得:x=30,与x>10相符,50−30=20(人)答:A旅游团30人,B旅游团20人.23.【答案】(1)解:观察图象得:小张同学8时离开家,8:10到达公园,小张同学家离公园的距离是500米∵小张同学8:10到达公园,9:10离开公园∴小张同学锻炼身体用了60分钟∵小张同学9:30到达图书馆,11:40离开图书馆∴小张同学在图书馆看了130分钟的书∵小张同学11:40离开图书馆,12时回到家∴小张同学从图书馆回到家里用了20分钟∴小张同学家离公园的距离是500米,锻炼身体用了60分钟,在图书馆看了130分钟的书,从图书馆回到家里用了20分钟;(2)解:∵小张同学8时离开家,8:10到达公园,距离500米,用时10分钟∴小张同学从家到公园的速度为500÷10=50(米/分)∵步行到公园锻炼了一段时间后以相同的速度步行到图书馆着书∴小张同学从公园到图书馆的速度为50米/分∵小张同学9:10离开公园,9:30到达图书馆∴公园离图书馆的距离为:50×20=1000(米)∴图书馆离小张同学的家的距离为:1000+500=1500(米)∴图书馆离小张同学的家1500米;(3)解:∵小张同学从图书馆到家的距离为1500米,即1.5千米,从图书馆回到家里用了20分钟,即时13小时 ∴小张同学从图书馆回到家里的速度是:1.5÷13=4.5千米/时 ∴小张同学从图书馆回到家里的速度是4.5千米/时.24.【答案】(1)解:由图象可知A 、B 两城之间距离是300千米;(2)解:由图象可知,甲的速度= 3005=60(千米/小时) 乙的速度= 3003=100(千米/小时) ∴甲、乙两车的速度分别是60千米/小时和100千米/小时;(3)解:设乙车出发x 小时追上甲车由题意:60(x+1)=100x解得:x =1.5∴乙车出发1.5小时追上甲车;(4)解:设乙车出发后到甲车到达B 城车站这一段时间内,甲车与乙车相距40千米时甲车行驶了m 小时①当甲车在乙车前时得:60m ﹣100(m ﹣1)=40解得:m =1.5此时是上午6:30;②当甲车在乙车后面时100(m ﹣1)﹣60m =40解得:m =3.5此时是上午8:30;③当乙车到达B 城后300﹣60m =40解得:m = 133此时是上午9:20.∴分别在上午6:30,8:30,9:20这三个时间点两车相距40千米.。

中考函数复习题及答案

中考函数复习题及答案

中考函数复习题及答案一、选择题1. 函数y = 2x + 3的斜率是()A. 2B. 3C. -2D. -32. 下列哪个是一次函数的图象?A. 直线B. 曲线C. 抛物线D. 双曲线3. 函数f(x) = x^2 - 4x + 4的顶点坐标是()A. (2, 0)B. (-2, 0)C. (0, 4)D. (2, 4)4. 函数y = 1/x的图象不经过哪个象限?A. 第一象限B. 第二象限C. 第三象限D. 第四象限5. 函数y = |x|的图象是()A. 直线B. V形C. U形D. 抛物线答案:1. A 2. A 3. A 4. D 5. B二、填空题6. 函数y = 3x - 2的截距是______。

7. 如果一个函数的图象与x轴交于点(1,0),则该函数可以表示为y = ______。

8. 函数y = x^2 + 2x + 1可以化简为y = (x + ______)^2。

9. 函数y = 1/x的图象在x轴的正半轴上,y的值随着x的增大而______。

10. 函数y = kx + b,当k > 0时,图象从左向右上升;当k < 0时,图象从左向右______。

答案:6. -2 7. x - 1 8. 1 9. 减小 10. 下降三、解答题11. 已知函数f(x) = 2x - 5,求f(3)的值。

12. 已知二次函数y = ax^2 + bx + c的顶点坐标为(-1, -4),求a的值。

13. 函数y = 3x + 7与x轴的交点坐标是什么?14. 函数y = x^2 - 6x + 9的最大值是多少?15. 已知函数y = |x - 2| + 3,求x = 2时的函数值。

答案:11. f(3) = 2 * 3 - 5 = 6 - 5 = 112. 顶点坐标(-1, -4),根据顶点公式,-b/2a = -1,b = 2a,又因为顶点的y坐标是-4,所以有a(-1)^2 + b(-1) + c = -4,代入b =2a,解得a = -4。

初中中考数学函数基础28典型题(含答案和解析)

初中中考数学函数基础28典型题(含答案和解析)

初中中考数学函数基础28道典型题(含答案和解析)1.已知关于x 的方程 mx+3=4的解为 x=1,则直线 y=(m−2)x−3一定不经过().A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:A.解析:∵关于x的方程mx+3=4的解为x=1.∴m+3=4.∴m=1.∴直线y=(m−2)x−3为直线y=−x−3.∴直线y=(m−2)x−3一定不经过第一象限.考点:函数——一次函数——一次函数与一元一次方程.2.如图,把直线y=−2x向上平移后得到直线AB,直线AB经过点(a,b),且2a+b=6,则直线AB解析式是().A. y=−2x−3B. y=−2x−6C. y=−2x+3D. y=−2x+6答案:D.解析:∵直线AB经过点(a,b),且2a+b=6.∴直线AB经过点(a,6−2a).∵直线AB与直线y=−2x平行.∴设直线AB的解析式是:y=−2x+b1.把(a,6−2a)代入函数解析式得:6−2a=−2a+b1.则b1=6.∴直线AB的解析式是y=−2x+6.考点:函数——一次函数——一次函数图象与几何变换——一次函数平移变换.3.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x>ax+4的解集为.答案:x>23.解析:∵函数y=2x过点A(m,3).∴2m=3.解得:m=23.∴A(32,3).∴不等式2x>ax+4的解集为x>23.考点:函数——一次函数——一次函数与一元一次不等式——两条直线相交或平行问题.4.若函数y=x−a(a为常数)与函数y=−2x+b(b为常数)的图象的交点坐标是(2,1),则关于x、y的二元一次方程组{x−y=a2x+y=b的解是.答案:{x=2y=1.解析:因为函数y=x−a(a为常数)与函数y=−2x+b(b为常数)的图象的交点坐标是(2,1).所以方程组{x−y=a2x+y=b的解是{x=2y=1.考点:函数——一次函数——一次函数与二元一次方程——一次函数与二元一次方程(组)的关系.5.一次函数y=2x−3的图象与y轴交于A,另一个一次函数y=kx+b与y轴交于B,两条直线交于C,C点的纵坐标是1,且S△ABC=5,求k、b的值.答案:(2,1).解析:由题意知C(2,1).过C作CD⊥y轴,CD=2.·AB·CD=5.S△ABC=12∴AB=5.∴B(0,2)或(0,−8).x+2.当B(0,2)时,y=−12x−8.当B(0,−8)时,y=−92考点:函数——一次函数——求一次函数解析式——两条直线相交或平行问题.6.已知一次函数y=ax+b的图象过第一、二、四象限,且与x轴交于点(2,0),求关于x的不等式a(x−1)−b>0的解集.答案:x<−1.解析:∵一次函数y=ax+b的图象过第一、二、四象限.∴b>0,a<0.把(2,0)代入解析式y=ax+b得:0=2a+b.解得:2a=−b.b=−2.a∵a(x−1)−b>0.∴a(x−1)>b.∵a<0..∴x−1<ba∴x<−1.考点:函数——一次函数——一次函数与一元一次不等式.7.如果一次函数y=−x+1的图象与x轴、y轴分别交于A点、B点,点M在x轴上,并且使以点A、B、M为顶点的三角形是等腰三角形,那么这样的点M有().A. 3个B. 4个C. 5个D. 7个答案:B.解析:一次函数y=−x+1中令x=0,解得y=1.令y=0,解得x=1.∴A(1,0),B(0,1),即OA=OB=1.在直角三角形AOB中,根据勾股定理得:AB=√2.分四种情况考虑,如图所示:当BM1=BA时,由BO⊥AM1,根据三线合一得到O为M1A的中点,此时M1(−1,0).当AB=AM2时,由AB=√2,得到OM2=AM2−OA=√2−1,此时M2(1−√2,0).当BA=AM3时,由AB=√2,得到AM3=√2,则OM3=OA+AM3=1+√2,此时M3(1+√2,0).当M4A=M4B时,此时M4与原点重合,此时M4(0,0).综上,这样的M点有4个.故选B.考点:函数——一次函数——一次函数综合题——一次函数与等腰三角形结合.8.如图①,在梯形ABCD中,AD∥BC,∠A=60°,动点P从A点出发,以1cm/S的速度沿着A→B→C→D的方向不停移动,直到点P到达点D后才停止.已知△PAD的面积S(单位:cm2)与点P移动的时间(单位:s)的函数如图②所示,则点P从开始移动到停止移动一共用了秒(结果保留根号).答案:4+2√3.解析:由图②可知,t在2到4秒时,△PAD的面积不发生变化.∴在AB上运动的时间是2秒,在BC上运动的时间是4−2=2秒.∵动点P的运动速度是1cm/s.∴AB=2cm,BC=2cm.过点B作BE⊥AD于点E,过点C作CF⊥AD于点F.则四边形BCFE是矩形.∴BE=CF,BC=EF=2cm.∵∠A=60°.∴BE=ABsin60°=2×√3=√3.2AE=ABcos60°=2×1=1.2∴1×AD×BE=3√3.2×AD×√3=3√3.即12解得AD=6cm.∴DF=AD−AE−EF=6−1−2=3.在Rt△CDF中,CD=√CF2+DF2=√√32+32=2√3.所以,动点P运动的总路程为AB+BC+CD=2+2+2√3=4+2√3.∵动点P的运动速度是1cm/s.∴点P从开始移动到停止移动一共用了(4+2√3)÷1=4+2√3(秒).故答案为:4+2√3.考点:函数——一次函数——一次函数的应用.四边形——梯形.的图像上,OA长为2且∠1=60°。

初中函数专题试题及答案

初中函数专题试题及答案

初中函数专题试题及答案一、选择题(每题3分,共30分)1. 下列函数中,哪一个是一次函数?A. \( y = x^2 \)B. \( y = 2x + 3 \)C. \( y = \frac{1}{x} \)D. \( y = x^3 - 2x \)答案:B2. 函数 \( y = 3x - 5 \) 的图象与x轴的交点坐标是:A. \( (0, -5) \)B. \( (5, 0) \)C. \( (-5, 0) \)D. \( (0, 5) \)答案:C3. 如果函数 \( y = 2x + 1 \) 在 \( x = 2 \) 时的值为5,那么\( x = 1 \) 时的值是:A. 3B. 4C. 2D. 1答案:A4. 函数 \( y = -\frac{1}{2}x + 3 \) 的斜率是:A. \( \frac{1}{2} \)B. \( -\frac{1}{2} \)C. \( \frac{3}{2} \)D. \( -3 \)答案:B5. 函数 \( y = 4x^2 \) 的顶点坐标是:A. \( (0, 0) \)B. \( (0, 4) \)C. \( (2, 0) \)D. \( (0, -4) \)答案:A6. 函数 \( y = x^2 - 6x + 9 \) 可以写成完全平方的形式:A. \( (x - 3)^2 \)B. \( (x + 3)^2 \)C. \( (x - 3)^2 + 3 \)D. \( (x + 3)^2 - 3 \)答案:A7. 函数 \( y = 2x^2 - 8x + 7 \) 的最小值是:A. 1B. 3C. 7D. 无法确定答案:A8. 函数 \( y = \frac{1}{x} \) 的图象是:A. 一条直线B. 两条直线C. 一个双曲线D. 一个抛物线答案:C9. 函数 \( y = 3x^2 + 2x - 5 \) 的对称轴是:A. \( x = -\frac{2}{3} \)B. \( x = \frac{2}{3} \)C. \( x = -1 \)D. \( x = 1 \)答案:B10. 函数 \( y = 2x + 3 \) 和 \( y = -x + 1 \) 的交点坐标是:A. \( (-2, -1) \)B. \( (2, 5) \)C. \( (-1, 1) \)D. \( (1, 3) \)答案:C二、填空题(每题4分,共20分)11. 函数 \( y = 2x + 1 \) 在 \( x = -1 \) 时的值为 _______。

中考函数题型及答案

中考函数题型及答案

中考函数题型及答案1. 已知函数 y=3x-2,求 x=5 时的函数值 y。

解答:将 x=5 代入函数得 y=3(5)-2=13,因此当 x=5 时,y=13。

2. 已知函数 y=x^2,求 x=3 时的函数值 y。

解答:将 x=3 代入函数得 y=3^2=9,因此当 x=3 时,y=9。

3. 已知函数 y=2x-1 和函数 z=x+5,求当 y=z 时,x 的值。

解答:将 y=z 代入得 2x-1=x+5,解得 x=3,因此当 y=z 时,x=3。

4. 已知函数 y=x^2-3x+2,求最小值及最小值点。

解答:将 y 化简得 y=(x-\frac{3}{2})^2-\frac{1}{4},因此最小值为 -\frac{1}{4},最小值点为 x=\frac{3}{2}。

5. 已知函数 y=x^3,求 y 的导数式及当 x=2 时的导数值。

解答:对函数求导得 y'=3x^2,将 x=2 代入得 y'=3(2)^2=12,因此当 x=2 时,导数值为 y'=12。

6. 已知函数 y=e^x,求其反函数及反函数在 x=0 时的函数值。

解答:将y=x 解得反函数为x=\ln y,将x=0 代入得y=e^0=1,因此反函数在 x=0 时的函数值为 y=1。

7. 已知函数 y=\frac{x+1}{x-1},求其最大值及最大值点。

解答:对函数进行约分得 y=1+\frac{2}{x-1},因此最大值为y_{max}=1+2=3,最大值点为 x-1=0,即 x=1。

8. 已知函数 y=4\sin x,求其在 [0,\pi] 区间内最大值及最大值点。

解答:由于 \sin x 的最大值为 1,所以 y 在 [0,\pi] 区间内的最大值为 y_{max}=4\times 1=4,最大值点为 x=\frac{\pi}{2}。

九年级函数专题试卷及答案

九年级函数专题试卷及答案

九年级函数专题试卷及答案专业课原理概述部分一、选择题(每题1分,共5分)1. 下列函数中,哪个是正比例函数?A. y = 2x + 3B. y = 3x 2C. y = x^2 + 1D. y = 1/x2. 如果函数y = kx + b的图像是一条经过原点的直线,那么k和b的关系是?A. k = 0, b ≠ 0B. k ≠ 0, b = 0C. k = 0, b = 0D. k ≠ 0, b ≠ 03. 下列函数中,哪个是反比例函数?A. y = 2/xB. y = x^2C. y = 3x + 1D. y = 1/x^24. 如果函数y = kx的图像是一条经过原点的直线,那么k的值是?A. k = 0B. k > 0C. k < 0D. k ≠ 05. 下列函数中,哪个是一次函数?A. y = x^2B. y = 2/xC. y = 3x + 1D. y = 1/x^2二、判断题(每题1分,共5分)1. 正比例函数的图像是一条经过原点的直线。

()2. 反比例函数的图像是一条经过原点的直线。

()3. 一次函数的图像是一条直线。

()4. 二次函数的图像是一条抛物线。

()5. 函数y = kx + b是一次函数当且仅当b = 0。

()三、填空题(每题1分,共5分)1. 如果函数y = kx的图像是一条经过原点的直线,那么k的值是______。

2. 如果函数y = kx + b的图像是一条经过原点的直线,那么b的值是______。

3. 反比例函数的一般形式是______。

4. 二次函数的一般形式是______。

5. 一次函数的图像是一条______。

四、简答题(每题2分,共10分)1. 请简述正比例函数的定义。

2. 请简述反比例函数的定义。

3. 请简述一次函数的定义。

4. 请简述二次函数的定义。

5. 请简述函数图像的斜率是什么。

五、应用题(每题2分,共10分)1. 如果函数y = 2x的图像是一条经过原点的直线,那么当x = 3时,y的值是多少?2. 如果函数y = 3/x的图像是一条经过原点的直线,那么当x = 2时,y的值是多少?3. 如果函数y = kx + b的图像是一条经过原点的直线,那么当x = 1时,y的值是多少?4. 如果函数y = x^2的图像是一条抛物线,那么当x = 2时,y的值是多少?5. 如果函数y = 1/x^2的图像是一条经过原点的直线,那么当x = 3时,y的值是多少?六、分析题(每题5分,共10分)1. 请分析一次函数和二次函数的图像有什么不同。

初三数学函数基础知识试题答案及解析

初三数学函数基础知识试题答案及解析

初三数学函数基础知识试题答案及解析1.函数y=中,自变量x的取值范围是【答案】x≠2.【解析】求函数自变量的取值范围,就是求函数解析式有意义的条件,分式有意义的条件是:分母不为0.试题解析:要使分式有意义,即:x-2≠0,解得:x≠2.【考点】1.函数自变量的取值范围;2.分式有意义的条件.2.函数中自变量x的取值范围是()A.x>2B.x≥2C.x≤2D.x≠2【答案】C.【解析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和的条件,要使在实数范围内有意义,必须.故选C.【考点】1.函数自变量的取值范围;2.二次根式有意义的条件.3.函数y=的自变量x的取值范围为.【答案】x≥﹣1【解析】由题意得,x+1≥0,解得x≥﹣1.故答案为:x≥﹣1.【考点】函数自变量的取值范围4.如图1,在平面直角坐标系中,将□ABCD放置在第一象限,且AB∥x轴.直线y=-x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2所示,那么ABCD面积为()A.4B.4C.8D.8【答案】C.【解析】根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是8时经过B,则AB=8-4=4,当直线经过D点,设交AB与N,则DN=2,作DM⊥AB于点M.∵y=-x与x轴形成的角是45°,又∵AB∥x轴,∴∠DNM=45°,∴DM=DN•sin45°=2×=2,则平行四边形的面积是:AB•DM=4×2=8.故选C.【考点】动点问题的函数图象.5.如图,在平面直角坐标系中,以点A(2,3)为顶点任作一直角∠PAQ,使其两边分别与x轴、y轴的正半轴交于点P、Q,连接PQ,过点A作AH⊥PQ于点H,设点P的横坐标为x,AH的长为y,则下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.【答案】D.【解析】应用特殊元素法和排他法求解:如图1,当点P与点O重合时,x=0,y=2.故可排除选项C;如图2,当点Q与点O重合时, y=3.故可排除选项A;如图3,当x=2时,∵AH⊥PQ,∴,即,故可排除选项B.故选D.【考点】1.动态问题的函数图象分析;2.勾股定理;3.相似三角形的判定和性质;户4.特殊元素法和排他法的应用.6.函数y=+3中自变量x的取值范围是()A.x>1B.x≥1C.x≤1D.x≠1【答案】B.【解析】根据题意知:x-1≥0解得:x≥1.故选B.【考点】1.自变量的取值范围;2.二次根式有意义的条件.7.函数中,自变量x的取值范围是_________【答案】.【解析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数和的条件,要使在实数范围内有意义,必须.【考点】1.函数自变量的取值范围;2.二次根式有意义的条件.8.如图1,AB是半圆O的直径,正方形OPNM的对角线ON与AB垂直且相等,Q是OP的中点.一只机器甲虫从点A出发匀速爬行,它先沿直径爬到点B,再沿半圆爬回到点A,一台微型记录仪记录了甲虫的爬行过程.设甲虫爬行的时间为t,甲虫与微型记录仪之间的距离为y,表示y 与t的函数关系的图象如图2所示,那么微型记录仪可能位于图1中的()A.点M B.点N C.点P D.点Q【解析】D.应用排他法分析求解:若微型记录仪位于图1中的点M,AM最小,与图2不符,可排除A.若微型记录仪位于图1中的点N,由于AN=BM,即甲虫从A到B时是对称的,与图2不符,可排除B.若微型记录仪位于图1中的点P,由于甲虫从A到OP与圆弧的交点时甲虫与微型记录仪之间的距离y逐渐减小;甲虫从OP与圆弧的交点到A时甲虫与微型记录仪之间的距离y逐渐增大,即y与t的函数关系的图象只有两个趋势,与图2不符,可排除C.故选D.【考点】1.动点问题的函数图象分析;2.排他法的应用.9.如图1,E为矩形ABCD边AD上一点,点P从点B沿折线BE-ED-DC运动到点C时停止,点Q从点B沿BC运动到点C时停止,它们运动的速度都是1cm/s.若P,Q同时开始运动,设运动时间为t(s),△BPQ的面积为y(cm2).已知y与t的函数图象如图2,则下列结论错误的是()A.B.C.当0<t≤10时,D.当时,△PBQ是等腰三角形【答案】D【解析】(1)结论A正确,理由如下:分析函数图象可知,BC=10cm,ED=4cm,故AE=AD﹣ED=BC﹣ED=10﹣4=6cm.(2)结论B正确,理由如下:如图,连接EC,过点E作EF⊥BC于点F,由函数图象可知,BC=BE=10cm,,∴EF=8。

中考数学复习----《一次函数之定义、图像与性质》知识点总结与专项练习题(含答案解析)

中考数学复习----《一次函数之定义、图像与性质》知识点总结与专项练习题(含答案解析)

中考数学复习----《一次函数之定义、图像与性质》知识点总结与专项练习题(含答案解析)知识点总结1. 一次函数的定义:一般地,形如()0≠+=k b k b kx y 是常数且,的函数叫做一次函数。

2. 一次函数的图像:是不经过原点的一条直线。

3. 一次函数的图像与性质:一次函数与x 轴的交点坐标公式为:⎪⎭⎫ ⎝⎛−0 ,k b;与y 轴的交点坐标公式为:()b ,0。

专项练习题1.(2022•沈阳)在平面直角坐标系中,一次函数y =﹣x +1的图像是( )A .B .C .D .【分析】依据一次函数y =x +1的图像经过点(0,1)和(1,0),即可得到一次函数y =﹣x +1的图像经过一、二、四象限.【解答】解:一次函数y =﹣x +1中,令x =0,则y =1;令y =0,则x =1, ∴一次函数y =﹣x +1的图像经过点(0,1)和(1,0), ∴一次函数y =﹣x +1的图像经过一、二、四象限, 故选:C .2.(2022•安徽)在同一平面直角坐标系中,一次函数y =ax +a 2与y =a 2x +a 的图像可能是( )A .B .C .D .【分析】利用一次函数的性质进行判断.【解答】解:∵y=ax+a2与y=a2x+a,∴x=1时,两函数的值都是a2+a,∴两直线的交点的横坐标为1,若a>0,则一次函数y=ax+a2与y=a2x+a都是增函数,且都交y轴的正半轴,图像都经过第一、二、三象限;若a<0,则一次函数y=ax+a2经过第一、二、四象限,y=a2x+a经过第一、三、四象限,且两直线的交点的横坐标为1;故选:D.3.(2022•辽宁)如图,在同一平面直角坐标系中,一次函数y=k1x+b1与y=k2x+b2的图像分别为直线l1和直线l2,下列结论正确的是()A.k1•k2<0B.k1+k2<0C.b1﹣b2<0D.b1•b2<0【分析】根据一次函数y=k1x+b1与y=k2x+b2的图像位置,可得k1>0,b1>0,k2>0,b2<0,然后逐一判断即可解答.【解答】解:∵一次函数y=k1x+b1的图像过一、二、三象限,∴k1>0,b1>0,∵一次函数y=k2x+b2的图像过一、三、四象限,∴k2>0,b2<0,∴A、k1•k2>0,故A不符合题意;B、k1+k2>0,故B不符合题意;C、b1﹣b2>0,故C不符合题意;D、b1•b2<0,故D符合题意;故选:D.4.(2022•六盘水)如图是一次函数y=kx+b的图像,下列说法正确的是()A.y随x增大而增大B.图像经过第三象限C.当x≥0时,y≤b D.当x<0时,y<0【分析】根据一次函数的图像和性质进行判断即可.【解答】解:由图像得:图像过一、二、四象限,则k<0,b>0,当k<0时,y随x的增大而减小,故A、B错误,由图像得:与y轴的交点为(0,b),所以当x≥0时,从图像看,y≤b,故C正确,符合题意;当x<0时,y>b>0,故D错误.故选:C.5.(2022•兰州)若一次函数y=2x+1的图像经过点(﹣3,y1),(4,y2),则y1与y2的大小关系是()A.y1<y2B.y1>y2C.y1≤y2D.y1≥y2【分析】先根据一次函数的解析式判断出函数的增减性,再根据﹣3<4即可得出结论.【解答】解:∵一次函数y=2x+1中,k=2>0,∴y随着x的增大而增大.∵点(﹣3,y1)和(4,y2)是一次函数y=2x+1图像上的两个点,﹣3<4,∴y1<y2.故选:A.6.(2022•凉山州)一次函数y=3x+b(b≥0)的图像一定不经过()A.第一象限B.第二象限C.第三象限D.第四象限【分析】根据一次函数的图像与系数的关系即可得出结论.【解答】解:∵函数y=3x+b(b≥0)中,k=3>0,b≥0,∴当b=0时,此函数的图像经过一、三象限,不经过第四象限;当b>0时,此函数的图像经过一、二、三象限,不经过第四象限.则一定不经过第四象限.故选:D.7.(2022•济宁)已知直线y1=x﹣1与y2=kx+b相交于点(2,1).请写出一个b值(写出一个即可),使x>2时,y1>y2.【分析】由题意可知,当b>﹣1时满足题意,故b可以取0.【解答】解:直线y1=x﹣1与y2=kx+b相交于点(2,1).∵x>2时,y1>y2.∴b>﹣1,故b可以取0,故答案为:0(答案不唯一).8.(2022•上海)已知直线y=kx+b过第一象限且函数值随着x的增大而减小,请列举出来这样的一条直线:.【分析】根据一次函数的性质,写出符合条件的函数关系式即可.【解答】解:∵直线y=kx+b过第一象限且函数值随着x的增大而减小,∴k<0,b>0,∴符合条件的函数关系式可以为:y=﹣x+1(答案不唯一).故答案为:y=﹣x+1(答案不唯一).9.(2022•无锡)请写出一个函数的表达式,使其图像分别与x轴的负半轴、y轴的正半轴相交:.【分析】设函数的解析式为y=kx+b(k≠0),再根据一次函数的图像分别与x轴的负半轴、y轴的正半轴相交可知k>0,b>0,写出符合此条件的函数解析式即可.【解答】解:设一次函数的解析式为y=kx+b(k≠0),∵一次函数的图像分别与x轴的负半轴、y轴的正半轴相交,∴k>0,b>0,∴符合条件的函数解析式可以为:y=x+1(答案不唯一).故答案为:y=x+1(答案不唯一).10.(2022•湘潭)请写出一个y随x增大而增大的一次函数表达式.【分析】根据y随着x的增大而增大时,比例系数k>0即可确定一次函数的表达式.【解答】解:在y=kx+b中,若k>0,则y随x增大而增大,∴只需写出一个k>0的一次函数表达式即可,比如:y=x﹣2,故答案为:y=x﹣2(答案不唯一).11.(2022•宿迁)甲、乙两位同学各给出某函数的一个特征,甲:“函数值y随自变量x增大而减小”;乙:“函数图像经过点(0,2)”,请你写出一个同时满足这两个特征的函数,其表达式是.【分析】根据甲、乙两位同学给出的函数特征可判断出该函数为一次函数,再利用一次函数的性质,可得出k<0,b=2,取k=﹣1即可得出结论.【解答】解:∵函数值y随自变量x增大而减小,且该函数图像经过点(0,2),∴该函数为一次函数.设一次函数的表达式为y=kx+b(k≠0),则k<0,b=2.取k=﹣1,此时一次函数的表达式为y=﹣x+2.故答案为:y=﹣x+2(答案不唯一).12.(2022•甘肃)若一次函数y=kx﹣2的函数值y随着自变量x值的增大而增大,则k=(写出一个满足条件的值).【分析】根据函数值y随着自变量x值的增大而增大得到k>0,写出一个正数即可.【解答】解:∵函数值y随着自变量x值的增大而增大,∴k>0,∴k=2(答案不唯一).故答案为:2(答案不唯一).13.(2022•柳州)如图,直线y1=x+3分别与x轴、y轴交于点A和点C,直线y2=﹣x+3分别与x轴、y轴交于点B和点C,点P(m,2)是△ABC内部(包括边上)的一点,则m的最大值与最小值之差为()A.1B.2C.4D.6【分析】由于P的纵坐标为2,故点P在直线y=2上,要求符合题意的m值,则P点为直线y=2与题目中两直线的交点,此时m存在最大值与最小值,故可求得.【解答】解:∵点P(m,2)是△ABC内部(包括边上)的一点,∴点P 在直线y =2上,如图所示,当P 为直线y =2与直线y 2的交点时,m 取最大值, 当P 为直线y =2与直线y 1的交点时,m 取最小值, ∵y 2=﹣x +3中令y =2,则x =1, y 1=x +3中令y =2,则x =﹣1, ∴m 的最大值为1,m 的最小值为﹣1.则m 的最大值与最小值之差为:1﹣(﹣1)=2. 故选:B .14.(2022•遵义)若一次函数y =(k +3)x ﹣1的函数值y 随x 的增大而减小,则k 值可能是( ) A .2B .23C .﹣21 D .﹣4【分析】根据一次项系数小于0时,一次函数的函数值y 随x 的增大而减小列出不等式求解即可.【解答】解:∵一次函数y =(k +3)x ﹣1的函数值y 随着x 的增大而减小, ∴k +3<0, 解得k <﹣3.所以k 的值可以是﹣4, 故选:D .15.(2022•包头)在一次函数y =﹣5ax +b (a ≠0)中,y 的值随x 值的增大而增大,且ab >0,则点A (a ,b )在( ) A .第四象限B .第三象限C .第二象限D .第一象限【分析】根据一次函数的增减性,确定自变量x 的系数﹣5a 的符号,再根据ab >0,确定b 的符号,从而确定点A (a ,b )所在的象限.【解答】解:∵在一次函数y =﹣5ax +b 中,y 随x 的增大而增大, ∴﹣5a >0,∴a <0. ∵ab >0, ∴a ,b 同号, ∴b <0.∴点A (a ,b )在第三象限. 故选:B .16.(2022•眉山)一次函数y =(2m ﹣1)x +2的值随x 的增大而增大,则点P (﹣m ,m )所在象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限【分析】根据一次函数的性质求出m 的范围,再根据每个象限点的坐标特征判断P 点所处的象限即可.【解答】解:∵一次函数y =(2m ﹣1)x +2的值随x 的增大而增大, ∴2m ﹣1>0, 解得:m >,∴P (﹣m ,m )在第二象限, 故选:B .17.(2022•天津)若一次函数y =x +b (b 是常数)的图像经过第一、二、三象限,则b 的值可以是 (写出一个即可).【分析】根据一次函数的图像可知b >0即可.【解答】解:∵一次函数y =x +b (b 是常数)的图像经过第一、二、三象限, ∴b >0, 可取b =1,故答案为:1.(答案不唯一,满足b >0即可) 18.(2022•邵阳)在直角坐标系中,已知点A (23,m ),点B (27,n )是直线y =kx +b(k <0)上的两点,则m ,n 的大小关系是( ) A .m <nB .m >nC .m ≥nD .m ≤n【分析】根据k <0可知函数y 随着x 增大而减小,再根>即可比较m 和n 的大小.【解答】解:点A (,m ),点B (,n )是直线y =kx +b 上的两点,且k <0,∴一次函数y 随着x 增大而减小, ∵>,∴m <n , 故选:A .19.(2022•株洲)在平面直角坐标系中,一次函数y =5x +1的图像与y 轴的交点的坐标为( ) A .(0,﹣1)B .(﹣51,0) C .(51,0) D .(0,1)【分析】一次函数的图像与y 轴的交点的横坐标是0,当x =0时,y =1,从而得出答案. 【解答】解:∵当x =0时,y =1,∴一次函数y =5x +1的图像与y 轴的交点的坐标为(0,1), 故选:D .20.(2022•绍兴)已知(x 1,y 1),(x 2,y 2),(x 3,y 3)为直线y =﹣2x +3上的三个点,且x 1<x 2<x 3,则以下判断正确的是( ) A .若x 1x 2>0,则y 1y 3>0 B .若x 1x 3<0,则y 1y 2>0C .若x 2x 3>0,则y 1y 3>0D .若x 2x 3<0,则y 1y 2>0【分析】根据一次函数的性质和各个选项中的条件,可以判断是否正确,从而可以解答本题.【解答】解:∵直线y =﹣2x +3,∴y 随x 的增大而减小,当y =0时,x =1.5,∵(x 1,y 1),(x 2,y 2),(x 3,y 3)为直线y =﹣2x +3上的三个点,且x 1<x 2<x 3, ∴若x 1x 2>0,则x 1,x 2同号,但不能确定y 1y 3的正负,故选项A 不符合题意; 若x 1x 3<0,则x 1,x 3异号,但不能确定y 1y 2的正负,故选项B 不符合题意; 若x 2x 3>0,则x 2,x 3同号,但不能确定y 1y 3的正负,故选项C 不符合题意;若x 2x 3<0,则x 2,x 3异号,则x 1,x 2同时为负,故y 1,y 2同时为正,故y 1y 2>0,故选项D 符合题意; 故选:D .21.(2022•盘锦)点A (x 1,y 1),B (x 2,y 2)在一次函数y =(a ﹣2)x +1的图像上,当x 1>x 2时,y 1<y 2,则a 的取值范围是 . 【分析】根据一次函数的性质,建立不等式计算即可.【解答】解:∵当x1>x2时,y1<y2,∴a﹣2<0,∴a<2,故答案为:a<2.22.(2022•永州)已知一次函数y=x+1的图像经过点(m,2),则m=.【分析】由一次函数y=x+1的图像经过点(m,2),利用一次函数图像上点的坐标特征可得出2=m+1,解之即可求出m的值.【解答】解:∵一次函数y=x+1的图像经过点(m,2),∴2=m+1,∴m=1.故答案为:1.。

中考数学总复习《函数》专项测试卷-附参考答案

中考数学总复习《函数》专项测试卷-附参考答案

中考数学总复习《函数》专项测试卷-附参考答案一、单选题(共12题;共24分)1.如图所示,抛物线L:y=ax2+bx+c(a<0)的对称轴为x=5,且与x轴的左交点为(1,0)则下列说法正确的有()①C(9,0);②b+c>-10;③y的最大值为-16a;④若该抛物线与直线y=8有公共交点,则a的取值范围是a≤ 1 2.A.①②③④B.①②③C.①③④D.①④2.若y+3与x-2成正比例,则y是x的()A.正比例函数B.不存在函数关系C.一次函数D.以上都有可能3.关于函数y=2x﹣1,下列结论成立的是()A.当x<0时,则y<0B.当x>0时,则y>0C.图象必经过点(0,1)D.图象不经过第三象限4.关于一次函数y=x+2,下列说法正确的是()A.y随x的增大而减小B.经过第一、三、四象限C.与y轴交于(0,2)D.与x轴交于(2,0)5.点P(3,y1)、Q (4,y2)是二次函数y=x2−4x+5的图象上两点,则y1与y2的大小关系为()A.y1>y2B.y1<y2C.y1=y2D.无法确定6.快、慢两车分别从甲、乙两地同时出发,相向匀速行驶,两车在途中相遇时都停留了一段时间,然后分别按原速度原方向匀速行驶,快车到达乙地后休息半小时后,再以另一速度原路匀速返回甲地(掉头的时间忽略不计),慢车到达甲地以后即停在甲地等待快车.如图所示为快、慢两车间的距离y (千米)与快车的行驶时间x(小时)之间的函数图象.则下列说法:①两车在途中相遇时都停留了1小时;②快车从甲地去乙地时每小时比慢车多行驶40km;③快车从乙地返回甲地的速度为120km/h;④当慢车到达甲地的时候,快车与甲地的距离为400km.其中正确的有()A.4B.3C.2D.17.如图,动点A在抛物线y=−x2+2x+3(0≤x≤3)上运动,直线l经过点(0,6),且与y轴垂直,过点A做AC⊥ l于点C,以AC为对角线作矩形ABCD,则另一对角线BD的取值范围正确的是()A.2≤BD≤3B.3≤BD≤6C.1≤BD≤6D.2≤BD≤68.如图,在平面直角坐标系中,函数y=kx,y=−2x的图像交于A,B两点,过A作y轴的垂线,交函数y=3x的图像于点C,连接BC,则ΔABC的面积为()A.2B.3C.5D.69.如图是抛物线y1=ax2+bx+c(a≠0)图象的一部分,抛物线的顶点是A,对称轴是直线x=1,且抛物线与x轴的一个交点为B(4,0);直线AB的解析式为y2=mx+n(m≠0).下列结论:①2a+b=0;②abc>0;③方程ax2+bx+c=mx+n有两个不相等的实数根;④抛物线与x轴的另一个交点是(﹣1,0);⑤当1<x<4时,则则y1>y2,其中正确的是()A.①②B.①③⑤C.①④D.①④⑤10.如图,矩形ABCD中,AB=3,BC=4,点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数大致图象是()A.B.C.D.11.如图,在平面直角坐标系中,ΔA1A2A3,ΔA3A4A5,ΔA5A6A7,…都是等边三角形,其边长依次为2,4,6,…,其中点A1的坐标为(2,0),点A2的坐标为(1,−√3),点A3的坐标为(0,0),点A4的坐标为(2,2√3),…,按此规律排下去,则点A2020的坐标为()A.(1,−1009√3)B.(1,−1010√3)C.(2,1009√3)D.(2,1010√3)12.如图,二次函数y=-x2+bx+c 图象上有三点A(-1,y1 )、B(1,y2) 、C(2,y3),则y1,y2,y3大小关系为()A.y1<y3<y2B.y3<y1<y2C.y1<y2<y3D.y2<y1<y3二、填空题(共6题;共6分)13.点P(1,1)向左平移两个单位后恰好位于双曲线y=k x上,则k=.14.将二次函数y=−x2+3的图像向下平移5个单位长度,所得图像对应的函数表达式为.15.如图,已知A1(1,0),A2(1,1),A3(﹣1,1),A4(﹣1,﹣1),A5(2,﹣1)…,则点A2021的坐标为.16.请写出一个二次函数,使它的图象同时满足下列两个条件:①开口向下,②与y轴的交点是(0,1),你写出的函数表达式是.17.若点P(n,1),Q(n+6,3)在正比例函数图象上,请写出正比例函数的表达式. 18.在−3,−2,−1,4,5五个数中随机选一个数作为一次函数y=kx−3中k的值,则一次函数y=kx−3中y随x的增大而减小的概率是.三、综合题(共6题;共67分)19.3−√(−3)2+|√3−2|(1)计算:(−1)2021+√16+√−27(2)如图所示的是某学校的平面示意图,已知旗杆的位置是(−1,2),实验室的位置是(2,3).①根据所给条件建立适当的平面直角坐标系,并用坐标表示食堂,宿舍楼和大门的位置.②已知办公楼的位置是(−2,1),教学楼的位置是(3,1),在①中所画的图中标出办公楼和教学楼的位置.20.汽车出发1小时后油箱里有油40L,继续行驶若干小时后,在加油站加油若干升(加油时间忽略不计).图象表示出发1小时后,油箱中剩余测量(y)与行驶时间t(h)之间的关系.(1)汽车行驶h后加油,中途加油L;(2)求加油前油箱剩余量y与行驶时间t的函数关系式;(3)若加油前后汽车都以80km/h匀速行驶,则汽车加油后最多能行驶多远?21.凤凰单丛(枞)茶,是潮汕的名茶,已有九百余年的历史.潮汕人将单丛茶按香型分为黄枝香、芝兰香、桃仁香、玉桂香、通天香、鸭屎香等多种.清明采茶季后,某茶叶店准备购买通天香和鸭屎香两种单丛茶进行销售,已知若购买4千克通天香单丛和3千克鸭屎香单丛需要2500元,购买2千克通天香单丛和5千克鸭屎香单丛需要2300元.(1)求通天香、鸭屎香两种茶叶的单价分别为多少元?(2)茶叶专卖店计划购买通天香、鸭屎香两种单丛茶共80千克,总费用不多于26000元,并且要求通天香茶叶数量不能低于10千克,那么应如何安排购买方案才能使总费用最少,最少费用应为多少元?22.为落实“双减”政策,丰富课后服务的内容,某学校计划到甲、乙两个体育专卖店购买一批新的体育用品,两个商店的优惠活动如下:甲:所有商品按原价8.5折出售;乙:一次购买商品总额不超过300元的按原价付费,超过300元的部分打7折.设需要购买体育用品的原价总额为x元,去甲商店购买实付y甲元,去乙商店购买实付y乙元,其函数图象如图所示.(1)分别求y甲,y乙关于x的函数关系式;(2)两图象交于点A,求点A坐标;(3)请根据函数图象,直接写出选择去哪个体育专卖店购买体育用品更合算.23.直线y=kx+b经过A(0,-3))和B(-3,0)两点.(1)求这个一次函数的解析式;(2)画出图象,并根据图象说明不等式kx+b<0的解集.24.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总结反思后,和乌龟约定再赛一场,下面的函数图象表示“龟兔再次赛跑”时,则乌龟所走路程y1(米)和兔子所走的路程y2(米)分别与乌龟从起点出发所用的时间x(分)之间的函数图象,根据图象解答下列问题:(1)“龟兔再次赛跑”的路程是米,兔子比乌龟晚走了分钟,乌龟在途中休息了分钟,“龟兔再次赛跑”获胜的是.(2)分别求出乌龟在途中休息前和休息后所走的路程y1关于时间x的函数解析式,并写出自变量x的取值范围.(3)乌龟和兔子在距离起点米处相遇.参考答案1.【答案】B 2.【答案】C 3.【答案】A 4.【答案】C 5.【答案】B 6.【答案】B 7.【答案】D 8.【答案】C 9.【答案】B 10.【答案】C 11.【答案】D 12.【答案】A 13.【答案】-114.【答案】y =−x 2−2 15.【答案】(506,﹣505)16.【答案】y =−x 2+x +1 (不唯一) 17.【答案】y =13x 18.【答案】3519.【答案】(1)解:原式=−1+4−3−3+2−√3=−1−√3(2)解:①根据题意,建立如图所示的平面直角坐标系,如下:∴食堂(−4,4),宿舍楼(-5,1),大门(1,−1) ②办公楼和教学楼的位置如图所示.20.【答案】(1)4;35(2)解:设y 与x 的函数关系式为y =kt+b 把(1,40)和(4,10)代入得{k +b =404k +b =10解得 {k =−10b =50∴加油前油箱剩余油量y 与行驶时间t 的函数关系式y =﹣10t+50(3)解:由图象知,汽车加油前行驶了3小时,则用油40﹣10=30(L ) ∴汽车行驶1小时耗油量为 303=10(L/h )加油后邮箱中剩余油量45L ,可以行驶 4510 ×80=360(km ).∴汽车加油后最多能行驶360km .21.【答案】(1)解:设通天香茶叶每千克为x 元,鸭屎香茶叶每千克为y 元,根据题意,得{4x +3y =25002x +5y =2300解得{x =400y =300∴通天香茶叶每千克为400元,鸭屎香茶叶每千克为300元.(2)解:设购买通天香茶叶m 千克,鸭屎香茶叶(80-m )千克,总费用w 元 根据题意,得400m +300(80−m)≤26000 解得m ≤20 ∵m ≥10∴m 的取值范围是:10≤m ≤20总费用w =400m +300(80−m)=100m +24000 ∵100>0∴w 随着m 的增大而增大∴当m =10时,则w 最少,w 最少=1000+24000=25000(元)∴通天香茶叶购进10千克,鸭屎香茶叶购进70千克,总费用最少为25000元.22.【答案】(1)解:由题意可得,y 甲=0.85x ;乙商店:当0≤x≤300时,则y 乙与x 的函数关系式为y 乙=x ; 当x >300时,则y 乙=300+(x-300)×0.7=0.7x+90 由上可得,y 乙与x 的函数关系式为y 乙={x(0≤x ≤300)0.7x +90(x >300)(2)解:由{y 甲=0.85xy 乙=0.7x +90,解得{x =600y 乙=510点A 的坐标为(600,510);(3)解:由点A 的意义,当买的体育商品标价为600元时,则甲、乙商店优惠后所需费用相同,都是510元 结合图象可知当x <600时,则选择甲商店更合算; 当x=600时,则两家商店所需费用相同; 当x >600时,则选择乙商店更合算.23.【答案】(1)解:将A(0,−3),B(−3,0)代入y =kx +b 得{b =−3−3k +b =0解得:k =−1,b =−3∴y =−x −3一次函数的解析式为:y =−x −3. (2)解:作图如下:由图象可知:直线从左往右逐渐下降,即y 随x 的增大而减小 当x =−3时∴kx +b <0的解集为:x >−3.24.【答案】(1)1000;40;10;兔子(2)解:设乌龟在途中休息前所走的路程y 1关于时间x 的函数解析式为y 1=kx ∴600=30k ,解得k =20∴乌龟在途中休息前所走的路程y 1关于时间x 的函数解析式为y 1=20x (0≤x≤30) 设乌龟在途中休息后所走的路程y 1关于时间x 的函数解析式为y 1=k′x+b∴{40k ′+b =60060k ′+b =1000,解得{k ′=20b =−200∴乌龟在途中休息后所走的路程y1关于时间x的函数解析式为y1=20x﹣200(40≤x≤60);(3)750第11页共11。

中学函数试题及答案

中学函数试题及答案

中学函数试题及答案
一、选择题
1. 下列哪个选项不是一次函数?
A. y = 2x + 3
B. y = 3
C. y = -x + 1
D. y = 5x^2
答案:D
2. 函数y = 2x + 1的图像经过点(1,3),那么它经过的另一个点是:
A. (2, 5)
B. (0, 1)
C. (-1, -1)
D. (3, 7)
答案:A
二、填空题
1. 已知函数y = ax + b,当x = 2时,y = 5,当x = 3时,y = 8,求a和b的值。

答案:a = 3,b = -1
2. 函数y = 4x - 5的图像与x轴交点的坐标是。

答案:(5/4, 0)
三、解答题
1. 已知函数f(x) = 3x^2 - 6x + 5,求f(2)的值。

答案:f(2) = 3(2)^2 - 6(2) + 5 = 4 - 12 + 5 = -3
2. 已知函数g(x) = x^3 - 2x^2 + x,求g(1)的值。

答案:g(1) = (1)^3 - 2(1)^2 + 1 = 1 - 2 + 1 = 0
四、应用题
1. 一个物体从静止开始,以每秒2米的速度开始加速运动,求物体在第5秒时的速度。

答案:物体在第5秒时的速度为10米/秒。

2. 一个水池的容积为100立方米,如果以每分钟10立方米的速度注水,求注满水池需要多少分钟。

答案:注满水池需要10分钟。

中考数学专题复习:函数基础知识练习题(含答案)

中考数学专题复习:函数基础知识练习题(含答案)

中考数学专题复习:函数基础知识练习题一.选择题1.在Rt△ABC中,D为斜边AB的中点,∠B=60°,BC=2cm,动点E从点A出发沿AB 向点B运动,动点F从点D出发,沿折线D﹣C﹣B运动,两点的速度均为1cm/s,到达终点均停止运动,设AE的长为x,△AEF的面积为y,则y与x的图象大致为()A.B.C.D.2.如图,正方形ABCD的边长为2,点P和点Q分别从点B和点C出发,沿射线BC向右运动,且速度相同,过点Q作QH⊥BD,垂足为H,连接PH,设点P运动的距离为x (0<x≤2),△BPH的面积为S,则能反映S与x之间的函数关系的图象大致为()A.B.C.D.3.如图,在边长为4的正方形ABCD中剪去一个边长为2的小正方形CEFG,动点P从点A出发,沿多边形的边以A→D→E→F→G→B的路线匀速运动到点B时停止(不含点A 和点B),则△ABP的面积S随着时间t变化的图象大致为()A.B.C.D.4.小亮饭后散步,从家中走20分钟到一个离家900米的报亭看10分钟的报纸后,用15分钟返回家中,下列图形中表示小亮离家的时间与离家的距离之间关系的是()A.B.C.D.5.如图①,动点P从正六边形的A点出发,沿A→F→E→D→C以1cm/s的速度匀速运动到点C,图②是点P运动时,△ACP的面积y(cm2)随着时间x(s)的变化的关系图象,则正六边形的边长为()A.2cm B.cm C.1cm D.3cm6.如图①,在▱ABCD中,∠B=120°,动点P从点B出发,沿B→C→D→A运动至点A 停止,如图②是点P运动时,△P AB的面积y(cm2)随点P运动的路程x(cm)变化的关系图象,则图②中H点的横坐标为()A.12B.14C.16D.7.如图所示的是一辆汽车行驶的速度(千米/时)与时间(分)之间的变化图,下列说法正确的是()A.时间是因变量,速度是自变量B.汽车在1~3分钟时,匀速运动C.汽车最快的速度是30千米/时D.汽车在3~8分钟静止不动8.小苏和小林在如图1所示的跑道上进行4×50米折返跑,在整个过程中跑步者距起跑线的距离y(单位:m)与跑步时间t(单位:s)的对应关系如图2所示.下列叙述正确的是()A.两人从起跑线同时出发,同时到达终点B.小苏跑全程的平均速度大于小林跑全程的平均速度C.小苏前15s跑过的路程大于小林前15s跑过的路程D.在折返跑过程中(不包括起跑和终点),小林与小苏相遇3次9.小聪步行去上学,5分钟走了总路程的,估计步行不能准时到校,于是他改乘出租车赶往学校,他的行程与时间关系如图所示,(假定总路程为1,出租车匀速行驶),则他到校所花的时间比一直步行提前了()分钟.A.16B.18C.20D.2410.如图1,动点K从△ABC的顶点A出发,沿AB﹣BC匀速运动到点C停止.在动点K 运动过程中,线段AK的长度y与运动时间x的函数关系如图2所示,其中点Q为曲线部分的最低点,若△ABC的面积是5,则图2中a的值为()A.B.5C.7D.3二.填空题11.小亮早晨从家骑车到学校先上坡后下坡,所行路程y(m)与时间x(min)的关系如图所示,若返回时上坡、下坡的速度仍与去时上坡,下坡的速度分别相同,则小亮从学校骑车回家用的时间是min.12.如图①,在平行四边形ABCD中,∠B=120°,动点P从点B出发,沿BC、CD、DA 运动至点A停止.设点P运动的路程为xcm,△P AB的面积为ycm2,y关于x的函数的图象如图②所示,则图②中H点的横坐标为.13.如图1,点O为正六边形对角线的交点,机器人置于该正六边形的某顶点处,小宇操作机器人以每秒1个单位长度的速度在图1中给出的线段路径上运行,他将机器人运行的时间设为t秒,机器人到点A的距离设为y,得到的函数图象如图2.通过观察函数图象,可以得到下列推断:①机器人一定经过点D;②机器人一定经过点E;③当t=3时,机器人一定位于点O;④存在符合图2的运行路线,使机器人能够恰好经过六边形的全部6个顶点;其中正确的是(填序号).14.在课本的阅读与思考中,科学家利用放射性物质的半衰期这个函数模型来测算岩石的年,生活中也有很多类似这样半衰的现象.请思考下面的问题:一个皮球从16m高处下落,第一次落地后反弹起8m,第二次落地后反弹起4m,以后每次落地后的反弹高度都减半.试写出表示反弹高度h(单位:m)与落地次数n的对应关系的函数解析式.皮球第次落地后的反弹高度是m?15.重庆实验外国语学校运动会期间,小明和小欢两人打算匀速从教室跑到600米外的操场参加入场式,出发时小明发现鞋带松了,停下来系鞋带,小欢继续跑往操场,小明系好鞋带后立即沿同一路线开始追赶小欢小明在途中追上小欢后继续前行,小明到达操场时入场式还没有开始,于是小明站在操场等待,小欢继续前往操场.设小明和小欢两人相距s(米),小欢行走的时间为t(分钟),s关于t的函数图象如图所示,则在整个运动过程中,小明和小欢第一次相距80米后,再过分钟两人再次相距80米.三.解答题16.王教授和他的孙子小强星期天一起去爬山,来到山脚下,小强让爷爷先上山,然后追赶爷爷,如图所示,两条线段分别表示小强和爷爷离开山脚的距离(米)与爬山所用时间(分)的关系(小强开始爬山时开始计时),请看图回答下列问题:(1)爷爷比小强先上了多少米?山顶离山脚多少米?(2)谁先爬上山顶?小强爬上山顶用了多少分钟?(3)图中两条线段的交点表示什么意思?这时小强爬山用时多少?离山脚多少米?17.小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图2所示.(1)根据函数的定义,请判断变量h是否为关于t的函数?请说明理由;(2)结合图象回答:①当=0.7s时,h的值是多少?并说明它的实际意义;②秋千摆第二个来回需多少时间?18.2018年5月14日川航3U863航班挡风玻璃在高空爆裂,机组临危不乱,果断应对.正确处置,顺利返航,避免了一场灾难的发生,创造了世界航空史上的奇迹!下表给出了距离地面高度与所在位置的温度之间的大致关系.根据下表,请回答以下几个问题:(1)上表反映的两个变量中,是自变量,是因变量?(2)若用h表示距离地面的高度,用y表示表示温度,则y与h的之间的关系式是:;当距离地面高度5千米时,所在位置的温度为:℃.如图是当日飞机下降过程中海拔高度与玻璃爆裂后立即返回地面所用时间关系图.根据图象回答以下问题:(3)返回途中飞机再2千米高空水平大约盘旋了几分钟?(4)飞机发生事故时所在高空的温度是多少?19.如图1,在△ABC中,点D是线段BC上的动点,将线段AD绕点D逆时针旋转90°得到线段DE,连接BE.若已知BC=8cm,设B,D两点间的距离为xcm,A,D两点间的距离为y1cm,B,E两点距离为y2cm.小明根据学习函数的经验,分别对函数y1,y2随x的变化而变化的规律进行了探究,请补充完整.下面是小明的探究过程的几组对应值.(1)按照下表中自变量x的值进行取点画图,测量分别得到了与x的几组对应值如下表:(说明补全表格时相关数值保留一位小数)(2)在同一平面直角坐标系xoy中,描出补全后的表中各组数值所对应的点(x,y1),(x,y2),并画出函数y1,y2的图象;(3)结合函数图象(如图2),解决问题:①当E在线段BC上时,BD的长约为cm;②当△BDE为等腰三角形时,BD的长x约为cm.20.小凡与小光从学校出发到距学校5千米的图书馆看书,途中小凡从路边超市买了一些学习用品,如图反应了他们俩人离开学校的路程s(千米)与时间t(分钟)的关系,请根据图象提供的信息回答问题:(1)l1和l2中,描述小凡的运动过程;(2)谁先出发,先出发了分钟;(3)先到达图书馆,先到了分钟;(4)当t=分钟时,小凡与小光在去学校的路上相遇;(5)小凡与小光从学校到图书馆的平均速度各是多少千米/小时?(不包括中间停留的时间)参考答案一.选择题1.解:在Rt△ABC中,D为斜边AB的中点,∠B=60°,BC=2cm,∴AD=DC=DB=2,∠CDB=60°∵EF两点的速度均为1cm/s∴当0≤x≤2时,y=当2≤x≤4时,y=由图象可知A正确故选:A.2.解:过点H作HE⊥BC,垂足为E.∵BD是正方形的对角线∴∠DBC=45°∵QH⊥BD∴△BHQ是等腰直角三角形.∵BQ•HE=BH•HQ∴HE=∴△BPH的面积S=BP•HE=x=∴S与x之间的函数关系是二次函数,且二次函数图象开口方向向上;因此,选项中只有A选项符合条件.故选:A.3.解:当点P在线段AD上时,面积是逐渐增大的,当点P在线段DE上时,面积是定值不变,当点P在线段EF上时,面积是逐渐减小的,当点P在线段FG上时,面积是定值不变,当点P在线段GB上时,面积是逐渐减小的,综上所述,选项B符合题意.故选:B.4.解:依题意,0﹣20分钟散步,离家路程增加到900米,20﹣30分钟看报,离家路程不变,30﹣45分钟返回家,离家路程减少为0米.故选:D.5.解:如图,连接BE,AE,CE,BE交AC于点G由正六边形的对称性可得BE⊥AC,易证△ABC≌△CDE≌△AFE(SAS)∴△ACE为等边三角形,GE为AC边上的高线∵动点P从正六边形的A点出发,沿A→F→E→D→C以1cm/s的速度匀速运动∴当点P运动到点E时△ACP的面积y取最大值设AG=CG=a(cm),则AC=AE=CE=2a(cm),GE=a(cm)∴2a×a÷2=(cm)∴a2=3∴a=(cm)或a=﹣(舍)∵正六边形的每个内角均为120°∴∠ABG=×120°=60°∴在Rt△ABG中,=sin60°∴=∴AB=2(cm)∴正六边形的边长为2cm故选:A.6.解:图②显示,当BC=4时,y=6,即y=×AB×BC sin60°=AB×4×=6,解得:AB=6,点H的横坐标为:BC+CD+AD=4+4+6=14,故选:B.7.解:速度是因变量,时间是自变量,故选项A不合题意;汽车在1~3分钟时,速度在增加,故选项B不合题意;汽车最快速度是30千米/时,故选项C符合题意;汽车在3~8分钟,匀速运动,故选项D不合题意;故选:C.8.解:两人从起跑线同时出发,先后到达终点,小林先到达终点,故A选项不符合题意;根据图象两人从起跑线同时出发,小林先到达终点,小苏后到达终点,小苏用的时间多,而路程相同,所以小苏跑全程的平均速度小于小林跑全程的平均速度,故B选项不符合题意;由函数图象可知:小苏前15s跑过的路程小于小林前15s跑过的路程,故C选项不符合题意;在折返跑过程中(不包括起跑和终点),小林与小苏相遇3次,故D选项符合题意;故选:D.9.解:小聪步行的速度为:÷5=,改乘出租车后的速度为:(﹣)÷(7﹣5)=,小聪到校所花的时间比一直步行提前的时间=﹣5﹣=20(分钟),故选:C.10.解:由图象的曲线部分看出直线部分表示K点在AB上,且AB=a,曲线开始AK=a,结束时AK=a,所以AB=AC.当AK⊥BC时,在曲线部分AK最小为5.所以BC×5=5,解得BC=2.所以AB==.故选:A.二.填空题(共5小题)11.解:由图可得,去校时,上坡路的距离为3600米,所用时间为18分,∴上坡速度=3600÷18=200(米/分),下坡路的距离是9600﹣36=6000米,所用时间为30﹣18=12(分),∴下坡速度=6000÷12=500(米/分);∵去学校时的上坡回家时变为下坡、去学校时的下坡回家时变为上坡,∴小亮从学校骑车回家用的时间是:6000÷200+3600÷500=30+7.2=37.2(分钟).故答案为:37.212.解:由图象可知,当x=4时,点P到达C点,此时△P AB的面积为6,∵∠B=120°,BC=4,∴×2×AB=6,解得AB=6,H点表示点P到达A时运动的路程为4+6+4=14,故答案为:14.13.解:由图象可知,机器人距离点A1个单位长度,可能在F或B点,则正六边形边长为1;①所有点中,只有点D到A距离为2个单位,故①正确;②因为机器人可能在F点或B点出发,当从B出发时,不经过点E,故②错误.③观察图象t在3﹣4之间时,图象具有对称性则可知,机器人在OB或OF上,则当t=3时,机器人距离点A距离为1个单位长度,机器人一定位于点O,故③正确;④由②知,机器人不经过点E,故④错误;故答案为:①③.14.解:表示反弹高度h(单位:m)与落地次数n的对应关系的函数解析式h=(n为正整数).=,2n=16×8=27,n=7.故皮球第7次落地后的反弹高度是m.故答案为:h=(n为正整数),7.15.解:由题意小欢的速度为40米/分钟,小明的速度为80米/分钟,设小明在途中追上小欢后需要x分钟两人相距80米,则有:80x﹣40x=80,∴x=2,此时小欢一共走了40×(2+2)=160(米),(600﹣160﹣80)÷40=9(分).即小明和小欢第一次相距80米后,再过9分钟两人再次相距80米.故答案为:9三.解答题(共5小题)16.解:(1)由图可知,爷爷比小强先上了100米,当小强爬了10分钟,爬了300米∴小强的速度300÷10=30米/分,∴山高30×15=450米;(2)小强先到山顶,小强爬了15分钟;(3)图中两条线段的交点表示小强和爷爷相遇的时候,这时小强爬山用时10分钟,离山脚300米.17.解:(1)h是t的函数是两个变量、每一个时间t的确定值,高度h都有唯一的值与其对应,故变量h是否为关于t的函数;(2)①当t=0.7s时,h=0.5m,它的意义是:秋千摆动0.7s时,设地面的高度为0.5m.②从图象看前两个来回用时2.8,后面两个来回用时5.4﹣2.8=2.6,再后面两个来回用时7.8﹣5.4=2.4,为均匀减小,故第一个来回应该是1.5s,第二个来回2.6s.18.解:(1)根据函数的定义:距离地面高度是自变量,所在位置的温度是因变量,故答案为:距离地面高度,所在位置的温度;(2)由题意得:y=20﹣6h,当x=5时,y=﹣10,故答案为:y=20﹣6h,﹣10;(3)从图象上看,h=2时,持续的时间为2分钟,即返回途中飞机在2千米高空水平大约盘旋了2分钟;(4)h=2时,y=20﹣12=8,即飞机发生事故时所在高空的温度是8度.19.解:(1)当x=0时,a=AD=7.03≈7.0,b=3.0;(2)描绘后表格如下图:(3)①当E在线段BC上时,即:x=y1+y2,从图象可以看出,当x=6时,y1+y2=6,故答案为6;②当BE=DE时,即:y1=y2,此时x=7.5或0,故x=7.5;当BE=BD时,即:y2=x,在图上画出直线y=x,此时x≈3;当DE=BE时,即:y1=x,从上图可以看出x≈4.1;故答案为:3或4.1或7.5.20.解:(1)由图可得,l1和l2中,l1描述小凡的运动过程,故答案为:l1;(2)由图可得,小凡先出发,先出发了10分钟,故答案为:小凡,10;(3)由图可得,小光先到达图书馆,先到了60﹣50=10(分钟),故答案为:小光,10;(4)小光的速度为:5÷(50﹣10)=千米/分钟,小光所走的路程为3千米时,用的时间为:3÷=24(分钟),∴当t=10+24=34(分钟)时,小凡与小光在去学校的路上相遇,故答案为:34;(5)小凡的速度为:=10(千米/小时),小光的速度为:=7.5(千米/小时),即小凡与小光从学校到图书馆的平均速度分别为10千米/小时、7.5千米/小时.。

中考数学总复习《函数基础知识》练习题及答案

中考数学总复习《函数基础知识》练习题及答案

中考数学总复习《函数基础知识》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.如图1,将正方形ABCD置于平面直角坐标系中,其中AD边在x轴上,其余各边均与坐标轴平行,直线L:y=x−3沿x轴的负方向以每秒1个单位的速度平移,在平移的过程中,该直线被正方形ABCD的边所截得的线段长为m,平移的时间为t(秒),m与t的函数图象如图2所示,则图2中a的值为()A.7B.9C.12D.132.弹簧挂物体会伸长,测得弹簧长度y(cm)(最长为20cm),与所挂物体质量x(kg)之间有下面的关系:x/kg01234…y/cm88.599.510…A.x与y都是变量,x是自变量,y是x的函数B.所挂物体质量为6kg时,弹簧长度为11cmC.y与x的函数表达式为y=8+0.5xD.挂30kg物体时,弹簧长度一定比原长增加15cm3.甲、乙、丙、丁四个人步行的路程和所用的时间如图所示,按平均速度计算.走得最快的是()A.甲B.乙C.丙D.丁4.如图1,在矩形ABCD中,点E在CD上,∠AEB=90°,点P从点A出发,沿A→E→B的路径匀速运动到点B停止,作PQ∠CD于点Q,设点P运动的路程为x,PQ长为y,若y与x之间的函数关系图象如图2所示,当x=6时,PQ的值是()A.2B.95C.65D.15.将水匀速滴进如图所示的容器时,能符合题意反映容器中水的高度(h)与时间(t)之间对应关系的图象大致是()A.B.C.D.6.函数y= √x−1的自变量x的取值范围是()A.x=1B.x≠1C.x≥1D.x≤17.在函数y=√x+2x中,自变量x的取值范围为( )A.x≥-2B.x<-2且x≠0C.x≥-2且x≠0D.x≠0.8.如图反映的过程是:小强从家去菜地浇水,又去玉米地除草,然后回家.如果菜地和玉米地的距离为a千米,小强在玉米地除草比在菜地浇水多用的时间为b分钟,则a,b的值分别为()A.1.1,8B.0.9,3C.1.1,12D.0.9,89.某烤鸭店在确定烤鸭的烤制时间时,主要依据的是下表的数据:鸭的质量/千克0.51 1.52 2.53 3.54烤制时间/分406080100120140160180 A.140B.138C.148D.16010.下列各曲线中表示y是x的函数的是()A.B.C.D.11.下列函数中自变量x的取值范围是x>1的是().A.y=1√x−1B.y=√x−1C.y=1√x−1D.y=1√1−x12.习近平总书记在全国教育大会上强调,要坚持中国特色社会主义教育发展道路.培养德智体美劳全面发展的社会主义建设者和接班人.枣庄某学校利用周未开展课外劳动实践活动.如图反映的过程是:小强从家去菜地浇水,又去玉米地除草,然后回家.如果菜地和玉米地的距离为a千米,小强在玉米地除草比在菜地浇水多用的时间为b分钟,则a,b的值分别为()A.1.1,8B.0.9,3C.1.1,12D.0.9,8二、填空题13.一棵树现在高60cm,每个月长高2cm,x月之后这棵树的高度为hcm,则h关于x的函数解析式为.14.甲、乙两车分别从A,B两地同时相向匀速行驶,当乙车到达A地后,继续保持原速向远离B的方向行驶,而甲车到达B地后立即掉头,并保持原速与乙车同向行驶,经过15小时后两车同时到达距A地300千米的C地(中途休息时间忽略不计).设两车行驶的时间为x(小时),两车之间的距离为y(千米),y与x之间的函数关系如图所示,则当甲车到达B地时,乙车距A地千米.15.骆驼被称为“沙漠之舟”,它的体温随时间的变化而变化,在这一问题中,自变量是.,则自变量x的取值范围是.16.已知函数y= √2x+1x−217.如图1,在平面直角坐标系中,平行四边形ABCD在第一象限,且AB∠x轴.直线y=﹣x从原点出发沿x轴正方向平移,被平行四边形ABCD截得的线段EF的长度y与平移的距离x的函数图象如图2所示,那么平行四边形ABCD的面积为.18.甲、乙两地相距360km,一辆货车从甲地以60km/ℎ的速度匀速前往乙地,到达乙地后停止在货车出发的同时,另一辆轿车从乙地沿同一公路匀速前往甲地,到达甲地后停止.两车之间的路程y(km)与货车出发时间x(ℎ)之间的函数关系如图中的折线CD−DE−EF所示.其中点C的坐标是(0,360),点D的坐标是(2,0),则点E的坐标是.三、综合题19.我国边防局接到情报,近海处有一可疑船只A正向公海方向行驶,边防部迅速派出快艇B追赶(如图1).图2中l1、l2分别表示两船相对于海岸的距离s(海里)与追赶时间t(分)之间的关系.根据图象回答问题:(1)直线l1与直线l2中表示B到海岸的距离与追赶时间之间的关系(2)A与B比较,速度快;(3)l1与l2对应的两个一次函数表达式S1=k1t+b1与S2=k2t+b2中,k1、k2的实际意义各是什么?并直接写出两个具体表达式(4)15分钟内B能否追上A?为什么?(5)当A逃离海岸12海里的公海时,B将无法对其进行检查,照此速度,B能否在A逃入公海前将其拦截?为什么?20.为迎接元旦,某食品加工厂计划用三天时间生产某种糕点600斤,其库存量稳定增加,从第四天开始停止生产,进行销售,每天销售150斤,图中的折线OAB表示该糕点的库存量y(斤)与销售时间x(天)之间的函数关系.(1)B点坐标为,线段AB所在直线的解析式为;(2)在食品销售期间,某超市提前预定当天这种糕点150斤的销量,并搭配活动将这批糕点分甲乙两种方式售卖,甲种方式每斤8元,乙种方式每斤12元,同时为了保证甲种方式的数量不低于乙种方式,求该超市卖完全部糕点销售总额的最大值.21.已知y是x 的函数,自变量x的取值范围是x >0,下表是y与x 的几组对应值.x···123579···y··· 1.98 3.95 2.63 1.58 1.130.88···与性质进行了探究.下面是小腾的探究过程,请补充完整:(1)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①x=4对应的函数值y约为;②该函数的一条性质:.22.沙沙骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校. 以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)沙沙家到学校的路程是多少米?(2)在整个上学的途中哪个时间段沙沙骑车速度最快,最快的速度是多少米/分?(3)沙沙在书店停留了多少分钟?(4)本次上学途中,沙沙一共行驶了多少米?23.小红帮弟弟荡秋千(如图1),秋千离地面的高度h(m)与摆动时间t(s)之间的关系如图2所示.(1)根据函数的定义,请判断变量h是否为关于t的函数?(2)结合图象回答:①当t=0.7s时,h的值是多少?并说明它的实际意义.②秋千摆动第一个来回需多少时间?24.2022年3月23日“天宫课堂”第二课开讲.传播普及空间科学知识,激发了广大青少年不断追求“科学梦”的热情.小明在周末从家骑自行车到晋中市科技馆探索科技的奥秘,他骑行了一段时间后,在某路口等待红绿灯,待绿灯亮起后继续向科技馆方向骑行,在快到科技馆时突然发现钥匙不见了,于是他着急地原路返回,在刚刚等红绿灯的路口处找到了钥匙,使继续前往科技馆.小明离科技馆的距离(m)与离家的时间(min)的关系如图所示,请根据图中提供的信息回答下列问题:(1)小明家到晋中市科技馆的距离是m;(2)小明等待红绿灯所用的时间为min;(3)图中点C表示的意义是;(4)小明在整个途中,哪个时间段骑车速度最快?,最快速度是m/min.(5)小明在整个途中,共行驶了m.参考答案1.【答案】D 2.【答案】D 3.【答案】A 4.【答案】B 5.【答案】D 6.【答案】C 7.【答案】C 8.【答案】D 9.【答案】C 10.【答案】D 11.【答案】A 12.【答案】D 13.【答案】h=60+2x 14.【答案】100 15.【答案】时间 16.【答案】x≥﹣12且x≠217.【答案】12 18.【答案】(3,180) 19.【答案】(1)直线l 1(2)B(3)由题意可得k 1、k 2的实际意义是分别表示快艇B 的速度和可疑船只的速度 S 1=0.5t ,S 2=0.2t+5; (4)15分钟内B 不能追上A理由:当t =15时,S 2=0.2×15+5=8,S 1=0.5×15=7.5 ∵8>7.5∴15分钟内B 不能追上A ; (5)B 能在A 逃入公海前将其拦截 理由:当S 2=12时,12=0.2t+5,得t =35 当t =35时,S 1=0.5×35=17.5∵17.5>12∴B能在A逃入公海前将其拦截.20.【答案】(1)(7,0);y=-150x+1050(2)解:设该超市卖完全部糕点销售总额是y元,甲种方式售卖x斤,则乙种方式售卖(150−x)斤根据题意得:y=8x+12(150−x)=−4x+1800∵甲种方式的数量不低于乙种方式∴x≥150−x∴x≥75而−4<0∴y随x的增大而减小∴x=75时,y最大为−4×75+1800=1500答:该超市卖完全部糕点销售总额的最大值是1500元.21.【答案】(1)解:如下图:(2)2(2.1到1.8之间都正确);该函数有最大值(其他符合题意性质都可以).22.【答案】(1)解:根据图象,学校的纵坐标为1500,小明家的纵坐标为0故沙沙家到学校的路程是1500米(2)解:根据图象,12≤x≤14时,直线最陡故沙沙在12分钟到14分钟最快,最快的速度是1500−60014−12=450米/分(3)解:根据题意,沙沙在书店停留的时间为从8分到12分,12-8=4故沙沙在书店停留了4分钟.(4)解:读图可得:沙沙共行驶了1200+600+900=2700米.23.【答案】(1)解:∵对于每一个摆动时间t,都有一个唯一的ℎ的值与其对应∴变量h是关于t的函数。

初中数学九年级总复习《函数》专项试卷含详解答案

初中数学九年级总复习《函数》专项试卷含详解答案

AP,当点 P 满足 DP+AP的值最小时, P 点坐标为

第 11 题图
第 12 题图
第 13 题图
第 14 题图
12. 如图,在平面直角坐标系中,正方形 ABOC和正方形 DOFE的顶点 B,F 在 x
轴上,顶点
C,D 在 y 轴上,且
S△ADF= 4,反比例函数
??=
??

x>
0)的图象经
??
《函数》总复习试卷含答案
一、选择题 (本大题共 10 小题,每小题 3 分,共 30 分)
1.在函数 ??= √??+1中,自变量 x 的取值范围是(

??-2
A. x>﹣ 1 B .x≥﹣ 1 C .x>﹣ 1 且 x≠2 D .x≥﹣ 1 且 x≠ 2
2.如图,若一次函数 y=kx+b 的图象与两坐标轴分别交于 A,B 两点,点 A 的坐
22. (本小题满分 10 分) 某实验学校为开展研究性学习, 准备购买一定数量的两人学习桌和三人学习 桌,如果购买 3 张两人学习桌和 1 张三人学习桌需 220 元;如果购买 2 张两 人学习桌和 3 张三人学习桌需 310 元.
(1)求两人学习桌和三人学习桌的单价; (2)学校欲投入资金不超过 6000 元,购买两种学习桌共 98 张,以至少满足
第 23-24 题每小题 12 分, 25 题 14 分,共 96 分)
17. (本小题满分 8 分)
对于给定的两个函数,任取自变量 x 的一个值,当 x<1 时,它们对应的函
数值互为相反数:当 x≥1 时,它们对应的函数值相等,我们称这样的两个
函 数 互 为 相 关 函 数 , 例 如 : 一 次 函 数 y=x-4 , 它 的 相 关 函 数 为 ??=

2020年中考数学 考前大专题复习:函数(解析版)

2020年中考数学 考前大专题复习:函数(解析版)

2020中考数学考前大专题复习:函数(含答案)一、选择题(本大题共6道小题)1. 二次函数y=x2-ax+b的图象如图所示,对称轴为直线x=2,下列结论不正确的是()A.a=4B.当b=-4时,顶点的坐标为(2,-8)C.当x=-1时,b>-5D.当x>3时,y随x的增大而增大2. 正比例函数y=kx(k≠0)的函数值y随着x的增大而减小,则一次函数y=x+k的图象大致是 ()3. 如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1,O2,O3,…,组成一条平滑的曲线,点P从原点O出发沿这条曲线向右运动,速度为每秒π2个单位长度,则第2019秒时,点P的坐标是()A.(2018,0)B.(2019,1)C.(2019,-1)D.(2020,0)4. 如图,☉O的半径为2,双曲线的解析式分别为y=1x和y=-1x,则阴影部分的面积为()A.4πB.3πC.2πD.π5. 如图,在Rt△ABO中,∠OBA=90°,A(4,4),点C在边AB上,且ACCB=13,点D为OB的中点,点P为边OA上的动点,当点P在OA上移动时,使四边形PDBC 周长最小的点P的坐标为()A.(2,2)B.52,52C.83,83D.(3,3)6. 如图,函数y={1x(x>0),-1x(x<0)的图象所在坐标系的原点是()A.点MB.点NC.点PD.点Q二、填空题(本大题共6道小题)7. 元朝朱世杰的《算学启蒙》一书记载:“今有良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之”,如图K11-3是两匹马行走路程s关于行走时间t的函数图象,则两图象交点P的坐标是.图K11-38. 如图,已知直线y=kx+b过A(-1,2),B(-2,0)两点,则0≤kx+b≤-2x的解集为.9. 已知抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=1,其部分图象如图所示,下列说法中:①b>0;②a-b+c<0;③b+2c>0;④当-1<x<0时,y>0,正确的是(填写序号).10. 如图,矩形OABC的顶点A,C分别在y轴、x轴的正半轴上,D为AB的中点,反比例函数y=kx(k>0)的图象经过点D,且与BC交于点E,连接OD,OE,DE,若△ODE的面积为3,则k的值为.11. 如图,平行于x轴的直线与函数y=k1x(k1>0,x>0),y=k2x(k2>0,x>0)的图象分别相交于A,B两点,点A在点B的右侧,C为x轴上的一个动点.若△ABC的面积为4,则k1-k2的值为.12. 如图,抛物线y=-14x2+12x+2与x轴相交于A,B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB.AD与y轴相交于点E,过点E的直线PQ平行于x 轴,与拋物线相交于P,Q两点,则线段PQ的长为.三、解答题(本大题共5道小题)13. 已知二次函数y=2x2+bx+1的图象过点(2,3).(1)求该二次函数的表达式;(2)若点P(m,m2+1)也在该二次函数的图象上,求点P的坐标.14. 某商店销售一种商品,经市场调查发现,该商品的周销售量y(件)是售价x(元/件)的一次函数,其售价、周销售量、周销售利润w(元)的三组对应值如下表: 售价x(元/件) 50 60 80周销售量y(件) 100 80 40周销售利润w(元)1000 1600 1600注:周销售利润=周销售量×(售价-进价)(1)①求y关于x的函数解析式(不要求写出自变量的取值范围);②该商品进价是元/件;当售价是元/件时,周销售利润最大,最大利润是元;(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过65元/件,该商店在今后的销售中,周销售量与售价仍然满足(1)中的函数关系.若周销售最大利润是1400元,求m的值.15. 如图①,在平面直角坐标系xOy中,已知抛物线y=ax2-2ax-8a与x轴相交于A,B两点(点A在点B的左侧),与y轴交于点C(0,-4).(1)点A的坐标为,点B的坐标为,线段AC的长为,抛物线的解析式为.(2)点P是线段BC下方抛物线上的一个动点.如果在x轴上存在点Q,使得以点B,C,P,Q为顶点的四边形是平行四边形,求点Q的坐标.①16. 如图,已知抛物线y=ax2+bx+4(a≠0)的对称轴为直线x=3,抛物线与x轴相交于A,B两点,与y轴相交于点C,已知B点的坐标为(8,0).(1)求抛物线的解析式;(2)点M为线段BC上方抛物线上的一点,点N为线段BC上的一点,若MN∥y 轴,求MN的最大值;(3)在抛物线的对称轴上是否存在点Q,使△ACQ为等腰三角形?若存在,求出符合条件的Q点坐标;若不存在,请说明理由.17. 如图,在直角坐标系中,抛物线经过点A(0,4)、B(1,0)、C(5,0),其对称轴与x轴相交于点M.(1)求抛物线的解析式和对称轴;(2)在抛物线的对称轴上是否存在一点P,使△P AB的周长最小?若存在,请求出点P的坐标;若不存在,请说明理由;(3)连接AC,在直线AC下方的抛物线上,是否存在一点N,使△NAC的面积最大?若存在,请求出点N的坐标;若不存在,请说明理由.2020中考数学考前大专题复习:函数-答案一、选择题(本大题共6道小题)1. 【答案】C[解析]选项A,由对称轴为直线x=2可得--a2=2,∴a=4,正确;选项B,∵a=4,b=-4,∴代入解析式可得,y=x2-4x-4,当x=2时,y=-8,∴顶点的坐标为(2,-8),正确;选项C,由图象可知,x=-1时,y<0,即1+4+b<0,∴b<-5,∴错误;选项D,由图象可以看出当x>3时,在对称轴的右侧,y随x的增大而增大,正确,故选C.2. 【答案】A[解析]因为正比例函数y=kx(k≠0)的函数值y随着x的增大而减小,所以k<0,所以一次函数y=x+k的函数值y随着x增大而增大,图象与y轴交于负半轴,故选A.3. 【答案】C[解析]点P运动一个半圆用时为2π2÷π2=2(秒).∵2019=1009×2+1,∴2019秒时,P在第1010个半圆的中点处,∴此时点P坐标为(2019,-1).故选C.4. 【答案】C[解析]根据反比例函数y=1x,y=-1x及圆的中心对称性和轴对称性知,将二、四象限的阴影部分旋转到一、三象限对应部分,显然所有阴影部分的面积之和等于一、三象限内两个扇形的面积之和,也就相当于一个半径为2的半圆的面积.∴S阴影=12π×22=2π.故选C.5. 【答案】C[解析]由题可知:A(4,4),D(2,0),C(4,3),点D关于AO的对称点D'坐标为(0,2),设l D'C:y=kx+b,将D'(0,2),C(4,3)代入,可得y=14x+2,解方程组{y=14x+2,y=x,得{x=83,y=83.∴P83,83.故选C.6. 【答案】A[解析]∵函数y=1x(x>0)与y=-1x(x<0)的图象关于y轴对称,∴直线MP是y轴所在直线,∵两支曲线分别位于一、二象限,∴直线MN是x轴所在直线,∴坐标原点为M.二、填空题(本大题共6道小题)7. 【答案】(32,4800)[解析]根据题意,得{s=240(t-12),s=150t,解得{t=32,s=4800.故答案为(32,4800).8. 【答案】-2≤x≤-1[解析]如图,直线OA的解析式为y=-2x,当-2≤x≤-1时,0≤kx+b≤-2x.9. 【答案】①③④[解析]根据图象可得:a<0,c>0,对称轴:直线x=-b2a=1,∴b=-2a.∵a<0,∴b>0,故①正确;把x=-1代入y=ax 2+bx +c ,得y=a -b +c.由抛物线的对称轴是直线x=1,且过点(3,0),可得当x=-1时,y=0,∴a -b +c=0,故②错误;当x=1时,y=a +b +c>0.∵b=-2a ,∴-b2+b +c>0,即b +2c>0,故③正确; 由图象可以直接看出④正确.故答案为:①③④.10. 【答案】4[解析]过点D 作DH ⊥x 轴于H 点,交OE 于M ,∵反比例函数y=kx (k>0)的图象经过点D ,E ,∴S △ODH =S △ODA =S △OEC =k2,∴S △ODH -S △OMH =S △OEC -S △OMH ,即S △OMD =S 四边形EMHC , ∴S △ODE =S 梯形DHCE =3,设D (m ,n ),∵D 为AB 的中点,∴B (2m ,n ).∵反比例函数y=kx (k>0)的图象经过点D ,E ,∴E 2m ,n2,∴S 梯形DHCE =12n 2+nm=3, ∴k=mn=4.11. 【答案】8[解析]过点B 作BE ⊥x 轴,垂足为点E ,过点A 作AF ⊥x 轴,垂足为点F ,直线AB 交y 轴于点D ,因为△ABC 与△ABE 同底等高, 所以S △ABE =S △ABC =4, 因为四边形ABEF 为矩形, 所以S 矩形ABEF =2S △ABE =8, 因为k 1=S 矩形OF AD ,k 2=S 矩形OEBD , 所以k 1-k 2=S 矩形OF AD -S 矩形OEBD =S 矩形ABEF =8.12. 【答案】2√5 [解析]当y=0时,-14x 2+12x +2=0,解得x 1=-2,x 2=4,∴点A 的坐标为(-2,0).当x=0时,y=-14x 2+12x +2=2,∴点C 的坐标为(0,2). 当y=2时,-14x 2+12x +2=2,解得x 1=0,x 2=2, ∴点D 的坐标为(2,2).设直线AD 的解析式为y=kx +b (k ≠0), 将A (-2,0),D (2,2)代入y=kx +b ,得{-2k +b =0,2k +b =2,解得{k =12,b =1,∴直线AD 的解析式为y=12x +1.当x=0时,y=12x +1=1,∴点E 的坐标为(0,1). 当y=1时,-14x 2+12x +2=1,解得x 1=1-√5,x 2=1+√5, ∴点P 的坐标为(1-√5,1),点Q 的坐标为(1+√5,1), ∴PQ=1+√5-(1-√5)=2√5.三、解答题(本大题共5道小题)13. 【答案】解:(1)∵二次函数y=2x 2+bx +1的图象过点(2,3), ∴3=8+2b +1,∴b=-3,∴该二次函数的表达式为y=2x 2-3x +1. (2)∵点P (m ,m 2+1)在该二次函数的图象上, ∴m 2+1=2m 2-3m +1,解得m 1=0,m 2=3, ∴点P 的坐标为(0,1)或(3,10).14. 【答案】解:(1)①设y 与x 的函数关系式为y=kx +b ,依题意,有{50k +b =100,60k +b =80,解得{k =-2,b =200,∴y 与x 的函数关系式是y=-2x +200..②设进价为t 元/件,由题意,1000=100×(50-t ),解得t=40,∴进价为40元/件; 周销售利润w=(x -40)y=(x -40)(-2x +200)=-2(x -70)2+1800,故当售价是70元/件时,周销售利润最大,最大利润是1800元.故答案为40,70,1800.(2)依题意有,w=(-2x +200)(x -40-m )=-2x 2+(2m +280)x -8000-200m=-2x -m+14022+12m 2-60m +1800.∵m>0,∴对称轴x=m+1402>70,∵-2<0,∴抛物线开口向下, ∵x ≤65,∴w 随x 的增大而增大,∴当x=65时,w 有最大值(-2×65+200)(65-40-m ), ∴(-2×65+200)(65-40-m )=1400, ∴m=5.15. 【答案】[解析](1)令y=0求得点A ,B 坐标,再由点C 坐标求得抛物线的解析式及线段AC 的长;(2)过点C 作x 轴的平行线交抛物线于点P ,通过分类讨论确定点Q 坐标. 解:(1)点A 的坐标为(-2,0),点B 的坐标为(4,0); 线段AC 的长为2√5, 抛物线的解析式为:y=12x 2-x -4. (2)过点C 作x 轴的平行线交抛物线于点P .∵点C (0,-4),∴-4=12x 2-x -4,解得x 1=2,x 2=0,∴P (2,-4).∴PC=2,若四边形BCPQ 为平行四边形,则 BQ=CP=2,∴OQ=OB +BQ=6,∴Q (6,0).若四边形BPCQ 为平行四边形,则BQ=CP=2, ∴OQ=OB -BQ=2,∴Q (2,0).故以点B ,C ,P ,Q 为顶点的四边形是平行四边形时,Q 点的坐标为(6,0),(2,0).16. 【答案】(1)根据题意得,ab 2 =3,即b =-6a ,则抛物线的解析式为y =ax 2-6ax +4,将B (8,0)代入得,0=64a -48a +4,解得a =-14,b =32,∴抛物线的解析式为y =-14x 2+32x +4;(2)设直线BC 的解析式为y =kx +d ,由抛物线解析式可知:当x =0时,y =4,即点C (0,4),将B (8,0),C (0,4)代入得:804k d d +=⎧⎨=⎩,解得⎩⎪⎨⎪⎧k =-12d =4,∴直线BC 的解析式为y =-12x +4,设点M 的横坐标为x (0<x <8),则点M 的纵坐标为-14x 2+32x +4,点N 的纵坐标为-12x +4,∵点M 在抛物线上,点N 在线段BC 上,MN ∥y 轴,∴MN =-14x 2+32x +4-(-12x +4)=-14x 2+32x +4+12x -4=-14x 2+2x=-14(x -4)2+4,∴当x =4时,MN 的值最大,最大值为4;(3)存在.理由如下:令-14x 2+32x +4=0,解得x 1=-2,x 2=8,∴A (-2,0),又∵C (0,4),由勾股定理得,AC =22+42=25,如解图,过点C 作CD ⊥对称轴于点D ,连接AC .解图∵抛物线对称轴为直线x =3,则CD =3,D (3,4).①当AC =CQ 时,DQ =CQ 2-CD 2=(25)2-32=11,当点Q 在点D 的上方时,点Q 到x 轴的距离为4+11,此时,点Q 1(3,4+11),当点Q 在点D 的下方时,点Q 到x 轴的距离为4-11,此时点Q 2(3,4-11);②当AQ =CQ 时,点Q 为对称轴与x 轴的交点,AQ =5,CQ =32+42=5, 此时,点Q 3(3,0);③当AC =AQ 时,∵AC =25,点A 到对称轴的距离为5,25<5,∴不可能在对称轴上存在Q 点使AC =AQ ,综上所述,当点Q 的坐标为(3,4+11)或(3,4-11)或(3,0)时,△ACQ 为等腰三角形.17. 【答案】(1)设抛物线的解析式为y =a (x -1)(x -5)(a ≠0),把点A (0,4)代入上式,解得a =45,∴y =45(x -1)(x -5)=45x 2-245x +4=45(x -3)2-165,∴抛物线的对称轴是直线x =3;(2)存在,P 点坐标为(3,85).理由如下:如解图①,连接AC 交对称轴于点P ,连接BP ,BA ,解图①∵点B 与点C 关于对称轴对称,∴PB =PC ,∴C △P AB =AB +AP +PB =AB +AP +PC =AB +AC ,∴此时△P AB 的周长最小,设直线AC 的解析式为y =kx +b (k ≠0),把A (0,4),C (5,0)代入y =kx +b 中,得⎩⎨⎧=+=054b k b ,解得,454⎪⎩⎪⎨⎧=-=b k ∴直线AC 的解析式为y =-45x +4,∵点P 的横坐标为3,∴y =-45×3+4=85,∴P 点坐标为(3,85);(3)在直线AC 下方的抛物线上存在点N ,使△NAC 面积最大.如解图②,设N 点的横坐标为t ,此时点N (t ,45t 2-245t +4)(0<t <5). 过点N 作y 轴的平行线,分别交x 轴、AC 于点F 、G ,过点A 作AD ⊥NG ,垂足为点D .解图②由(2)可知直线AC 的解析式为y =-45x +4,把x =t 代入y =-45x +4得y =-45t +4,则G (t ,-45t +4).此时NG =-45t +4-(45t 2-245t +4)=-45t 2+4t ,∵AD +CF =OC =5,∴S △NAC =S △ANG +S △CNG=12NG ·AD +12NG ·CF=12NG ·OC=12×(-45t 2+4t )×5=-2t 2+10t=-2(t -52)2+252,∴当t =52时,△NAC 的面积最大,最大值为252,由t =52,得y =45t 2-245t +4=-3,∴N 点坐标为(52,-3).。

九年级数学中考复习:函数专题训练(含答案)

九年级数学中考复习:函数专题训练(含答案)

中考复习函数专题训练(含答案解析)1. 如图,已知A、B是反比例面数kyx=(k>0,x>0)图象上的两点,BC∥x轴,交y轴于点C.动点P从坐标原点O出发,沿O→A→B→C(图中“→”所示路线)匀速运动,终点为C.过P作PM⊥x轴,PN⊥y轴,垂足分别为M、N.设四边形0MPN 的面积为S,P点运动时间为t,则S关于t的函数图象大致为【答案】A2.坐标平面上,二次函数362+-=xxy的图形与下列哪一个方程式的图形没有交点?A. x=50 B. x=-50 C. y=50 D. y=-50【答案】D3. 某广场有一喷水池,水从地面喷出,如图,以水平地面为x轴,出水点为原点,建立平面直角坐标系,水在空中划出的曲线是抛物线y=-x2+4(单位:米)的一部分,则水喷出的最大高度是( )A.4米B.3米 C.2米 D.1米【答案】D4. 某公园草坪的防护栏是由100段形状相同的抛物线组成的.为了牢固起见,每段护栏需要间距0.4m加设一根不锈钢的支柱,防护栏的最高点距底部0.5m(如图),则这条防护栏需要不锈钢支柱的总长度至少为()A .50mB .100mC .160mD .200m【答案】C5. 一小球被抛出后,距离地面的高度h (米)和飞行时间t (秒)满足下列函数关系式:61t 5h 2+--=)(,则小球距离地面的最大高度是( )A .1米B .5米C .6米D .7米【答案】C二、填空题 1. 出售某种手工艺品,若每个获利x 元,一天可售出(8-x )个,则当x=________元时,一天出售该种手工艺品的总利润y 最大.【答案】42. 如图,已知函数x y 3-=与bx ax y +=2(a>0,b>0)的图象交于点P ,点P 的纵坐标为1,则关于x 的方程bx ax +2x 3+=0的解为【答案】-3三、解答题1. 如图,某广场设计的一建筑物造型的纵截面是抛物线的一部分,抛物线的顶点O 落在水平面上,对称轴是水平线OC 。

2020年中考数学一次函数专题复习(含答案)

2020年中考数学一次函数专题复习(含答案)

2020年中考数学一次函数专题复习【名师精选全国真题,值得下载练习】第Ⅰ卷(选择题)一.选择题1.已知一次函数的图象过点(0,3),且与两坐标轴在第一象限所围成的三角形面积为3,则这个一次函数的表达式为()A.y=1.5x+3 B.y=1.5x﹣3 C.y=﹣1.5x+3 D.y=﹣1.5x﹣3 2.如图,直线y=kx+b与直线y=3x﹣2相交于点(,﹣),则不等式3x﹣2<kx+b 的解为()A.x>B.x<C.x>﹣D.x<﹣3.如图,一次函数y=x+6的图象与x轴,y轴分别交于点A,B,过点B的直线l平分△ABO的面积,则直线l相应的函数表达式为()A.y=x+6 B.y=x+6 C.y=x+6 D.y=x+6 4.已知点(1,y1),(﹣1,y2),(﹣2,y3)都在直线y=﹣x+b上,则y1,y2,y3的值的大小关系是()A.y1>y2>y3B.y1<y2<y3C.y3>y1>y2D.y3>y1>y2 5.已知一次函数y=(m+1)x+m2﹣1的图象经过原点,则m的值为()A.1 B.﹣1 C.±1 D.06.在一次800米的长跑比赛中,甲、乙两人所跑的路程s(米)与各自所用时间t(秒)之间的函数图象分别为线段OA和折线OBCD,则下列说法不正确的是()A.甲的速度保持不变B.乙的平均速度比甲的平均速度大C.在起跑后第180秒时,两人不相遇D.在起跑后第50秒时,乙在甲的前面7.若点P在一次函数y=﹣4x+2的图象上,则点P一定不在()A.第一象限B.第二象限C.第三象限D.第四象限8.关于函数y=﹣2x﹣1,下列结论正确的是()A.图象必经过(﹣2,1)B.若两点A(x1,y1),B(x2,y2)在该函数图象上,且x1<x2,y1<y2C.函数的图象向下平移1个单位长度得y=﹣2x﹣2的图象D.当x>0.5时,y>09.在某次物理实验课上,小明同学测得在弹簧的弹性限度内弹簧的长度y与物体质量x 的关系如下表,则y与x的关系式是()x/g0 20 40 60 ……y/cm10 11 12 13 ……A.y=x B.y=0.1x+10 C.y=0.05x+10 D.y=0.2x+10 10.如图,直线y=kx+b交x轴于点A(﹣2,0),直线y=mx+n交x轴于点B(5,0),这两条直线相交于点C(1,p),则不等式组的解集为()A.x<5 B.x<﹣2 C.﹣2<x<5 D.﹣2<x<1 11.如图,直线y=﹣x+4与x轴,y轴分别交于A,B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B',则点B'的坐标是()A.(7,3)B.(4,5)C.(7,4)D.(3,4)12.如图,已知平面直角坐标系中,A点在x轴上,C点在y轴上,OC=6,OA=OB =10,且BC∥OA,PQ∥AB交AC于D点,且∠ODQ=90°,则D点的坐标为()A.B.C.D.第Ⅱ卷(非选择题)二.填空题13.已知一次函数y=kx+b的图象经过点A(0,﹣3)和B(1,﹣1),则此函数的表达式为.14.已知函数y=(k﹣1)x﹣1,若y随x的增大而减小,则k的取值范围为.15.一次函数y1=kx+b与y2=x+a的图象如图,则下列结论:则正确的序号有.①k<0;②a>0;③关于x的方程kx﹣x=a﹣b的解是x=3;④当x>3时,y1<y2中.16.如图,OA和BA分别表示甲、乙两名学生运动的一次函数的图象,图中s和t分别表示路程和时间,根据图象判定快者比慢者每秒多跑米.17.如图,10个边长为1的正方形摆放在平面直角坐标系中,经过A(1,0)点的一条直线l将这10个正方形分成面积相等的两部分,则该直线的解析式为.18.十一黄金周,小明和小亮乘甲车从沙坪坝出发,以一定的速度匀速前往铁山坪体验“飞越丛林”.出发15分钟后,小明发现忘带身份证和钱包,便下车换乘乙车匀速回家去取(小明换车、取身份证和钱包的时间忽略不计),小亮仍乘甲车并以原速继续前行,小明回家取了身份证和钱包后,为节约时间,又立即乘乙车以原来速度的倍匀速按原路赶往铁山坪,由于国庆期间车流量较大,在小明乘乙车以加速后的速度匀速赶往铁山坪期间,甲车恰好因故在途中持续堵塞了5分钟,结果乙车先到达目的地.甲、乙两车之间的距离y(千米)与乙车行驶时间x(小时)之间的部分图象如图所示,则乙车出发小时到达目的地.三.解答题19.如图,一次函数的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,4).(1)求m的值及l2的解析式;(2)若点D在x轴上,使得S△DOC=2S△BOC的值,请求出D点的坐标;(3)一次函数y=kx+1的图象为l3,且l1,l2,l3不能围成三角形,则k的值为.20.甲、乙两车从A城出发匀速行驶至B城,在整个行驶过程中,甲、乙两车离开A 城的距离y(千米)与行驶时间x(小时)之间的函数关系如图所示,已知甲对应的函数关系式为y=60x,根据图象提供的信息,解决下列问题:(1)求乙离开A城的距离y与x的关系式;(2)求乙出发后几小时追上甲车?21.某企业生产并销售某种产品,整理出该商品在第x(1≤x≤90,x为整数)天的售价y 与x函数关系如图所示,已知该商品的进价为每件30元,第x天的销售量为(200﹣2x)件.(1)试求出售价y与x之间的函数关系式;(2)请求出该商品在销售过程中的最大利润;22.在平面直角坐标系中,直线y=x+2与x轴,y轴分别交于点A,B,点D的坐标为(0,3),点E是线段AB上的一点,以DE为腰在第二象限内作等腰直角△DEF,∠EDF=90°.(1)请直接写出点A,B的坐标:A(,),B(,);(2)设点F的坐标为(a,b),连接FB并延长交x轴于点G,求点G的坐标.23.【模型建立】如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△BEC≌△CDA;【模型应用】①已知直线l1:y=x+4与x轴交于点A,与y轴交于点B,将直线l1绕着点A逆时针旋转45°至直线l2,如图2,求直线l2的函数表达式;②如图3,在平面直角坐标系中,点B(8,6),作BA⊥y轴于点A,作BC⊥x轴于点C,P是线段BC上的一个动点,点Q是直线y=2x﹣6上的动点且在第一象限内.问点A、P、Q能否构成以点Q为直角顶点的等腰直角三角形,若能,请直接写出此时点Q的坐标,若不能,请说明理由.参考答案一.选择题1.解:设这个一次函数的表达式为y=kx+b(k≠0),与x轴的交点是(a,0).∵一次函数y=kx+b(k≠0)图象过点(0,3),∴b=3.∵这个一次函数与两坐标轴所围成的三角形面积为3,∴×3×|a|=3,解得:a=2或﹣2.∵一次函数的图象与两坐标轴在第一象限围成的三角形,∴a=﹣2把(﹣2,0)代入y=kx+3,得k=1.5,则函数的解析式是y=1.5x+3.故选:A.2.解:不等式3x﹣2<kx+b的解集为x<.故选:B.3.解:∵一次函数y=x+6的图象与x轴,y轴分别交于点A,B,∴令y=0,则求得x=﹣8,令x=0,求得y=6,∴A(﹣8,0),B(0,6),∵过点B的直线l平分△ABO的面积,∴AC=OC,∴C(﹣4,0),设直线l的解析式为y=kx+6,把C(﹣4,0)代入得﹣4k+6=0,解得k=,∴直线l的解析式为y=x+6,故选:D.4.解:∵直线y=﹣x+b,k=﹣1<0,∴y随x的增大而减小,又∵﹣2<﹣1<1,∴y1<y2<y3.故选:B.5.解:∵一次函数y=(m+1)x+m2﹣1的图象经过原点,∴,解得m=1.故选:A.6.解:由图象可知,甲的速度保持不变,故选项A正确;甲的速度为:800÷180=4米/秒,乙的平均速度为:800÷220=3米/秒,∵4>3,∴乙的平均速度比甲的平均速度小,故选项B错误;在起跑后第180秒时,甲到达终点,乙离终点还有一段距离,他们不相遇,故选项C 正确;在起跑后第50秒时,乙在甲的前面,故选项D正确;故选:B.7.解:∵﹣4<0,2>0,∴一次函数y=﹣4x+2的图象经过第一、二、四象限,即不经过第三象限.∵点P在一次函数y=﹣4x+2的图象上,∴点P一定不在第三象限.故选:C.8.解:A、把x=﹣2代入函数y=﹣2x﹣1得,(﹣2)×(﹣2)﹣1=3≠1,故点(﹣2,1)不在此函数图象上,故本选项错误;B、∵函数y=﹣2x+1中.k=﹣2<0,∴y随x的增大而减小,若两点A(x1,y1),B(x2,y2)在该函数图象上,且x1<x2,y1>y2,故本选项错误;C、根据平移的规律,函数y=﹣2x﹣的图象向下平移1个单位长度得y=﹣2x﹣1﹣1,即y=﹣2x﹣2,故本选项正确;D、把x=0.5代入函数y=﹣2x﹣1=﹣2,故本选项错误.故选:C.9.解:在弹簧的弹性限度内弹簧的长度y与物体质量x的关系为一次函数关系,设y与x的关系式为y=kx+b,把,代入,可得,解得,∴y与x的关系式为y=0.05x+10,故选:C.10.解:y=kx+b<0,则x<﹣2,y=mx+n>0,则x<5,不等式组的解集即为:x<﹣2,故选:B.11.解:当x=0时,y=4,所以B点坐标为(0,4),所以OB=4,当y=0时,x=3,所以A点坐标为(3,0),所以OA=3.根据旋转的性质可知:O′A=OA=3,O′B′=OB=4,且O′A⊥x轴,O′B′∥x轴,∴B′点到x轴距离为3,到y轴距离为4+3=7,因为B′点在第一象限,所以点B′的坐标为(7,3).故选:A.12.解:如图,作BH⊥OA于H.作DK⊥OA于K.∵BC∥OA,BH∥OC,∴四边形OCBH是平行四边形,∵∠AOC=90°,∴四边形OCBH是矩形,∴OC=BH=6,∵OA=OB=10,∴OH===8,∴AH=OA﹣BH=2,∵C(0,6),A(10,0),∴直线AC的解析式为y=﹣x+6,∵∠ODQ=90°,∴∠DOQ+∠OQD=90°,∵AB∥PQ,∴∠BAH=∠OQD,∵∠BAH+∠ABH=90°,∴∠DOK=∠ABH,∵∠OKD=∠AHB=90°,∴△OKD∽△BHA,∴=,∴==,设DK=m,则OK=3m,∴D(3m,m),代入y=﹣x+6,可得m=,∴D(,),故选:A.二.填空题(共6小题)13.解:由题意可得方程组,解得,则此函数的解析式为:y=2x﹣3,故答案为y=2x﹣3.14.解:∵一次函数y=(k﹣1)x﹣1,当k﹣1<0时,即k<1时,一次函数图象经过第二、四象限,y随x的增大而减小,所以k的取值范围为k<1.故答案为k<1.15.解:∵直线y1=kx+b经过第一、三象限,∴k<0,所以①正确;∵直线y2=x+a与y轴的交点在x轴下方,∴a<0,所以②错误;∵一次函数y1=kx+b与y2=x+a的图象的交点的横坐标为3,∴关于x的方程kx+b=x+a的解是x=3,所以③正确;当x>3时,y1<y2,所以④正确.故答案为①③④.16.解:如图所示:快者的速度为:64÷8=8(m/s),慢者的速度为:(64﹣12)÷8=6.5(m/s),8﹣6.5=1.5(米),所以快者比慢者每秒多跑1.5米.故答案为:1.517.解:将由图中1补到2的位置,∵10个正方形的面积之和是10,∴梯形ABCD的面积只要等于5即可,∴设BC=4﹣x,则[(4﹣x)+3]×3÷2=5,解得,x=,∴点B的坐标为(,3),设过点A和点B的直线的解析式为y=kx+b,,解得,,即过点A和点B的直线的解析式为y=,故答案为:y=.18.解:设甲车的速度为a千米/小时,乙车回家时的速度是b千米/小时,a=b,,设a=8m,b=9m(m>0),由图象得乙车行驶小时两边相距千米,﹣=,m=5,∴a=40,b=45,设t小时两车相距3千米,=+3+(t﹣)×40,t=,故答案为:.三.解答题(共5小题)19.解:(1)把C(m,4)代入一次函数y=﹣x+5,可得4=﹣m+5,解得m=2,∴C(2,4),设l2的解析式为y=ax,则4=2a,解得a=2,∴l2的解析式为y=2x;(2)过C作CD⊥AO于D,CE⊥BO于E,则CD=4,CE=2,在y=﹣x+5中,令x=0,则y=5;令y=0,则x=10,∴A(10,0),B(0,5),∴AO=10,BO=5,∵S△DOC=2S△BOC,∴OD×4=2×,∴OD=5,∴D点的坐标为(5,0)或(﹣5,0);(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,∴当l3经过点C(2,4)时,k=;当l2,l3平行时,k=2;当11,l3平行时,k=﹣;故k的值为或2或﹣,故答案为或2或﹣.20.解:(1)设乙对应的函数关系式为y=kx+b将点(4,300),(1,0)代入y=kx+b得:解得:,∴乙对应的函数关系式y=100x﹣100;(2)易得甲车对应的函数解析式为y=60x,联立,解得:,2.5﹣1=1.5(小时),∴乙车出发后1.5小时追上甲车.21.解:(1)当0≤x≤50时,设y与x的解析式为:y=kx+40,则50k+40=90,解得k=1,∴当0≤x≤50时,y与x的解析式为:y=x+40,∴售价y与x之间的函数关系式为:y=;(2)y=x+40,∵k=1>0,y随x的增大而增大,∴x=50时,该商品在销售过程中的利润最大,最大值为:(90﹣30)×(200﹣2×50)=6000(元).答:第50天时,该商品在销售过程中的利润最大,最大利润为6000元.22.解:(1)∵直线y=x+2与x轴,y轴分别交于点A,B,∴点A(﹣2,0),点B(0,2)故答案为:(﹣2,0),(0,2)(2)如图,过点F作FM⊥y轴,过点E作EN⊥y轴,∴∠FMD=∠EDF=90°∴∠FDM+∠DFM=90°,∠FDM+∠EDN=90°,∴∠DFM=∠EDN,且FD=DE,∠FMD=∠END=90°,∴△DFM≌△EDN(AAS)∴EN=DM,FM=BN,∵点F的坐标为(a,b),∴FM=DN=﹣a,DM=b﹣3,∴点E坐标(﹣b+3,3+a),∵点E是线段AB上的一点,∴3+a=﹣b+3+2∴a+b=2,∴点F(a,2﹣a)设直线BF的解析式为y=kx+2,∴2﹣a=ka+2∴k=﹣1,∴直线BF的解析式为y=﹣x+2,∴点G(2,0)23.解:(1)证明:∵△ABC为等腰直角三角形∴CB=CA又∵AD⊥CD,BE⊥EC∴∠D=∠E=90°∠ACD+∠BCE=180°﹣90°=90°又∵∠EBC+∠BCE=90°∴∠ACD=∠EBC在△ACD与△CBE中,∠D=∠E,∠ACD=∠EBC,CA=BC,∴△ACD≌△CBE(AAS);(2)过点B作BC⊥AB交l2于C,过C作CD⊥y轴于D,∵∠BAC=45°∴△ABC为等腰Rt△由(1)可知:△CBD≌△BAO∴BD=AO,CD=OB∵,y=0,x=﹣3∴A(﹣3,0),x=0,y=4∴B(0,4)∴BD=AO=3,CD=OB=4∴OD=4+3=7.∴C(﹣4,7),直线l2表达式中的k为:﹣7,点C(﹣4,7),则l2的解析式:y=﹣7x﹣21;(3)如下图,设点Q(m,2m﹣6),当∠AQP=90°时,由(1)知,△AMQ≌△QNP(AAS),∴AM=QN,即|8﹣m|=6﹣(2m﹣6),解得:m=4或,故:Q(4,2),.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1
中考函数专题复习
班级: 姓名:
一、一次函数
1. 定义:在定义中应注意的问题y =kx +b 中,k 、b 为常数,且k ≠0,x 的指数一定为1。

2. 图象及其性质 (1)形状、直线
()时,随的增大而增大,直线一定过一、三象限时,随的增大而减小,直线一定过二、四象限
200k y x k y x ><⎧⎨
⎪⎩⎪
()若直线::3111222l y k x b l y k x b =+=+
当时,;当时,与交于,点。

k k l l b b b l l b 121212120===//()
(4)当b>0时直线与y 轴交于原点上方;当b<0时,直线与y 轴交于原点的下方。

(5)当b=0时,y =kx (k ≠0)为正比例函数,其图象是一过原点的直线。

(6)二元一次方程组与一次函数的关系:两一次函数图象的交点的坐标即为所对应方程组的解。

3. 应用:要点是(1)会通过图象得信息;(2)能根据题目中所给的信息写出表达式。

二、反比例函数 1. 定义:
应注意的问题:中()是不为的常数;()的指数一定为“”y k
x
k x =
-1021 2. 图象及其性质: (1)形状:双曲线
()对称性:是中心对称图形,对称中心是原点是轴对称图形,对称轴是直线和212()()y x y x
==-⎧⎨

⎩⎪ ()时两支曲线分别位于一、三象限且每一象限内随的增大而减小
时两支曲线分别位于二、四象限且每一象限内随的增大而增大
300k y x k y x ><⎧⎨⎪⎩⎪
(4)过图象上任一点作x 轴与y 轴的垂线与坐标轴构成的矩形面积为|k|。

3. 应用()应用在上()应用在上
()其它其要点是会进行“数形结合”来解决问题
123P F S u S t ==⎧
⎨⎪⎪



⎪⎪
三、二次函数
1. 定义:应注意的问题
(1)在表达式y =ax 2+bx +c 中(a 、b 、c 为常数且a ≠0) (2)二次项指数一定为2 2. 图象:抛物线
3. 图象的性质:分五种情况可用表格来说明
4. 应用:
(1)最大面积;(2)最大利润;(3)其它 【例题分析】
例1. 已知一次函数y =kx +2的图象过第一、二、三象限且与x 、y 轴分别交于A 、B 两点,O 为原点,若ΔAOB 的面积为2,求此一次函数的表达式。

例2. 小明用的练习本可以在甲商店买,也可以在乙店买,已知两店的标价都是每本1元,但甲店的优惠条件是:购买10本以上从第11本开始按标价的70%卖,乙店的优惠条件是:从第1本开始就按标价的85%卖。

(1)小明买练习本若干本(多于10)设购买x 本,在甲店买付款数为y 1元,在乙店买付款数为y 2元,请分别写出在两家店购练习本的付款数与练习本数之间的函数关系式; (2)小明买20本到哪个商店购买更合算? (3)小明现有24元钱,最多可买多少本?
2
A
图8
B x
y
O
例3. 李先生参加了新月电脑公司推出的分期付款购买电脑活动,他购买的电脑价格为 1.2万元,交了首付之后每月付款y 元,x 个月结清余款。

y 与x 的函数关系如图所示,试根据图象所提供的信息回答下列问题: (1)确定y 与x 的函数关系式,并求出首付款的数目 (2)李先生若用4个月结清余款,每月应付多少元?
(3)如打算每月付款不超过500元,李先生至少几个月才能结清余款?
例4. 已知抛物线中,当时,随的增大而增大,求y k x x y x k k
=+<-()102
7
例5. 在体育测试时,初三一名男同学推铅球,已知铅球所经过的路线是某个二次函数图象的一部分,如果这个同学出手处A 的坐标为(0,2),铅球路线的最高处B 的坐标为(6,5),①求这个二次函数的解析式;②你若是体育老师,你能求出这名同学的成绩吗?
y x
A
B
6. 某商品平均每天销售40件,每件盈利20元,若每件每降阶1元,每天可多销售10件。

(1)若每件降价x 元,可获的总利润为y 元,写出x 与y 之间的关系式。

(2)每件降价多少元时,每天利润最大?最大利润为多少?
基础题
1.抛物线y =-x 2+2的顶点坐标是________,对称轴是________,开口向________.
2.抛物线y =2(x -3)2+5,当x <________时,y 的值随x 值的增大而________,当x >________时,y 的值随 x 值的增大而________;当x =________时,y 取得最________值,最________值=________.
3.函数
362+-=x x y k 的图象与x 轴有交点,则k 的取值范围是 .
4.若二次函数2
2
23m
m x mx y -+-=的图象经过原点,则m =_________..
5.在函数y =
2
1-x 中,自变量x 的取值范围是__________
6.抛物线y =3x 2-6x +5化成顶点式是______________,当x _____时,y 随x 的增大而减少;当x _____时,y 随x 的增大而增大.
7.函数y=1
-x x
中,自变量x 的取值范围是 ( )
(A) x≥o (B) x>0且x≠l (C) x>O (D)x≥o 且x≠1
8.下列四个函数中,y 的值随着x 值的增大而减小的是( ). A .y =2x
B .
x
y 1

(x >0) C .
1+=x y
D .
2x y =(x >0)
9.若M (21-
,y 1)、N (4
1-,y 2)、P (21,y 3)三点都在函数y=x k
(k < 0)的图像上,
则y 1 、y 2 、y 3 的大小关系为 ( )
(A )y 2 >y 3 >y 1 (B )y 2 >y 1 >y 3 (C )y 3 >y 1 >y 2 (D )y 3 >y 2 >y 1
10.当a >0,b <0,c >0时,下列图象有可能是抛物线y =ax 2+bx +c 的是( ).
11.已知抛物线中,当时,随的增大而增大,求y
k x x y x k k
=+<-()102
7
的值。

能力提升题
1.如图,△OPQ 是边长为2的等边三角形,若反比例函数的图象过点P ,则它的解析式是 .
2.一元二次方程(2)0x x -=根的情况是 A.有两个不相等的实数根
B.有两个相等的实数根
C.只有一个实数根
D.没有实数根
3.(满分12分)
如图8,在平面直角坐标系中,A 、B 均在边长为1的正方形网格格点上.
(1)求线段AB 所在直线的函数解析式,并写出当02y ≤≤时,自变量x 的取值范围; (2)将线段AB 绕点B 逆时针旋转90,得到线段BC ,请在答题卡
指定位置画出线段BC .若直线BC 的函数解析式为y kx b =+,

y 随x 的增大而 (填“增大”或“减小”).
4.(满分14分)
如图所示,在平面直角坐标系xOy 中,正方形OABC 的边长为2cm ,点A 、C 分别在y 轴的负半轴和x 轴的正半轴上,抛物线y =ax 2+bx +c 经过点A 、B 和D 2
(4,)3
-
.(1)求抛物线的解析式. (2)如果点P 由点A 出发沿AB 边以2cm /s 的速度向点B 运动,同
时点Q 由点B 出发沿BC 边以1cm /s 的速度向点C 运动,当其中一点到达终点时,另一点也随之停止运动. 设S =PQ 2(cm 2)
试求出S 与运动时间t 之间的函数关系式,并写出t 的取值范围;
(第22题)
O P
Q x
y (第1题)。

相关文档
最新文档