九年级数学一元二次方程2
人教版九年级上册数学——一元二次方程知识点总结
21章 一元二次方程知识点一、一元二次方程1、一元二次方程概念:等号两边是整式,含有一个未知数,并且未知数的最高次数是2的方程叫做一元二次方程。
注意:(1)一元二次方程必须是一个整式方程;(2)只含有一个未知数;(3)未知数的最高次数是2 ;(4)二次项系数不能等于02、一元二次方程的一般形式:)0(02≠=++a c bx ax ,它的特征是:等式左边是一个关于未知数x 的二次三项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项。
注意:(1)二次项、二次项系数、一次项、一次项系数,常数项都包括它前面的符号。
(2)要准确找出一个一元二次方程的二次项系数、一次项系数和常数项,必须把它先化为一般形式。
(3)形如02=++c bx ax 不一定是一元二次方程,当且仅当0≠a 时是一元二次方程。
二、 一元二次方程的解使方程左、右两边相等的未知数的值叫做方程的解,如:当2=x 时,0232=+-x x 所以2=x 是0232=+-x x 方程的解。
一元二次方程的解也叫一元二次方程的根。
一元二次方程有两个根(相等或不等)三、一元二次方程的解法1、直接开平方法:直接开平方法理论依据:平方根的定义。
利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。
根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根。
三种类型:(1)()02≥=a a x 的解是a x ±=;(2)()()02≥=+n n m x 的解是m n x -±=;(3)()()0,02≥≠=+c m c n mx 且的解是mn c x -±=。
2、配方法:配方法的理论根据是完全平方公式222)(2b a b ab a +=+±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±。
九年级上第02讲 一元二次方程的解法(公式法、因式分解法)讲义+练习
因式分解法解一元二次方程.
【知识导图】
1、观察一元二次方程 ,结合我们上节课学的知识解此方程.
2、思考这个一元二次方程还有没有其它的解法?
3、今天我们学习一元二次方程另外的解法:公式法、因式分解法.
1、形成表象,提出问题
用配方法解下列一元二次方程:
(1)x2+4x+2=0 ; (2)3x2-6x+1=0;
∴把m=1代入方程mx2﹣3mx+m﹣1=0得:x2﹣3x+1﹣1=0,
x2﹣3x=0,
x(x﹣3)=0,
x1=0,x2=3;
把m=﹣1代入方程mx2﹣3mx+m﹣1=0得:﹣x2+3x﹣2=0,
x2﹣3x+2=0,
(x﹣1)(x﹣2)=0,
x1=1,x2=2;
(3)|m|≤2不成立,理由是:
由(1)知:k≥﹣1且k≠1且k≠2,
一元二次方程的解法
(配方法和因式分解法)
适用学科
初中数学
适用年级
初三
适用区域
人教版区域
课时时长(分钟)
120
知识点
1、根的判别式;
2、公式法解一元二次方程;
3、因式分解法解方程.
教学目标
1、掌握公式法解一元二次方程的方法.
2、掌握应用因式分解法解某些系数较为特殊的一元二次方程的方法.
教学重点
能根据题目的要求及特点用恰当的方法求解方程.
我们仍以方程x2=4为例.
移项,得x2-4=0,
对x2-4分解因式,得(x+2)(x-2)=0.
我们知道:
∴x+2=0,x-2=0.
即x1=-2,x2=2.
专题02一元二次方程及其解法(二)(解析版)-2021—2022学年九年级数学上学期
2021—2022学年九年级数学上学期重难点题型专项提优02 一元二次方程及其解法(二)【例题精讲】一、一元二次方程根与系数的关系例1.已知关于x 的一元二次方程220x x k +-=有两个不相等的实数根. (1)求k 的取值范围;(2)若方程的两个不相等的实数根是a ,b ,求111ab a -++的值. 【解析】解:(1)根据题意得△2240k =+>, 解得1k >-,k ∴的取值范围为1k >-; (2)由根与系数关系得2a b +=-,a b k =-,111111121a ab kb a ab a b k -+-===-+++++--+. 例2.已知α,β是方程2201710x x ++=的两个根,则22(12019)(12019)ααββ++++的值为 A .1 B .2C .3D .4【答案】D【解析】∵α,β是方程2201710x x ++=的两个根,2201710αα∴++=,2201710ββ++=,2017αβ+=-,1αβ=,22(12019)(12019)ααββ∴++++22(120172)(120172)αααβββ=++++++4αβ=4=.例3.阅读材料:已知方程210p p --=,210q q --=且1pq ≠,求1pq q+的值. 解:由210p p --=,及210q q --=,可知0p ≠,0q ≠.又1pq ≠,1p q∴≠. 210q q --=可变形为211()()10q q --=.根据210p p --=和211()()10q q--=的特征.p ∴、1q是方程210x x --=的两个不相等的实数根, 则11p q +=,即11pq q+=. 根据阅读材料所提供的方法,完成下面的解答. 已知:22510m m --=,21520n n+-=且m n ≠,求 (1)mn 的值;(2)2211m n +. 【解析】解:21520n n+-=, 22510n n ∴--=,根据22510m m --=和22510n n --=的特征, m ∴、n 是方程22510x x --=的两个不相等的实数根,52m n ∴+=,12mn =-, (1)12mn =-;(2)原式2222512()()242291()()2m n mn mn -⨯-+-===-. 变式训练:1.已知2210a a --=,2210b b +-=,且1ab ≠,则1ab b b++的值为 . 【答案】3【解析】2210b b +-=,0b ∴≠,方程两边同时除以2b ,再乘1-变形为211()210b b -⋅-=,1ab ≠,a ∴和1b 可看作方程2210x x --=的两根,12a b∴+=, ∴111213ab b a bb++=++=+=.2.已知关于x 的一元二次方程22(1)0x x m -++=.(1)m 为何值时,方程有两个不相等的实数根;(2)若该方程有两根为1x ,2x ,且2123x x +=,求m 的值.【解析】解:(1)关于x 的一元二次方程22(1)0x x m -++=有两个不相等的实数根,∴△2(1)412(1)0m =--⨯⨯+>,78m ∴<-.(2)1x ,2x 为一元二次方程22(1)0x x m -++=的两根,121x x ∴+=,2112(1)0x x m -++=.22121112()3x x x x x x +=-++=,即2(1)13m -++=,2m ∴=-.二、与一元二次方程有关的新定义问题例1.对于实数m ,n ,先定义一种新运算“⊗”如下:22,,,m m n m n m n n m n m n ⎧++⊗=⎨++<⎩当时当时,若(2)10x ⊗-=,则实数x 等于 A .3B .4-C .8D .3或8【答案】A【解析】解:当2x -时,2210x x +-=,解得:13x =,24x =-(不合题意,舍去);当2x <-时,2(2)210x -+-=,解得:8x =(不合题意,舍去);3x ∴=.例2.如果关于x 的一元二次方程20ax bx c ++=有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的个数有 ①方程220x x --=是倍根方程;②若(2)()0x mx n -+=是倍根方程,则22450m mn n ++=;③若p 、q 满足2pq =,则关于x 的方程230px x q ++=是倍根方程;④若方程20ax bx c ++=是倍根方程,则必有229b ac =. A .1 B .2C .3D .4【答案】C【解析】①解方程220x x --=得,12x =,21x =-,得,122x x ≠,∴方程220x x --=不是倍根方程;故①不正确;②若(2)()0x mx n -+=是倍根方程,12x =,因此21x =或24x =,当21x =时,0m n +=,当24x =时,40m n +=,2245()(4)0m mn n m n m n ∴++=++=,故②正确;③2pq =,则23(1)()0px x q px x q ++=++=,∴11x p =-,2x q =-,∴2122x q x p=-=-=, 因此是倍根方程,故③正确;④方程20ax bx c ++=的根为:1x 2x =若122x x =220=,∴0=,∴0b +,∴b -,229(4)b ac b ∴-=,229b ac ∴=.若122x x =2=,20=,∴0=,∴0b -+,∴b =229(4)b b ac ∴=-,229b ac ∴=.故④正确, ∴正确的有:②③④共3个.例3.转化是数学解题的一种极其重要的数学思想,实质是把新知识转化为旧知识,把未知转化为已知,把复杂的问题转化为简单的问题.例如,解方程42340x x --=时,我们就可以通过换元法,设2x y =,将原方程转化为2340y y --=,解方程得到11y =-,24y =,因为20x y =,所以1y =-舍去,所以得到24x =,所以12x =,22x =-.请参考例题解法,解方程:2320x x +=.y =,则223x x y +=.原方程可转化为:220y y --=.(2)(1)0y y ∴-+=.12y ∴=,21y =-.当2y =2,234x x ∴+=.即2340x x +-=.解这个方程得14x =-,21x =.20y x x =,1y ∴=-舍去.所以原方程的解为:14x =-,21x =.例4.阅读并回答问题:小亮是一位刻苦学习、勤于思考、勇于创新的同学.一天他在解方程21x =-时,突发奇想:21x =-在实数范围内无解,如果存在一个数i ,使21i =-,那么当21x =-时,有x i =±,从而x i =±是方程21x =-的两个根. 据此可知:(1)i 可以运算,例如:321i i i i i ==-⨯=-,则4i = ,2011i = ,2012i = ; (2)方程2220x x -+=的两根为 (根用i 表示). 【解析】解:(1)21i =-,422(1)(1)1i i i ∴==-⨯-=;2011210051005()(1)i i i i i ==-=-;2012210061006()(1)i i i i i ==-=.(2)△2(2)4124=--⨯⨯=-,21i =-,∴△24i =,∴方程2220x x -+=的两根为22121ix i ±==±⨯,即1x i =+或1x i =-. 例5.将关于x 的一元二次方程20x px q -+=变形为2x px q =-,就可以将2x 表示为关于x 的一次多项式,从而达到“降次”的目的;例如32()x x x x px q =⋅=-=,该方程变形为2x px q -=-,也可以实现“降次”目的,我们将这种方法称为“降次法”,通过这种方法可以化简次数较高的代数式,请利用“降次法”解决下列问题:已知:2210x x --=,且0x >,求4323x x x --的值.【解析】解:方程2210x x --=的解为:1x ==±0x >.所以1x =+2210x x --=,221x x ∴-=,221x x ∴-=.4323x x x ∴--22(2)3x x x x =--23x x =-213x x =+-1x =-.当1x =1(1=-+=变式训练:1.阅读材料:解方程222(1)3(1)0x x ---=.我们可以将21x -视为一个整体,采用“换元法”求解,具体解法:设21x y -=,原方程化为230y y -=①解得10y =,23y =.当0y =时,210x -=.1x ∴=±,当3y =时,213x -=,2x ∴=±,∴原方程的解为11x =,21x =-,32x =,42x =-.请利用换元法解出方程220x -=的根.y =,221y x =-,原方程可变形为:2430y y -+=.(1)(3)0y y ∴--=.11y ∴=,23y =.当1y =1=, 两边平方,得22x =,1x ∴=2x =当3y =3, 两边平方,得210x =,3x ∴=4x =所以1x =2x =,3x =,4x =2.材料一:对称美不仅仅是图形之美,代数式中也有对称的结构之美,对称不仅仅给我们以美的体验,还能帮助我们解决问题.如:2310x x -+=中,因为左边代数式中三项系数依次为:1,3-,1,是呈对称结构的,于是我们可将它变形为130x x -+=,进而可以变形为13x x +=,以此为条件便可以得到22211()27x x x x+=+-=. 材料二:你知道我们为什么要因式分解吗?原因有二:一是化简,如220x x --=(x =-2)(1)x +中,我们通过因式分解将左边的二次式变成了两个一次式的乘积,次数降低了,式子也变简单了;二是增加了信息量,如220x x --=中,x 的取值信息不太明确,但是(2)(1)0x x -+=中,我们可以很快得到,2x =或者1x =-.利用上述材料解决下列问题: (1)材料一中,2310x x -+=到13x x+=的变形成立的前提条件是 . (2)为解系数对称的方程4310x x x --+=,陈功同学结合材料将它变形为1(2)x x +- 1(1)0x x++=,显然110x x ++≠,则只能是120x x+-=,进而解得121x x ==,请将从4310x x x --+=到11(2)(1)0x x x x+-++=的变形过程补充完整. (3)运用材料一、材料二以及第(2)问的解题经验,解方程:432223x x x +-26x +⨯26+ 0=. 【解析】解:(1)由题意知:0x ≠. (2)4310x x x --+=.421(1)x x x ∴+=+.两边同时除以2x 得:2211x x x x+=+. ∴211()2x x x x +-=+.∴211()()20x x x x +-+-=.11(2)(1)0x x x x ∴+-++=.显然110x x ++≠.120x x∴+-=.解得121x x ==. (3)方程两边同时除以2x 得:2212362230x x x x +-++=.∴266()2()350x x x x+++-=.66(7)(5)0x x x x ∴+++-=.670x x ∴++=或650x x+-=. 当670x x++=时,2760x x ++=.(1)(6)0x x ∴++=.1x ∴=-或6x =-. 当650x x+-=时,2560x x -+=.(2)(3)0x x ∴--=.2x ∴=或3x =. 综上:方程的解为:1x =-或6-或2或3. 【针对练习】1.若关于x 的一元二次方程2(1)220a x x --+=有实数根,则整数a 的最大值为A .1-B .0C .1D .2【答案】B【解析】关于x 的一元二次方程2(1)220a x x --+=有实数根,∴△2(2)8(1)1280a a =---=-且10a -≠,32a∴且1a ≠,∴整数a 的最大值为0. 2.下列一元二次方程中,没有实数根的是 A .220x x -= B .2210x x -+=C .2210x x --=D .2210x x -+=【答案】D【解析】解:(A )△4=,故选项A 有两个不同的实数根; (B )△440=-=,故选项B 有两个相同的实数根; (C )△1429=+⨯=,故选项C 有两个不同的实数根; (D )△187=-=-,故选项D 没有两个不同的实数根.3.关于x 的方程220x mx n ++=的两个根是2-和1,则m n 的值为 A .8-B .8C .16D .16-【答案】C 【解析】关于x 的方程220x mx n ++=的两个根是2-和1,12m ∴-=-,22n=-,2m ∴=,4n =-,2(4)16m n ∴=-=. 4.已知实数x 满足222(21)4(21)50x x x x -++-+-=,那么221x x -+的值为 A .5-或1 B .1-或5 C .1 D .5【答案】C【解析】设221y x x =-+,则2450y y +-=.整理,得(5)(1)0y y +-=.解得5y =-(舍去)或1y =.即221x x -+的值为1.5.如果1x ,2x 是两个不相等实数,且满足21121x x -=,22221x x -=,那么2212x x +等于A .2B .2-C .1-D .6【答案】D【解析】1x ,2x 是两个不相等实数,且满足21121x x -=,22221x x -=,1x ∴,2x 是方程2210x x --=的两个不相等的实数根,则122x x +=,121x x =-,2212x x ∴+21212()2x x x x =+-222(1)=-⨯-42=+6=.6.若关于x 的一元二次方程220x kx --=的一个根为1x =,则k = . 【答案】﹣1【解析】把1x =代入方程220x kx --=得120k --=,解得1k =-.7.若实数a ,b 满足()(221)1a b a b ++-=,则a b += .【答案】1或12-【解析】设a b x +=,则(21)1x x -=,2210x x --=,(1)(21)0x x -+=,解得11x =,12x =-,则1a b +=或12-.8.定义:如果两个一元二次方程有且只有一个相同的实数根,我们称这两个方程为“友好方程”,如果关于x 的一元二次方程220x x -=与2310x x m ++-=为“友好方程”,则m 的值 . 【答案】1或﹣9【解析】解方程220x x -=,得:10x =,22x =. ①若0x =是两个方程相同的实数根.将0x =代入方程2310x x m ++-=,得:10m -=,1m ∴=,此时原方程为230xx +=,解得:10x =,23x =-,符合题意,1m ∴=; ②若2x =是两个方程相同的实数根.将2x =代入方程2310x x m ++-=,得:4610m ++-=,9m ∴=-,此时原方程为23100x x +-=,解得:12x =,25x =-,符合题意,9m ∴=-.综上所述:m 的值为1或9-.9.若关于x 的一元二次方程2220(0)x x m m m +--=>,当1m =、2、3、2020时,相应的一元二次方程的两个根分别记为1α、1β,2α、2β,…,2020α、2020β,则11221111αβαβ+++2020202011αβ+++的值为 .【答案】40402021【解析】2220x x m m +--=,1m =,2,3,⋯,2020,∴由根与系数的关系得:112αβ+=-,1112αβ=-⨯;222αβ+=-,2223αβ=-⨯;202020202αβ+=-,2020202120202021αβ=-⨯;∴原式3320202020112211223320202020αβαβαβαβαβαβαβαβ++++=++++222212233420202021=++++⨯⨯⨯⨯1111111140402(1)2(1)223342020202120212021=⨯-+-+-++-=⨯-=. 10.已知关于x 的一元二次方程:21(21)4()02x k x k -++-=.(1)求证:这个方程总有两个实数根;(2)若等腰ABC ∆的一边长4a =,另两边长b 、c ,恰好是这个方程的两个实数根,求ABC ∆的周长. (3)若方程的两个实数根之差等于3,求k 的值.【解析】解:(1)△21(21)414()2k k =+-⨯⨯-24129k k =-+2(23)k =-,无论k 取何值,2(23)0k -,故这个方程总有两个实数根;(2)由求根公式得21(23)2k k x +±-=,121x k ∴=-,22x =.另两边长b 、c ,恰好是这个方程的两个实数根, 设21b k =-,2c =,当a ,b 为腰时,则4a b ==,即214k -=,计算得出52k =, 此时三角形周长为44210++=;当b ,c 为腰时,2b c ==,此时b c a +=,构不成三角形, 故此种情况不存在.综上所述,ABC ∆周长为10. (3)方程的两个实数根之差等于3,∴2123k --=,解得:0k =或3.11.已知关于x 的一元二次方程2(12)20kx k x k +-+-=.(1)若方程有两个不相等的实数根,求k 的取值范围;(2)当k 取满足(1)中条件的最小整数时,设方程的两根为α和β,求代数式322017αββ+++的值.【解析】解:(1)根据题意得0k ≠且△(12)24(2)0k k k =--->,解得14k >-且0k ≠; (2)k 取满足(1)中条件的最小整数,1k ∴=.此时方程变为210x x --=,1αβ∴+=,1αβ=-,210αα--=,210ββ--=,21αα∴=+,21ββ=+,32121αααααα∴=+=++=+,322017αββ∴+++2112017αββ=+++++2()2019αβ=++212019=⨯+2021=.12.已知关于x 的一元二次方程2260(x x k k --=为常数).(1)求证:方程有两个不相等的实数根;(2)设1x ,2x 为方程的两个实数根,且12214x x +=,试求出方程的两个实数根和k 的值.【解析】解:(1)证明:在方程2260x x k --=中,△222(6)41()36436k k =--⨯⨯-=+,∴方程有两个不相等的实数根.(2)1x ,2x 为方程2260x x k --=的两个实数根,126x x ∴+=,12214x x +=,28x ∴=,12x =-.将8x =代入2260x x k --=中,得:264480k --=,解得:4k =±. 答:方程的两个实数根为2-和8,k 的值为4±. 13.阅读下面的例题:解方程2||20m m --=的过程如下:(1)当0m 时,原方程化为220m m --=,解得:12m =,21m =-(舍去).(2)当0m <时,原方程可化为220m m +-=,解得:12m =-,21m =(舍去).原方程的解:12m =,22m =-.请参照例题解方程:2|1|10m m ---=.【解析】解:当1m 时,原方程化为20m m -=,解得:11m =,20m =(舍去).当1m <时,原方程可化为220m m +-=,解得:12m =-,21m =(舍去).原方程的解:11m =,22m =-.14.如果关于x 的一元二次方程20(0)ax bx c a ++=≠有两个实数根,且其中一个根比另一个根大1,那么称这样的方程为“邻根方程”.例如,一元二次方程20x x +=的两个根是10x =,21x =-,则方程20x x +=是“邻根方程”.(1)通过计算,判断下列方程是否是“邻根方程”:①260x x --=;②2210x -+=.(2)已知关于x 的方程2(1)0(x m x m m ---=是常数)是“邻根方程”,求m 的值;(3)若关于x 的方程210(ax bx a ++=、b 是常数,0)a >是“邻根方程”,令28t a b =-,问:存在多少组a 、b 的值使得t 为正整数?请说明理由.【解析】解:(1)①解方程得:(3)(2)0x x -+=,3x =或2x =-, 231≠-+,260x x ∴--=不是“邻根方程”;②x =,1=+,2210x ∴-+=是“邻根方程”;(2)解方程得:()(1)0x m x -+=, x m ∴=或1x =-,方程2(1)0(x m x m m ---=是常数)是“邻根方程”,11m ∴=-+或11m =--, 0m ∴=或2-;(3)解方程得,x =,关于x 的方程210(ax bx a ++=、b 是常数,0)a >是“邻根方程”,∴1=,224b a a ∴=+, 28t a b =-,22t a a a∴=-=--+,4(2)4a>,∴有最大值,最大值为4,tt为正整数,∴=或2或3或4,t1∴当a取7个值,b对应有14个值,∴存在14组a、b的值使得t为正整数.。
人教版九年级数学课件《一元二次方程的解法(二)配方法》
复习回顾
人教版数学九年级上册
1.用直接开平方法解下列方程: (1) 9x2=1 ;
解:
直接开平方,得
x 1, 3
x1
1 3
,x2
1 3
(2) (x-2)2=2. 解:
直接开平方,得
复习回顾
人教版数学九年级上册
2.下列方程能用直接开平方法来解吗?
把两题转化成 (x+n)2=p(p≥0)的 形式,再利用开平方
3 2
x
3 4
2
1 2
3 4
2
,
由此可得 x 4 15,
x1 4 15, x2 4 15.即x3 42
1 16
,
由此可得 x 3 1 ,
4
x1
4
1, x2
1. 2
典例解析
例1 解下列方程:
3 3x2 6x 4 0
解:移项,得 3x2 6x 4,
人教版数学九年级上册
※方程配方的方法
在方程两边都加上一次项系数一半的平方.注意是在二次项系数 为1的前提下进行的.
知识精讲
※配方法的定义
人教版数学九年级上册
像上面这样通过配成完全平方式来解一元二次方程,叫做 配方法.
※配方法解方程的基本思路
把方程化为(x+n)2=p的形式,将一元二次方程降次,转 化为一元一次方程求解.
小结梳理
人教版数学九年级上册
一、概念:
把一元二次方程通过配成完全平方式来解一元二次方 程,叫做配方法.
二、步骤:
①移项,二次项系数化为1;②左边配成完全平方式;
③左边写成完全平方形式;④降次;⑤解一次方程. 特别提醒:在使用配方法解方程之前先把方程化为
2021年九年级数学中考复习——方程专题:一元二次方程实际应用(二)
2021年九年级数学中考复习——方程专题:一元二次方程实际应用(二)1.某商场销售一款消毒用湿巾,这款消毒用湿巾的成本价为每包6元,当销售单价定为10元时,每天可售出80包,根据市场行情,现决定降价销售,市场调研反映:销售单价每降低0.5元,则每天可多售出20包,为使每天这种消毒湿巾的利润达到360元,商场应把这种消毒湿巾降价多少元?12.某商场某型号的计算机2018年销售量为2880台,2020年受疫情影响,年销售量下降为2000台,求销售量的年平均下降率.若每件商品降价2元,则平均每天盈利多少元?(2)当每件商品降价多少元时,该商店每天的盈利为320元?5.深圳市某商场销售某女款上衣,刚上市时每件可盈利100元,销售一段时间后开始滞销,经过连续两次降价后,每件盈利为81元,平均每天可售出20件.(1)求平均每次降价的百分率;(2)为扩大销售量,尽快减少库存,在“双十一”期间该商场决定再次采取适当的降价措施,经调查发现,一件女款上衣每降价1元,每天可多售出2件.若商场每天要盈利2940元,每件应降价多少元?6.为满足市场需求,某工厂决定从2月份起扩大产能,其中2020年1~4月份的产量统计如图所示.求从2月份到4月份的月平均增长率.7.某旅游园区对团队入园购票规定:如团队人数不超过a人,那么这个团队需交200元入园费;若团队人数超过a人,则这个团队除了需交200元入园费外,超过部分游客还要按每人元交入园费.下表是两个旅游团队人数和入园缴费情况:旅游团队名称团队人数(人)入园费用(元)旅游团队180350旅游团队245200根据表格的数据,求某旅游园区对团队入园购票规定的a人是多少?8.某商家将进货单价40元的商品按50元出售,能卖出500件,已知这种商品每涨价0.4元,就会少销售4件.商家为了赚得8000元的利润,每件售价应定为多少?9.如图,要设计一个长为15cm,宽为10cm的矩形图案,其中有两横两竖彩条,横竖彩条的宽度之比为5:4,若使所有彩条所占面积是原来矩形图案面积的三分之一,应如何设计每个彩条的宽度?10.某汽车4S店销售某种型号的汽车,每辆进货价为15万元,该店经过一段时间的调研发现:当销售价为25万元时,平均每周能售出8辆,而当销售价每降低1万元时,平均每周能多售出2辆.该4S店要想平均每周的销售利润为96万元,并且使成本尽可能的低,则每辆汽车的定价应为多少万元?参考答案1.解:设这种消毒湿巾降价x元,依题意得:(10﹣x﹣6)(80+×20)=360.解得x1=x2=1.答:商场应把这种消毒湿巾降价1元.2.解:设销售量的年平均下降率为x,依题意可列:2880(1﹣x)2=2000,解得:x1≈0.2=20%.x2≈1.8(舍去).答:销售量的年平均下降率为20%.3.解:设围成的矩形场地一边长为xm,则相邻的另一边长为(20﹣x)m,依题意得:x(20﹣x)=75,整理得:x2﹣20x+75=0,解得:x1=5,x2=15,当x=5时,20﹣x=15;当x=15时,20﹣x=5.∴能围成一个面积为75m2的矩形场地,矩形场地相邻的两边长度分别为15m和5m.不能围成一个面积为101m2的矩形场地,理由如下:设围成的矩形场地一边长为ym,则相邻的另一边长为(20﹣y)m,依题意得:y(20﹣y)=101,整理得:y2﹣20y+101=0,∵△=(﹣20)2﹣4×1×101=﹣4<0,∴不能围成一个面积为101m2的矩形场地.4.解:(1)根据销售单价每降低1元,平均每天可多售出2件,可得若降价2元,则平均每天可多售出2×2=4(件),即平均每天销售数量12+4=16(件),利润为:18×16=288.(2)设每件商品降价x元时,该商品每天的销售利润为320元,由题意得:(20﹣x)(12+2x)=320,整理得:x2﹣14x+40=0,∴(x﹣4)(x﹣10)=0,∴x1=4,x2=10,∵每件盈利不少于15元,∴x2=10应舍去.答:每件商品降价4元时,该商品每天的销售利润为320元.5.解:(1)设每次下降的百分率为a,根据题意,得:100(1﹣a)2=81,解得:a=1.9(舍)或a=0.1=10%,答:每次下降的百分率为10%;(2)设每件应降价x元,根据题意,得(81﹣x)(20+2x)=2940,解得:x1=60,x2=11,∵尽快减少库存,∴x=60,答:若商场每天要盈利2940元,每件应降价60元.6.解:设2月份到4月份的月平均增长率为x,根据题意可得方程:150(1+x)2=384,解方程,得x1=0.6,x2=﹣2.6(不合题意,舍去).答:从2月份到4月份的月平均增长率为60%.7.解:由旅游团队2得:a≥45,由旅游团队1得:(80﹣a)+200=350,解得:a1=50,a2=30(不合题意,舍去),答:某旅游园区对团队入园购票规定的a人是50人.8.解:设售价应定为x元/个,则每个的销售利润为(x﹣40)元,能卖出500﹣×4=(1000﹣10x)件,依题意,得:(x﹣40)(1000﹣10x)=8000,整理得:x2﹣140x+4800=0,解得:x1=60,x2=80.答:售价应定为60元/个或80元/个.9.解:设每个横彩条的宽度为5xcm,则每个竖彩条的宽度为4xcm,依题意得:(15﹣2×5x)(10﹣2×4x)=15×10×(1﹣),整理得:8x2﹣22x+5=0,解得:x1=,x2=,当x=时,10﹣2×4x=﹣10<0,不合题意,舍去;当x=时,10﹣2×4x=8>0,符合题意,∴5x=,4x=1.答:每个横彩条的宽度为cm,每个竖彩条的宽度为1cm.10.解:设每辆汽车的定价应为x元,则每辆的销售利润为(x﹣15)万元,平均每周的销售量为8+2(25﹣x)=(58﹣2x)辆,依题意得:(x﹣15)(58﹣2x)=96,整理得:x2﹣44x+483=0,解得:x1=21,x2=23.又∵为使成本尽可能的低,∴x=23.答:每辆汽车的定价应为23万元.。
人教新课标版数学九年级上册21.2.2-一元二次方程的解法-公式法(2)课件
若方程有两个不等实根,则△ > 0
∴4m+1 > 0 ∴m >-1/4 ∴m >- 1/4 且m≠0
注对意吗二?次
项系数
2、根据方程根的情况,确定待定系数的取值范围.
例: k取何值时一元二次方程kx2-2x+3=0有实
数解根:∵. 一元二次方程kx2-2x+3=0有实数根.
∴ k≠0, b2 4ac 0
凡形先如把方a程x2+的c常=0数(项a≠移0到, a方c<程0的) 右边,再把左边配成一
个完全平方式,如果右边是非负数,就可以进一步通过直接
开平方法或来求a出(x+它p的)2解+q.=0 (a≠0, aq<0)
的公一式元二法次是方解程一都元可二用次直接方开程平的方通法法解..
一般形式
ax2 bx c 0(a 0)
解:∵ b2 4ac (m 5)2 4 2(m 1)
把判别式配方 m2 10m 25 8m 8
m2 2m 17
(m 1)2 16 >0
∴方程有两个不相等的实数根;
典型例题解析
【例5】 已知:a、b、c是△ABC的三边,若方程
解 : a 1, b 2m 1, c m2 4, b2 4ac (2m 1)2 4(m2 4) 4m2 4m 1 4m2 16 4m 17
由4m 17 0, 得m 17 . 4
当m 17 时,b2 4ac 0, 4
(3) x2 x 1 0
(4) x2 x 1 0
(5) 2x2 x 3 0 (6)2x2 x 3 0
9年级上册数学一元二次方程
九年级上册数学一元二次方程一、一元二次方程的基本概念一元二次方程是一个只含有一个未知数(通常表示为x),且未知数的最高次数为2的方程。
其标准形式为:ax^2 + bx + c = 0,其中a、b、c是常数,且a≠0。
二、一元二次方程的解法配方法:通过配方将方程转化为(x+b)^2=d的形式,然后直接开平方求解。
公式法:根据一元二次方程的根的判别式Δ=b^2-4ac,当Δ≥0时,方程有2个实根。
根为x=(-b±√Δ)/2a。
因式分解法:将方程左边化为两个因式的乘积,右边化为0,然后分别令每个因式等于0求解。
三、一元二次方程的根的判别式一元二次方程的根的判别式Δ=b^2-4ac。
根据判别式的不同取值,一元二次方程的根的情况分为以下三种:当Δ>0时,方程有两个不相等的实根。
当Δ=0时,方程有两个相等的实根(重根)。
当Δ<0时,方程没有实根(称为虚根),但有共轭复数根。
四、一元二次方程的根与系数的关根的和:x1+x2=-b/a。
根的积:x1*x2=c/a。
根的平方和:x1^2+x2^2=(x1+x2)^2-2x1*x2=(b^2-2ac)/a^2。
的立方:x1^3+x2^3=(x1+x2)(x1^2+x2^2-x1*x2)=-b^3/a^3+c^3/a^3=(c^3-b^3)/a^3。
五、一元二次方程的应用一元二次方程在日常生活和生产实践中有着广泛的应用,如计算几何图形的面积、解决商品利润问题等。
解决这类问题时,需要将实际问题转化为数学模型,即建立一元二次方程,然后求解得到实际问题的答案六、配方法解一元二次方程将一元二次方程化为(x+b)^2=d的形式,然后直接开平方求解。
这种方法适用于所有形式的一元二次方程,但在使用时需要注意运算的准确性。
七、公式法解一元二次方程根据一元二次方程的根的判别式Δ=b^2-4ac,当Δ≥0时,使用公式法可以直接求解出方程的实根。
此方法简洁明了,但需要注意判别式的计算以及实根的存在性。
九年级数学 第二章 一元二次方程专题训练(二)一元二次方程的实际应用作业
第四页,共二十二页。
二、增长率与利润问题 4.(2018·眉山)我市某楼盘准备以每平方 6000 元的均价对外销售,由于国务 院有关房地产的新政策出台后,购房者持币观望,为了加快资金周转,房地产 开发商对价格经过连续两次下调后,决定以每平方 4860 元的均价开盘销售,则 平均每次下调的百分率是( C ) A.8% B.9% C.10% D.11%
第十七页,共二十二页。
解:(1)以 O 为原点,OA 所在直线为 y 轴,汽车行驶的路线为 x 轴,作出坐标系. 设当台风中心在 M 点,汽车从 N 点开始受到影响, 设运动时间是 t 小时,过 M 作 MC⊥x 轴,作 MD⊥y 轴. 则△ADM 是等腰直角三角形, AM=20 2t,则 AD=DM= 22AM=20t,M 的坐标是(20t,160-20t),N 的坐标是 (40t,0). 汽车受到影响,则 MN=120 千米, 即(40t-20t)2+(160-20t)2=1202, 整理,得 t2-8t+14=0. 解得 x1=4- 2,x2=4+ 2. 答:汽车行驶了(4- 2)小时后受到第台十八页风,共影二十响二页。
第十二页,共二十二页。
9.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为 12 m 的住房墙, 另外三边用 25 m 长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一 个 1 m 宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为 80 m2?
第十三页,共二十二页。
九年级数学:用因式分解法解一元二次方程
小明做得对吗?
一个数的平方与这个数的3倍有可能相等吗 ?如果相等,这个数是几?你是怎样求出来 x2 3x.
的小?颖,小明,小亮都设这个数为x,根据题意得
小亮是这样想的: 030,15 00,
000. 反过 ,如 来 a 果 b 0 ,
那么a 0或b 0 或a b 0. 即,如果两个因式的积等于 0, 那么这两个数至少有一 个为0.
复习回顾:
1、用配方法解一元二次方程的关键是将方 程转化为_(_x_+_m_)_2=_n_(__n_≥__0_)__的形式。
2、用公式法解一元二次方程应先将方程化为 _____一_般__形_式_________
3、选择合适的方法解下列方程 (1)x2-6x=7 (2)3x2+8x-3=0
相信你行:
:
2.3y2y1.4
解:1.一元二次方程 解:2.一元二次方程
x2 70
3y2 y 14 0
的两个根 x1是 7,x2 7. x27(x7)x (7).
的3两y2个y根1 是y1 4 3 (2y, y22) y 73( . 7)
.
3
小结 拓展
回味无穷
当一元二次方程的一边是0,而另一边易于分解成两个一次因式的 乘积时,我们就可以用分解因式的方法求解.这种用分解因式解一
x5x 4 0.
x 0,或5x 4 0. 4
x1 0; x2 5 .
1.化方程为一般形式;
2. 将方程左边因式分解;
3. 根据“至少有一个因式为零”,转 化为两个一元一次方程.
2 .x 2 x x 2 0 , 4. 分别解两个一元一次方程,
x 21 x 0.
它们的根就是原方程的根.
九年级一元二次方程知识点
九年级一元二次方程知识点一元二次方程在九年级的数学学科中是一个重要的知识点,它不仅出现在数学课堂上,也有很多实际应用。
掌握一元二次方程的基本概念、求解方法以及应用技巧对学生来说至关重要。
本文将从不同的角度分析和探讨九年级一元二次方程的知识点。
一、一元二次方程的基本概念一元二次方程是指形如ax²+bx+c=0的方程,其中a、b、c为已知数且a≠0。
这个方程中的未知数x的最高次数是2,因此被称为二次方程。
在一元二次方程中,系数a、b、c扮演着重要的角色。
系数a的正负决定方程的开口方向,当a>0时,抛物线开口朝上;当a<0时,抛物线开口朝下。
系数b、c则影响方程的解。
二、一元二次方程的解法对于一元二次方程,我们通常使用因式分解法、配方法和求根公式来解方程。
其中,因式分解法适用于方程可以被分解成两个一次因子的情况。
配方法可以将方程转化为完全平方的形式,从而求得方程的解。
而求根公式是根据二次方程的一般形式推导出来的,可以直接求得方程的解。
不同的解法适用于不同的情况,学生们需要根据具体题目的要求和方程形式选择合适的解法。
熟练掌握这些解法,并能够灵活运用在实际问题中,对于学生的数学能力提高大有裨益。
三、一元二次方程的应用一元二次方程在现实生活中有着广泛的应用。
举个例子,我们可以通过一元二次方程来解决一些与运动相关的问题。
如一枚子弹射出后,它的轨迹可以用一元二次方程来表示。
又如,某个物体从一定高度自由落体,我们可以通过一元二次方程来确定它到达地面所需的时间。
除了运动问题,一元二次方程还可以用来解决一些与商业、经济相关的问题。
比如,某公司的产品售价和销量之间存在着一定的关系,我们可以通过一元二次方程来分析这个关系,进而制定合理的销售策略。
又如,某商店购进商品的成本和售价之间存在着一定的关系,我们可以通过一元二次方程来确定最大利润的售价。
四、解一元二次方程的常见错误在解一元二次方程的过程中,学生们可能会犯一些常见的错误。
九年级数学一元二次方程选择题训练(二)(含答案)
九年级数学一元二次方程选择题训练(二)1.若x1,x2是一元二次方程x2﹣4x﹣5=0的两根,则x1•x2的值为( )A.﹣5B.5C.﹣4D.42.若一次函数y=kx+b的图象不经过第二象限,则关于x的方程x2+kx+b=0的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定3.关于x的一元二次方程x2﹣(k﹣1)x﹣k+2=0有两个实数根x1,x2,若(x1﹣x2+2)(x1﹣x2﹣2)+2x1x2=﹣3,则k的值( )A.0或2B.﹣2或2C.﹣2D.24.若x1,x2是一元二次方程x2+x﹣3=0的两个实数根,则x23﹣4x12+17的值为( )A.﹣2B.6C.﹣4D.45.x=1是关于x的一元二次方程x2+ax+2b=0的解,则2a+4b=( )A.﹣2B.﹣3C.﹣1D.﹣66.若x1+x2=3,x12+x22=5,则以x1,x2为根的一元二次方程是( )A.x2﹣3x+2=0B.x2+3x﹣2=0C.x2+3x+2=0D.x2﹣3x﹣2=0 7.国家实施“精准扶贫”政策以来,很多贫困人口走向了致富的道路.某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为x,根据题意列方程得( )A.9(1﹣2x)=1B.9(1﹣x)2=1C.9(1+2x)=1D.9(1+x)2=1 8.若关于x的一元二次方程(k﹣2)x2﹣2kx+k=6有实数根,则k的取值范围为( )A.k≥0B.k≥0且k≠2C.k≥D.k≥且k≠29.关于x的一元二次方程x2+2mx+m2+m=0的两个实数根的平方和为12,则m的值为( )A.m=﹣2B.m=3C.m=3或m=﹣2D.m=﹣3或m=2 10.一元二次方程x2﹣2x+b=0的两根分别为x1和x2,则x1+x2为( )A.﹣2B.b C.2D.﹣b11.若关于x的一元二次方程x2+2x﹣k=0有两个不相等的实数根,则k的取值范围是( )A.k<﹣1B.k>﹣1C.k<1D.k>112.当b+c=5时,关于x的一元二次方程3x2+bx﹣c=0的根的情况为( )A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根D.无法确定13.一件产品原来每件的成本是1000元,由于连续两次降低成本,现在的成本是810元,则平均每次降低成本( )A.8.5%B.9%C.9.5%D.10%14.若2是关于x的方程x2﹣(m﹣1)x+m+2=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC的两条边的长,则△ABC的周长为( )A.7或10B.9或12C.12D.915.将一块长方形桌布铺在长为3m,宽为2m的长方形桌面上,各边下垂的长度相同,且桌布的面积是桌面面积的2倍,求桌布下垂的长度设桌布下垂的长度为xm,则所列的方程是( )A.(2x+3)(2x+2)=2×3×2B.2(x+3)(x+2)=3×2C.(x+3)(x+2)=2×3×2D.2(2x+3)2x+2)=3×216.下列一元二次方程有两个不相等的实数根的是( )A.(x+1)2+2=0B.25x2﹣10x+1=0C.x2﹣3x=0D.x2﹣2x+3=017.已知关于x的一元二次方程kx2﹣2x﹣1=0有实数根,若k为非正整数,则k等于( )A.B.0C.0或﹣1D.﹣118.m,b,n为常数,且(m﹣n)2>m2+n2,关于x的方程mx2+bx+n=0根的情况是( )A.有两个相等的实数根B.有一根为0C.无实数根D.有两个不相等的实数根19.关于x的元二次方程2x2+4x﹣c=0有两个不相等的实数根,则实数c可能的取值为( )A.﹣5B.﹣2C.0D.﹣820.某超市今年二月份的营业额为82万元,四月份的营业额比三月份的营业额多20万元,若二月份到四月份每个月的月销售额增长率都相同,若设增长率为x,根据题意可列方程( )A.82(1+x)2=82(1+x)+20B.82(1+x)2=82(1+x)C.82(1+x)2=82+20D.82(1+x)=82+2021.下列对方程x2﹣2kx+k﹣1=0根的情况的判断正确的是( )A.有两不相等的实数根B.有两个相等的实数根C.有且只有一个实数根D.没有实数根22.关于x的一元二次方程ax2+4x+2=0有两个相等的实数根,则a的值是( )A.﹣2B.0C.1D.223.在某篮球邀请赛中,参赛的每两个队之间都要比赛一场,共比赛36场.设有x个队参赛,根据题意,可列方程为( )A.x(x﹣1)=36B.x(x+1)=36C.x(x﹣1)=36D.x(x+1)=3624.已知x1,x2是一元二次方程x2﹣2x=0的两个实数根,下列结论错误的是( )A.x1≠x2B.x12﹣2x1=0C.x1+x2=2D.x1•x2=225.一元二次方程2x2+3x﹣5=0的根的情况为( )A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根26.关于x的一元二次方程x2﹣4x+m=0的两实数根分别为x1、x2,且x1+3x2=5,则m的值为( )A.B.C.D.027.一元二次方程x2+2x+1=0的解是( )A.x1=1,x2=﹣1B.x1=x2=1C.x1=x2=﹣1D.x1=﹣1,x2=2 28.方程2x2+6x﹣1=0的两根为x1、x2,则x1+x2等于( )A.﹣6B.6C.﹣3D.329.已知关于x的一元二次方程(a﹣1)x2﹣2x+a2﹣1=0有一个根为x=0,则a的值为( )A.0B.±1C.1D.﹣130.已知a,b是方程x2+x﹣3=0的两个实数根,则a2﹣b+2019的值是( )A.2023B.2021C.2020D.201931.方程x2+3x﹣18=0的两个根为( )A.x1=﹣6,x2=3B.x1=﹣3,x2=6C.x1=﹣2,x2=9D.x1=﹣9,x2=2 32.若关于x的一元二次方程x2﹣2x+m﹣1=0有两个不相等的实数根,则实数m的取值范围是( )A.m≤2B.m≤0C.m<0D.m<233.一元二次方程2x2﹣6x+5=0的根的情况是( )A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.无实数根34.如果三角形的两边长分别为方程x2﹣8x+15=0的两根,则该三角形周长L的取值范围是( )A.6<L<15B.6<L<16C.10<L<16D.11<L<13 35.关于x的方程(k+1)x2﹣2x+1=0有实数根,则k的取值范围是( )A.k≥0B.k≤0C.k<0且k≠﹣1D.k≤0且k≠﹣1 36.《九章算术》勾股章有一问题,其意思是:现有一竖立着的木柱,在木柱上端系有绳索,绳索从木柱上端顺木柱下垂后,堆在地面的部分尚有3尺,牵着绳索退行,在离木柱根部8尺处时绳索用尽,请问绳索有多长?若设绳索长度为x尺,根据题意,可列方程为( )A.82+x2=(x﹣3)2B.82+(x+3)2=x2C.82+(x﹣3)2=x2D.x2+(x﹣3)2=8237.为了改善居民住房条件,某市计划用未来两年的时间,将城镇居民的住房面积由现在的人均20平方厘米提高到24.2平方厘米,每年的增长率相同,设为x,则可列方程是( )A.(1+x)2=24.2B.20(1+x)2=24.2C.(1﹣x)2=24.2D.20(1﹣x)2=24.238.要关于x的一元二次方程mx2+2x+1=0有两个不相等的实数根,那么m的值可以是( )A.2B.1C.0D.﹣139.某企业2018年初获利润300万元,到2020年初计划利润达到507万元,求这两年的年利润的平均增长率,设企业这两年的年利润平均增长率为x,则可列方程为( )A.300(1+x)2=507B.300(1﹣x)2=507C.300(1+2x)=507D.300(1+x2)=50740.若方程x2+(2a﹣1)x+a2=0与方程2x2﹣(4a+1)x+2a﹣1=0中至多有一个方程有实数根,则a的取值范围是( )A.a>B.a<﹣C.﹣≤a≤D.a<﹣或a>参考答案1A2A3D4A5A6A7B8D9A10C11B12A13D14C15A16C17D18D19C20A 21A22D23A24D25B26A27C28C29D30A31A32D33D34C35B36C37B38D39A4 0A。
北师大版九年级数学-第二章-一元二次方程知识点
(北大师)九年级上册 第二章 一元二次方程知识点一:认识一元一次方程(一)一元二次方程的定义:只含有一个未知数(一元)并且未知数的次数是2(二次)的整式方程,这样的方程叫一元二次方程。
(注意:一元二次方程必须满足以下三个条件:是整式方程;一元;二次)(二) 一元二次方程的一般形式:把20ax bx c ++=(a 、b 、c 为常数,a ≠0)称为一元二次方程的一般形式。
其中a 为二次项系数;b 为一次项系数;c 为常数项。
【例题】1、一元二次方程3x 2=5x -1的一般形式是 ,二次项系数是 ,一次项系数是 ,常数项是 。
2、一元二次方程(x+1)(3x -2)=10的一般形式是 。
3、当m= 时,关于x 的方程5)3(72=---x x m m是一元二次方程。
4、下列方程中不一定是一元二次方程的是( ) A.(a-3)x 2=8 (a ≠3) B.ax 2+bx+c=0C.(x+3)(x-2)=x+5D.2332057x x +-=知识点二:求解一元一次方程(一)一元二次方程的根定义:使得方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解也叫做一元二次方程的根。
【例题】例1、关于x 的一元二次方程()22110a x x a -++-=的一个根是0,则a 值为( ) A 、1 B 、1- C 、1或1- D 、12(二)解一元二次方程的方法: 1.配方法 <即将其变为2()0x m +=的形式> 配方法解一元二次方程的基本步骤: ①把方程化成一元二次方程的一般形式; ②将二次项系数化成1;③把常数项移到方程的右边;④两边加上一次项系数的一半的平方; ⑤把方程转化成2()0x m +=的形式; ⑥两边开方求其根。
【例题】例2 一元二次方程x 2-8x-1=0配方后可变形为( )A .(x+4)2=17B .(x+4)2=15C .(x-4)2=17D .(x-4)2=15例3 用配方法解一元二次方程x 2-6x-4=0,下列变形正确的是( ) A .(x-6)2=-4+36B .(x-6)2=4+36C .(x-3)2=-4+9D .(x-3)2=4+9例4 x 2-6x-4=0; x 2-4x=1; x 2-2x-2=02.公式法242b b acx a-±-=(注意在找abc 时须先把方程化为一般形式)【例题】例5若一元二次方程x 2+2x+a=0的有实数解,则a 的取值范围是( ) A .a <1B .a≤4C .a≤1D .a≥1例6 已知一元二次方程2x 2-5x+3=0,则该方程根的情况是( ) A .有两个不相等的实数根 B .有两个相等的实数根 C .两个根都是自然数D .无实数根例7 已知关于x 的方程x 2+2x+a-2=0.(1)若该方程有两个不相等的实数根,求实数a 的取值范围; (2)当该方程的一个根为1时,求a 的值及方程的另一根.3.分解因式法 把方程的一边变成0,另一边变成两个一次因式的乘积来求解。
人教版数学九年级上册第21章 一元二次方程知识点汇总
人教版数学九年级上册第21章 一元二次方程知识点汇总1. 一元二次方程的定义及一般形式:(1) 等号两边都是整式, 只含有一个未知数(一元) , 并且未知数的最高次数式2(二次)的方程,叫做一元二次方程。
2. 一元二次方程的解法(1)直接开平方法:形如 (x+a )²=b(b≥0) 的方程可以用直接开平方法解, 两边直接开平方得 x +a =√b 或者 x +a =−√b,∴x =−a ±√b 。
注意:若b<0, 方程无解(2) 因式分解法:一般步骤如下:①将方程右边得各项移到方程左边, 使方程右边为0:②将方程左边分解为两个一次因式相乘的形式;③令每个因式分别为零, 得到两个一元一次方程;④解这两个一元一次方程, 他们的解就是原方程的解。
(3) 配方法:用配方法解一元二次方程 ax²+bx+c=0(a≠0) 的一般步骤①二次项系数化为1:方程两边都除以二次项系数;④用直接开平方法解变形后的方程。
注意: 当n<0时, 方程无解(4) 公式法:一元二次方程 ax²+bx+c=0(a≠0) 根的判别式: △=b²-4ac△>0⇔方程有两个不相等的实根: x =−b±√b 2−4ac 2a (b 2−4ac ≥0)f (x )的图像与x 轴有两个交点 (2) 一元二次方程的一般形式:ax²+bx+c=0(a≠0)。
其中a 为二次项系数,b 为一次项系数,c 为常数项。
注意:三个要点,①只含有一个未知数;②所含未知数的最高次数是2;③是整式方程。
②移项:使方程左边为二次项与一次项,右边为常数项;③配方:方程两边都加上一次项系数一般的平方,把方程化为(x+m)²=n(n≥0)的形式;。
人教版九年级上册数学第21章 一元二次方程 建立一元二次方程模型解应用问题 (2)
5.一次会议上,每两个参加会议的人都相互握了一次手,经统 计所有人一共握了 66 次手.这次会议到会的人数是多少? 解:设这次会议到会的人数是 x. 由题意得x(x-2 1)=66, 解得 x1=12,x2=-11(舍去). 答:这次会议到会的人数是 12.
6.一个两位数的个位数字为 a,十位数字为 b,则这个两位数为 _1_0_b_+_a___;若交换两个数位上的数字,得到的新两位数为 _1_0_a_+_b___.
4.(2018·黑龙江龙东地区)某中学组织初三学生篮球比赛,以班
为单位,每两班之间都比赛一场,计划安排 15 场比赛,则共
有多少个班级参赛?( C )
A.4 B.5 C.6 D.7 【点拨】设共有 x 个班级参赛. 根据题意,得x(x-2 1)=15, 解得 x1=6,x2=-5(不合题意,舍去). 则共有 6 个班级参赛.
未消失.若开始时传染源为 1,传染速度为 x,则一轮后被感 染的有__1+__x____;第二轮传染时,传染源为_1_+_x___,传染速度 还是 x,则二轮后被感染的有_(1_+__x_)2___.
(2)在细胞分裂问题中,分裂源在一轮分裂后消失了.若开始时分 裂源是 1,分裂的速度是 x,则一轮分裂后是___x_____;第二 轮分裂时,分裂源为___x_____,分裂速度还是 x,则二轮分裂 后是___x2_____.
8.(2018·遵义)在水果销售旺季,某水果店购进一种优质水果, 进价为 20 元/千克,售价不低于 20 元/千克,且不超过 32 元/ 千克,根据销售情况,发现该水果一天的销售量 y(千克)与该 天的售价 x(元/千克)满足如下表所示的一次函数关系.
(1)某天这种水果的售价为 23.5 元/千克,求当天该水果的销售量; 解:设 y 与 x 之间的函数关系式为 y=kx+b. 由题意得2224k.6+k+b=b=323,4.8,解得kb==-80.2, ∴y 与 x 之间的函数关系式为 y=-2x+80. 当 x=23.5 时,y=-2×23.5+80=33. 答:当天该水果的销售量为 33 千克.
数学九上一元二次方程
数学九上一元二次方程一元二次方程是数学九上的重要内容之一,它在数学中具有广泛的应用。
本文将围绕标题展开,详细介绍一元二次方程的定义、性质、解法以及实际应用。
一、一元二次方程的定义一元二次方程是指形如ax²+bx+c=0的方程,其中a、b、c为已知常数,且a≠0。
其中,x为未知数,²表示x的平方。
二、一元二次方程的性质1. 一元二次方程的次数为2,即方程中最高次项的指数为2。
2. 一元二次方程的解可以是实数或复数。
3. 一元二次方程的图像是抛物线,开口方向由a的正负决定。
4. 一元二次方程的解的个数与判别式Δ=b²-4ac的正负有关。
三、一元二次方程的解法1. 因式分解法:当一元二次方程可以因式分解时,可以通过因式分解的方法求解。
例如,对于方程x²-5x+6=0,可以因式分解为(x-2)(x-3)=0,从而得到x=2或x=3。
2. 公式法:一元二次方程的解可以通过求根公式得到。
求根公式为x=(-b±√Δ)/(2a),其中Δ=b²-4ac为判别式。
根据判别式的正负,可以得到方程的解的情况。
a) 当Δ>0时,方程有两个不相等的实数解。
b) 当Δ=0时,方程有两个相等的实数解。
c) 当Δ<0时,方程没有实数解,但可以有复数解。
四、一元二次方程的实际应用一元二次方程在实际生活中有广泛的应用,以下列举几个常见的应用场景:1. 物体自由落体运动:当物体自由落体时,其高度与时间之间的关系可以用一元二次方程来表示。
例如,一个物体从高度h0自由落下,经过t秒后的高度h可以用方程h=h0-1/2gt²来表示,其中g为重力加速度。
2. 抛体运动:抛体运动是指物体在一定初速度和抛射角度下的运动轨迹。
抛体运动的轨迹可以用一元二次方程来表示。
例如,一个物体以初速度v0和抛射角度θ抛出,其水平方向的位移x和垂直方向的位移y可以分别用方程x=v0cosθt和y=v0sinθt-1/2gt²来表示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[单选]以下标准按照“要求从高到低”的顺序排列正确的是()。A.国家标准、行业标准、企业内控标准B.行业标准、国家标准、企业内控标准C.国家标准、企业内控标准、行业标准D.企业内控标准、行业标准、国家标准 [单选]患者,女,30岁。产后失血过多,突然头项强直,牙关紧闭,四肢抽搐,面色苍白,舌质淡红,少苔,脉虚细。首选方剂为()A.生脉散B.三甲复脉汤加减C.玉真散加减D.补中益气汤加减E.当归生姜羊肉汤 [多选]国际物流运作,生产企业依赖()完成跨国运输。A.国际外贸企业B.船承运人C.邮政快递D.报关行E.码头 [单选]电潜泵变频器的输出频率范围是()HZ。A、30—50B、30—60C、30—80D、30—90 [填空题]燃烧的三要素是(),()和着火源。 [单选]下列哪项不宜纤维支气管镜检查()A.原因不明的咯血B.原因不明的咳嗽C.原因不明的喉返神经麻痹D.痰检结核菌阳性,X线胸片肺无病灶E.肺心病并肺门肿大,原因未明,PaO240mmHg(5.4kPa) [单选]检测仪表按被测量分类可分为温度检测仪表、压力检测仪表、流量检测仪表、物位检测仪表、机械量检测仪表以及()仪表等。A、过程分析B、时间检测C、长度检测D、体积检测 [单选]韩某在甲公司已工作10年,经甲公司与其协商同意解除劳动合同。已知韩某在劳动合同解除前12个月平均工资为7000元,当地人民政府公布的本地区上年度职工平均工资为2000元。甲公司应向韩某支付的经济补偿金额是()元。A.20000B.24000C.60000D.70000 [单选]鄱阳湖生态经济区建设第一个阶段重点规划期中要实现鄱阳湖水质稳定在几类以上的目标?()A、I,B、Ⅱ,C、Ⅲ [单选]喷锚暗挖法二次衬砌应在()后施工。A.初期支护变形稳定B.地层变形稳定C.隧道贯通D.防水层施工完成 [判断题]二次回路中采用位置继电器的目的是增加保护出口继电器接点用。()A.正确B.错误 [问答题,简答题]套装轮箍时,在轮箍和轮心上打上黄色标记起什么作用? [单选]胃超声检查如图,正常胃壁由外到内顺序,应该为哪几层A.浆膜层、肌层、粘膜下层、粘膜层B.粘膜层、粘膜下层、肌层、浆膜层C.粘膜下层、粘膜层、肌层、浆膜层D.浆膜层、肌层、粘膜层、粘膜下层E.浆膜层、肌层、粘膜层 [单选,A2型题,A1/A2型题]石棉引起的法定职业肿瘤为()A.白血病B.直肠癌C.肺癌D.间皮瘤E.肺癌、间皮瘤 [单选,A2型题,A1/A2型题]"副癌综合征"是指癌细胞异常代谢的产物引起的全身症状,不包括()A.肌无力B.肌萎缩C.关节变形D.厌食、不适E.腹泻而致体重下降 [单选,A2型题,A1/A2型题]旋转阳极X线管与固定阳极X线管比,优点是()A.焦点大,功率小B.焦点小,功率大C.焦点大,功率大D.焦点小,功率小E.焦点功率均不变 [单选]下列()是氧化还原反应。A.Zn+2HCL=ZnCL2B.CaCO2煅烧CaO+CO2C.BaCL2+H2SO4↓+2HCL↑D.AgNO3+NaCL=AgCL+NaNO3 [问答题,简答题]人口增长率如何影响人均GDP的水平? [多选]港口与航道工程的图纸会审,参加单位应包括()。A.总包施工单位B.分包施工单位C.设计单位D.质检单位E.监理单位 [名词解释]牛仔布起源 [单选,案例分析题]青年男性,平时血压正常,3年来一遇情绪激动时便出现头疼、心悸、出汗、心前区紧迫感,视物模糊,测血压为220/140mmHg,每次持续10分钟左右。无助于确诊的检查是()A.MNB.酚妥拉明试验C.心电图D.CTE.MRI检查 [单选]下列不是酬金制与包干制内容的是()。A.物业服务费用酬金制B.物业服务成本费用酬金制C.物业服务费用包干制D.酬金制和包干制的财务特征 [单选,A1型题]关于免疫耐受,错误的是()A.多次注射耐受原可延长免疫耐受状态B.静脉注射抗原易诱导免疫耐受C.聚合的蛋白抗原易诱导免疫耐受D.遗传背景与免疫耐受相关E.克隆清除是形成免疫耐受的机制之一 [单选]行全子宫及单侧附件切除术时,切除下列哪项最不易损伤输尿管?()A.骨盆漏斗韧带B.卵巢固有韧带C.子宫骶骨韧带D.子宫动脉E.主韧带 [单选]诊断颅骨骨折最可靠的依据是()A.头部外伤史B.临床表现C.头颅X线片D.头颅超声波检查E.脑电图检查 [单选,A1型题]已不存在结核杆菌的病变是()A.钙化灶B.纤维干酪病灶C.病灶纤维化D.典型的结核结节E.干酪样坏死病灶 [单选,A2型题,A1/A2型题]确定肺结核是否为传染源的主要依据是().A.X线检查B.结核菌素实验C.血沉检查D.血结核抗体检查E.痰结核菌检查 [不定项选择]依据生命周期分析的原则,环境影响评价中的清洁生产评价指标可分为()。A.生产工艺与装备要求B.产品指标C.废物回收利用指标D.污染物产生指标 [单选]方位投影大都是透视投影,视点在球心的方位投影称为()。A.心射投影B.极射投影C.日晷投影D.A和C [单选,A2型题,A1/A2型题]中暑按发病机制分为()。A.热射病、热痉挛和热衰竭B.轻症中暑,重症中暑C.热适应,热射病和热衰竭D.热适应,热痉挛和热衰竭E.热辐射,热痉挛和热衰竭 [单选]下列哪一项与葡萄胎超声鉴别无关A.过期流产B.子宫肌瘤变性C.子宫腺肌症D.子宫内膜癌E.子宫颈囊肿 [单选,A1型题]根据99mTc硫胶体在特定的脏器、靶组织中选择性聚集的机制,属于以下哪种显像类型()A.特异性结合B.合成代谢C.细胞吞噬D.循环通路E.选择性浓聚 [单选]一般情况分散或小颗粒状夹杂对材料性能的()。A、没有影响B、影响很大C、影响不大D、影响较大 [判断题]受教育权是一种内容广泛的民事权利,既包括财产权,又包括人格权。A.正确B.错误 [单选]茶叶加工道德根源于()A.先天的人性B.阶级斗争C.经济关系D.生存需要工 [单选,A2型题,A1/A2型题]根据面神经损伤的程度,可出现不同类型病理生理改变的有()。A.2种B.3种C.4种D.5种E.6种 [名词解释]价格歧视 [单选]关于选题优化的说法,错误的是()。A.选题需要优化是因为情况发生了变化B.选题优化包括对选题进行修订和调整C.选题优化必须组织社会专家进行论证D.选题优化能增加选题的针对性和可操作性 [单选]PC400—106P—IB—1L—1001中的零件是()。A.船台散装件B.分段散装件C.经部件予装零件 [单选,A2型题,A1/A2型题]特发性血小板减少性紫癜患者的最重要护理措施是观察和预防()A.胃肠道出血B.脑出血C.鼻出血D.尿道出血E.感染