[初中数学]因式分解法教案 人教版
人教版初中八年级数学上因式分解和合并同类项教案
人教版初中八年级数学上因式分解和合并
同类项教案
本教案适用于人教版初中八年级数学上册,主要内容包括因式分解和合并同类项两个部分。
一、因式分解
1. 课前导学
通过老师提出的问题,学生可以感受到因式分解是一个什么样的数学概念,并理解因式分解在生活中的应用。
2. 讲解因式分解
详细讲解因式分解的基本原理和步骤,配合案例练巩固所学知识。
3. 总结归纳
总结因式分解的要点,让学生能够掌握并灵活运用。
二、合并同类项
1. 课前导学
通过实际场景,引出合并同类项的概念,并让学生了解同类项
的定义。
2. 讲解合并同类项
详细讲解合并同类项的意义和操作方法,并结合例题进行练。
3. 总结归纳
让学生复和总结合并同类项的重点和方法,确保掌握相关知识。
总结
本教案通过生动的案例、详细的讲解、丰富的练习等手段,使
学生掌握了因式分解和合并同类项的基本原理、方法和应用。
同时,教案还注重引导学生学习方法,促进学生自主思考和创新能力的培养。
因式分解教案5篇
式分解教案5篇因式分解教案篇一教学目标:1.知识与技能:掌握运用提公因式法、公式法分解因式,培养学生应用因式分解解决问题的能力。
2.过程与方法:经历探索因式分解方法的过程,培养学生研讨问题的方法,通过猜测、推理、验证、归纳等步骤,得出因式分解的方法。
3.情感态度与价值观:通过因式分解的学习,使学生体会数学美,体会成功的自信和团结合作精神,并体会整体数学思想和转化的数学思想。
教学重、难点:用提公因式法和公式法分解因式。
教具准备:多媒体课件(小黑板)教学方法:活动探究法教学过程:引入:在整式的变形中,有时需要将一个多项式写成几个整式的乘积的形式,这种变形就是因式分解。
什么叫因式分解?知识详解知识点1因式分解的定义把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式。
(1)因式分解与整式乘法是相反方向的变形。
例如:(2)因式分解是恒等变形,因此可以用整式乘法来检验。
怎样把一个多项式分解因式?知识点2提公因式法多项式ma+mb+mc中的各项都有一个公共的因式m,我们把因式m叫做这个多项式的公因式。
ma+mb+mc二m(a+b+c)就是把ma+mb+mc分解成两个因式乘积的形式,其中一个因式是各项的公因式m,另一个因式(a+b+c)是ma+mb+mc除以m所得的商,像这种分解因式的方法叫做提公因式法。
例如:x2-x=x(x-l),8a2b-4ab+2a=2a(4ab-2b+1)。
探究交流下列变形是否是因式分解?为什么?(1)3x2y-xy+y=y(3x2-x);(2)x2-2x+3=(x-1)2+2;(3)x2y2+2xy-1=(xy+1)(xy-1);(4)xn(x2-x+1)=xn+2-xn+1+xn.典例剖析师生互动例1用提公因式法将下列各式因式分解。
(1)-x3z+x4y;(2)3x(a-b)+2y(b-a);分析:(1)题直接提取公因式分解即可,(2)题首先要适当的变形,再把b-a 化成-(a-b),然后再提取公因式。
初中数学因式分解教案
初中数学因式分解教案一、教学目标:1. 知识与技能:学生能够理解因式分解的概念,掌握提公因式法、公式法等基本的因式分解方法,并能够运用这些方法解决实际问题。
2. 过程与方法:通过观察、分析、归纳等数学活动,培养学生的逻辑思维能力和数学表达能力,提高学生解决数学问题的能力。
3. 情感态度价值观:激发学生学习数学的兴趣,培养学生的团队合作意识,使学生感受到数学的价值和魅力。
二、教学重难点:1. 教学重点:掌握因式分解的基本方法,能够运用提公因式法、公式法等进行因式分解。
2. 教学难点:如何正确找出多项式各项的公因式,以及如何确定提公因式后的另外一个因式。
三、教学过程:1. 引入新课:通过复习多项式乘法,引导学生思考:如何将一个多项式化为几个整式的积的形式?从而引出因式分解的概念。
2. 探索新知:(1) 提公因式法:引导学生观察两个多项式的乘积,找出它们之间的公因式,并将公因式提出来。
例如,分解因式:x^2 - 4x + 4,我们可以先提出公因式x,得到x(x - 4),然后再利用平方差公式进行进一步分解。
(2) 公式法:引导学生掌握平方差公式和完全平方公式,并能够运用这两个公式进行因式分解。
例如,分解因式:x^2 - 9,我们可以利用平方差公式a^2 - b^2 = (a + b)(a - b)进行分解,得到(x + 3)(x - 3)。
3. 巩固练习:提供一些练习题,让学生运用所学的因式分解方法进行解答,巩固所学知识。
4. 课堂小结:总结本节课所学的因式分解方法,强调提公因式法和公式法在因式分解中的应用,以及正确找出多项式各项的公因式和确定提公因式后的另外一个因式的方法。
四、课后作业:1. 完成教材后的相关练习题。
2. 总结因式分解的方法和技巧,写一篇关于因式分解的心得体会。
通过以上教学设计,希望能够帮助学生掌握因式分解的基本方法,提高学生解决数学问题的能力,激发学生学习数学的兴趣。
初中数学教学课例《因式分解(提公因式法)》课程思政核心素养教学设计及总结反思
的巩固对因式分解,特别是提公因式法理解并学会应
用。
课例研究综
在整个教学教程中,学生均处于主导地位,教师只
述
是从旁引,学生对于由自己推导出性质定理感到非常兴
奋。尽管新旧两种教法的对比上,新课程的教学不一定 马上显露出强劲的优势,甚至可能因为强化练习较少, 在短时间内,学生的成绩比不上传统教法的学生成绩, 但从长远目标看来,这种对数学本质的训练会有效地提 高学生的数学素养,培养出学生对数学本质的理解,而 不仅仅是停留在对数学的机械模仿记忆的层面上。总 之,教学的着眼点,不是熟练技能,而是发展思维,使 学生在学习的情感态度与价值观上发生深刻的变化.再 教设计:在探索及运用提公因式法进行分解因式时,应 该让学生多练习一些有关幂的运算中应用提公因式法 (因式分解)的题目,更加容易加深学生的理解,以及 拓展应用提公因式法进行因式分解。
初中数学教学课例《因式分解(提公因式法)》教学设计及 总结反思
学科
初中数学
教学课例名
《因式分解(提公因式法)》
称
本节课选自人教版数学八年级上册第十五章第四
节第一个内容。因式分解是进行代数恒等变形的重要手
段之一,它在以后的代数学习中有着重要的应用,因此
学好因式分解对于代数知识的后继学习具有相当重要 教材分析
第一组式子的观察得出第二组式子的结果,然后通过对 这两组式子的结果的比较,使学生对因式分解有一个初 步的意识,由整式乘法的逆运算逐步过渡到因式分解, 发展学生的逆向思维能力。
活动 4:归纳、得出新知 比较以下两种运算的联系与区别: (1)a(a+1)(a-1)=a3-a(2)a3-a=a(a+1)(a-1) 在第三环节的运算中还有其它类似的例子吗?除 此之外,你还能找到类似的例子吗? 结论:把一个多项式化成几个整式的积的形式,这 种变形叫做把这个多项式因式分解。其中,把多项式中 各项的公因式提取出来做为积的一个因式,多项式各项 剩下部分做为积的另一个因式这种因式分解的方法叫 做提公因式法。 辨一辨:下列变形是因式分解吗?为什么? (1)a+b=b+a(2)4x2y–8xy2+1=4xy(x–y)+1 (3)a(a–b)=a2–ab(4)a2–2ab+b2=(a–b)2 学生讨论、发言对因式分解,特别是提公因式法的 认识、理解、看法,并总结出因式分解、提公因式法的 定义。通过学生的讨论,使学生更清楚以下事实:(1) 分解因式与整式的乘法是一种互逆关系;(2)分解因 式的结果要以积的形式表示;(3)每个因来的多项式的次
初中数学人教版九年级上册:因式分解法 教案
21.2.3因式分解法【教学目标】知识技能1.了解因式分解的概念2.会利用因式分解法解某些简单数字系数的一元二次方程情感态度1.学会和他人合作,并能与他人交流思维的过程和结果2.积极探索不同的解法,并和同伴交流,勇于发表自己的观点,从交流中发现最优方法,在学习活动中获得成功的体验,建立学好数学的自信心重点难点重点应用因式分解法解一元二次方程难点将方程化为一般形式后,对方程左侧二次三项式进行因式分解活动1复习引入问题(学生活动)解下列方程.(1)220x x (用配方法),(2)2360x x (用公式法).(3)要使一块矩形场地的长比宽多3m ,并且面积为228m ,场地的长和宽应各是多少?(4)如何设未知数并根据题目的等量关系列出方程?(5)所列方程和以前我们学习的方程2692x x 有何联系和区别?(6)你能由方程2692x x 的解法联想到怎样解方程23280x x 吗?活动2实验发现思考:(1)210x x (),(2)320x x ().问题:(1)你能观察出这两题的特点吗?(2)你知道方程的解吗?说说你的理由.因式分解的理论依据是:两个因式的积等于零,那么这两个因式的值就至少有一个等于零。
即:若ab=0,则a=0或b=0.由上述过程我们知道:当方程的一边能够分解成两个一次因式的乘积而另一边等于0时,即可解之。
这种方法叫做因式分解法.(3)因式分解法解一元二次方程的步骤:①移项,使方程的右边为零;②将方程的分解为两个一次因式的乘积;③令每个因式分别为零,得到两个一元一次方程;④解这两个一元一次方程,它们的解都是原方程的解.活动3用因式分解法解决问题教材第14页例3.补充例题解方程(1)238x x ,(2)24312x x ().分析:(1)移项提取公因式x ;(2)等号右侧移项到左侧得312x -,提取因式-3,即34x -(),再提取公因式x-4,便可达到分解因式的目的,一边为两个一次因式的乘积,另一边为0的形式.解:(1)移项,得2380x x ,因式分解,得380x x (),于是,得0380x x ,或,12803x x,(2)移项,得243120x x (),24340x x ()()因式分解,得4430x x ()()整理,得470x x ()()于是,得4070x x 或1247x x ,活动5课堂小结小结:(1)用因式分解法,即用提取公因式法、平方差公式、完全平方公式等解一元二次方程.(2)三种方法(配方法、公式法、因式分解法)的联系与区别:联系:①降次,它们的解题的基本思想是:将二次方程化为一次方程,即降次。
初中数学因式分解系列教案
初中数学因式分解系列教案课时安排:2课时教学目标:1. 让学生理解因式分解的概念,掌握因式分解的方法和技巧。
2. 培养学生观察、分析、解决问题的能力。
3. 培养学生团队合作精神,提高学生的表达能力和交流能力。
教学内容:1. 因式分解的定义和意义2. 提公因式法分解因式3. 运用公式法分解因式4. 因式分解的应用教学过程:第一课时:一、导入(5分钟)1. 引导学生回顾整式乘法的内容,让学生举例说明整式乘法的运算过程。
2. 提问:那么,我们是否可以将从整式乘法中得到的结果再变回原来的多项式呢?二、新课讲解(20分钟)1. 因式分解的定义:引导学生理解因式分解是将一个多项式化为几个整式的积的形式。
2. 提公因式法:讲解如何找出多项式各项的公因式,并进行因式分解。
3. 运用公式法:讲解平方差公式和完全平方公式的应用,引导学生如何运用公式法进行因式分解。
三、课堂练习(15分钟)1. 让学生独立完成练习题,检验学生对因式分解的理解和掌握程度。
2. 教师挑选部分学生的作业进行讲解和点评。
第二课时:一、复习回顾(5分钟)1. 复习上节课的内容,让学生回顾因式分解的定义和方法。
2. 提问:同学们,你们能告诉我因式分解的意义在哪里吗?二、深入学习(20分钟)1. 讲解因式分解的应用:引导学生了解如何利用因式分解解决实际问题。
2. 举例讲解:教师展示一些实际问题,引导学生运用因式分解进行解决。
三、课堂练习(15分钟)1. 让学生独立完成练习题,检验学生对因式分解的应用能力的掌握程度。
2. 教师挑选部分学生的作业进行讲解和点评。
四、总结(5分钟)1. 教师引导学生总结本节课所学内容,让学生明确因式分解的概念、方法和应用。
2. 提醒学生在今后的学习中,要注意观察、分析问题,灵活运用因式分解解决实际问题。
教学评价:1. 通过课堂讲解、练习和实际问题解决,评价学生对因式分解的定义、方法和应用的掌握程度。
2. 观察学生在团队合作中的表现,评价学生的表达能力和交流能力。
9 人教初中数学八上 因式分解教案2 【2023,最新经典教案】
因式分解教学目标1.使学生了解因式分解的意义,理解因式分解的概念及其与整式乘法的区别和联系.2.使学生理解提公因式法并能熟练地运用提公因式法分解因式.3.通过学生自行探求解题途径,培养学生观察、分析和创新能力,深化学生逆向思维能力.教学重点及难点教学重点:因式分解的概念及提公因式法.教学难点:正确找出多项式各项的公因式及分解因式与整式乘法的区别和联系.教学过程设计:一、复习提问乘法对加法的分配律.二、新课1.新课引入:用类比的方法引入课题.在学习分数时,我们常常要进行约分与通分,因此常常要把一个数分解因数(即分解约数).例如,把15分解成3×5,把42分解成2×3×7.在前面我们学习了整式的乘法,几个整式相乘可以化成一个多项式,那么一个多项式如何化成几个整式乘积的形式呢?这一章就是学习如何把一个多项式化成几个整式的积的方法.2.因式分解的概念:请学生每人写出一个单项式与多项式相乘、多项式与多项式相乘的例子,并计算出其结果.(老师按学生所说在黑板写出几个.)如:m(a+b+c)=ma+mb+mc2xy(x-2xy+1)=2x2y-4x2y2+2xy(a+b)(a-b)=a2-b2(a+b)(m+n)=am+an+bm+bn(x-5)(2-x)=-x2+7x-10等等.再请学生观察它们有什么共同的特点?特点:左边,整式×整式;右边,是多项式.可见,整式乘以整式结果是多项式,而多项式也可以变形为相应的整式与整式的乘积,我们就把这种多项式的变形叫做因式分解.定义:把一个多项式化为几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.如:因式分解:ma+mb+mc=m(a+b+c).整式乘法:m(a+b+c)=ma+mb+mc.让学生说出因式分解与整式乘法的联系与区别.联系:同样是由几个相同的整式组成的等式.区别:这几个相同的整式所在的位置不同,上式是因式分解;下式是整式乘法.两者是方向相反的恒等变形,二者是一个式子的不同表现形式,一个是多项式的表现形式,一个是两个或几个因式积的表现形式.例1下列各式从左到右哪些是因式分解?(投影)(1)x2-x=x(x-1)(√)(2)a(a-b)=a2-ab (×)(3)(a+3)(a-3)=a2-9(×)(4)a2-2a+1=a(a-2)+1 (×)(5)x2-4x+4=(x-2)2(√)下面我们学习几种常见的因式分解方法.3.提公因式法:我们看多项式:ma+mb+mc请学生指出它的特点:各项都含有一个公共的因式m,这时我们把因式m叫做这个多项式各项的公因式.注意:公因式是各项都含有的公共的因式.又如:a是多项式a2-a各项的公因式.ab是多项式5a2b-ab2各项的公因式.2mn是多项式4m2np-2mn2q各项的公因式.根据乘法的分配律,可得m(a+b+c)=ma+mb+mc,逆变形,便得到多项式ma+mb+mc的因式分解形式ma+mb+mc=m(a+b+c).这说明,多项式ma+mb+mc各项都含有的公因式可以提到括号外面,将多项式ma +mb+mc写成m(a+b+c)的形式,这种分解因式的方法叫做提公因式法.定义:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.显然,由定义可知,提公因式法的关键是如何正确地寻找公因式.让学生观察上面的公因式的特点,找出确定公因式的万法:(1)公因式的系数应取各项系数的最大公约数:(2)字母取各项的相同字母,而且各字母的指数取次数例2 指出下列各多项式中各项的公因式:(1)ax+ay+a(a)(2)3mx-6mx2(3mx)(3)4a2+10ah (2a)(4)x2y+xy2 (xy)(5)12xyz-9x2y2 (3xy)例3 把8a3b2-12ab3c分解因式.分析:分两步:第一步,找出公因式;第二步,提公因式.先引导学生按确定公因式的方法找出多项式的公因式4ab2.解:8a3b2-12ab3c=4ab2·2a2-4ab2·3bc=4ab2(2a2-3bc).说明:(1)应特别强调确定公因式的两个条件以免漏取.(2)开始讲提公因式法时,最好把公因式单独写出.①以显提醒;③强调提公因式;③强调因式分解.例4 把3x2-6xy+x 分解因式.分析:先引导学生找出公因式x,强调多项式中x=x·1.解:3x2-6xy+x=x·3x-x·6y+x·1=x(3x-6y+1).说明:当多项式的某一项恰好是公因式时,这项应看成它与1的乘积,提公因式后剩下的应是1,1作为项的系数通常可以省略,但如果单独成一项时,它在因式分解时不能漏掉,这类题常常有些学生犯下面的错误,3x2-6xy+x=x(3x-6y),这一点可让学生利用恒等变形分析错误原因.还应提醒学生注意:提公因式后的因式的项数应与原多项式的项数一样,这样可以检查是否漏项.课堂练习:(投影)把下列各式分解因式:(l)2πR+2πr;(2)(3)3x3+6x2;(4)21a2+7a;(5)15a2+25ab2;(6)x2y+xy2-xy.例5把-4m3+16m2-26m分解因式.分析:此多项式第一项的系数是负数,与前面两例不同,应先把它转化为前面的情形便可以因式分解了,所以应先提负号转化,然后再提公因式,提"-"号时,注意添括号法则.解:-4m3+16m2-26m=-(4m3-16m2+26m)=-2m(2m2-8m+13).说明:通过此例可以看出应用提公因式法分解因式时,应先观察第一项系数的正负,负号时,运用添括号法则提出负号,此时一定要把每一项都变号;然后再提公因式.课堂练习:(投影)把下列各式分解因式:(1)-15ax-20a;(2)-25x8+125x16;(3)-a3b2+a2b3;(4)-x3y3-x2y2-xy;(5)-3ma3+6ma2-12ma;(6)(三)小结1.因式分解的意义及其概念.2.因式分解与整式乘法的联系与区别.3.公因式及提公因式法.4.提公因式法因式分解中应注意的问题.六、作业七、板书设计《三角形的外角》各位领导、老师们,上午好!今天我将要为大家讲的课题是三角形的外角,首先,我对本节教材进行一些简单分析一、教材结构与内容简析“三角形的外角”是第二节内容。
人教版初中九年级上册数学《因式分解法》教案
21.2.3 因式分解法【知识与技能】1.会用因式分解法(提公因式法、运用公式)解一元二次方程.2.能根据方程的具体特征,灵活选择方程的解法,体会解决问题方法的多样性.【过程与方法】在经历探索用因式分解法解一元二次方程及依据方程特征选择恰当方法解一元二次方程的过程中,进一步锻炼学生的观察能力,分析能力和解决问题能力.【情感态度】通过因式分解法解一元二次方程的探究活动,培养学生勇于探索的良好习惯,感受数学的严谨性及教学方法的多样性.【教学重点】会用因式分解法解一元二次方程.【教学难点】理解并应用因式分解法解一元二次方程.一、情境导入,初步认识问题根据物理学规律,如果把一个物体从地面以10m/s的速度竖直上抛,那么经过x s物体离地面的高度(单位:m)为10x-4.9x2.你能根据上述规律求出物体经过多少秒落回地面吗?(精确到0.01s)想一想你能根据题意列出方程吗?你能想出解此方程的简捷方法吗?【教学说明】让学生通过具体问题寻求解决问题的方法,激发学生求知欲望,引入新课.二、思考探究,获取新知学生通过讨论,交流得出方程为10x-4.9x2=0.在学生用配方法或公式法求出上述方程的解后,教师引导学生尝试找出其简捷解法为:x(10-4.9x)=0. ∴x=0或10-4.9x=0, ∴x1=0,x2=10049≈2.04.从而可知物体被抛出约2.04s后落回到地面.想一想以上解方程的方法是如何使二次方程降为一次方程的?通过学生的讨论、交流可归纳为:当方程的一边为0,而另一边可以分解成两个一次因式的乘积时,利用a·b=0,则a=0或b=0,把一元二次方程变为两个一元一次方程,从而求出方程的解.这种解法称为因式分解法.【教学说明】让学生自主探索,进行归纳总结,既锻炼学生的分析问题,解决问题能力,又能培养总结化归能力,并从中体验转化、降次的思想方法.三、典例精析,掌握新知例1 解下列方程:(1)x(x-2)+x-2=0; (2)5x2-2x-14=x2-2x+34.解:(1)因式分解,得(x-2)(x+1)=0.故有x-2=0或x+1=0.∴x1=2,x2=-1;(2)原方程整理为4x2-1=0.因式分解,得(2x+1)(2x-1)=0.∴2x+1=0或2x-1=0.∴x1=-12,x2=12.想一想以上两个方程可以用配方法或公式法来解决吗?如果可以,请比较它们与因式分解法的优缺点.例2 用适当的方法解下列方程:(1)3x2+x-1=0; (2)2(2x-3)2=12;(3)(3x-2)2=4(3-x)2; (4)(x-1)(x+2)=-2.分析:根据方程的结构特征,灵活选择恰当的方法来求解.【教学说明】以上两例均应先让学生自主完成,最后共同评析,达到深化理解本节知识的目的.教学时,可选派学生代表上黑板完成.对于学生的解法只要合理就应给予肯定,若有更简捷解法时再予以说明.思考请你谈谈解一元二次方程的几种方法的特点,与同伴交流.【归纳结论】1.配方法要先配方,再降次;公式法可直接套用公式;因式分解法要先使方程的一边为0,而另一边能用提公因式法或公式法分解因式,从而将一元二次方程化为两个一次因式的积为0,达到降次目的,从而解出方程;2.配方法、公式法适用于所有一元二次方程,而因式分解法则只适用于某些一元二次方程,不是所有的一元二次方程都适用因式分解法来求解.四、运用新知,深化理解1.用因式分解法解方程,下列方程中正确的是()A.(2x-2)(3x-4)=0,∴2x-2=0或3x-4=0B.(x+3)(x-1)=1,∴x+3=0或x-1=1C.(x+2)(x-3)=6,∴x+2=3或x-3=2D.x(x+2)=0,∴x+2=02.当x= 时,代数式x2-3x的值是-2.3.已知y=x2+x-6,当x= 时,y的值等于0.当x= 时,y的值等于24.(注:4~5题为教材第14页练习)4.解下列方程:(1)x2+x=0; (2)x2-23x=0;(3)3x2-6x=-3; (4)4x2-121=0;(5)3x(2x+1)=4x+2; (6)(x-4)2=(5-2x)2.5.如图,把小圆形场地的半径增加5m得到大圆形场地,场地面积扩大了一倍.求小圆形场地的半径.【教学说明】针对所设置的作业,可因不同的学生分层次布置作业,让每个学生都能参与数学的学习,激发学习热情.【答案】1.A 2.1或2 3.2或-35或-6 4~5略.五、师生互动,课堂小结1.用因式分解法解一元二次方程有哪些优缺点?需注意哪些细节问题?2.通过本节课的学习,你还有哪些收获和体会?【教学说明】设计两个问题引导学生回顾本课知识的学习过程,反思学习过程中的疑惑,查漏补缺,完善认知.1.布置作业:从教材“习题21.2”中选取.2.完成创优作业中本课时练习的“课时作业”部分.1.本节课围绕利用因式分解法解一元二次方程这一重点内容,教师通过问题情境以及学生的合作交流,使学生的问题凸现出来,让学生迅速掌握解题技能,并探讨出解题的一般步骤,使学生知道因式分解法是一元二次方程解法中应用较为广泛的简便方法,提高解题速度.2.学生已经学过多项式的因式分解,所以对本课内容并不陌生,通过本课学习,让学生更能领会因式分解在数学领域的广泛应用.3.本节课有大量的基础计算问题,也有符合不同学生层次的问题,力争让所有学生学有所得,提高课堂效率.4.解一元二次方程是本章教学的重中之重,如何正确选择用不同方法解一元二次方程是关键,本节课中的计算题有一题多解问题,体现了选择“最优化”解方程方法的问题.良好的学习态度能够更好的提高学习能力。
初中数学因式分解教案(推荐6篇)
初中数学因式分解教案(推荐6篇)初中数学因式分解教案(一)教学目标:运用平方差公式和完全平方公式分解因式,能说出平方差公式和完全平方公式的特点,会用提公因式法与公式法分解因式.培养学生的观察、联想能力,进一步了解换元的思想方法.并能说出提公因式在这类因式分解中的作用,能灵活应用提公因式法、公式法分解因式以及因式分解的标准.教学重点和难点:1.平方差公式;2.完全平方公式;3.灵活运用3种方法.教学过程:一、提出问题,得到新知观察下列多项式:x24和y225学生思考,教师总结:(1)它们有两项,且都是两个数的平方差;(2)会联想到平方差公式.公式逆向:a2b2=(a+b)(ab)如果多项式是两数差的.形式,并且这两个数又都可以写成平方的形式,那么这个多项式可以运用平方差公式分解因式.二、运用公式例1:填空①4a2=2②b2=2③0.16a4=2④1.21a2b2=2⑤2x4=2⑥5x4y2=2解答:①4a2=(2a)2;②b2=(b)2③0.16a4=(0.4a2)2④1.21a2b2=(1.1ab)2⑤2x4=(x2)2⑥5x4y2=(x2y)2例2:下列多项式能否用平方差公式进行因式分解①1.21a2+0.01b2②4a2+625b2③16x549y4④4x236y2解答:①1.21a2+0.01b2能用②4a2+625b2不能用③16x549y4不能用④4x236y2不能用初中数学因式分解教案(二)因式分解教材分析因式分解是进行代数式恒等变形的重要手段之一,因式分解是在学习整式四则运算的基础上进行的,它不仅仅在多项式的除法、简便运算中等有直接的应用,也为以后学习分式的约分与通分、解方程(组)及三解函数式的恒等变形带给了必要的基础,因此学好因式分解对于代数知识的后续学习,具有相当重要的好处。
由于本节课后学习提取公因式法,运用公式法,分组分解法来进行因式分解,务必以理解因式分解的概念为前提,所以本节资料的重点是因式分解的概念。
初中数学因式分解教案人教版 初中因式分解的教案
初中数学因式分解教案人教版初中因式分解的教案初中数学因式分解教案人教版初中因式分解的教案篇一1、知识与技能了解因式分解的意义,以及它与整式乘法的关系。
2、过程与方法经历从分解因数到分解因式的类比过程,掌握因式分解的概念,感受因式分解在解决问题中的作用。
3、情感、态度与价值观在探索因式分解的方法的活动中,培养学生有条理的思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值。
重、难点与关键1、重点:了解因式分解的意义,感受其作用。
2、难点:整式乘法与因式分解之间的关系。
3、关键:通过分解因数引入到分解因式,并进行类比,加深理解。
教学方法采用“激趣导学”的教学方法。
教学过程一、创设情境,激趣导入【问题牵引】请同学们探究下面的2个问题:问题1:720能被哪些数整除?谈谈你的想法。
问题2:当a=102,b=98时,求a2—b2的值。
二、丰富联想,展示思维探索:你会做下面的填空吗?1、ma+mb+mc=()();2、x2—4=()();3、x2—2xy+y2=()2。
【师生共识】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式。
三、小组活动,共同探究【问题牵引】(1)下列各式从左到右的变形是否为因式分解:①(x+1)(x—1)=x2—1;②a2—1+b2=(a+1)(a—1)+b2;③7x—7=7(x—1)。
(2)在下列括号里,填上适当的项,使等式成立。
①9x2(______)+y2=(3x+y)(_______);②x2—4xy+(_______)=(x—_______)2。
四、随堂练习,巩固深化课本练习。
【探研时空】计算:993—99能被100整除吗?五、课堂总结,发展潜能由学生自己进行小结,教师提出如下纲目:1、什么叫因式分解?2、因式分解与整式运算有何区别?六、布置作业,专题突破选用补充作业。
板书设计初中数学因式分解教案人教版初中因式分解的教案篇二知识点:因式分解定义,提取公因式、应用公式法、分组分解法、二次三项式的因式(十字相乘法、求根)、因式分解一般步骤。
初中八年级数学因式分解教案人教版
初中八年级数学因式分解教案人教版因式分解,在数学中一般理解为把一个多项式分解为两个或多个的因式的过程,广泛应用在初中数学里,下面店铺为你整理了初中八年级数学因式分解教案人教版,希望对你有帮助。
八年级数学因式分解教案人教版【教材分析】“因式分解(提取公因式法)”是“华东师大版八年级数学(上)”第十三章第五节内容。
本课安排在“整式的乘法”后,明确了因式分解与整式乘法的联系,起到知识的链接开拓作用。
提取公因式法是因式分解的基本方法,也为学习因式分解的其他方法及利用因式分解解一元二次方程打下坚实的基础。
八年级数学因式分解教案人教版【学情分析】因为我们班的学生大多数来自农村移民的学生,学生基础薄弱,学习兴趣不浓,所以我通过具有现实意义的情境引入新课,调动学生学习热情。
八年级数学因式分解教案人教版【三维目标】根据大纲要求,结合本教材特点和学生认知能力,将教学目标确定为:知识与技能:1、理解因式分解的含义,能判断一个式子的变形是否为因式分解。
2、熟练运用提取公因式法分解因式。
过程与方法:在教学过程中,体会类比的数学思想逐步形成独立思考,主动探索的习惯。
情感态度与价值观:通过现实情景,让学生认识到数学的应用价值,并提高学生关注生存环境的环保意识。
八年级数学因式分解教案人教版【教学重难点】教学重点:理解因式分解的含义及运用提取公因式法分解因式教学难点:合理分组,运用提取公因式法分解因式八年级数学因式分解教案人教版【教学方法与教学手段】教法:类比、探究式教学方法教学过程中渗透类比的数学思想,形成新的知识结构体系;设置探究式教学,让学生经历知识的形成,从而达到对知识的深刻理解与灵活应用。
学法:自主、合作、探索的学习方式在教学活动中,既要提高学生独立解决问题的能力,又要培养团结协作精神,拓展学生探究问题的深度与广度,体现素质教育的要求。
八年级数学因式分解教案人教版【教学过程】教学环节教学流程教学内容学生活动设计意图创设情境4′实例导入列式替代近年来,我国土地沙漠化问题严重,很多城市受到沙尘暴的侵袭,但狂沙埋不住希望,有3队青年志愿者向沙漠宣战,组织了一次植物造林活动。
人教版数学八年级上册14.3.因式分解(第1课时)优秀教学案例
(一)知识与技能
1.让学生掌握因式分解的基本概念,理解因式分解的意义和作用。
2.使学生掌握提公因式法和公式法这两种基本的因式分解方法,并能够运用这两种方法进行简单的因式分解。
3.培养学生运用因式分解解决一些实际问题的能力,提高学生的数学应用意识。
4.培养学生运用数学知识分析和解决问题的能力,提高学生的数学思维水平。
2.问题导向的教学策略:本节课通过设计具有层次性和挑战性的问题,引导学生进行思考和探究,使学生在解决问题的过程中掌握因式分解的方法。这种问题导向的教学策略不仅培养了学生的逻辑思维能力,还提高了学生的创新解题能力。
3.小组合作的实践:通过组织学生进行小组合作,让学生在合作中探究和解决问题,提高了学生的实践能力。同时,小组合作也培养了学生的团队协作意识和交流沟通能力,使学生在合作中得到成长。
三、教学策略
(一)情景创设
1.生活情境:通过引入生活中的实际问题,让学生感受因式分解在实际生活中的应用,激发学生的学习兴趣。
2.故事情境:讲述与因式分解相关的历史故事,让学生了解因式分解的发展历程,增强学生的文化素养。
3.问题情境:创设具有挑战性和启发性的问题,引发学生的思考,引导学生进入学习状态。
2.利用故事情境:讲述与因式分解相关的历史故事,如“笛卡尔和因式分解”,激发学生的学习兴趣。
3.提出问题:创设具有挑战性和启发性的问题,如“你能将一个多项式分解成几个整式的乘积吗?”,引发学生的思考,引导学生进入学习状态。
(二)讲授新知
1.提公因式法:引导学生观察和分析多项式,找出公因式,并进行提取,让学生理解并掌握提公因式法。
2.组织讨论:引导学生积极参与讨论,鼓励学生提出自己的观点和思路,培养学生的团队协作能力。
初中九年级数学教案-因式分解法【省一等奖】
∴12x =,21x =-。
(答案)D 。
3.方程2120x x +-=的两个根为( )。
A .12x =-,26x =B .16x =-,22x =C .13x =-,24x =D .14x =-,23x =(解题过程)解:()()430x x +-=,则40x +=,或30x -=,解得:14x =-,23x =。
(答案)D 。
4.一元二次方程2412x x -=的根是( )。
A .12x =,26x =-B .12x =-,26x =C .12x =-,26x =-D .12x =,26x =(解题过程)解:整理得:2412x x -=,分解因式得:()()260x x +-=,解得:12x =-,26x =。
(答案)B 。
二、课堂设计。
1.知识回顾。
(1)因式分解的方法。
提公因式法:一般地,如果多项式的各项有公因式,可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法。
公式法:利用平方差公式()()[]a b a b a b -=+-和完全平方公式()[2]a ab b a b ±+=±分解因式。
十字相乘法:简单来讲就是,十字左边相乘等于二次项系数,右边相乘等于常数项,交叉相乘再相加等于一次项。
其实就是运用乘法公式()()()²x a x b x a b x ab ++=+++的逆运算来进行因式分解。
(2)解一元二次方程的方法:直接开方法:直接开平方法就是用直接开平方求解一元二次方程的方法。
用直接开平方法解2.因式分解法解一元二次方程的步骤。
《因式分解法》教案3.docx
《一元二次方程》教案5教学内容用因式分解法解一元二次方程.教学目标(1)了解用因式分解法解一元二次方程的概念;会用因式分解法解一元二次方程;(2)学会观察方程特征,选用适当方法解决一元二次方程.教学难点学会观察方程特征,选用适当方法解决一元二次方程.教学过程设计1.创设情景,引出问题问题一根据物理学规律,如果把一个物体从地面以l()m/s的速度竖直上抛,那么物体经过x s离地面的高度(单位:m)为10^-4.9z a根据上述规律,物体经过多少秒落回地面(结果保留小数点后两位)?师生活动:学生积极思考并尝试列方程,可有学生解释如何理解“落冋地面”.【设计意图】学生首先要理解实际问题背景下代数式的意义,理解落冋地面的意义就是高度为零,就是表示高度的代数式的值为零,从而列出方程.在阅读并尝试回答的过程中让他们感受在生活、生产中需耍用到方程,从而激发学生的求知欲.2.观察感知,理解方法问题二如何求出方程的解呢?师生活动:学生从已有的知识出发,考虑用配方法和公式法解决问题,教师再一步引导学生观察方程的结构,学生进行深入的思考,努力发现因式分解法方法解方程.【设计意图】通过配方法和公式法的选择,更好地让学生对比感受因式分解法的简便, 为本节课的教学内容做好知识上的铺垫和准备.问题三如果ab=O^则有什么结论?对于你解方程有什么启发吗?师生活动:学生很容易回答有a=0或的结论.由此进一步思考如何将一元二次方程化为两个一次式的乘积.【设计意图】通过观察,引导学生进一步思考,发现用因式分解中提取公因式法解方程更加简便,从而学生会对方法的选择有一定的理解.问题四上述方法是是如何将一元二次方程降为一次的?师生活动:学生通过对解决问题过程的反思,体会到通过提取公因式将一元二次方程化为了两个一次式的乘积的形式,得到两个一元一次方程,教师注重引导学生观察方程在因式分解过程中的变化,在学生总结发言的过程中适当引导.【设计意图】让学生对比不同解法,不是用开平方降次,而是先因式分解,使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种节一元二次方程的方法叫做因式分解法.在反思小结的过程屮,理解因式分解法的意义,从而引出本节课的教学内容.3.例题示范,灵活运用例解下列方程(1)x(x-^ + x-2 = 0;(2)F —2x4■专.师生活动:提问:(1)如何求出方程(1)的解呢?说说你的方法.(2)对比解法,说说各种解法的特点.学生积极思考,积极回答问题,对比解法的不同.【设计意图】问题(1)的提出是开放式的,学生可能会回答将括号打开,然后利用配方法或公式法,也有些学生会观察到如果将乳-2当作一个整体,利用提取公因式的方法直接就化为两个一次式乘积为零的形式.通过问题(2)的思考讨论,让学生体会解法的利弊,注重观察方程口身的结构.师生活动:提问:(1)方程(2)与方程(1)对比,在结构上有什么不同?(2)谈谈方程(2)的解法.学生观察方程⑵与方程⑴的区别,用类比划归的思想解决问题.【设计•意图】问题(2)的方程需要先进行移项,将方程化为右侧等于零的结构,然后得到一个平方差的结构,利用平方差公式将一元二次方程化为两个一次式的乘积为零的结构.4.巩固练习,学以致用完成教材P14练习1, 2.【设计意图】巩固性练习,同时检验一元二次方程解法掌握情况.5.小结提升,深化理解问题五(1)因式分解法的一般步骤是什么?(2)请大家总结三种解法的联系与区别.师生活动:学生积极思考,归纳因式分解法的一般步骤.总结各种解题方法的特点,体会各种方法的利弊,在交流的过程中加深对解一元二次方程方法的理解,教师对学生的发言给了鼓励和肯定,对于小结交流中的出现的问题及时进行引导纠正,帮助学生深入理解问题.【设计意图】学生通过小结反思,深化对问题的理解,体会到配方法需要将方程进行配方降次,公式法需要将方程化为一般形式后利用求根公式求解;而因式分解法需要将一元二次方程化为两个一次项乘积为零的形式;另在还让学生体会到配方法和公式法适用于所有方程,但有时计算量比较大,因式分解法适用于一部分一元二次方程,但是三种方法都体现了降次的基本思想.五、目标检测设计解下列方程1. /-2% = 0.【设计意图】利用提取公因式法解方程.2. ?-9=0【设计意图】利用平方差公式解方程.3・?+2x-l = 0【设计意图】利用因式分解法不适合的方程可选择用公式法或配方法解决.4. (2X+1)J=3(2JC+I).【设计意图】选用适当的方法解方程.《解一元二次方程》同步试题北京市海淀区中关村中学谢琳一、选择题1.方程(x-l6)(x+8)= 0 的解是().A .斗=一16■号=8B .両=16■巧=—8C . Xj= 16s Xj = 8D.斗=—16,召=—8考查目的:考查直接利用因式分解法的求解.答案:B.解析:两项一次项乘积为0,两个一次项分别为零.2.方程(x+p a=x4-1的正确解法是().A.化为壽十1 —0B. ir+1-lC.化为(A +P(<+1~D=0D.化为^+3x+2 = 0考查目的:考查提取公因式法的求解.答案:C.解析:以「14为整体提取公因式.3・方程吃44尸一4(jr-『=0正确解法是().A.直接开方得X^+l) = 2(*-DB.化为一般形式13^+5=0C.分解因式得[XrM)i-2(x-D][X<-l-l)-2(7-1)]= 0D.直接得“1=0或“1 = 0考查目的:考查平方差公式求解.答案:c.解析:将9和4分别看作3和2的平方,利用平方差公式进行因式分解求方程解二、填空题4.方程X(X4-2)=2(X+2)的解是 ____________________ .考查目的:考查提取公因式法的求解.答案:賀=一2或码=2.解析:以JT+2为整体提取公因式.5.方程(x-2)a = 2»的解是_____________________ .考查目的:考查平方差公式求解.答案:*| = 18或召=一14.解析:将256看作16的平方,利用平方差进行因式分解求方稈解.三、解答题用适当的方法解下列方程.6.(2t+3)J=3(3t+^ ・考查目的:考查提取公因式法的求解.3答案:一一或^1 = 02解析:以21+3为整体提取公因式.7.把小圆形场地的半径增加5m得到大圆形场地,场地面积增加了4倍,求小圆形场地的半径.考查目的:考查平方差公式求解的实际问题.7r(r + 5)2 = 4 兀r2,答案:(r + 5)2-(2r)2=0,*i = 5 或弓=--(舍).解析:能根据实际问题列方程,利用平方差进行因式分解求方程解,会对解进行取舍.。
初中因式分解方法教案
一、教学目标1. 知识与技能:让学生掌握因式分解的基本概念和方法,能够运用因式分解解决一些实际问题。
2. 过程与方法:通过学生的自主探究、合作交流,培养学生的动手操作能力、逻辑思维能力和数学素养。
3. 情感态度与价值观:激发学生学习数学的兴趣,体验成功的喜悦,培养学生的自信心。
二、教学内容1. 因式分解的定义与意义2. 常用的因式分解方法:提公因式法、公式法、十字相乘法、分组分解法等。
3. 因式分解的应用三、教学重点与难点1. 教学重点:让学生掌握因式分解的基本方法和技巧。
2. 教学难点:如何引导学生灵活运用因式分解的方法解决实际问题。
四、教学过程1. 创设情境:让学生计算一些简单的多项式,从而引出因式分解的概念。
2. 自主探究:让学生通过小组合作,探究并总结因式分解的方法。
3. 讲解与示范:教师对每种因式分解方法进行讲解和示范,让学生清晰地了解因式分解的步骤。
4. 练习与巩固:让学生通过课堂练习,加深对因式分解方法的理解。
5. 拓展与应用:让学生运用因式分解解决一些实际问题,提高学生的应用能力。
6. 总结与反思:让学生回顾本节课所学内容,总结因式分解的方法和技巧。
五、教学评价1. 课堂参与度:观察学生在课堂上的积极参与情况,是否能够主动探究、提出问题。
2. 知识掌握程度:通过课堂练习和课后作业,检查学生对因式分解方法和应用的掌握情况。
3. 合作与交流:评价学生在小组合作中的表现,是否能够有效沟通、共同解决问题。
4. 情感态度:观察学生在学习过程中的自信心和兴趣,是否能够积极面对挑战。
六、教学资源1. 教材:人教版《数学》七年级下册。
2. 教具:黑板、粉笔、多媒体课件。
3. 学具:练习本、文具。
七、教学时间1课时因式分解是初中数学的重要内容,通过本节课的教学,希望学生能够掌握因式分解的基本方法,并在实际问题中能够灵活运用。
在教学过程中,要注意激发学生的学习兴趣,培养学生的动手操作能力和逻辑思维能力,为今后的数学学习打下坚实的基础。
因式分解教案
因式分解教案教学目标:1.学生能够理解因式分解的概念和方法。
2.学生能够独立完成简单的因式分解计算。
3.学生能够灵活运用因式分解解决实际问题。
教学重点:1.因式分解的基本概念和方法。
2.因式分解的应用。
教学难点:1.灵活运用因式分解解决实际问题。
教学准备:1.教师准备教材《数学7年级上册》、小黑板、彩色粉笔等。
2.学生准备教材、作业本。
教学过程:一、导入(5分钟)教师出示一个算式:2x+4,引导学生寻找其中的规律。
让学生发现“2”既是2x的系数,又是4的因数。
提问:“观察发现,4除以2等于2,2乘以2等于4,那么2x+4可以化简成什么样的式子呢?”让学生用自己的话进行回答。
1.引入因式分解的概念,解释因式、分解的概念。
板书公式“a(b+c)=ab+ac”并解释。
然后通过例题进行解释说明。
2.讲解因式分解的方法:提取公因式、分解差、分解和。
三、讲解并练习(20分钟)1.板书例题:12x+15、提问:“这里有没有可以提取的公因式呢?”学生回答后,引导学生进行计算,并给予表扬。
2.板书例题:16x-8、提问:“这里有没有可以提取的公因式呢?”学生回答后,引导学生进行计算,并给予表扬。
3.板书例题:5a+10b。
提问:“这里有没有可以提取的公因式呢?”学生回答后,引导学生进行计算,并给予表扬。
四、归纳总结(10分钟)让学生通过练习题进行总结,并列出因式分解的基本方法。
最后,教师给予肯定和鼓励。
五、巩固练习(15分钟)教师出示练习题,让学生独立完成并相互核对。
六、拓展延伸(10分钟)举一些实际问题,让学生用因式分解的方法解决。
七、课堂小结(5分钟)教师进行课堂小结,并与学生互动,检查学生的学习情况。
布置课后作业,要求学生完成相关作业题,并预告下一节课内容。
九、教学反思(2分钟)教师进行教学反思,总结本节课的教学过程,回顾教学的亮点和不足之处。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学课题:22.2.3因式分解法 教学课型:新授课
教学目标
1.了解因式分解法的概念.
2.会用提公因式法和运用乘法公式将整理成一般形式的方程左边因式分解,根据两个因式的积等于0,必有因式为0,从而降次解方程.
3.经历探索因式分解法解一元二次方程的过程,发展学生合情合理的推理能力.
4.体验解决问题方法的多样性,灵活选择解方程的方法.
教学重点:会用提公因式法和运用乘法公式将整理成一般形式的方程左边因式分解,从而降次解方程
教学难点:将整理成一般形式的方程左边因式分解
教学过程
一、复习引入
我们学习了用配方法和公式法解一元二次方程,这节课我们来学习一种新的方法.
二、探究新知
1.因式分解
x 2-5x ;; 2x(x-3)-5(x-3); 25y 2-16; x 2+12x+36;4x 2+4x+1
2.若ab=0,则可以得到什么结论?
3.试求下列方程的根 :
x(x-5)=0; (x-1)(x+1)=0;(2x-1)(2x+1)=0;(x+1)2 =0; (2x-3)2=0.
分析:解左边是两个一次式的积,右边是0的一元二次方程,初步体会因式分解法解方程
实现降次的方法特点,只要令每个因式分别为0,得到两个一元一次方程,解这两个一元一次方程,它们的解就都是原方程的解.
4. 试求下列方程的根
①、4x 2-11x =0 x(x-2)+ (x-2)=0 (x-2)2 -(2x-4)=0
②、25y 2-16=0 (3x+1)2 -(2x-1)2 =0 (2x-1)2 =(2-x)2
③、x 2+10x+25=0 9x 2-24x+16=0;
④、5x 2-2x-41= x 2-2x+4
3 2x 2+12x+18=0; 分析:观察①②③三组方程的结构特点,在方程右边为0的前提下,对左边灵活选用合适的
方法因式分解,并体会整体思想.总结用因式分解法解一元二次方程的一般步骤:首先使方程右边为0,其次将方程的左边分解成两个一次因式的积,再令两个一次因式分别为
0,从而实现降次,得到两个一元一次方程,最后解这两个一元一次方程,它们的解就都能是原方程的解.这种解法叫做因式分解法.
④中的方程结构较复杂,需要先整理.
5.选用合适方法解方程
x2+x+
4
1=0 x2+x-2=0 (x-2)2 =2-x 2x2-3=0.
分析:四个方程最适合的解法依次是:利用完全平方公式,求根公式法,提公因式法,直接开平方法或利用平方差公式.
归纳:配方法要先配方,再降次;公式法直接利用求根公式;因式分解法要先使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.配方法、公式法适用于所有一元二次方程,因式分解法用于某些一元二次方程. 解一元二次方程的基本思路:化二元为一元,即降次.
三、课堂训练
1.完成课本练习
2.补充练习:
①已知(x+y)2 –x-y=0,求x+y的值.
②下面一元二次方程解法中,正确的是().
A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7
B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1=2
5
,x2=
3
5
C.(x+2)2+4x=0,∴x1=2,x2=-2
D.x2=x 两边同除以x,得x=1
③今年初,湖北武穴市发生禽流感,某养鸡专业户在禽流感后,打算改建养鸡场,建一个
面积为150m2的长方形养鸡场.为了节约材料,鸡场的一边靠着原有的一条墙,墙长am,另三边用竹篱围成,如果篱笆的长为35m,问鸡场长与宽各为多少?(其中a≥20m)四、小结归纳
本节课应掌握:
1.用因式分解法解一元二次方程
2.归纳一元二次方程三种解法,比较它们的异同,能根据方程特点选择合适的方法解方程
五、作业设计
必做:P43:6、10
选做:P43:13、14。