第七章 非平行轴线齿轮传动(底板换)

合集下载

各种齿轮机械传动原理

各种齿轮机械传动原理

各种齿轮机械传动原理齿轮传动是一种常见的机械传动方式,它通过齿轮之间的啮合来传递动力和转动运动。

齿轮传动具有传动效率高、传递功率大、传动精度高等优点,广泛应用于各种机械设备中。

下面将介绍几种常见的齿轮传动原理。

1.平行轴齿轮传动平行轴齿轮传动是指齿轮轴线平行于传动方向的齿轮传动方式。

该传动方式可分为直齿轮传动、斜齿轮传动和锥齿轮传动三种形式。

直齿轮传动是最常见的一种齿轮传动方式,它的齿轮齿面为直线齿,轴线平行于传动方向。

直齿轮传动适用于传递小范围的速比,并且传动平稳、传动效率高。

斜齿轮传动是指齿轮齿面为斜面齿,轴线平行于传动方向。

斜齿轮传动适用于需要较大传动功率和转矩的场合,并且具有较高的传动精度。

锥齿轮传动是指齿轮齿面为圆锥面齿,轴线平行于传动方向。

锥齿轮传动适用于需要传递大范围速比和转向的场合,如汽车差速器和旋转机械。

2.交叉轴齿轮传动交叉轴齿轮传动是指齿轮轴线相交的齿轮传动方式。

常见的交叉轴齿轮传动包括蜗轮蜗杆传动和行星轮传动。

蜗轮蜗杆传动是一种传动比较大的传动方式,可以实现大范围的速比。

蜗轮蜗杆传动通过蜗杆和蜗轮的啮合来实现传递,具有传动平稳、传动比可调等优点,广泛应用于工程机械和船舶等设备中。

行星轮传动是一种多齿轮传动,由太阳轮、行星轮和内齿圈组成。

行星轮传动具有传递大范围的速比、传动平稳等优点,广泛应用于汽车变速器和工程机械中。

3.锁扣式齿轮传动锁扣式齿轮传动是一种无齿轮轴的齿轮传动方式,通过齿轮的锁扣连接来实现传递。

锁扣式齿轮传动具有节拍齿轮和轮毂式齿轮两种形式。

节拍齿轮传动是一种用于精确定位的传动方式,通过齿轮的锁扣连接,使得传动精度较高。

节拍齿轮传动广泛应用于印刷机械和纺织机械等需要定位的设备中。

轮毂式齿轮传动是一种用于连接轮毂和发动机的传动方式,通过轮毂和发动机的齿轮锁扣连接来实现传递。

轮毂式齿轮传动具有传递大转矩和传动平稳等优点,广泛应用于汽车和船舶等交通工具中。

以上是几种常见的齿轮机械传动原理,每种传动方式都有自身的特点和适用范围。

工程图学基础第七章 标准件和常用件解析

工程图学基础第七章 标准件和常用件解析

第七章标准件和常用件本章内容:第一节螺纹第二节螺纹紧固件第三节齿轮第四节键和销第五节滚动轴承第六节弹簧第一节螺纹一、螺纹的形成及要素一平面图形(如三角形、矩形、梯形等)沿一圆柱或圆锥面上的螺旋线运动,在该圆柱或圆锥面上形成的连续的凸起和沟槽即为螺纹。

在圆柱(或圆锥)外表面上形成的螺纹称为外螺纹;在圆柱(或圆锥)内表面上形成的螺纹称为内螺纹外螺纹内螺纹(一)螺纹的形成(二)螺纹的要素1、牙型沿螺纹的轴线方向剖切,所得的螺纹的轮廓形状称为螺纹的牙型。

常见的牙型有三角形、梯形、锯齿形等。

2、公称直径螺纹的直径有大径(d 或D )、小径(d 1或D 1)、中径之分。

普通螺纹和梯形螺纹的大径又称公称直径。

与外螺纹的牙顶或内螺纹的牙底相切的假想圆柱或圆锥的直径称为大径。

与外螺纹的牙底或内螺纹的牙顶相切的假想圆柱或圆锥的直径称为小径。

在大径和小径之间,通过牙型上的沟槽和凸起宽度相等的假想圆柱或圆锥的直径称为中径。

外螺纹内螺纹ⅠⅡ 牙顶牙底I螺距Ph牙底牙顶h螺距PⅠ/4:1 Ⅱ/4:1大径 D ,d小径D 1 d 1中径D 2 d 23、线数螺纹有单线和多线之分。

圆柱面上沿一条螺旋线所形成的螺纹称为单线螺纹;由两条或两条以上沿轴线等距分布的螺旋线形成的螺纹称为多线螺纹。

螺纹的线数用n来表示。

单线螺纹三线螺纹4、螺距和导程相邻两牙在中径线上对应点间的轴向距离称为螺距,用P表示。

同一条螺旋线上相邻两牙在中径线上对应点间的轴向距离称为导程,用L表示。

对于单线螺纹,螺距=导程;对于多线螺纹,P=L/n。

单线螺纹三线螺纹5、旋向旋向有左旋和右旋之分。

顺时针旋转时旋进的螺纹称为右旋螺纹;逆时针旋转时旋进的螺纹称为左旋螺纹。

内外螺纹能够旋合在一起的条件是:五个要素必须完全相同。

右旋螺纹左旋螺纹二、螺纹的规定画法1、外螺纹的画法在平行于螺纹轴线的视图中,螺纹大径用粗实线表示,小径用细实线表示,螺纹终止线用粗实线表示。

在垂直于螺纹轴线的视图中,螺纹大径画成粗实线圆,小径画成3/4细实线圆,螺杆上倒角圆的投影不画。

第七章--传动机构的装配知识讲解_2022年学习资料

第七章--传动机构的装配知识讲解_2022年学习资料

a-b-c-齿轮在轴上的安装误差-a齿轮偏心b齿轮歪斜c齿轮端面未紧贴轴肩
3对于精度要求高的齿轮传动机构,压装后应-检查径向跳动量和端面跳动量。-1径向跳动量-阅规-®-7了-齿轮 向圆跳动误差的检查
2端面跳动量-用两顶尖顶住齿轮轴,并使百分表的触头抵在齿-轮端面上,在齿轮旋转一周范围内,百分表的最大读与最小读数之差即为齿轮端面圆跳动误差。-齿轮端面圆跳动误差的检查
3.保证齿面接触正确-齿面应有正确的接触位置和足够的接触面积。-4.进行必要的平衡试验-对转速高、直径大的 轮,装配前应进行动平衡-检查,以免工作时产生过大的振动。
二、圆柱齿轮传动机构的装配-装配圆柱齿轮传动机构时,一般是先把齿轮装在轴-上,再把齿轮轴组件装入箱体。-1 齿轮与轴的装配-1在轴上空套或滑移的齿轮,一般与轴为间隙配-合,装配精度主要取决于零件本身的加工精度,这类 -轮装配较方便。-2在轴上固定的齿轮,与轴的配合多为过渡配合,-有少量的过盈。
3,带轮工作表面粗糙度要符合要求-般为Ra3.2um。过于粗糙,工作时加剧带的磨损;-过于光滑,加工经济性 ,且带易打滑。-4.带的张紧力要适当-张紧力过小,不能传递一定的功率;张紧力过大,-带、轴和轴承都将迅速磨
二、带轮与轴的装配-1.带轮与轴的装配-般带轮孔与轴为过渡配合H7k6,有少量过盈,-同轴度较高,并且用紧 件作周向和轴向固定。-a-b-c-d-带轮与轴的连接-a圆锥形轴头连接b平键连接c楔键连接d花键连接
3.带轮槽磨损-可适当车深轮槽,并修整轮缘。-4.V带拉长-V带拉长在正常范围内时,可通过调整中心距进行紧。若超过正常的拉伸量,则应更换新带。更换V带-时,应将一组V带同时更换,不得新旧混用。-5.带轮崩碎-应 换新带轮。
§7-2链传动机构的装配

机械设计基础第七章

机械设计基础第七章

机械设计基础第七章《机械设计基础》电子教案第七章齿轮转动课题机械设计基础概论授课日期授课类型理论课课时教学目标熟悉齿轮传动的特点、分类和齿廓啮合的基本定律了解渐开线齿廓掌握渐开线标准直齿圆柱齿轮传动的基本参数及几何尺寸熟悉渐开线直齿圆柱齿轮的啮合传动熟悉渐开线齿廓的加工了解齿轮传动的失效形式及设计准则了解齿轮材料及选择原则熟悉渐开线直齿圆柱齿轮传动的计算熟悉变位齿轮传动熟悉斜齿圆柱齿轮传动熟悉直齿圆锥齿轮传动了解齿轮的结构设计及齿轮传动的润滑教学内容齿轮传动的特点、分类和齿廓啮合的基本定律渐开线齿廓渐开线标准直齿圆柱齿轮传动的基本参数及几何尺寸渐开线直齿圆柱齿轮的啮合传动渐开线齿廓的加工齿轮传动的失效形式及设计准则齿轮材料及选择原则渐开线直齿圆柱齿轮传动的计算变位齿轮传动斜齿圆柱齿轮传动直齿圆锥齿轮传动齿轮的结构设计及齿轮传动的润滑教学方法教师讲解与学生领悟、练习相结合。

教学资源多媒体教室,多媒体课件教学步骤及主要内容备注教学环节教学内容讲授新知第一节齿轮传动的特点、分类和齿廓啮合的基本定律一、齿轮传动机构的特点齿轮传动是现代机械中应用最为广泛的一种传动。

它可以用来传递空间任意两轴之间的运动和动力,而且传动准确、平稳、机械效率高、使用寿命长、传动比准确、工作安全可靠。

二、齿轮传动的分类1.按照一对齿轮传动的角速比是否恒定,可将齿轮传动分为:(1)定传动比齿轮传动(2)变角速比齿轮传动2.按照一对齿轮传动时两轮轴线的相对位置,可将齿轮传动(1)两平行轴齿轮传动(2)两轴相交的齿轮传动(3)两轴交错的齿轮传动3.按齿廓曲线分为渐开线齿、摆线齿、圆弧齿。

渐开线齿轮4.按齿轮传动机构的工作条件分为闭式传动、开式传动、半开式传动。

三、渐开线齿廓啮合的特点1.定角速比2.啮合线为一定直线3.渐开线齿轮的可分性4.传动平稳第二节渐开线齿廓一、渐开线及渐开线齿廓1.渐开线的形成2.渐开线的特性(1)发生线在基圆上滚过的一段长度等于基圆上相应被滚过的一段弧长(2)因N点是发生线沿基圆滚动时的速度瞬心,故发生线KN是渐开线K点的法线。

齿轮的参数代图解计算方法

齿轮的参数代图解计算方法

两轴平行的齿轮传动直齿圆柱齿轮传动1、两轮轴线互相平行。

2、齿轮的齿长方向与齿轮轴线互相平行。

3、两轮传动方向相反。

4、此种传动形式英勇最广泛。

直齿圆柱齿轮传动1、两轮轴线互相平行。

2、齿轮的齿长方向与齿轮轴线互相平行。

3、两轮传动方向相反;斜齿圆柱齿轮传动1、轮齿齿长方向线与齿轮轴线倾斜一个角度。

2、与直齿圆柱齿轮传动相比,同时啮合的齿数增多,传动平稳,传动的扭矩也比较大。

3、运转时存在轴向力。

4、加工制造比直齿圆柱齿轮传动麻烦。

斜齿圆柱齿轮传动非圆齿轮传动1、目前常见的非圆齿轮有椭圆形、扇形。

2、当主动轮等速转动时从动轮可以实现有规则的不等速转动。

3、此种传动多见于自动化机构。

人字齿轮传动1、具有斜齿圆柱齿轮的优点,同时运转时不产生轴向力。

2、适用于传递功率大,需作正反向运转的机构中。

3、加工制造比斜齿圆柱齿轮麻烦。

两轴相交的齿轮传动交叉轴斜齿轮传动1、两轮轴线不再同一平面上,或者任意交错,或者垂直交错。

2、两轮的螺旋角可以相等,也可以不相等。

3、两轮的螺旋方向可以相同,也可以不相同。

蜗杆传动1、蜗杆轴线与蜗轮轴线成垂直交错。

2、可以实现大的传动比,传动平稳,噪声小,有自锁。

3、传动效率较低,蜗杆线速度受一定限制。

直齿锥齿轮传动1、两轮轴线相交于锥顶点,轴交角α有三种,α〉90°,α=90°(正交),α〈90°。

2、轮齿齿线的延长线通过锥点。

斜齿锥齿轮传动1、轮齿齿线呈斜向,或者说,齿线的延长线不通过锥点,而是与某一圆相切。

2、两轮螺旋角相等,螺旋方向相反。

弧齿锥齿轮传动1、轮齿齿线呈弧形。

2、两轮螺旋角相等,螺旋方向相反。

3、与直齿锥齿轮传动相比,同时参加啮合的齿数增多,传动平稳,传动的扭矩较大。

齿轮几何要素的名称、代号齿顶圆:通过圆柱齿轮轮齿顶部的圆称为齿顶圆,其直径用d a表示。

齿根圆:通过圆柱齿轮齿根部的圆称为齿根圆,直径用d f 表示。

齿顶高:齿顶圆d a与分度圆d之间的径向距离称为齿顶高,用h a来表示。

第七章 齿轮传动

第七章 齿轮传动

动画演示
齿轮传动
二.分度圆、模数和压力角
分度圆是齿轮各部分尺寸计 算的基准 分度圆直径d=zp/π, π为无 理数,则D无理数?工程上将比 值p/π规定为一些简单的值, 并使之标准化。这个比值称 为模数,用m表示 通常所说的齿轮的压力角α 是指其分度圆上的压力角。 α为标准值,其值为20º 齿轮上具有标准模数和标准 压力角的圆称为分度圆
齿轮传动
一.渐开线的形

一条直线L(称为发 生线(generating line))沿着半径为 rb的圆周(称为基 圆(base circle)) 作纯滚动时,直线 上任意点K的轨迹称 为该圆的渐开线 (involute)。
形成过程动画
齿轮传动
二.渐开线的性质
1) 发生线在基圆上滚过的线段
长度 KN 等于基圆上被滚过的 圆弧长度 AN ,即 KN AN 。 2) 渐开线上任一点的法线切于 基圆。 3)渐开线上的压力角
齿轮传动
齿轮基本尺寸的名称和符号 齿顶圆(da 和 ra) 齿距pi 四圆 齿根圆(df 和 rf) 分度圆(d 和 r) 基圆(db 和 rb) 齿顶高ha 齿距pi 三弧 齿厚si 齿根高hf 齿槽宽ei 齿厚si 齿槽宽ei 分度圆
齿顶圆 基圆
齿根圆
同一圆上
三高
pi si ei
rb
根切现象
根切机理
根切现象:当用齿条型刀具(或齿轮型刀具)加工齿轮时, 若被加工的齿数过少,刀具的齿顶线(或齿顶圆)就会超过 轮坯的啮合极限点N1,这时就会出现刀刃把轮齿根部的渐 开线齿廓切去一部份的现象
齿轮传动
渐开线齿廓的根切
2. 产生根切的原因
当刀具齿顶线与啮合线的交点超过 啮合极限点N之外,便将根部已切 制出的渐开线齿廓再切去一部分。

2024版《机械设计基础》课程课件第7章齿轮传动

2024版《机械设计基础》课程课件第7章齿轮传动

《机械设计基础》课程课件第7章齿轮传动目录•齿轮传动概述•齿轮的基本参数与几何尺寸•齿轮的材料、热处理及精度等级•齿轮传动的强度计算与校核•齿轮的制造工艺与装备•齿轮传动的润滑与密封•齿轮传动的发展趋势与展望01齿轮传动概述齿轮传动的定义与分类定义齿轮传动是指通过两个或多个齿轮的啮合来传递动力和运动的机械传动方式。

分类根据齿轮轴线的相对位置,齿轮传动可分为平行轴齿轮传动、相交轴齿轮传动和交错轴齿轮传动三类。

传动效率高齿轮传动的效率可达98%以上,比带传动和链传动高。

传动比稳定齿轮传动的传动比是恒定的,不受负载变化的影响。

承载能力强齿轮传动可以传递较大的扭矩和功率,适用于重载和高速传动。

结构紧凑齿轮传动的结构紧凑,占用空间小,有利于机器的轻量化和小型化。

制造和安装精度要求高成本高不宜用于远距离传动齿轮的制造和安装精度直接影响传动的平稳性和噪声水平。

高精度齿轮的制造成本较高,且需要专门的加工设备和工艺。

由于齿轮传动的结构特点,不宜用于远距离传动,否则需要增加中间支撑结构。

01020304工业领域交通运输领域能源领域其他领域齿轮传动的应用领域齿轮传动被广泛应用于各种工业设备中,如机床、起重机、输送机等。

汽车、火车、飞机等交通工具中大量使用齿轮传动来实现动力的传递和速度的变换。

在农业机械、建筑机械、矿山机械等领域中,齿轮传动也有广泛的应用。

在风力发电、水力发电等能源转换设备中,齿轮传动发挥着重要作用。

02齿轮的基本参数与几何尺寸齿轮的模数与压力角模数齿轮的一个重要参数,用m表示,它决定了齿轮的齿形大小和齿轮的承载能力。

模数越大,齿轮的齿形越大,承载能力越强。

压力角齿轮齿形的一个关键参数,用α表示。

它决定了齿轮传动的效率和齿轮的强度。

常见的压力角有20°和15°,其中20°压力角应用最为广泛。

齿轮的齿数与直径齿数齿轮上的齿的数量,用z表示。

齿数越多,齿轮的传动比越精确,但齿轮的尺寸也会相应增大。

最新机械设计基础第7章 轮系演示教学精品课件

最新机械设计基础第7章 轮系演示教学精品课件

§7-2 定轴轮系传动比计算(jìsuàn)
6
第六页,共38页。
§7-2 定轴轮系传动比计算(jì
suàn) 设轮a为起始主动轮,轮b为最末从动轮,则定轴轮系始末两轮传动比
数值计算的一般公式为:
iabba
na nb
轮 轮aa至 至轮 轮 bb所 所有 有主 从动 动轮 轮齿 齿数 数之 之积 积
当起始主动轮a和最末从动轮b的轴线平行时,两轮转向的同异可用传 动比的正负表达。两轮转向相同时,传动比为“+”;两轮转向相反 时,传动比为“-”。因此,平行二轴间的定轴轮系传动比计算公式为:
因此,若设与轮1固联的轴为输入轴,
i17 i12i2'3i3'4i45i5'6i6'7
n1n2' n3' n4n5' n6' n2 n3 n4 n5 n6 n7
zz12zz23' zz34' zz54zz56' zz67'
n1 n7
与轮7固联的轴为输出轴,则输入、 输出轴的传动比数值如下:
zz12 zz23 'zz34'zz4 5zz5 6'zz76' zz12 zz23 'zz35'zz5 6'zz76'
转向(zh画uǎ箭nx头ià法ng():适合(shìhé)任何定轴轮系) ( 1 ) m 法(只适合所有齿轮轴线都平行的情况)
结果表示:
从 动 齿 轮 齿 数 连 乘 积
iab
a b
± 主 动 齿 轮 齿 数 连 乘 积(输入、输出轴平行)
画箭头表示方向(输入、输出轴不平行)
§7-2 定轴轮系传动比计算(jìsuàn)

第七章 齿轮齿形加工(与司乃钧主编《机械加工基础》配套)

第七章 齿轮齿形加工(与司乃钧主编《机械加工基础》配套)
研磨轮作无侧隙的自由啮合运动,被研齿轮还作轴向往复运动,研 磨轮被轻微制动。经一段时间后,研磨轮 和被研磨轮作反向旋转, 使齿的两个侧面被均匀研磨。
②特点:由于齿面的滑动速度不均匀,研磨量也不均匀,在齿顶 及齿根部分的滑动速度大,研磨量也大。
2、交叉轴线研磨法 ① 过程:研磨轮与被研齿轮的轴
线互相交叉。研磨直齿轮时三个研 磨轮中的两个为斜齿 轮,一个左旋, 一个右旋,轴线与被研齿轮的轴线 互相交叉;另一个研磨轮为直齿, 它的轴 线与被研齿轮的轴线平行。 被研齿轮安装于三个稍被制动的研 磨轮之间,并加注研 磨剂,被研齿 轮带动研磨轮作无侧隙的自由啮合 交叉轴线研磨法 运动,引起齿面接触部分产生相对滑动,从而 进行齿面研磨,被研 齿轮先向一个方向旋转,然后向另一个方向旋转,使齿的两个侧面 都能均匀地得到研磨。
光整加工已淬火的圆 柱齿轮
精加工已淬火的圆柱 齿轮
7.4 齿形加工方案的选择
7.4.1 齿形加工工艺方案
齿形加工方案的选择主要决定于齿轮的精度等级,此外 还应考虑齿轮的结构特点、生产批量和切齿后所采用的热处 理方法等。具体加工方案的选择可参考以下原则:
1、9级精度以下的齿轮,一般采用铣齿-齿端加工-热处 理-修正内孔的加工方案。此方案适合单件小批量生产。
②特点: 大大提高了研齿的生产效率,研磨量也均匀。
表7.2 常用的齿形加工方法
加工方法 铣齿 拉齿 插齿 滚齿 剃齿 珩齿 研齿 磨齿
加工原理 成形法 成形法
展成法
展成法 展成法 展成法 展成法 成形法 展成法
精度 9 7
8~7 8~7 7~6 改善不大 改善不大 6~3
表面粗糙度 6.3~3.2 1.6~0.4 3.2~1.6 3.2~1.6 0.8~0.4 0.8~0.4 1.6~0.2 0.8~0.2

7轮系

7轮系

第7章 轮系、机械无级变速传动一、基本概念1. 由若干对互相啮合的齿轮所组成的传动系统称为轮系。

轮系的主要功能有:1)可作距离较远的传动;2)实现变速与换向;3)可获得较大的传动比;4)可合成和分解运动。

2. 轮系分为两类:传动时每个齿轮的几何轴线位置相对机架都是固定的,称为定轴轮系或普通轮系;传动时至少有一个齿轮的几何轴线位置相对机架不固定,而是绕着另一齿轮的固定几何轴线转动的,称为周转轮系。

3. 两轴之间要求多级变速传动,选用定轴轮系合适,三轴之间要求实现运动的合成和分解应选用差动轮系(只有差动轮系可以实现运动的合成和分解,行星轮系不行)。

4. 在轮系中,齿轮的齿数对传动比的大小不发生影响,仅起改变转向或调节中心距的作用,这种齿轮称为惰轮或过桥齿轮。

5. 定轴轮系传动时,122121z z n n i ===ωω,式中负号和正号相应表示两轮转向相反的外啮合和两轮转向相同的内啮合。

传动比的数值等于组成该轮系的各对啮合齿轮的传动比的连乘积,也等于各对齿轮传动中从动轮齿数的乘积和主动轮齿数的乘积之比;而传动比的正负(首末两轮转向相同或相反)取决于外啮合齿轮的对数。

如果轮系中有锥齿轮、螺旋齿轮和蜗杆传动等组成空间定轴轮系,其传动的方向则应用标箭头的方法确定。

6. 在周转轮系中,轴线位置固定的齿轮称为中心轮或太阳轮(用K 表示);轴线位置变动的齿轮称为行星轮;支持行星轮自转的构建称为转臂(也称为系杆或行星架,用H 表示)。

周转轮系有行星轮、中心轮和转臂组成,每个单一的周转轮系具有一个转臂,中心轮的数目不超过两个,且转臂与中心轮的几何轴线必须重合,否则便不能转动。

当周转轮系的转臂固定不动时,即成为定轴轮系。

7. 周转轮系可通过“反转”的方法,把原周转轮系转化为“转化轮系”计算。

在周转轮系中,若两个中心轮和转臂都是运动的,需要给出两个原动件才能确定该轮系的运动,这种轮系称为差动轮系(即差动轮系的自由度是2);如果两个中心轮只有一个是固定的,只需给出一个原动件便能确定该轮系的运动,这种轮系称为行星轮系(即行星轮系的自由度是1)。

(整理)第七章 齿轮传动

(整理)第七章  齿轮传动

第七章齿轮传动7-1 基础知识一、齿轮传动的主要类型及特点齿轮传动是最基本的机械传动形式之一,它的特点是传动准确、可靠、效率高,传递功率和速度的范围大。

齿轮传动按工作条件划分,则可分为:开式齿轮传动、半开式齿轮传动以及闭式齿轮传动。

(1)开式齿轮传动的齿轮完全暴露在外边,因此杂物易于侵入、润滑不良,齿面容易磨损,通常用于低速传动。

(2)半开式齿轮传动装有简单的防护装置,工作条件有一定的改善。

(3)闭式齿轮传动的的齿轮安装在封闭的箱体内,润滑及防护条件最好,常用于重要的场合。

齿轮传动按相互啮合的齿轮轴线相对位置划分,则可分为:圆柱齿轮传动、圆锥齿轮传动以及齿轮齿条传动。

(1)圆柱齿轮传动用于两平行轴之间的传动。

(2)圆锥齿轮传动用于两相交轴之间的传动。

(3)齿轮齿条传动可将旋转运动变为直线运动。

二、齿轮传动的失效形式及设计准则1.齿轮传动的失效形式齿轮传动的失效主要发生在轮齿。

常见的失效形式有:轮齿折断、齿面磨损、齿面点蚀、齿面胶合和塑性变形。

(1)轮齿折断闭式传动中,当齿轮的齿面较硬时,容易出现轮齿折断。

另外齿轮受到突然过载时,也可能发生轮齿折断现象。

提高轮齿抗折断能力的措施有:增大齿根过渡圆角半径及消除加工刀痕;增大轴及支承的刚性;采用合理的热处理方法使齿芯具有足够的韧性;进行喷丸、滚压等表面强化处理。

(2)齿面磨损齿面磨损是开式齿轮传动的主要失效形式之一。

改用闭式齿轮传动是避免齿面磨损的最有效方法。

(3)齿面点蚀齿面点蚀是闭式齿轮传动的主要失效形式,特别是在软齿面上更容易产生。

提高齿面抗点蚀能力措施有:提高齿轮材料的硬度;在啮合的轮齿间加注润滑油可以减小摩擦,减缓点蚀。

(4)齿面胶合对于高速重载的齿轮传动,容易发生齿面胶合现象。

另外低速重载的重型齿轮传动也会产生齿面胶合失效,即冷胶合。

提高齿面抗胶合能力的措施:提高齿面硬度和降低齿面粗糙度值;加强润滑措施,如采用抗胶合能力高的润滑油,在润滑油中加入添加剂等。

第七章轮系

第七章轮系

第1章轮系轮系是指多个齿轮或其它传动轮组成的传动系统。

它广泛应用于各种机器之中,实现复杂的传动功能。

本章的重点是在轮系中各传动齿轮的齿数和主动齿轮转速已知的情况下,计算其它齿轮的转速,或者计算任意两齿轮的转速之比——传动比。

§1-1 轮系及其分类前一章研究的是一对齿轮的啮合原理和几何设计等问题,由一对齿轮啮合组成的传动系统是齿轮传动最简单的形式。

在实际机械传动中,为了获得大传动,实现变速、换向及远距离传动等各种不同的工作需要,经常采用若干个相互啮合的齿轮传递运动和动力。

这种由一系列齿轮构成的传动系统称为轮系。

根据轮系在运转过程中各轮几何轴线在空间的相对位置关系是否固定,可以将轮系分为定轴轮系和周转轮系两大类。

一定轴轮系轮系运转时,所有齿轮几何轴线的位置都固定不变的轮系称为定轴轮系,如图7-1所示。

定轴轮系中,若各齿轮的几何轴线相互平行,则称为平面定轴轮系(如图7-1a所示),否则称为空间定轴轮系(如图7-1b所示)。

(a) 平面定轴轮系(b) 空间定轴轮系图1-1定轴轮系二周转轮系轮系运转时,至少有一个齿轮几何轴线的位置相对机架不固定的轮系称为周转轮系,如图7-2所示。

周转轮系中,几何轴线固定的齿轮称为中心轮或太阳轮,如图7-2中的齿轮1和齿轮3,用符号K表示,中心轮可以是转动的,也可以是固定的;几何轴线位置不固定,既可以自转又可以公转的齿轮称为行星轮,如图7-2中的齿轮2;支持行星轮作自转和公转的构件称为行星架,也称为转臂或系杆,用符号H表示。

一个周转轮系中,中心轮和行星架的几何轴线必须重合,否则周转轮系不能运动。

(a) 差动轮系(b) 行星轮系图1-2周转轮系周转轮系的种类很多,通常可以按照以下两种方法分类:1、按照周转轮系所具有的自由度数目分类:⑴差动轮系自由度数目为2的周转轮系称为差动轮系,如图7-2a所示。

为了使其具有确定的运动,该轮系需要2个具有独立运动的主动件。

⑵行星轮系自由度数目为1的周转轮系称为行星轮系,如图7-2b所示。

机械设计基础了解齿轮传动的基本原理

机械设计基础了解齿轮传动的基本原理

机械设计基础了解齿轮传动的基本原理齿轮传动是一种常见且广泛应用于机械领域的传动方式,它通过齿轮的啮合来实现动力的传递和转换。

了解齿轮传动的基本原理对于机械设计非常重要。

本文将介绍齿轮传动的基本概念、齿轮的种类和啮合原理。

一、齿轮传动的基本概念齿轮传动是利用圆周上的齿与齿之间的啮合来实现动力的传递和转换的一种机械传动形式。

它可以改变输入轴和输出轴之间的转速和扭矩关系,实现不同工况下的传动效果。

二、齿轮的种类1. 平行轴齿轮:平行轴齿轮是最常见的齿轮传动形式之一,适用于平行轴间的传动。

平行轴齿轮一般由两个或多个啮合的齿轮组成,其中一个齿轮安装在输入轴上,另一个齿轮安装在输出轴上。

通过齿轮的啮合来实现输入轴和输出轴之间的传动。

2. 直齿圆柱齿轮:直齿圆柱齿轮是平行轴齿轮的一种常见形式,其齿轮齿条以圆柱面为基础,齿距均匀,啮合时传递的动力平稳。

3. 锥齿轮:锥齿轮是一种用于交叉轴传动的齿轮,它的齿条是锥面上的直线,适用于平面的角度传动。

锥齿轮适用于两个轴交叉传动且轴心线不共线的情况,常见的应用领域包括汽车差速器和摩托车后桥。

4. 内啮合齿轮:内啮合齿轮是其中一个齿轮的齿条在齿轮体的内部,另一个齿轮的齿条在齿轮体的外部,适用于特殊传动或空间有限的情况。

三、齿轮的啮合原理当两个齿轮相互啮合时,它们的齿条形成一个接触点,该接触点随着齿轮旋转而移动。

在啮合点处,齿轮之间的力和扭矩传递,实现动力的转换。

齿轮啮合的基本原理可以通过齿条剖面的分析来理解。

在直齿圆柱齿轮中,齿条的剖面为圆弧形,通过调整齿轮的模数、压力角等参数,可以实现齿轮的啮合,确保传动的可靠性和效率。

除了直齿圆柱齿轮外,其他类型的齿轮啮合原理与之类似,在具体设计时需要考虑齿轮的模数、齿数、啮合角等参数,以确保啮合的顺畅和稳定。

总结:齿轮传动作为一种常见的机械传动形式,在机械设计中起着重要的作用。

了解齿轮传动的基本原理和种类可以帮助我们更好地进行机械传动系统的设计和优化。

机械基础第七章轮系和减速器3教学教案

机械基础第七章轮系和减速器3教学教案
固定齿圈
状态2: 同向减速,可获得减速档
固定太阳轮 从动行星架 行星小齿轮
主动齿圈
状态3: 同向增速,可获得超速档
固定太阳轮 主动行星架 行星小齿轮
从动齿圈
状态4: 同向增速,可获得超速档
从动太阳轮 主动行星架 行星小齿轮
固定齿圈
状态5: 反向减速,可获得倒档
主动太阳轮 固定行星架 行星小齿轮
i1 H 3 1 3 H H1 3 H Hn n 1 3 n n H H z z1 2 z z2 3 z z1 3
“-”号表示转化机构中齿轮1和齿轮3的转向相反, 但并不表示它们在原周转轮系中的转向相反。
推广后一般情况,可得:
iA HK(1)m从 从齿 齿A A到 到 轮 轮K K之 之间 间所 所有 有主 从动 动 连 连轮 轮 乘 乘齿 齿 积 积
解:转化轮系如下图所示:
转向与n1相同
例: 图示的输送带行星轮系中,已知各齿轮的齿数分
别为Z1=12,Z2=33,Z‘2=30,Z3=78,Z4=75。电动机 的转速n1=1450r/min。试求输出轴转速n4的大小与方向。
解:
状态1: 同向减速,可获得减速档
主动太阳轮 从动行星架 行星小齿轮
1.齿轮减速器
2.蜗杆减速器
3.蜗杆-齿轮减速器
减速器的结构
1—下箱体 2—油标指示器 3—上箱体 4—透气孔 5—检查孔盖 6—吊环螺钉 7—吊钩 8—油塞 9—定位销钉 10—起盖螺钉孔
第七章 轮系和减速器
§7.1 轮系的应用和分类 §7.2减速器的应用和分类
§7.1 轮系的应用和分类
一、轮系的概念
由一对齿轮组成的机构是齿轮传动的最简单形 式。但在很多机械中,常常要将主动轴的较快 转速变换为从动轴的较慢转速;或者将主动轴 的一种转速变换为从动轮的多种转速;或者改 变从动轴的旋转方向,而采用一系列相互啮合 齿轮将主动轴和从动轴连接起来,这种由一系 列相互啮合齿轮组成的传动系统称为轮系。

1、齿轮传动的基本知识(2024版)

1、齿轮传动的基本知识(2024版)

二、斜齿轮的基本参数
计算斜齿轮端面参数与尺寸:
1.齿距:Pt mt Pn mn
在△DFE中 Pn Pt cos
见图11-22
2.模数 : mn mt cos
二、斜齿轮的基本参数
3.压力角 :
tgat
AB BB'
,
tga
n
AC CC'
AC AB cos
∵BB’=CC’
tga n
AC CC'
二、正确啮合的条件
保证前后两对轮齿有可能同时在啮
合线上相切接触。一对齿轮连续顺ຫໍສະໝຸດ 利地传动,需要各对轮齿依次正确
啮合而互不干扰。如图所示,B1B2
是啮合线的实际长度,若每对齿轮
的基圆齿距都不相等,则必会出现
齿廓的局部重叠或过大间隙,即发
生卡死(pb1<pb2)或冲击( pb1 >
pb2 )的现象。因此,为保证齿轮的
=
—co—sa— cosa'
a'
r2'
② ∵ rb1 + rb2 = r1cosa + r2cosa
r1'cosa' + r2'cosa'
∴ a'cosa' = a cosa
r O1 b1 a'
P
rb2
O2
分度圆、节圆、 压力角、啮合角
5.齿轮与齿条啮合传动
分度圆与节线相切
特点 啮合线切于齿轮基圆并垂直于齿条齿廓 标准安装或非标准安装 d = d a = a
高级制齿工
齿轮技术基础
齿轮传动的基本知识(部分)
概述
• 齿轮是大家都十分熟悉的一个名词,对于齿 轮的形状,我们大家并不陌生,同时也知道 几乎所有的机器上都有齿轮的应用。但是, 对于各种各样的齿轮各有什么特点,为什么 应用的这么广泛,我们如何才能对其进行科 学的分类等等,我们也许不太清楚,或者说 不能用科学的语言对其进行描述。那么这一 节中我们就要来了解这些内容,这些内容也 是我们对齿轮进行进一步讨论所必须的。

齿轮传动方案

齿轮传动方案

齿轮传动方案在机械工程中,齿轮传动是一种常见的机械传动方式,它通过齿轮之间的啮合来传递动力和转速。

齿轮传动具有高效、稳定、传动比可调等优点,因此广泛应用于各种机械设备中。

在本文中,我们将讨论几种常见的齿轮传动方案,探讨它们的特点和适用范围。

第一种齿轮传动方案是直齿轮传动。

直齿轮传动是最简单、最基础的一种传动方案,它的齿轮齿条是直线的,齿轮的齿数相等。

直齿轮传动适用于中小功率传动,传递的动力稳定可靠。

然而,直齿轮传动存在齿面接触不均匀等问题,高速传动时会产生较大的噪音和振动。

第二种齿轮传动方案是斜齿轮传动。

斜齿轮传动将齿轮齿条设计为斜线形状,使得齿轮的齿尖与齿谷接触,减小了接触应力,提高了传动效率。

斜齿轮传动适用于高速、大功率传动,能够承受较大的载荷。

然而,斜齿轮传动由于齿面接触区域小,容易产生磨损和疲劳,需要进行定期维护和保养。

第三种齿轮传动方案是锥齿轮传动。

锥齿轮传动是一种特殊的齿轮传动,其齿轮齿条呈锥形,可以实现非平行轴的传动。

锥齿轮传动适用于需求空间有限、转向方向改变的场合。

比如汽车的后桥传动、拖拉机的转向传动等。

锥齿轮传动具有紧凑结构、高传动效率的特点,但制造和装配难度较大。

第四种齿轮传动方案是行星齿轮传动。

行星齿轮传动由太阳轮、行星轮和内齿圈组成,通过太阳轮和行星轮的啮合来实现传动。

行星齿轮传动适用于对空间要求较小、需要大传动比和平滑传动的场合。

行星齿轮传动的特点是传动比可调,可通过改变行星轮和太阳轮的啮合点实现不同的传动比。

最后,还需要提及的一种齿轮传动方案是夹式齿轮传动。

夹式齿轮传动类似于链条传动,其齿轮齿谷与链条齿间互相嵌套啮合,通过链条的传动来实现力的传递。

夹式齿轮传动适用于对传动精度要求不高、转动平稳的场合。

然而,夹式齿轮传动传动效率较低,易受磨损和松动的影响。

总之,齿轮传动是一种常见且重要的机械传动方式,不同的齿轮传动方案适用于不同的应用场合。

直齿轮传动简单可靠,斜齿轮传动适用于高速大功率传动,锥齿轮传动适用于非平行轴传动,行星齿轮传动适用于需要大传动比的场合,夹式齿轮传动适用于传动平稳的场合。

《机械设计基础》教学课件第7章轮系

《机械设计基础》教学课件第7章轮系

定义
轮系效率是指轮系传动中 输出功与输入功之比,反 映了轮系传动的能量损失 情况。
影响因素
轮系效率受多种因素影响, 如齿轮精度、润滑条件、 轴承摩擦等。
提高方法
提高齿轮精度、改善润滑 条件、选用低摩擦轴承等, 可有效提高轮系效率。
轮系的功率
定义
轮系功率是指轮系传动中输入或 输出的功率,反映了轮系传动的
使用注意事项
定期检查
为确保轮系的正常运行,应定期对其进行检查, 包括齿轮磨损、轴承间隙、油封密封性等。
润滑保养
轮系的正常运转离不开良好的润滑,应根据使用 条件选择合适的润滑剂,并定期更换。
避免过载
长时间过载运行会导致轮系损坏,因此在使用过 程中应避免过载现象的发生。
维护与保养
清洗
定期清洗轮系及其周围环境,去 除油污、杂质等,保持清洁。
学性能和耐磨性。
装配方法
1 2
清洗与检查 在装配前,对轮系的各个零件进行清洗,去除油 污和杂质,并进行外观和尺寸检查,确保零件符 合设计要求。
装配顺序 按照轮系的结构和工作原理,确定合理的装配顺 序,避免零件之间的相互干涉和损坏。
3
装配方法
采用压装、热装等装配方法,将轮系的各个零件 组装在一起,确保装配精度和紧固力符合要求。
调试与检测
空载调试
在轮系装配完成后,进行空载调试,检查轮系的运转是否平稳、 有无异常响声和振动等现象。
负载调试
在空载调试合格后,进行负载调试,逐渐增加负载,观察轮系的 运转情况和性能指标是否满足设计要求。
检测与验收
采用专业的检测设备和工具,对轮系的各项性能指标进行检测和 验收,确保轮系的质量和使用安全。
在轮系设计中,应综合考虑效率 和功率的要求,进行优化设计以

第七章_轮系

第七章_轮系

本章要解决的问题:
复合轮系
轮系的运动分析(包括传动比i 的计算和判断从动轮转向)
§7-2 定轴轮系传动比的计算
一、轮系的传动比
轮系始端主动轮与末端从动轮的转速之比值,称为轮系的
传动比,用i 表示。
i1k =
n1 nk
式中 n1 ——主动轮1的转速,r / min; nk ——从动轮 k 的转速,r / min。
,各对齿轮传动的传动比为:
i12 =
n1 = n2
z2 z1
i2'3 =
n2' = n3

z3 z2'
i34 =
n3 = n4
z4 z3
i4'5 =
n4' = n5
z5 z4'
i12
i2'3
i34
i4'5

n1 n2

n2' n3
n3 n4' n4 n5

z2 z3 z4 z5 z1 z2' z3 z4'
至少有一个齿轮的轴线(位置不固定)绕另一齿轮的轴线 转动的齿轮传动系统称为周转轮系。
二、周转轮系的组成:
中心轮(Sun gears)——周转轮系中轴线位置固定不动的齿轮
行星轮(Planet gears)——周转轮系中轴线不固定的齿轮
系杆H(行星架)(Planet carrier)——支撑行星轮的构件
n1 i17
1440 2r / min 720
在这个轮系中,轮4同时和两个齿轮啮合,它既是前一级的从 动轮,又是后一级的主动轮。显然,齿数Z4在公式的分子分母上 个出现一次,故不影响传动比的大小。这种不影响传动比数值大 小,只改变转向作用的齿轮称为过论,或者中介轮。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在综合考虑齿轮几何尺寸,毛坯,材料,加工方法,使用要求 及经济性等 各方面因素的基础上,按齿轮的直径大小,选定合 适的结构形式,再根据 推荐的经验数据进行结构尺寸计算。
A
15
2.齿轮的常见结构形式有:
实心式
[da≤200mm]
齿轮轴
[直齿δ≤(2~2.5)mn 锥齿δ≤(1.6~2)m]
小尺寸齿轮
腹板式结构
[da≤500mm]
中型A 尺寸齿轮
轮辐式结构
da≥400mm
大尺寸齿轮16
本章基本内容讲述结束
谢谢配合
A
17
高等职业教育机械类专业 核心技术课程
机械设计基础
教学课件 浙江机电职业技术学院 胡家秀 编创制作郑州铁路职业技术学院 徐刚涛
A
1
第七章 非平行轴线齿轮传动
第一节 概述 第二节 直齿锥齿轮传动 第三节 交错轴斜齿轮传动 第四节 齿轮的结构设计
A
2
第一节 概述
轴线相错的非平行轴线齿轮传动
轴线相交的非平行轴线齿轮传动
= (1-0.5ψR) d1 齿宽因数 ψR =d/R
A
11
*2. 强度计算
简化计算时, 一般以齿宽中点处的当量直齿圆柱齿轮作为计算基础。 轴交角为90°的强度计算公式如下。
(1)齿面的接触疲劳强度计算公式
校核公式:
HZEZH ψR(1 40 .7 .5 K ψR 1)T2d13u[]H
设计公式 3
A
3
第二节 直齿锥齿轮传动
直齿锥齿轮传动视频
A
4
一、锥齿轮的特点与应用
轴交角∑=90°的直齿锥齿轮传动,图示∑=δ1+δ2=90°
A
5
二、锥齿轮的背锥与当量齿轮
1.锥齿轮齿廓的形成
齿锥齿轮的齿廓曲线为A 空间的球面渐开线
6
2.锥齿轮的背锥
圆锥O1AB为锥齿轮的背锥,背锥母线与球面切于锥齿轮大端的分度圆
1.基本参数和正确啮合条件
直齿圆锥齿轮传动的基本参数及几何尺寸是以轮齿大端为 标准的。规定锥齿轮大端模数与压力角为标准值。正确啮合条
件圆锥齿轮大端的模数和压力角分别相等,且锥距相等,锥顶 重:合
m1 m2 m
1 2 1 2 两轴夹角
分度圆直径:d1=2Rsinδ1 ; d2=2Rsinδ2
A
7
3.锥齿轮的当量齿轮
将两背锥展成平面后得到两个扇形齿轮,将两扇形齿轮的轮齿补足,使其 成为完整的圆柱齿轮,补足轮齿的虚拟圆柱齿轮称为该锥齿轮的当量齿轮 rv1=r1/cosδ1=mz1/2 cosδ1;rv1= mzAv1/2,zv1=z1/ cosδ1,zv2=z2/ cos8δ2
三、直齿锥齿轮的啮合传动
不等顶收缩齿锥齿轮几何尺寸计算公式参见表7-2
A
10
四、锥齿轮传动强度计算
1.受力分析
圆周力 Ft1= 2T1/ dm1 ; 径向力 Fr1= F′cosδ1= Ft1 tanαcosδ1 法向力 Fn=Ft1/cosα ; 轴向力 Fa1= F′sinδ1= Ft1 tanαsinδ1
(R-0.5b)/R= 0.5dm1/0.5d1 得 dm1=(R-0.5b)d1/R
锥齿轮的传动比: i12 1 2d d2 1zz1 2ssiin n1 2
当 129 0 时i12 1 2d d1 2zz1 2co 1 t tan 2
A
9
2.几何尺寸计算
不等顶收缩齿与等顶收缩齿
不等顶隙收缩齿圆锥齿轮的分度圆锥、 齿顶圆锥和齿根圆锥的锥顶均重合,其 顶隙从大端到小端逐渐缩小。
等顶隙收缩齿的顶隙从大端到小端保持不变 此种传动其两轮的分度圆锥和齿根圆锥的锥 顶重合于一点,但两轮的齿顶圆锥的母线各 自平行于与之啮合的圆锥齿轮的齿根圆锥的 母线,故锥顶不再重合于一点。
d1 ψR(14.70K .5ψ1TR)2uZ[EZ]H H2
K 为载荷系数(表6-9) T1为小齿轮的转矩,N.m
u 为齿数比(u≥1)
ψR为齿宽系数,ψR=b/R=0.25~0.3;
b 为轮齿的接触宽度,mm;
ZE 为材料的弹性系数(表6-10) ZH 为节点啮合系数(查图6-35)
ห้องสมุดไป่ตู้
[бH]为许用接触应力,查取方法与直A齿轮相同。
12
第三节 交错轴斜齿轮传动
交错轴斜齿轮(螺旋齿轮)传动视频
A
13
螺 旋 齿 轮 传 动 的 特 点
A
14
第四节 齿轮的结构设计
1.齿轮结构设计的一般程序:
通过强度计算确定出了齿轮的齿数z、模数m、齿宽B、螺旋角β、 分度圆直径d 等主要尺寸。
结构设计主要是确定轮缘,轮辐,轮毂等结构形式及尺寸大小。
相关文档
最新文档