往届离散数学考题A

合集下载

离散数学试题(A卷答案)

离散数学试题(A卷答案)

离散数学试题(A 卷答案)一、(10分)求(P ↓Q )→(P ∧⌝(Q ∨⌝R ))的主析取范式 解:(P ↓Q )→(P ∧⌝(Q ∨⌝R ))⇔⌝(⌝( P ∨Q ))∨(P ∧⌝Q ∧R ))⇔(P ∨Q )∨(P ∧⌝Q ∧R ))⇔(P ∨Q ∨P )∧(P ∨Q ∨⌝Q )∧(P ∨Q ∨R ) ⇔(P ∨Q )∧(P ∨Q ∨R )⇔(P ∨Q ∨(R ∧⌝R ))∧(P ∨Q ∨R ) ⇔(P ∨Q ∨R )∧(P ∨Q ∨⌝R )∧(P ∨Q ∨R ) ⇔0M ∧1M⇔2m ∨3m ∨4m ∨5m ∨6m ∨7m二、(10分)在某次研讨会的休息时间,3名与会者根据王教授的口音分别作出下述判断: 甲说:王教授不是苏州人,是上海人。

乙说:王教授不是上海人,是苏州人。

丙说:王教授既不是上海人,也不是杭州人。

王教授听后说:你们3人中有一个全说对了,有一人全说错了,还有一个人对错各一半。

试判断王教授是哪里人?解 设设P :王教授是苏州人;Q :王教授是上海人;R :王教授是杭州人。

则根据题意应有: 甲:⌝P ∧Q 乙:⌝Q ∧P 丙:⌝Q ∧⌝R王教授只可能是其中一个城市的人或者3个城市都不是。

所以,丙至少说对了一半。

因此,可得甲或乙必有一人全错了。

又因为,若甲全错了,则有⌝Q ∧P ,因此,乙全对。

同理,乙全错则甲全对。

所以丙必是一对一错。

故王教授的话符号化为:((⌝P ∧Q )∧((Q ∧⌝R )∨(⌝Q ∧R )))∨((⌝Q ∧P )∧(⌝Q ∧R ))⇔(⌝P ∧Q ∧Q ∧⌝R )∨(⌝P ∧Q ∧⌝Q ∧R )∨(⌝Q ∧P ∧⌝Q ∧R ) ⇔(⌝P ∧Q ∧⌝R )∨(P ∧⌝Q ∧R ) ⇔⌝P ∧Q ∧⌝R ⇔T因此,王教授是上海人。

三、(10分)证明tsr (R )是包含R 的且具有自反性、对称性和传递性的最小关系。

证明 设R 是非空集合A 上的二元关系,则由定理4.19知,tsr (R )是包含R 的且具有自反性、对称性和传递性的关系。

离散数学考试试题(A卷及答案)

离散数学考试试题(A卷及答案)

离散数学考试试题(A卷及答案)离散数学考试试题(A卷及答案)⼀、(10分)判断下列公式的类型(永真式、永假式、可满⾜式)?1)((P→Q)∧Q)?((Q∨R)∧Q) 2)?((Q→P)∨?P)∧(P∨R)3)((?P∨Q)→R)→((P∧Q)∨R)解:1)永真式;2)永假式;3)可满⾜式。

⼆、(8分)个体域为{1,2},求?x?y(x+y=4)的真值。

解:?x?y(x+y=4)??x((x+1=4)∨(x+2=4))((1+1=4)∨(1+2=4))∧((2+1=4)∨(2+1=4))(0∨0)∧(0∨1)1∧1?0三、(8分)已知集合A和B且|A|=n,|B|=m,求A到B的⼆元关系数是多少?A到B的函数数是多少?解:因为|P(A×B)|=2|A×B|=2|A||B|=2mn,所以A到B的⼆元关系有2mn个。

因为|BA|=|B||A|=mn,所以A到B的函数mn个。

四、(10分)已知A={1,2,3,4,5}和R={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>},求r(R)、s(R)和t(R)。

解:r(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<1,1>,<2,2>,<3,3>,<4,4>,<5,5>}s(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<3,2>,<4,3>,<4,5>}t(R)={<1,2>,<2,1>,<2,3>,<3,4>,<5,4>,<1,1>,<1,3>,<2,2>,<2,4>,<1,4>}五、(10分) 75个⼉童到公园游乐场,他们在那⾥可以骑旋转⽊马,坐滑⾏铁道,乘宇宙飞船,已知其中20⼈这三种东西都乘过,其中55⼈⾄少乘坐过其中的两种。

离散数学期末试题A答案及评分标准

离散数学期末试题A答案及评分标准

--北京工商大学离散数学试卷(A)答案及评分标准题号 一 二三 四 五 六 七总分得分一、(30分)设A ={1,2,3,4},给定A 上二元关系R 如下:R ={<1,1>, <1,2>, <2,3>, <3,3>, <4,4>}请回答以下各问题:1.写出R 的关系矩阵. (3分)2.画出R 的关系图. (3分)3.求包含R 的最小的等价关系,并写出由其确定的划分. (6分)4.分别用关系矩阵表示出R 的自反闭包r (R )、对称闭包s (R ). (6分)5.求传递闭包t (R ).(写出计算步骤)(6分)6.求R 2的关系矩阵. (3分)7.集合A 上最多可以确定多少个不同的二元关系?说明理由。

(3分)[解] (1)⎪⎪⎪⎪⎪⎭⎫⎝⎛=1000010001000011R M 。

……(3分)(2) ……(3分)(3)法一:直接由等价关系与划分之间的一一对应可知,包含R 的最小等价关系为: {<1, 2>, <1, 3>, <2, 1>,<2, 3>, <3, 1> <3, 2>}∪I A , ……(3分) 对应的划分为{{1, 2, 3},{4}}. ……(6分) 法二:包含R 的最小的等价关系就是tsr (R ), 计算过程如下:⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫⎝⎛=+=100001000110001110000100001000011000010001000011)(E M M R R r,100001100111001110000110001100011000010001100011][)()()(⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=+=T R r R r R sr M M M ,3,10001110111011110000110011100111000011001110011)]([)()()]([2≥=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛⨯⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⨯=k M M M M k R sr R sr R sr R sr 从而,10000111011101111000011101110111100001110111011110000111011101111000011001110011432)]([)]([)]([)()(⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=+++=R sr R sr R sr R sr R tsr M M M M M即}2,3,1,3,3,2,1,2,3,1,2,1{)(><><><><><><⋃=A I R tsr =包含R 的最小的等价关系, ……(3分) 故其对应的划分为{{1, 2, 3},{4}}. ……(6分) 法三:由于4=A ,包含R 的最小的等价关系就是4131211)()()()()()(----⋃⋃⋃⋃⋃⋃⋃⋃==R R R R R R R R I R rts R tsr A ,计算过程如下:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛+⎪⎪⎪⎪⎪⎭⎫⎝⎛=+=-⋃100001100101001110000110000100011000010001000011][1TR R R R M M M ⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=+=-⋃10000111011101111000011001010011)][(22)(21T R R R R M M M412131)()(33)(10000111011101111000011001010011)][(---⋃⋃⋃==⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=+=R R R R T R R R R M M M M M 考试纪律承诺本人自愿遵守学校考试纪律,保证以诚信认真的态度作答试卷。

离散数学试卷06-07(上)A

离散数学试卷06-07(上)A

合肥学院2007至2008学年第二学期《离散数学》课程考试( A )卷计算机 系 06 级 网络工程 专业 学号 姓名一、选择题:(每小题2分,计22分)1.前提,,p q q r r ⌝∨⌝∨⌝的结论是(A.qB.p ⌝C. p q ∨D p q ⌝→2.集合A={1,2,3,4},下列关系R 中不是等价关系的是( ) A. {1,1,2,2,3,3}R =〈〉〈〉〈〉;B.{1,1,2,2,3,3,3,2,2,3}R =〈〉〈〉〈〉〈〉〈〉;C.{1,1,2,2,3,3,1,4}R =〈〉〈〉〈〉〈〉;D.{1,2,2,1,1,3,3,1,2,3,3,2}A R I =〈〉〈〉〈〉〈〉〈〉〈〉⋃。

. 3.下列语句中哪个是命题( )A.我正在说谎。

B. 5x y + 。

C.地球之外还存在有智慧的动物。

D.请勿践踏草地! 4.设F(x):x 是火车,G(x):y 是汽车,H(x,y):x 比y 快。

命题“某些汽车比所有的火车慢”的符号化公式是( ).(()(()(,)))A y G y x F x H x y ∃→∀∧ .(()(()(,)B y G y x F x H x y ∃∧∀→ .(()(()(,)))C x y G y F x H x y ∀∃→∧ .(()(()(,)D y G y x F x H x y ∃→∀→ 5.利用谓词的约束变元的更名规则和自由变元的代人规则,可将公式(()(,))(,)x P x Q x y R x y ∀→∧改写为( )。

.(()(,))(,)A x P y Q x y R z s ∀→∧ .(()(,))(,)B z P z Q z s R x s ∀→∧ .(()(,))(,)C x P s Q x s R x s ∀→∧ .(()(,))(,)D z P s Q z s R z s ∀→∧6.下列公式中正确的等价式是( )。

.()()A xA x x A x ∃⇔∃⌝ .()()B xA x x A x ⌝∀⇔∃⌝.(,)(,)C x yA x y y xA x y ∀∃⇔∃∀.(()())(()())D x A x B x x A x B x ∀∧⇔∀∨7.设{},(())A B P P A =∅=,以下不正确的式子是( )。

离散数学卷2016-2017第一学期A卷

离散数学卷2016-2017第一学期A卷

贵州大学计算机科学与技术专业2016-2017学年第一学期考试试卷(A)离散数学及其应用注意事项:1. 请考生按要求在试卷装订线内填写姓名、学号和年级专业。

2. 请仔细阅读各种题目的回答要求,在规定的位置填写答案。

3. 不要在试卷上乱写乱画,不要在装订线内填写无关的内容。

4. 满分100分,考试时间为120分钟。

一.单项选择题(每小题2分,共20分)1. p:他努力学习,q:他取得好成绩,则命题“如果他努力学习,他一定取得好成绩”的符号化为()。

A.q→p B.p→q C.p∨q D.p∧ q2.设论域是集合{a ,b},消去公式(∃x)P(x)→(∃y)Q(y)中的量词后得()。

A.P(a)→Q(a) B.P(b)→Q(b)C.(P(a)∧P(b))→(Q(a)∧Q(b)) D.(P(a)∨P(b))→(Q(a)∨Q(b)) 3.f是A到B的双射,则f满足()。

A.单射 B.满射 C.单射和满射 D.以上说法都不对4.设A={1,2,3},R={<1,1>,<2,2>,<1,2>,<2,1>,<2,3>,<3,3>}是A上的二元关系,则下列说法正确的是()。

A.R是反自反的B. R是对称的C.R是可传递的D. R是自反的5. N为自然数集,〈N,+〉(其中+为普通加法)不能构成()。

A.半群 B.独异点 C.交换半群 D.群6.设S={a, b},P(S)为S的幂集合,则P(S)×S = ()。

A. S×SB. S×P(S)C. {<S, a>, <S, b>}D. {<φ,a>, <φ,b>, <{a},a>, <{a},b>, <{b},a>, <{b},b>, <S,a>, <S,b>}7. 设A={1,2,3,4},R={<1,1>,<1,4>,<2,1>,<3,4>,<4,1>}为A上的二元关系,则R R 中有()个有序对。

离散数学试题(A卷答案)

离散数学试题(A卷答案)

离散数学试题(A卷答案)一、证明题(10分)1)((P∨Q)∧⌝(⌝P∧(⌝Q∨⌝R)))∨(⌝P∧⌝Q)∨(⌝P∧⌝R)⇔T证明: 左端⇔((P∨Q)∧(P∨(Q∧R)))∨⌝((P∨Q)∧(P∨R))(摩根律)⇔ ((P∨Q)∧(P∨Q)∧(P∨R))∨⌝((P∨Q)∧(P∨R))(分配律)⇔ ((P∨Q)∧(P∨R))∨⌝((P∨Q)∧(P∨R)) (等幂律)⇔T(代入)2)∀x(P(x)→Q(x))∧∀xP(x)⇔∀x(P(x)∧Q(x))证明:∀x(P(x)→Q(x))∧∀xP(x)⇔∀x((P(x)→Q(x)∧P(x))⇔∀x((⌝P(x)∨Q(x)∧P(x))⇔∀x(P(x)∧Q(x))⇔∀xP(x)∧∀xQ(x)⇔∀x(P(x)∧Q(x))二、求命题公式(⌝P→Q)→(P∨⌝Q) 的主析取范式和主合取范式(10分)。

解:(⌝P→Q)→(P∨⌝Q)⇔⌝(⌝P→Q)∨(P∨⌝Q)⇔⌝(P∨Q)∨(P∨⌝Q)⇔(⌝P∧⌝Q)∨(P∨⌝Q)⇔(⌝P∨P∨⌝Q)∧(⌝Q∨P∨⌝Q)⇔(P∨⌝Q)⇔M1⇔m0∨m2∨m3三、推理证明题(10分)1)(P→(Q→S))∧(⌝R∨P)∧Q⇒R→S证明:(1)R 附加前提(2)⌝R∨P P(3)P T(1)(2),I(4)P→(Q→S) P(5)Q→S T(3)(4),I(6)Q P(7)S T(5)(6),I(8)R→S CP2) ∀x(P(x)∨Q(x)),∀x⌝P(x)⇒∃x Q(x)证明:(1)∀x⌝P(x) P(2)⌝P(c) T(1),US(3)∀x(P(x)∨Q(x)) P(4)P(c)∨Q(c) T(3),US(5)Q(c) T(2)(4),I(6)∃x Q(x) T(5),EG四、在边长为1的正方形内任意放置九个点,证明其中必存在三个点,使得由它们组成的三角形(可能是退化的)面积不超过1/8(5分)。

证明:把边长为1的正方形分成四个全等的小正方形,则至少有一个小正方形内有三个点,它们组成的三角形(可能是退化的)面积不超过小正方形的一半,即1/8。

《离散数学》试卷A及答案

《离散数学》试卷A及答案

《离散数学》试卷(A)适用专业: 考试日期:试卷类型:闭卷 考试时间:120分钟 试卷总分:100分一、单项选择题(本大题共8小题,每小题3分,共24分)1、下述哪一个不是命题?( ) A 、离散数学是计算机系的一门必修课 B 、不存在最大偶数。

C 、若我有空,我就看书。

D 、请勿随地叶痰!2、设A={a,b,c},B={1,2,3},以下哪一个关系是从A 到B 的双射函数?( ) A 、f={<a,2>,<b,2>,<c,1>} B 、f={<a,3>,<b,1>,<c,2>} C 、f={<a,1>,<b,2>,<c,3>,<a,3>} D 、f={<a,1>,<b,2>,<a,3>}3.设<G, 。

>是群,且|G|>1,则下列命题不成立的是( )A.G 中有幺元B. G 中有零元C.G 中任一元素有逆元D. G 中除幺元外无其它幂等元 4、设A={}c b a ,,,则下列是集合A 的划分的是( ) A.{}{}{}c c b ,, B. {}{}{}c a b a ,,, C.{}{}c b a ,, D.{}{}{}c b a ,, 5.设集合A={a,{b}},下面四个命题为真的是A.a 包含于AB.φ∈AC.{b}包含于AD.φ包含于A 6、下列是命题公式p ∧(q ∨⌝r)的成真指派的是( ) A.110,111,100 B.110,101,011 C 所有指派 D.无 7、与一阶公式P(x)→VxQ(x)等值的公式是A.P(y)→VyQ(y)B.P(y)→VxQ(y)C.P(x)→VyQ(y)D.P(z)→VyQ(y)8、设A 和B 都是命题,则A →B 的真值为假当且仅当( ) A 、A 为0 ,B 为1 B 、A 为0 ,B 为0 C 、A 为1 ,B 为1 D 、A 为1 ,B 为0二、填空题(本大题共7小题,每空3分,共21分)1..设A={a,b,c},F 是A 上的二元关系,F={<a,c>,<b,a>,<c,b>},则其自反闭包为r(F)= 。

离散数学试题及答案

离散数学试题及答案

离散数学考试试题(A卷及答案)一、(10分)某项工作需要派A、B、C和D 4个人中的2个人去完成,按下面3个条件,有几种派法?如何派?(1)若A去,则C和D中要去1个人;(2)B和C不能都去;(3)若C去,则D留下。

解设A:A去工作;B:B去工作;C:C去工作;D:D去工作。

则根据题意应有:A→C⊕D,⌝(B ∧C),C→⌝D必须同时成立。

因此(A→C⊕D)∧⌝(B∧C)∧(C→⌝D)⇔(⌝A∨(C∧⌝ D)∨(⌝C∧D))∧(⌝B∨⌝C)∧(⌝C∨⌝D)⇔(⌝A∨(C∧⌝ D)∨(⌝C∧D))∧((⌝B∧⌝C)∨(⌝B∧⌝D)∨⌝C∨(⌝C∧⌝D))⇔(⌝A∧⌝B∧⌝C)∨(⌝A∧⌝B∧⌝D)∨(⌝A∧⌝C)∨(⌝A∧⌝C∧⌝D)∨(C∧⌝ D∧⌝B∧⌝C)∨(C∧⌝ D∧⌝B∧⌝D)∨(C∧⌝ D∧⌝C)∨(C∧⌝ D∧⌝C∧⌝D)∨(⌝C∧D∧⌝B∧⌝C)∨(⌝C∧D∧⌝B∧⌝D)∨(⌝C∧D∧⌝C)∨(⌝C∧D∧⌝C∧⌝D)⇔F∨F∨(⌝A∧⌝C)∨F∨F∨(C∧⌝ D∧⌝B)∨F∨F∨(⌝C∧D∧⌝B)∨F∨(⌝C∧D)∨F⇔(⌝A∧⌝C)∨(⌝B∧C∧⌝ D)∨(⌝C∧D∧⌝B)∨(⌝C∧D)⇔(⌝A∧⌝C)∨(⌝B∧C∧⌝ D)∨(⌝C∧D)⇔T故有三种派法:B∧D,A∧C,A∧D。

二、(15分)在谓词逻辑中构造下面推理的证明:某学术会议的每个成员都是专家并且是工人,有些成员是青年人,所以,有些成员是青年专家。

解:论域:所有人的集合。

S(x):x是专家;W(x):x是工人;Y(x):x是青年人;则推理化形式为:∀x(S(x)∧W(x)),∃x Y(x)∃x(S(x)∧Y(x))下面给出证明:(1)∃x Y(x) P(2)Y(c) T(1),ES(3)∀x(S(x)∧W(x)) P(4)S( c)∧W( c) T(3),US(5)S( c) T(4),I(6)S( c)∧Y(c) T(2)(5),I(7)∃x S((x)∧Y(x)) T(6) ,EG三、(10分)设A、B和C是三个集合,则A⊂B⇒⌝(B⊂A)。

11-12-2离散数学A卷试题

11-12-2离散数学A卷试题

共 3 页 第 3 页 总印
份 (附卷纸 1 页)
七、(11 分)设 Q 是有理数集合,在 Q 上定义二元运算 如下:对任意 a,b Q , ab abab,
1.证明 0 是幺元且 Q, 是独异点; 2. Q, 是否有零元?若有零元,找出其零元; 3.任意 a Q ,若 a 有逆元,找出其逆元。
C. (P Q) R D. (P R) Q
3. 设集合 A {2, 3} , B {3,4} ,下列命题_______不正确。
课程名称:离散数学 试卷类型:A 卷
考试专业、年级:计科、软件 11 级
A. K[A] K[B] B.| P( A B) | 4 C. A B {2,4} D. A B {2} 4. 设 A={1, 2, 3},R 是集合 A 上的关系, R { 1,1 , 1, 2 , 2, 3 } ,则 R 是_______。
线
学号
线
共 3 页 第 1 页 总印
份 (附卷纸 1 页)
2012 年 7 月 4 日 西安邮电大学课程考试试题(A 卷)
考试用
(2011 —— 2012 学年度第 2 学期)
2. 设 P:2 是素数,Q:3 是素数,R: 2 是有理数。下列复合命题中_______是假命题。
A. (P Q) P B. R (P Q)

eabc
e
eabc
a
abce
b
bcea
c
ceab
则在 G, 中,c 为_______阶元, G, 的生成元总共有_______个。
6. 若图 G V , E 是自对偶的,且|V | n ,则| E | _____________。

离散数学试卷(A)

离散数学试卷(A)

离散数学试卷(A)一、单项选择题(每小题2分。

共20分)在每小题的四个备选答案中只有一个正确的答案。

请将正确答案的序号写在题干的括号内。

1.设集合A={2,{a},3,4},B = {{a},3,4,1},E 为全集,则下列命题正确的是( ).A.{2}∈AB.{a}⊆AC.∅⊆{{a}}⊆B ⊆ED.{{a},1,3,4}⊂ B.2.除非613≥ ,否则79≤。

令r: 613≥,s :79≤,可符号化为( ).A.s r →B. r s →⌝C. s r →⌝D. r s →3.使命题公式()p q q ∧→为假的赋值是( )A.10B.01C.00D.114. ()r q p ↔→的合取范式是( )A.()()()r q p r q r p ⌝∨∨⌝∧∨⌝∧∨;B. ()()()r q p r q q p ⌝∨∨⌝∧∨⌝∧∨C. ()()()r q p r q q p ⌝∨∨⌝∧∨∧∨;D. ()()()r q p r q r p ⌝∨∨⌝∧∨∧∨;5.判断下列各式中,不是合式公式的是 ( )A.S R Q ∧→B.()()S R P →↔C.()()()P Q Q P →→→⌝D.()K RS →6. 下列语句中是命题的只有( )A .1+1=10B .x+y=10C .sinx+siny<0D .x mod 3=2 7.设A={1,2,3,4,5},下面集合等于A 的是( )A .{1,2,3,4} B.{}252≤x x x 是整数,且C .{}5≤x x x 是正整数,且D .{}5≤x x x 是正有理数,且8.设f 和g 都是x 上的双射函数,则()1-g f ( ) A.11--g f B. ()1-f gC. 11--f gD. 1-g f9.下面等值式不正确的是:( C )A.A A A ⇔∨ ;B. ()B A B A ⌝∨⌝⇔∧⌝ ;C. ()B B A A ⇔∧∨;D. B A B A ∨⌝⇔→;10.R 代表实数集合,针对给定的函数集合f ,下面函数f: R R →属于双射的是:( )A. ()x x f 2=B. ()x x f sin =C. ()23x x x f -=D. ()x x f x +=2二、判断题(每题2分,共10分)11. A 是合式公式,但()B A ∨不一定就是合式公式( )12. q p →为真当且仅当p 与q 同时为真或同时为假( )13.设i i m M 与是命题变项1p ,2p ,。

2012~2013学年第一学期__离散数学__A卷_(2)

2012~2013学年第一学期__离散数学__A卷_(2)

上海第二工业大学(试卷编号:)2012~2013学年第一学期离散数学A 卷姓名:学号:班级:成绩:一、判断题(每小题2分,本题共10分) 1、若A B A C =,则B C =。

( 错 ) 2、设1ρ和2ρ是集合A 上的等价关系,则12ρρ是A 上的等价关系( 对 )3、若函数:f A B →,:g B C →,则若f 与g 的复合gf 是双射,则函数f 是双射。

( 错 )4、在有界格中,必有最大元和最小元。

( 对 )5、存在13个结点,并且每个结点的度均为3的图。

( 错 )二、填空题(每空2分,本题30分) 1、设集合{,{}}A a b =,{,}B a b =,则22AB =_______{空,{a}}________________,B A ⨯=_________{(a,a),(b,a),(a,{b}),(b,{b}}________________。

2、若{1,2,3,4}A =,则A 上共有___11_______个不同的自反关系。

3、假设{0,1,2,3}A =,1{(,)|2}i j j i ρ==+和2{(,)|2}i j i j ρ==+是A 上的关系,则12ρρ=_____{(0,0),(1,1)}__;21ρρ=___{(2,2),(3,3)};关系1ρ的自反闭包是:__{(0,0),(1,1),(2,2),(3,3),(0,2),(1,3)}__;关系2ρ的对称闭包是:_{(1,3),(3,1),(2,0),(0,2)}_。

4、命题P :“小李喜欢跳舞”,命题Q :“小李不喜欢唱歌”,则复合命题P Q ⌝∧表示:____小李不喜欢跳舞且不喜欢唱歌_____________________。

5、设集合{1,2,3,4}A =,{,,,}B a b c d =,则A B ⨯有___16__个序偶,A 到B 有___256____个关系,其中有____24____个是双射函数。

2006-2007《离散数学》期末试题A

2006-2007《离散数学》期末试题A

2006-2007《离散数学》期末试题A单项选择题:(每⼩题2分,共30分)1.下列语句是命题的有()。

[A] 明年中秋节的晚上是晴天; [B] 0x y +>;[C] 0xy >当且仅当x 和y 都⼤于0;[D] 我正在说谎。

2.下列命题真值为真者()[A] 若3+3=6则雪是⿊的 [B]2是⽆理数当且仅当印度位于⾮洲[C]“2或4是素数,这是不对的”是不对的[D] 只有2能被4整除,2才能被2整除3.设A={1 ,2 ,3 },则A 上有()个⼆元关系。

A 、23 ;B 、32 ;C 、322;D 、232。

4.在下述公式中是重⾔式为()A .)()(Q P Q P ∨→∧;B .))()(()(P Q Q P Q P →∧→??;C .Q Q P ∧→?)(;D .)(Q P P ∨→。

5.命题公式 )()(P Q Q P ∨?→→? 中成真赋值的个数为()。

A .0;B .1;C .2;D .3 。

6.下列等价关系正确的是()。

A 、(()())()()x P x Q x xP x xQ x ?∨??∨?;B 、(()())()()x P x Q x xP x xQ x ?∨??∨?;C 、(())()x P x Q xP x Q ?→??→;D 、(())()x P x Q xP x Q ?→??→。

7.令x x F :)(是飞机,y y G :)(是⽕车,x y x H :),(⽐y 跑得快,则公式:))),()(()((y x H y G y x F x →?∧?的含义是()[A]并不是所有的⽕车都⽐汽车跑得快[B]有的⽕车⽐所有的汽车跑得快 [C]不存在跑得⼀样快的⽕车与汽车[D]⽕车⽐汽车跑得快 8.公式),,(),,(z y x yG z y x xF ?→?中既呈约束出现⼜呈⾃由出现的变元是()[A]z x , [B]z y , [C]z [D]y x , 9.全体⼩项合取式为()。

离散数学试题A

离散数学试题A

天津师范大学考试试卷2009 —2010 学年第一 学期期末考试试卷(A 卷)科目: 离散数学学院: 管理学院专业:08信管、物流一、 单项选择题:在每小题的备选答案中选出一个正确答案,并将正确答案的代(每小题2分,本大题共20分)1.下面说法中不正确的是( )。

A. 在命题逻辑中,任何命题公式的主合取范式都是存在的,并且是唯一的。

B. 在命题逻辑中,命题公式的等价关系具有自反,对称和传递性。

C. 非空集合A 上的恒等关系既是A 上的等价关系,也是A 上的偏序关系。

D. 非空集合A2. 设A={1,2,3,4,5},下面( )集合等于A 。

A.{1,2,3,4}B.{x|x 是整数,且x 2≤25} C.{x|x 是正整数x ≤5} D.{x|x 3. 设A={1,2,4},B={1,3,{2}},下列各式成立的是( )。

A.{2}∈A B. {2}∈B C.{2}⊆B D. ∅∈A4. 已知集合A={a,b,c},A 上的两个二元关系:R 1={<a,b >,<a,c >,<b,c >},R 2={<a,b >,<a,a >},则R 1◦R 2=( )。

A. ∅B. {<a,b >,<a,c >,<b,c >}C. {<a,b >,<a,c >}D. {<a,b >,<a,a5.公式()()()()y x Q y x P x ,∃→∀的前束范式为( )。

A. ()()()()()y x Q x P y x ,→∀∀ B. ()()()()()y u Q x P y x ,→∃∃ C. ()()()()()y x Q x P y x ,→∀∃ D. ()()()()()y x Q x P y x ,→∃∃6. 将命题“若m 是奇数,则2m 是偶数”符号化为( )。

(大学试卷)2011.7《离散数学》考试卷A答案

(大学试卷)2011.7《离散数学》考试卷A答案

离散数学课程考试试卷A专业:信计考试日期: 所需时间:120分钟总分:100分 闭卷 一、选择题(每小题2分,总共20分)1、设P :我们划船,Q :我们跑步。

命题“我们不能既划船又跑步”符号化为( B )A 、Q P ⌝∧⌝B 、Q P ⌝∨⌝C 、)(Q P ↔⌝D 、)(Q P ⌝↔2、下列语句中哪个是真命题?( D )A 、我正在说谎。

B 、严禁吸烟C 、如果1+2=3,那么雪是黑的。

D 、如果1+2=5,那么雪是黑的。

3、命题公式Q Q P P →→∧))((是( C ) A 、矛盾式 B 、蕴含式 C 、重言式 D 、等值式4、谓词公式)())()((x Q y yR x P x →∃∨∀中变元x 是( D ) A 、自由变量 B 、约束变量 C 、既不是自由变量也不是约束变量 D 、既是自由变量也是约束变量5、若个体域为整数域,下列公式中哪个值为真?( A ) A 、)0(=+∃∀y x y x B 、)0(=+∀∃y x x y C 、)0(=+∀∀y x y x D 、)0(=+∃⌝∃y x y x6、设个体域A={a,b},公式)()(x xS x xP ∃∧∀在A 中消去量词应为( B ) A 、)()(x S x P ∧ B 、))()(()()(b S a S b P a P ∨∧∧ C 、)()(b S a P ∧ D 、)()()()(b S a S b P a P ∨∧∧8、设A={{1,2,3},{4,5},{6,7,8}},下列正确的是( C ) A 、1∈A B 、{1,2,3}⊆A C 、{{4,5}}⊂A D 、Φ∈A 9、幂集P (P (P (Φ)))为( C )A 、{{Φ},{Φ,{Φ}}}B 、{Φ,{Φ},{Φ,{Φ}}}C 、{Φ,{Φ},{Φ,{Φ}},{{Φ}}}D 、{Φ,{Φ,{Φ}}} 10、任意一个具有多个等幂元的半群,它( A )A 、不能构成群B 、不一定能构成群C 、能构成群D 、不能构成交换群 二、填空题(每小题3分,总共24分)1、设A 为任意的公式,B 为重言式,则B A ∨的类型为 重言式2、设q p q p →⌝为命题变项,,的成真赋值为10,11,013、设集合A={x|x <3,x ∈Z},B={x|x=2k,k ∈Z} C={1,2,3,4,5},则A ⊕(C-B )={0,2,4,6,7,8}4、某校有足球队员38人,篮球队员15人,排球队员20人,三队队员总数为58人,其中只有3人同时参加3种球队,则仅仅参加两种球队的队员为9人 。

离散数学`试卷A

离散数学`试卷A

一、基础知识(40分)1.判断下列句子是否是命题,若是命题将其符号化。

(4分)①.李平虽然聪明,但不用功。

②.除非你陪伴我或代我雇辆车子,否则我不去。

2.在一阶逻辑中将下列命题符号化。

(4分)①.任何自然数不是奇数就是偶数,偶数均能被2整除,奇数均不能被2整除。

②.任意实数的平方都不小于0。

3.求下列集合的幂集。

(4分)①.A={φ,{φ}}②.B={{φ,a},{a}}4.设f,g,h∈R R,且有f(x)=x+3,g(x)=2x+1,h(x)=x/2。

求g◦g,h◦f,g◦h,f◦h,f◦h◦g.(6分)5.设集合A={0,1,2,3,4},定义A上的二元关系R为:R={<x,y>⎪x,y∈A∧(x=y∨x+y∈A)},请写出二元关系R的集合表达式,并判断R具有的性质。

(6分)6.已知图G中有10条边,4个3度顶点,其余顶点的度数均小于等于2,则G中至少有多少个顶点?(4分)7.在下面各图中,哪些是欧拉图,哪些是哈密尔顿图?(4分)8. 设代数系统<A,*>,其中A={a,b,c},A 上的二元运算*定义如下表:请分析*运算的封闭性、交换性、等幂性。

A 中关于*是否有幺元和零元?如有幺元,每个元素是否有逆元?如有,求出逆元。

(8分)二、理解运用(30分)9. 证明逻辑等价式A ↔B ⇔ (A ∧B)∨(┐A ∧┐B)成立。

(6分)10. 求下列命题公式的主析取范式和所有成假赋值。

)())((r q p r q p ∧∧→∧∨(6分)11. 求谓词公式的前束范式。

(6分)12. 令A={1,2,3,4,5,6}, 画出偏序集<A ,整除>的哈斯图,并求(1)集合A 的最大元、最小元、极大元和极小元;(2)集合B ={2,3,6}的上界、下界、最小上界、最大下界。

(6分)13. 求带权图1的最小生成树及权(6分)图1三、综合能力(30分)14.用推理理论证明下面结论是否有效?如果今天是星期三,那么我有一次离散数学或数字逻辑测验。

离散数学试题A卷及答案

离散数学试题A卷及答案

离散数学试题A卷及答案一、单项选择题(每题2分,共10分)1. 在集合{1,2,3}中,子集的个数是多少?A. 3B. 7C. 8D. 9答案:C2. 以下哪个命题是真命题?A. ∃x∈R, x^2 = -1B. ∀x∈R, x^2 ≥ 0C. ∀x∈R, x^2 = 1D. ∃x∈R, x^2 = 2答案:B3. 函数f: N → N定义为f(x) = 2x,该函数是:A. 单射B. 满射C. 双射D. 非函数答案:A4. 以下哪个逻辑表达式等价于p∧(q∨¬p)?A. p∧qB. p∨qC. ¬p∨qD. p∧¬p答案:A5. 以下哪个图是二分图?A. 完全图K5B. 完全二分图K3,3C. 环图C5D. 星形图K1,4答案:B二、填空题(每题3分,共15分)1. 若A={1,2,3},B={2,3,4},则A∩B=______。

答案:{2,3}2. 命题“若x>0,则x^2>0”的逆否命题是:若x^2≤0,则______。

答案:x≤03. 在一个有向图中,若存在从顶点u到顶点v的有向路径,则称v可到达u,若图中每个顶点都可到达其他所有顶点,则称该有向图是______。

答案:强连通的4. 一个集合的幂集包含该集合的所有______。

答案:子集5. 在逻辑中,合取(AND)操作符用符号______表示。

答案:∧三、解答题(每题10分,共20分)1. 证明:若A⊆B且B⊆C,则A⊆C。

证明:设x∈A,则由A⊆B,可得x∈B。

又由B⊆C,可得x∈C。

因此,A⊆C。

2. 给定一个图G,包含顶点集V={v1, v2, v3, v4}和边集E={(v1,v2), (v2, v3), (v3, v4), (v4, v1), (v1, v3), (v2, v4)},请判断该图是否是欧拉图,并说明理由。

答案:该图是欧拉图。

因为该图是连通的,且每个顶点的度都是偶数。

结束语:本试题涵盖了离散数学中的基本概念和原理,通过这些题目的练习,可以加深对离散数学知识的理解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2006级离散数学(2)期终考试试题(A 卷)
2008年1月12日
一、判断题(每题2分,共20分)
( )1. 若A - B = ∅,则A = B 。

( )2. 若A ⊆ B ,则P (A) ⊆ P (B),其中P (A) 为A 的幂集。

( )3. 若集合A 上的二元关系R 是反对称的,则R 2也是反对称的。

( )4. 若R 是集合A 上的二元关系,则st (R) = ts (R)。

( )5. 良序关系的逆关系必为良序关系。

( )6. 有限集A 上的满射f : A → A 必为双射。

( )7. 自然数的幂集P (N) 的基数等于实数 R 的基数。

( )8. 任何图均有偶数个奇结点。

( )9. 无向图G 有欧拉闭路 当且仅当 G 是欧拉图。

( )10. 若T 为阶大于2的树,则T 至少有一个结点的度数大于等于2。

二、设A = {a ,b ,c ,d} 上的二元关系1R 和2R 定义如下: (16分)
R 1 = {<a, b>, <b, c>, <c, d>, <d, a>}
R 2 = I A ∪ {<a, b>, <b, a>, <c, d>, <d, c> }
i ) 试分别指出1R 和2R 所具有的性质(即是否具有自反性、反自反性、对称性、反对称性
和传递性这五种性质)。

ii ) 试求出R 12,21R R 和R 2+。

三、设R 为集合A 上的二元关系,证明: (16分)
1)若R 既是自反的,又是传递的,则R 2 = R 。

2)若R 是传递的,则R 2 也是传递的。

四、设〈A ,≤ 〉为偏序结构,函数f :A → P (A) 定义如下: (16分)
f (a) = { x | x ∈A 且x ≤ a }, 其中 a ∈A
证明:
1)f 为单射;
2)对任意a, b ∈A ,若a ≤ b ,则f (a) ≤ f (b)。

其中P (A)为A 的幂集。

五、求出下图G 的一个最小生成树。

(10分)
六、试求叶的权分别为2,3,5,8,13,21,34的最优叶加权二叉树及其叶加权路径长度。

(16分)
七、任选一小题 (6分)
1)设A 为有限集,f : A → A 为双射。

证明:存在自然数n ≥1使 f n = I A 。

2)设n 阶简单无向图G 的边数 )2)(1(21-->
n n m 。

证明:G 必为连通的。

相关文档
最新文档