第九章 聚合物材料结晶度

第九章 聚合物材料结晶度
第九章 聚合物材料结晶度

第九章聚合物材料结晶度

聚合物系部分结晶或非晶. 前者如PE、PET、PP等,后者如无规立构PS、PMMA等,部分结晶聚合物习惯上称为结晶聚合物. 结晶度是表征聚合物材料的一个重要参数,它与聚合物许多重要性质有直接关系. 随着聚合物材料被日益广泛应用,准确测定聚合物结晶度这个重要参数越来越受到人们的重视. 目前在各种测定结晶度的方法中, X射线衍射法被公认具有明确意义并且应用最广泛. 本文将重点介绍此方法.

§9.1 结晶聚合物结构模型

§9.1.1 樱状胶束模型

对结晶聚合物分子链在晶体中的形态,早期用“经典两相模型”—樱状胶束模型(fringed micelle model)(图9.1)解释. 这个模型的特点是结晶的聚合物分子链段主要属于不同晶体,即一个分子链可以同时穿过若干个晶区和非晶区,分子链在晶区中互相平行排列,在非晶区相互缠结卷曲无规排列. 这个模型似乎解释了早期许多实验结果,受到高分子科学工作者近30年的偏爱.

图9.1 结晶聚合物樱状胶束模型

§9.1.2 插线板模型

60年代初Flory等提出“插线板”模型(Switchboard model),与Keller等的邻位规则折叠模型(图9.2(a))相比,此模型主要特点是组成片晶的杆(Stem)为无规连接. 即从一个片晶出来的分子链,并不在其邻位处回折到同一片晶,而是在非邻位以无规方式再折回,也可能进入另一片晶(图9.2(b)).

(a) (b)

图9.2 结晶聚合物分子链折叠模型

(a) 邻位规则折叠(b) 非邻位无规折叠

§9.1.3 结晶-非晶中间层

随着对聚合物结晶结构研究的深入,“两相模型”结构已不能满意解释聚合物的结晶结构,已证明在PE的晶区与非晶区间存在一个过渡区(transition zone),或称中间层(中间相)(interphase)(图9.3).

不久前Flory等从统计力学出发,将晶格理论应用到高分子界面,指出半结晶聚合物片层间存在一个结晶—非晶中间相(Crystal-amorphous interphase).中间相的性质既不同于晶相,也不同于非晶相(各向同性),即高聚物结晶形态由三个区域组成: 片层状三维有序区、非晶区、中间层(过渡层). 有关结晶聚合物中间层研究的进展, 笔者已有研究报道及综述. (喻龙宝, 张宏放, 莫志深. 功能高分子学报, 1997, 10(1): 90-101)

图9.3 结晶聚合物结晶-非结晶中间层示意图

综上所述, 无论经典樱状胶束还是折叠链模型, 都忽略中间层的存在, 把结晶聚合物视为晶相及非晶相“两相”组成. “两相模型”理论是测定聚合物结晶度的理论基础.

§9.2 结晶度概念

结晶度是表征聚合物材料,结晶与非晶在质量分数或体积分数大小的直观数值. IUPAC(1988) 推荐用W c,α表示质量分数结晶度, c,α表示体积分数结晶度. 为区别不同方法测得的结晶度,

1988年IUPAC 建议使用α,c W ,脚注α根据方法不同有不同表示.

%100%100M M W a

c c

c ,c ?+=?=ρρρα (9.1)

%100%100a

c c c ,c ?+=?=

φφφφφφα (9.2) 式中:c M 和M 分别是样品结晶部分和总的质量;c φ、a φ和φ分别是样品结晶部分、非晶部分和总的体积. ρ为整体样品密度,c ρ为结晶部分密度,a ρ为非结晶部分密度.

根据“两相模型”假定,计算结晶度应注意下面几方面问题: (一) 样品可以划分为 “明显”的结晶及非结晶相(即所谓 “两相” 模型); (二) 假定两相与它们理想状态 — 结晶, 非晶相具有相同性质, 界面的影响可忽略; (三) 结晶度可以用质量分数或体积分数表示, 两者关系如下:

ρρφαα/W c ,c ,c ?= (9.3)

(四) 聚合物材料结晶度的测定可以有多种方法,其中最常用的有:(a) X 射线衍射, (b) 量热法, (c) 密度法, (d) 红外光谱法(IR). 上述诸方法不易将晶体缺陷与非晶区分开. 不同测量方法反映的晶体缺陷及界面结构不同,因而不同方法获得的定量结果有所不同也常有之.

§9.3 几种常用方法

§9.3.1 X 射线衍射

用X 射线衍射方法测得的结晶度,用x c W ,表示,x c W ,用下式求得

a

x c c

x ,c I K I I W += (9.4)

式中c I 及a I 分别为在适当角度范围内的晶相及非晶相散射积分强度;x K 系校正常数; 若样品存在各向异性,样品必须适当被消除取向,求取平均倒易空间的衍射强度.

§9.3.2 量热法

量热法测得结晶度,用h c W ,表示,由下式求得 c fus fus h c h h W ,,/??= (9.5)

式中,fus h ?和c fus h ,?分别在相同升温速率下,测得的样品熔融热及完全结晶样品的 熔融热. 熔融热是温度函数. 下面以尼龙1010为例说明c fus h ,?求法. 用密度梯度管法(或比

重天平)测得一系列不同退火条件下得到的尼龙1010的密度ρ(换成比容sp V ), 用DSC 测得相应fus h ?值(表9.1),并由红外吸光度—密度外推法求得尼龙1010的非晶密度=ρa 1.003g/cm 3.作fus h ?对sp V 图(图9.4). 用X 射线衍射方法测定及计算尼龙1010完全结晶密度

=c ρ 1.135g/cm 3.换算=c

sp V 0.881cm 3/g,在图9.4中外推f

u s

h ?~sp V 直线到

===c c sp sp V V ρ/10.881cm 3/g 处,求得尼龙1010的=?c fus h ,244.0J/g(58.3cal/g).

表9.1 尼龙1010样品的熔融热fus h ?和相应的比容sp V

图9.4 尼龙1010的熔融热fus h ?与比容sp V 的线性关系图

§9.3.3 密度测量

采用两相模型理论, 根据前述有关参数定义有:

1. 质量分数结晶度(W c,d )

质量分数结晶度d c W ,为

ρφ

φρc

c c

d ,c M M W =

= (9.6)

注意到,

φ

φ

φφa c 1-=, ρφφρφρ=+=+=a a c c a c M M M , M a 为样品非晶部分质量. 故: c a a a c

a c

d ,c /1/1/1/1W ρ

ρρ

ρρρρρρ

ρ--=???? ??--= (9.7)

2. 体积分数结晶度(d c ,φ)

体积分数结晶度用d c ,φ表示 φ

φ

φφφa c d ,c 1-==

(9.8)

故 c

a a d c ρρρ

ρφ--=

, (9.9)

联系式(9.7)及式(9.9)则有

ρρφ/W c d ,c d ,c ?= (9.10)

由式(9.7)可知,由密度测得的质量分数结晶度d c W ,常常大于体积分数结晶度d c ,φ. 为了计算质量分数结晶度d c W ,及体积分数结晶度d c ,φ, 很有必要由聚合物晶胞参数计算c ρ,由比重计或膨胀计分别测定完全非晶样品的密度a ρ,及整体样品的密度ρ. 上述方法测得结晶度值大小顺序为x c W .≥d c W ,>h c W ,,主要因为上述诸法不易将晶体缺陷与非晶区分开,不同测量方法反映的晶体缺陷及界面结构不同. WAXD 是基于晶区非晶区电子密度差,晶区电子密度大于非晶区,相应产生结晶衍射峰及非晶弥散峰的倒易空间积分强度计算的结果. 密度测定是根据分子链在晶区与非晶区有序密堆积的差异,晶区密度大于非晶区,此法测得晶区密度值实际上是晶相及介晶区的加和. 故两种方法测得结晶度往往较接近. 而DSC 测得的结晶度是以试样晶区熔融吸收热量与完全结晶试样熔融热相对比的结果,此法仅考虑了晶区的贡献,所以,h c W ,值要比x c W ,和d c W ,值都低些. 可见这些方法的差别:DSC 仅考虑热效应,x c W ,和d c W ,考虑了高分子链在晶区、非晶区以及介晶区(中间相)的有序性.

§9.3.4 红外光谱方法

由红外光谱法测得结晶度,用i c W ,表示,通常表达式如下

)/log(10,I I l

a W c i c ?=ρ (9.11)

先选取某一吸收带作为结晶部分的贡献,0I 、I 分别为在聚合物结晶部分吸收带处入射及透射光强度;c a 为结晶材料吸收率;ρ为样品整体密度;l 为样品厚度.

§9.4 X 射线衍射方法

用X 射线衍射方法测定结晶度的理论基础为,在全倒易空间总的相干散射强度只与参加散射的原子种类及其总数目N 有关,是一恒量,与它们聚集状态无关. 设)(s I 为倒易空间某位置s 处局部散射强度,则整个空间积分强度为

ds s I s dV s I )(4)(2

00∞∞?=?π

(9.12)

式中,散射矢量λθ/sin 2||==S S ,如果将X 射线衍射图中结晶散射强度)(s I c 和非晶散射强度)(s I a 分开,则结晶度)(,x c W 可用下式表示

ds

s I S ds s I S W t c x

c )()(2

02

,∞∞??= (9.13) 式(9.13)中,)()()(s I s I s I a c t +=,式(9.13)是X 射线衍射方法测定聚合物材料结晶度的基本公式. 实际上用式(9.13)需注意下面一些问题:式(9.13)中)(s I t 、)(s I c 系相干散射强度,故应从实验测得的总散射强度中减去非相干散射(Compton 散射)及来自空气的背景散射,还要对原子的吸收及偏振因子校正. 同时, 实验时不可能测得所有S 值下的散射强度,仅仅是测得某一有限范围内的S 值,并假定散射强度发生在这个范围以外是可以忽略的. 还应指出由于热运动、聚合物微晶的不完善性(畸变、缺陷等),使得来自晶区散射部分表现为非晶散射. 准确地将一个结晶聚合物衍射曲线分解为结晶及非晶贡献,对结晶度的测定是一个关键问题. 基于上面讨论,式(9.13)可以简写成式(9.4). 式(9.13)及式(9.4)系X 射线衍射方法测定聚合物材料结晶度的基本公式,下面仅就常用几种测定计算方法作一简述.

§9.4.1 作图法

根据式(9.4),一个多组份聚合物材料的结晶度计算公式为 %)

(I )(C k )(I )(C )

(I )(C W l ,i l ,i i )

M (N l M i j ,i j ,i )

M (P j M i j ,i j ,i )

M (P j M i 10011

1

1

1

1

?∑∑+∑∑∑∑=

======θθθθθθ (9.14)

式中,M 代表聚合物的组份数;P 是某组份所具有的结晶衍射峰数;N 是某组份所含有的非晶峰个数;)(,θj i C 是与衍射角有关的第i 个组份第j 个衍射峰的校正因子;)(,θl i C 是第

i 个组份第l 个非晶峰校正因子;)(,θj i I 是第i 个组份第j 个衍射峰强度;)(1,θi I 是第i 个组

份第l 个非晶峰强度;i k 为校正系数,i total i cal i i k I I k (/,,∑∑=≤)1,系计算时所采用第i 个组份衍射强度与该组份可能观察到的全部衍射强度之比,一些常见聚合物i k 值可从表9.3查得.式(9.14)中校正因子)(θC 值(可分别代表结晶及非晶峰校正因子),可由下式求得

2

)/(sin 22

221cos sin 2cos 1)(λθθ

θθθB e f C --??+?

=

2)/(sin 2222

cos sin cos 1λθθ

θθ

B i

i i

e f N -??+?∑= (9.15)

式(9.15)中f 是每个重复单元中所含有的全部原子散射因子;i N ,i f 分别是每个重复单元中含有的第i 种原子数目和原子散射因子;θ为衍射角;)cos /(sin )2cos 1(2

2

θθθ?+是角

因子(LP);2

)/(sin 2λθB e

-是温度因子(T);定义)(,θl i i x C k K ?=,x K 称总校正系数;原子散

射因子i f 可近似地表示为:

C e a f j b j i +?=-2

)/(sin 2)/(sin λθλθ

(9.16)

j a ,j b ,c 值可由文献查得.

对于单一组份聚合物式(9.14)可简化为:

%100)()()()()

()(,,,,,?∑+∑∑=i

j j j

hkl i hkl i i

hkl i hkl i i

x c k I C I C I C W θθθθθθ (9.17)

式中j i ,分别为计算结晶衍射峰数目和非晶衍射峰数目;)(,θhkl i C ,)(,θhkl i I 分别是hkl 晶面校正因子及衍射峰积分强度;)(θj C ,)(θj I 分别系非晶峰校正因子和散射峰积分强度.)(,θhkl i C 及)(θj C 求法见式(9.15).)(θj i x C k K ?=.我们应用式(9.17)计算间规-1,2-聚丁二烯(st-1,2-PB )和稀土顺-1,4-聚丁二烯(Ln-cis-1,4-PB)的结晶度.由st-1,2-PB 的广角X 射线衍射(图9.5)可见有明显的4个衍射峰,因st-1,2-PB 每个重复单元有4个碳原子、6个氢原子,故总的散射因子2

22

64H

C f f f

+= , 它的4个主要衍射晶面位于75.132010=θ,3.162200

110=θ,45.212210=θ,8.232201111

=θ,4.192=a θ. 把上述数据分别代入式(9.15)和式(9.16)中,取2B =10,并按(010)晶面积分强度

值归一化,得到各衍射峰的校正因子为C 010(θ)=1,)(200

110θC =1.57,C 210(θ)=3.50. 99.4)(111201=θC ,非晶峰的C i (θ)=2.69.据衍射强度正比于结构振幅,即2

hkl

hkl F I ∝ , 据表9.3得知 st-1,2-PB 的i k =0.414.将求得的C i (θ)和i k 值代入式(9.17),则得到 st-1,2-PB 的具体结晶度公式

%10010.199.450.357.199.450.357.1201

111210*********

201

111

210200110010,?+++++++=a

x c I I I I I I I I I W (9.18)

高压聚乙烯(LDPE)的W AXD 曲线及其分解见图9.6.表9.2给出了按式(9.15)~(9.17)计算PE 结晶度的具体步骤.表中取2B=10,以(110)晶面为标准进行了规一化.由表9.2可知,C 110(θ) : C 200(θ) : C a (θ)=1 : 1.142 : 0.75,k i =0.89,故K i =C a (θ)0.65,据此可得PE 的结晶度公式为

%10067.042.142.1200110

200

110,?+++=

a

x c I I I I I W (9.19)

图9.5 st-1,2-PBWAXD 曲线分解

=θ219.40为非晶峰顶点, C 为结晶峰非晶峰分离的最低点

表9.3列出了按本方法得到的12种聚合物结晶度计算公式及C(θ)、i k 、K x 值.表中同时列出了文献K 值以便比较.表9.3中文献栏中有*号的K x 值,其定义是不确切的.如对PE ,文献中给出K x =1,实际是i k ,但如i k =1,意味着计算时把所有的结晶衍射峰强度都考虑进去

了.事实上并非如此,仅只考虑了I 200,I 110两个强衍射峰,即i k <1.本文算得i k =0.9.因此对聚合物结晶度按式(9.17)进行计算,除了对角因子、吸收因子、温度因子、非相干散射和背景散射扣除外,很重要的一点是对被忽略的结晶衍射强度进行补正.

图9.6 PE 的WAXD 曲线分解

表 9.2 PE 的)(θC 计算

在惯常分析中,作图法由于简便易行而常被采用.计算时只要把X 射线衍射强度曲线分解为结晶与非晶两部分,按本文给出的校正因子定义和计算方法,对各晶面衍射强度进行修正后,可由式(9.17)或表9.3中相应聚合物结晶度计算公式就可简便地获得x c W ,值.

我们应用式(9.14),计算了多组份聚合物(乙丙共聚物及其链转移共混物)的结晶度值.从X 射线衍射图(图9.7,图9.8)中可以清楚地看到,所研究的聚合物样品基本上保持了i -PP 的单斜晶系结构,也存在表征PE 乙烯长序列规整的结晶衍射峰,计算中必须考虑这2种聚合物各自对结晶的贡献. 按it-PP 和PE 非晶峰的位置(分别为=θ216.3°和=θ219.5°)将共聚物(或共混物)的非晶散射峰分解为2部分,由表9.4、表9.5的值及具体测得各衍射峰强度值结果代入式(9.14)-(9.16)中得到

%1003

212

1,??+?+??+?=x c W (共聚物) (9.20)

式中 ?1 = (I 110+1.64I 040+2.16I 130+2.73I γ+2.91I 111) PP ?2 = (5.37I 110+6.86I 200) PE ?3 = 3.4I a PE+1.29I a PP

%1003

212

1,??+?+??+?=x c W (共混物) (9.21)

式中 ◇1 = (I 110+1.60I 040+2.16I 130+2.68I γ+3.18I 111) PP

◇ 2 = (5.29I 110+6.88I 200) PE

◇3 = 3.3I a PE+1.27I a PP

图9.7 乙丙共聚物WAXD 图及分解 图9.8 乙丙共混物WAXD 图及分解

表9.3a 高聚物结晶度计算公式及校正因子

180

181

182

表9.3b 聚芳醚酮类聚合物(PAEK S)结晶度计算公式

表9.4 乙丙共聚物结晶度计算格式*

表9.5 乙丙共混物结晶度计算格式*

*表9.4及表9.5 中,A 为非晶;以PP 的(110)晶面为标准,对)(θC 进行归一化; γ峰是EPR. 共聚

物中乙丙长序列所形成,且 PE 的i k =0.89,PP 的i k =0.85.

§9.4.2 Ruland 方法

使用式(9.13)计算结晶度时,Ruland 考虑了热运动晶格畸变的影响,从而使算得的结晶度值较合理. 在不失计算结晶度x c W ,数值精度的情况下,应用Ruland 方法进行计算时可以只取具有较大衍射峰强度的s 范围,就可达到计算结晶度的数值准确性,克服了其他方法必须收集尽可能大范围s 内的衍射强度数据的限制.Ruland 方法测定结晶度的基本公式

Dds

f s ds

s ds )s (I s ds )s (I s W 2202

20t 0c 20x ,c ∞∞∞???

??= ( 9.22 )

式中,x c W ,系聚合物中结晶物质的重量分数即结晶度;λθ/sin 2=s 是倒易空间矢量s 值;

θ为衍射角;λ是X 射线波长;)(s I t ,)(s I c 分别为聚合物样品在倒易空间s 处的总散射(结

晶加非结晶)强度和结晶部分的散射强度,2

f 为均方原子散射因子

i i

i i i

N f N f ∑∑=/22

( 9.23 )

i f 为第i 种物质的原子散射因子,i N 为第i 种物质在每个重复单元中的原子数目. D 称为晶

格无序度参数,它与晶格不完善性参数k 有下述关系,对第一类晶格畸变

2

ks e D -= (9.24 )

对第二类晶格畸变

)1/(22

2

as as e

e D --+= ( 9.25 )

式(9.22)最右端项是考虑了热运动和晶格不完善性引起衍射强度改变对结晶度的修正,此修正称校正因子,常用K 表示

Dds f s ds

f s K 220220∞∞??=

( 9.26 )

为计算校正因子K 值,作为近似可仅考虑第一类晶格畸变式(9.26)即已足够.21k k k K T ++=,即K 来源于分子的热运动)(T k 和第一类)(1k (短程无序)、第二类

)(2k (长程无序)晶格畸变. 由于热运动及晶格畸变的影响往往使来自晶区的衍射强度降低,

表现为非晶弥散峰,故若使用式(9.13)不经校正计算结晶度值将偏低,式(9.26)校正因子K 与S ,D ,f 2有关,因此式(9.22)可改写为

)f ,D ,s ,s (K ds

)s (I s ds

)s (I s W 20t 2

0c 20x ,c ∞∞∞???= ( 9.27 )

实际上,在实验中衍射角不可能(也不必)取得无穷大,只需在稍大于某一有限角范围内即可,

∞S 相应地取至稍大于较强衍射峰所对应的衍射角值. 现以应用Ruland 方法计算聚噻吩(PTh)

和聚环氧乙烷(PEO)为例加以说明. 在PTh 的计算中取 2θ=?7(S 1=0.08×108cm -1)到最大2θ=60°(S 2=0.65×108cm -1)(图9.9). 在此范围内应用式(9.27)进行计算可获得合理的x c W ,值.计算时当固定1S ,改变2S ,在某些足够大的21S S —范围内,所得x c W ,值基本与2S 无关. 换句话说,为求x c W ,值,在某些假定的k 值下,可以找到x c W ,与2S 基本无关的某个k 值,即式(9.27)化为

Dds f s ds

s ds s I s ds

s I s W 2

2S S 22S

S c 2S S c 2S

S x ,c 2121

21

21

???

??=

)()( ( 9.28 )

将图9.9中实验数据经偏振因子校正后,把散射强度分解为非晶散射和结晶散射两部分,以)

(s I S c 2对s 作图 (图9.10).表9.6中列出了由式(9.28)求出的不同热处理条件下PTh 的x c W ,值,表中可以看出当3=k 时,x c W ,值趋于与2S 无关的常数.

未经热处理的PTh 样品=x c W ,36.5%;在N 2中分别经200℃,250℃和300℃热处理后,x c W ,各为42.5%,46.3%和51.6%.可见热处理对Wc,x 的影响是明显的.这里据式(9.22),取S 1=0.08×108cm -1为固定,仅2S 改变. 对原子散射因子f 的计算,取h PT 的重复单元为C 8H 4S 2. 将K 对2S 作图可知,对不同的k 值,K 与2S 是线性关系(图9.11). 利用此图可以简化用式(9.28)计算聚合物结晶度. 由图9.11可以直接查出某一2S 下,不同k 值时的K 值.

表9.6 PTh 的x c W ,与k 值及积分区间

注:b —平均值.

图9.9 不同热处理条件的PT h WAXD 图 图9.10 PT h 在不同热处理条件的 S 2I(s)~S 曲线

应用Ruland方法我们曾对不同分子量PEO的结晶度值进行了计算.分子量M n=1.2万的

θ29°~72°,不同取角PEO大角X射线衍射强度如图9.12所示.表9.7给出了衍射角=

范围不同k值下计算结果.应用Ruland方法对不同分子量PEO的结晶度与分子量的关系列于表9.8.

表9.7 PEO(M n=1.2万)Wc,x值

表9.8 不同分子量PEO的Wc,x值

图9.11 不同k值的K与S2图图9.12 PEO(M n=12000)WAXD图

Ruland 方法是各种测定聚合物结晶度方法中理论基础较完善的. 唯此法实验数据采集及计算处理较复杂. 特别是在划分原始衍射曲线为结晶及非晶界线上往往带有任意性, 为克服这一缺点, 在可能的条件下应作出非晶散射曲线以资参考. 另外本方法仅考虑了温度和晶格畸变的修正, 为此我们对实验衍射强度进行了极化因子和背底的校正,从而进一步提高了结果的准确性.

§9.4.3 X 射线衍射曲线拟合分峰计算法

聚合物X 射线衍射曲线中,某些结晶衍射峰由于弥散往往会部分地重叠在一起,另外结晶峰与非晶峰一般是完全重合或大部分重叠,如何把结晶聚合物X 射线衍射强度曲线准确地分解为结晶部分与非晶部分,是一个很有意义的工作. 在过去,分峰对从事结构研究的工作者而言,是个很难处理的问题,随着电子计算机的发展与广泛应用,给这一问题的解决带来了令人鼓舞的生机. Hindeleh 等在前人工作的基础上,根据任意一组晶面的衍射强度在倒易空间的分布是正态函数的特性,提出了用Gauss-Cauchy 复合函数来表征结晶衍射峰强度曲线的办法. 设第t 个衍射晶面的衍射强度为t Q ,则结晶部分总衍射强度Q(S)为

]C )f 1(G f [Q )s (Q t t t t B

i

t B

1

t -+∑=∑== ( 9.29 )

B 是衍射峰数目, t f 是第t 个衍射峰的峰形因子, t G ,t

C 分别是Gaussian 和Cauchy 函数.

}

{2

]/)(2[2ln exp t

t t t W P X A G --= ( 9.30 )

}

{2]/)(2[1/t t t t W P X A C -+= ( 9.31 )

其中, 为计算点(衍射角).t A 为第t 个衍射峰的峰高,t P 为第t 个衍射峰的位置,t W 为第t 个衍射峰的半高宽,可见每个衍射峰含有4个待定量:t P ,t f ,t A ,t W .

上述3种表征函数的曲线见图9.13.由图9.13可知,式(9.29)—(9.31)所表征的曲线,在t P , t A , t W 值相同时, 是互相近似的, 具有极其相似的曲线形状. 在半高宽以上的曲线是相同的, 只是在峰两端尾巴部分有些不同. Gaussian 函数适合于更窄些的正态分布, Cauchy 适合于较宽分布,Gauss-cauchy 复合函数介于两者之间(图9.13).

非晶态散射与晶态不同,在非晶态中,原子排列不呈周期性,杂乱无章. 非晶态散射曲线弥散不对称,呈“馒头”状,Hindeleh 提出用三次多项式拟合.

3

2

)(dX cX bX a X R +++= ( 9.32 )

d c b a ,,,是待定参数,X 定义同前.由此晶态与非晶态总的衍射强度cal Y (计算值)为

)(1X R Q Y t B

t cal +∑== ( 9.33 )

式(9.33)共含有4B+4个未知量,计算时可采用阻尼最小二乘法,对给定适当小量δ,使目标函数S 满足

2,,1][i cal i obs n

i Y Y S -∑==≤δ (9.34)

则求得了拟合后各衍射峰的t P ,t A ,t f ,t W ,实现了衍射曲线的结晶叠合峰以及结晶峰非晶峰互相重叠的分解. 在此基础上便可以按结晶度定义进行x c W ,的计算了.

应用上述方法我们计算了Nylon-66 X 射线衍射峰的分解,在=θ210°~30°之间,Nylon-66样品的W AXD 谱仅观察到2个明显相互重叠的衍射晶面(100), (010). 很明显,非晶散射峰亦与结晶峰相重合(图9.14). 图中曲线 a 是实测值,b ,c 分别为分解后的结晶衍射峰和非晶散射峰. 拟合计算值与原实测值,除在=θ213°~15°之间有稍许偏差外,其他衍射角部分,两者是重合的,拟合中样品的非晶曲线采自文献值.

图9.13 Gauss-Cauchy 及其 图9.14 Nylon-66 衍射曲线分解

复合函数曲线

近年来拟合分峰法在理论上和应用上都得到了进一步的发展,吴文斌等提出了既可用于描述多种聚合物的结晶峰,又可用于描述非晶散射峰的统一数学表达式.

)1/()1(]2ln exp[Q A f Q fA Y e +-+-= (9.35)

式中:2

212221212)/()])(()()[()(W W P W P W P W W X W W P X Q +-+--+--=, Y 代

表每一个散射峰(晶态或非晶态)的散射强度;A 、P 、f 、X 分别为散射峰(晶态或非晶态)的峰高、峰位、峰形因子、散射角;1W 、2W 为散射峰左半高宽和右半高宽.对于结晶衍射峰21W W =,且1=f 则为Gaussian 函数形式(式9.30);若21W W =且0=f 则是Cauchy 函数形式(式9.31).

某些聚合物可获得纯非晶X 射线衍射强度实验数据,这样可消除分峰计算时与非晶态划分的任意性. 尽管如此,由式(9.34)可知在求解目标函数时仍存在多解性. 不同的初始条件,完全可以求出满足式(9.34)的解. 然而,实际问题只能存在唯一解,因此本方法的初始值选取很重要,并且由本方法获得的结果应与其他方法相比较,否则尽管拟合偏差δ很小,但与实际物理背景却大相径庭. 这里经验也是非常重要的,它既可以使计算量大为缩短,又会获得满意的结果. 假如我们不能取得非晶样品的散射强度数据,本方法也可进行分峰计算,只是需要借助经验给定非晶的有关参量进行拟合分峰,将所得结果再与密度法或其他方法结果相比较以确定其合理性.

我们曾采用此法对不同分子量的PEO 先进行分峰拟合,据此得到各峰的位置,宽度与峰高,然后再用Ruland 方法计算其结晶度,获得了满意的结果.

§9.4.4 回归线法

Hermans 和Weidinger 首先应用这一方法计算了纤维素的结晶度,以后又用在PE, i-PP(等

聚合物的结晶

聚合物的结晶 聚合物按其能否结晶可以分为两大类:结晶性聚合物和非结晶性聚合物。后者是在任何条件下都不能结晶的聚合物,而前者是在一定条件下能结晶的聚合物,即结晶性聚合物可处于晶态,也可以处于非晶态。聚合物结晶能力和结晶速度的差别的根本原因是不同的高分子具有不同的结构特征,而这些结构特征中能不能和容易不容易规整排列形成高度有序的晶格是关键。 聚合物结晶的必要条件是分子结构的对称性和规整性,这也是影响其结晶能力、结晶速度的主要结构因素。此外,结晶还需要提供充分条件,即温度和时间。首先讨论分子结构的影响。高聚物结晶行为的一个明显特点就是各种高分子链的结晶能力和结晶速度差别很大。大量实验事实说明,链的结构愈简单,对称性愈高,取代基的空间位阻愈小,链的立构规整性愈好,则结晶速度愈大。例如,聚乙烯链相对简单、对称而又规整,因此结晶速度很快,即使在液氮中淬火,也得不到完全非晶态的样品。类似的,聚四氟乙烯的结晶速度也很快。脂肪族聚酯和聚酰胺结晶速度明显变慢,与它们的主链上引入的酯基和酰胺基有关。分子链带有侧基时,必须是有规立构的分子链才能结晶。分子链上有侧基或者主链上含有苯环,都会使分子链的截面变大,分子链变刚,不同程度地阻碍链段的运动,影响链段在结晶时扩散、迁移、规整排列的速度。如全同立构聚苯乙烯和聚对苯二甲酸乙二酯的结晶速度就慢多了,通过淬火比较容易得到完全的非晶态样品。另外,对于同一种聚合物,分子量对结晶速度是有显著影响的。一般在相同的结晶条件下,分子量大,熔体粘度增大,链段的运动能力降低,限制了链段向晶核的扩散和排列,聚合物的结晶速度慢。最后,共聚物的结晶能力与共聚单体的结构、共聚物组成、共聚物分子链的对称性、规整性有关。无规共聚通常会破坏链的对称性和规整性,从而使共聚物的结晶能力降低。如果两种共聚单元的均聚物结晶结构不同,当一种组分占优势时,该共聚物是可以结晶的。这时,含量少的组分作为结晶缺陷存在。但当两组分配比相近时,结晶能力大大减弱,如乙丙共聚物当丙烯含量达25%左右时,产物便不能结晶而成为乙丙橡胶。如果两种共聚单元的均聚物结晶结构相同,这种共聚物也是可以结晶的。通常,晶胞参数随共聚物组成而变化。嵌段共聚物的各个嵌段基本上保持着相对的独立性,其中能结晶的嵌段将形成自己的晶区。如聚酯-聚丁二烯-聚酯嵌段共聚物,聚酯段仍可较好地结晶,形成微晶区,起到物理交联的作用。而聚丁二烯段在室温下可以有高弹性,使共聚物成为一种良好的热塑性弹性体。 4.4.1结晶动力学 结晶性聚合物因分子结构和结晶条件不同,其结晶速度会有很大差别。而结晶速度大小,又对材料的结晶程度和结晶状态影响显著。为此,研究聚合物的结晶动力学将有助于人们控制结晶过程,改善制品性能。 一、结晶速度的测定方法 研究聚合物结晶速度的实验方法大体可以分为两种:一种是在一定温度下观察试样总体结晶速率,如膨胀计法、光学解偏振法、DSC法等;另一种是在一定温度下观察球晶半径随时间的变化,如热台偏光显微镜法、小角激光光散射法等。

结晶对聚合物性能的影响

结晶对聚合物性能的影响 结晶作用对高分子聚乙烯板材等聚合物物理及力学性能影响都 十分显著(见下表)。结晶对性能的影响的程度主要取决于以下几个因素:结晶度、晶粒大小和晶体的结构。 1)力学性能通常随着结晶度的增加,聚合物的屈服应力、强度、模量和硬度等均提高;而断裂伸长和冲击韧性则降低,显然结晶使聚合物变硬变脆了。这是因为结晶度增加,分子链排列紧密有序,孔隙率低,分子间相互作用力增加,链段运动变得困难的缘故。 同样,当材料受到冲击时,分子链段没有活动余地,冲击强度降低。结晶作用提高了软化温度,使得结晶聚合物在玻璃化温度以上仍能保持适当的力学性能。另外在玻璃化温度以上,微晶体可以起到物理交联的作用,使链韵滑移减小,因而结晶度增加可以使蠕变和应力松弛降低。 球晶的结构对强度的影响超过了结晶度所产生的影响。大的球晶通常使聚合物的断裂伸长和韧性下降,这是因为大的球晶内部的孔隙和结晶界面的缺陷较多,这些最薄弱的环节受力后很容易发生破坏。前面已经提过,球晶是聚合物熔体结晶的主要方式,它的大小通常采用冷却速率来控制。缓慢冷却和退火能生产大的球晶,而由熔体快速冷却或淬火可以得到小的球晶。尤其是使用一些异相成核,促进结晶过程和加快结晶速度,可以生成多而小的球晶。对不同的聚合物,球

晶的大小和多少对性能的影响的趋势都不同。所以,能影响结晶速、结晶度的一些因素都会间接影响到聚合物的力学性能。 从晶体的结构上来说,由伸直链组成的纤维状晶体,其拉伸性能比折叠链晶体好得多。根据这-道理,可以在加工冷却过程中改变工艺条件形成伸直链晶体,.满足制品拉伸性能的要求。 2)密度和光学性质晶区中的分子链排列规整,其密度大于非晶区,因而随着结晶度的增加,聚合物的密度增大。物质的折射率与密度有关,因此聚合物中的晶区与非晶区的折射率是不同的。光线通过结晶聚合物时,在晶区界面上要发生折射和反射,而不能直接通过,所以结晶区域越大,即结晶度越高的聚合物,其透明性就越差。结晶度越小,透明性越好,那些完全非晶的聚合物,通常都是透明的,如聚苯乙烯等。 但是,如果一种聚合物的晶相密度与非晶相密度相近,光线在晶区界面上几乎不发生反射和折射。或者当晶区的尺寸小到比可见光的波长还小,此时入射光也不发生反射和折射,这样的聚合物即使有结晶,对透明性也不会有太大影响。对于许多结晶聚合物,为了提高其透明性,可以设法减小其晶区尺寸。例如等规聚丙烯,在加工时加入成核剂,可得到含小球晶的制品,其透明性和其他性能有所提高。 3)热性能对作为塑料使用的聚合物而言,在不结晶或结晶度低时,最高使用温度是玻璃化温度。结晶聚合物的熔点远远高于非晶聚

高分子聚合物的表征方法及常用设备

高分子聚合物的表征方法及常用设备 高分子聚合物的结构形貌分为微观结构形貌和宏观结构形貌。微观结构形貌指的是高分子聚合物在微观尺度上的聚集状态,如晶态,液晶态或无序态(液态),以及晶体尺寸、纳米尺度相分散的均匀程度等。高分子聚合物的的微观结构状态决定了其宏观上的力学、物理性质,并进而限定了其应用场合和范围。宏观结构形貌是指在宏观或亚微观尺度上高分子聚合物表面、断面的形态,以及所含微孔(缺陷)的分布状况。观察固体聚合物表面、断面及内部的微相分离结构,微孔及缺欠的分布,晶体尺寸、性状及分布,以及纳米尺度相分散的均匀程度等形貌特点,将为我们改进聚合物的加工制备条件,共混组份的选择,材料性能的优化提供数据。 高分子聚合物结构形貌的表征方法及设备包括: 1.偏光显微镜(PLM) 利用高分子液晶材料的光学性质特点,可以用偏光显微镜观测不同高分子液晶,由液晶的织构图象定性判断高分子液晶的类型。 2.金相显微镜 金相显微镜可以观测高分子聚合物表面的亚微观结构,确定高分子聚合物内和微小缺陷。体视光学显微镜通常被用于观测高分子聚合物体表面、断面的结构特征,为优化生产过程,进行损伤失效分析提供重要的信息。 3、体视显微镜 使用体视显微镜时需要注意在取样时不得将进一步的损伤引入受观测的样品。使用金相显微镜时,受测样品需要首先在模具中固定,然后用树脂浇铸成圆柱形试样。圆柱的地面为受测面。受测面在打磨、抛光成镜面后放置于金相显微镜上。高分子聚合物亚微观结构形貌的清晰度取决于受测面抛光的质量。 4.X射线衍射 利用X射线的广角或小角度衍射可以获取高分子聚合物的晶态和液晶态组织结构信息。有关内容参见高分子聚合物的晶态和高分子聚合物液晶态栏目。 5.扫描电镜(SEM) 扫描电镜用电子束扫描聚合物表面或断面,在阴极射线管上(CRT)产生被测物表面的影像。对导电性样品,可用导电胶将其粘在铜或铝的样品座上,直接观察测量的表面;对绝缘性样品需要事先对其表面喷镀导电层(金、银或炭)。 用SEM可以观察聚合物表面形态;聚合物多相体系填充体系表面的相分离尺寸及相分离图案形状;聚合物断面的断裂特征;纳米材料断面中纳米尺度分散相的尺寸及均匀程度等有关信息。 6.透射电镜(TEM) 透射电镜可以用来表征聚合物内部结构的形貌。将待测聚合物样品分别用悬浮液法,喷物法,超声波分散法等均匀分散到样品支撑膜表面制膜;或用超薄切片机将高分子聚合物的固态样样品切成50nm薄的试样。把制备好的试样置于透射电子显微镜的样品托架上,用TEM可观察样品的结构。利用TEM可以观测高分子聚合物的晶体结构,形状,

偏光显微镜观察聚合物的结晶形态2

实验名称:偏光显微镜观察聚合物的结晶形态 一.实验目的 通过偏光显微镜直接观察,了解聚合物的结晶结构或无定形结构。 二.实验原理 聚合物的性能主要决定于它的结构。高分子聚集在一起有两种主要方式,即结晶态和无定形态。如果高分子链在空间三个方向上形成有序排列,这种有规律的排列结构称为聚合物的结晶态结构;若高分子链成为无序排列,则称为非晶相或称为无定形结构。 利用普通光学显微镜能直接观察聚合物的外观结构,如均匀性、粒子的大小及分布等。不含填料和杂质的多数无定形聚合物,在显微镜下都是无色清澈透明的。但普通光学显微镜只能看到聚合物中的粒子形态,不能鉴别是晶体还是非晶体,而偏光显微镜利用晶体与非晶体对偏振光有不同的反应,可以观察到粒子是晶体还是非晶体。 三.实验试剂与实验仪器 1.偏光显微镜 偏光显微镜的主要结构与普通光学显微镜相同,主要有目镜和物镜组成,所产生的图象是样品放大的倒像。总的放大倍数等于目镜和物镜放大倍数的乘积。不同的是偏光显微镜比普通光学显微镜多加了两块偏振镜。 下偏振镜位于光源与聚光镜之间,它的作用是使通过样品前的自然光变成偏振光,而上偏振镜位于目镜与物镜之间,它的物理作用与下偏振镜相同。当光线通过上偏振镜时,如果是具有一定振动方向的偏振光,旋转上偏振镜则视场有明暗之别;如果是没有确定方向的自然光,旋转上偏振镜,光都能通过,则视场始终是明亮的,故上偏振镜又称检偏振镜。 上、下两偏振镜的偏振轴相互平行时,光线能全部通过上偏振镜,视场最亮。上、下两偏振镜的偏振轴相互垂直时,光线完全不能通过上偏振镜,视场最暗。因此,当固定其中一个偏振镜,把另一个偏振镜转动180o,就看到视场有明暗交替出现的现象。 上、下两偏振镜的偏振轴相互垂直,便组成所谓“正交偏光镜”,用偏光显微镜观察聚合物结晶状态时,通常是在正交偏光镜下观察。 在正交偏光镜下观察非晶态聚合物时,视场是暗的,这种现象叫消光。把载物台旋转360o,消光现象不变,这叫永久消光或全消光(见图1 所示),永久消光是非晶态聚合物的固有特征,是区分结晶聚合物和非晶态聚合物的重要依据。 在非晶态聚合物中,光在各个方向的传播速度是相同的。这是因为非晶态聚合物的分子链呈无序排列属于均匀体,它对于来自于下偏振镜的偏振光不会改变入射偏光的振动方向,传至上偏振镜时,光的振动方向仍然与上偏振镜允许通过的振动方向互相垂直,光不能通过,故视场呈黑暗。又因非晶体各向同性,故转动载物台也不会改变入射光的性质,所以消光现象不变。 在正交偏光镜下观察结晶态聚合物时,当转动载物台360o,视场出现明暗交替四次(见图2所示)。四次消光是结晶聚合物的特征。因为结晶聚合物的分子链有规律排列,它对来自下偏光镜的偏光能产生双折射现象,分解形成两个互相垂直的偏光,以不同的速度通过结晶聚合物,传至上偏振镜时,其中一个偏光与上偏振镜中允许通过的振动方向相互垂直,光不能通过,而另一个则与上偏振镜允许通过的振动方向平行,光能通过,则视场明亮,可以看到晶体状态。当转动载物台360o时,由于双折射而形成的偏振光与上下偏光镜的振动面有四次平行与垂直,故出现明暗交替四次。

结晶表征

结晶态聚合物的表征 用途 结晶态是高分子凝聚态的主要形态之一,有关固体聚合物的结晶度、晶体形态、结晶过程以及结晶原理等内容,是高分子凝聚态物理研究的核心内容之一。而关系到这些学术问题的有关数据又往往和聚合物作为材料使用时的性能密切 相关。(如力学性能、热性能、光学性能、溶解性等)。同样在聚合物成型加工过程中如何控制加工条件,使成型后的聚合物材料中形成有利于材料性能的结晶形态,也是聚合物加工技术的研究方向。因此聚合物形态的表征是高分子物理研究和高分子成型加工研究中的重要手段。 表征方法及原理 (1)结晶度Wc的表征 国际应用化学联合会(IUPAC)1988粘推荐用Wc,a表示质量分率结晶度,下标c为结晶度,另一下标字母a代表用不同方法测得的质量分率结晶度,方法不同下标a将分别是其他字母。 ①广角X射线衍射(WAXS)测聚合物结晶度Wc,x 用广角X射线衍射仪,对样品做出不同2θ角的衍射曲线,将衍射曲线的峰分解为结晶峰面积和非晶区面积,结晶峰面积与总衍射面积之比,即为Wc,x(下标x代表X射线衍射方法) ②密度测量法计算聚合物的结晶度We,d 在密度梯度管中配置自上而下密度连续变化的密度梯度液体,并用标准密度的玻璃小球标定密度梯度管不同位置高度的密度值,将待测聚合物样品投入标定后的密度梯度管中,测出聚合物样品的密度,其倒数即为聚合物样品的比容。再用X射线衍射测得的该聚合物的晶胞参数,计算得到该聚合物“纯晶体“的比容;由膨胀计法测定不同温度下该聚合物熔体的密度,外推到聚合物样品测密度时温度下该聚合物非晶区的比容,按下式计算结晶度:(有时聚合物的,值可从专业手册中查到) ③量热法计算聚合物的结晶度的Wc,h 用示差扫描量热仪(DSC),测定聚合物样品的熔融热焓(熔融峰的面积)ΔHm,从手册中查找该聚合物100%结晶时的熔融热焓值ΔHm标准,则 ΔHm标准也可采用下述方法求得,即用其他方法(如广角X光衍射法WAXD,密度法等)已测得结晶度的该类聚合物的不同样品,分别用DSC法测不同样品的熔融热焓,以测得的熔融焓ΔHm值对结晶度作图,外推到100%结晶度时的熔融热焓值即为ΔHm标准。

结晶态聚合物的表征

结晶态聚合物的表征.txt昨天是作废的支票;明天是尚未兑现的期票;只有今天才是现金,才能随时兑现一切。人总爱欺骗自己,因为那比欺骗别人更容易。结晶态聚合物的表征首页分类表征技术分子表征结构表征性能表征模拟技术 结晶态聚合物的表征 用途 结晶态是高分子凝聚态的主要形态之一,有关固体聚合物的结晶度、晶体形态、结晶过程以及结晶原理等内容,是高分子凝聚态物理研究的核心内容之一。而关系到这些学术问题的有关数据又往往和聚合物作为材料使用时的性能密切相关。(如力学性能、热性能、光学性能、溶解性等)。同样在聚合物成型加工过程中如何控制加工条件,使成型后的聚合物材料中形成有利于材料性能的结晶形态,也是聚合物加工技术的研究方向。因此聚合物形态的表征是高分子物理研究和高分子成型加工研究中的重要手段。 表征方法及原理 (1)结晶度Wc的表征 国际应用化学联合会(IUPAC)1988粘推荐用Wc,a表示质量分率结晶度,下标c 为结晶度,另一下标字母a代表用不同方法测得的质量分率结晶度,方法不同下标a将分别是其他字母。 ①广角X射线衍射(WAXS)测聚合物结晶度Wc,x 用广角X射线衍射仪,对样品做出不同2θ角的衍射曲线,将衍射曲线的峰分解为结晶峰面积和非晶区面积,结晶峰面积与总衍射面积之比,即为Wc,x(下标x代表X射线衍射方法) ②密度测量法计算聚合物的结晶度We,d 在密度梯度管中配置自上而下密度连续变化的密度梯度液体,并用标准密度的玻璃小球标定密度梯度管不同位置高度的密度值,将待测聚合物样品投入标定后的密度梯度管中,测出聚合物样品的密度,其倒数即为聚合物样品的比容 。再用X射线衍射测得的该聚合物的晶胞参数,计算得到该聚合物“纯晶体“的比容;由膨胀计法测定不同温度下该聚合物熔体的密度,外推到聚合物样品测密度时温度下该聚合物非晶区的比容,按下式计算结晶度:(有时聚合物的,值可从专业手册中查到) ③量热法计算聚合物的结晶度的Wc,h 用示差扫描量热仪(DSC),测定聚合物样品的熔融热焓(熔融峰的面积)ΔHm,从手册中查找该聚合物100%结晶时的熔融热焓值ΔHm标准,则 ΔHm标准也可采用下述方法求得,即用其他方法(如广角X光衍射法WAXD,密度法等)已测得结晶度的该类聚合物的不同样品,分别用DSC法测不同样品的熔融热焓,以测得的熔融焓ΔHm值对结晶度作图,外推到100%结晶度时的熔融热焓值即为ΔHm标准。 (2)结晶形态、晶体尺寸及晶胞参数的表征。 ①偏光显微镜(PLM)法 用偏光显微镜观察聚合物晶体的形貌,可以观察聚合物单晶、球晶、树枝状晶、伸直

第九章 聚合物材料结晶度

第九章聚合物材料结晶度 聚合物系部分结晶或非晶. 前者如PE、PET、PP等,后者如无规立构PS、PMMA等,部分结晶聚合物习惯上称为结晶聚合物. 结晶度是表征聚合物材料的一个重要参数,它与聚合物许多重要性质有直接关系. 随着聚合物材料被日益广泛应用,准确测定聚合物结晶度这个重要参数越来越受到人们的重视. 目前在各种测定结晶度的方法中, X射线衍射法被公认具有明确意义并且应用最广泛. 本文将重点介绍此方法. §9.1 结晶聚合物结构模型 §9.1.1 樱状胶束模型 对结晶聚合物分子链在晶体中的形态,早期用“经典两相模型”—樱状胶束模型(fringed micelle model)(图9.1)解释. 这个模型的特点是结晶的聚合物分子链段主要属于不同晶体,即一个分子链可以同时穿过若干个晶区和非晶区,分子链在晶区中互相平行排列,在非晶区相互缠结卷曲无规排列. 这个模型似乎解释了早期许多实验结果,受到高分子科学工作者近30年的偏爱. 图9.1 结晶聚合物樱状胶束模型 §9.1.2 插线板模型 60年代初Flory等提出“插线板”模型(Switchboard model),与Keller等的邻位规则折叠模型(图9.2(a))相比,此模型主要特点是组成片晶的杆(Stem)为无规连接. 即从一个片晶出来的分子链,并不在其邻位处回折到同一片晶,而是在非邻位以无规方式再折回,也可能进入另一片晶(图9.2(b)).

(a) (b) 图9.2 结晶聚合物分子链折叠模型 (a) 邻位规则折叠(b) 非邻位无规折叠 §9.1.3 结晶-非晶中间层 随着对聚合物结晶结构研究的深入,“两相模型”结构已不能满意解释聚合物的结晶结构,已证明在PE的晶区与非晶区间存在一个过渡区(transition zone),或称中间层(中间相)(interphase)(图9.3). 不久前Flory等从统计力学出发,将晶格理论应用到高分子界面,指出半结晶聚合物片层间存在一个结晶—非晶中间相(Crystal-amorphous interphase).中间相的性质既不同于晶相,也不同于非晶相(各向同性),即高聚物结晶形态由三个区域组成: 片层状三维有序区、非晶区、中间层(过渡层). 有关结晶聚合物中间层研究的进展, 笔者已有研究报道及综述. (喻龙宝, 张宏放, 莫志深. 功能高分子学报, 1997, 10(1): 90-101) 图9.3 结晶聚合物结晶-非结晶中间层示意图 综上所述, 无论经典樱状胶束还是折叠链模型, 都忽略中间层的存在, 把结晶聚合物视为晶相及非晶相“两相”组成. “两相模型”理论是测定聚合物结晶度的理论基础. §9.2 结晶度概念 结晶度是表征聚合物材料,结晶与非晶在质量分数或体积分数大小的直观数值. IUPAC(1988) 推荐用W c,α表示质量分数结晶度, c,α表示体积分数结晶度. 为区别不同方法测得的结晶度,

谈谈聚合物的结晶形态问题

化学教学 谈谈聚合物的结晶形态问题 何平笙 朱平平 杨海洋 (中国科学技术大学高分子科学与工程系 合肥 230026) 何平笙 男,62岁,教授,长期从事高分子物理的教学和教学研究。 中国科学技术大学教学改革基金资助项目(Y L5195) 2002205207收稿,2002206230修回 摘 要 向读者引介了聚合物球晶的三维立体电镜照片,并介绍了高分子科学近年来的新研究成 果———尺寸已达厘米量级的聚合物宏观单晶体和只由一根大分子链结晶而成的高分子单链单晶的特殊形态。 关键词 球晶 聚合物宏观单晶体 单链单晶 形貌 Some Special Crystal Morphologies in Polymer He Pingsheng ,Zhu Pingping ,Y ang Haiyang (Department of P olymer Science and Engineering ,University of Science and T echnology of China ,Hefei 230026,China ) Abstract Three special crystal m orphologies in polymer are introduced ,i.e.spherulite of polyethylene with tridimensional sphere picture taken by scanning electronic microscope ,macroscopic single crystal of polybis (p 2tolu 2ene sulfonate )of 2,42hexadiyne 21,62diol with the size of m ore than 20mm and single chain crystals. K ey w ords S pherulite ,Macroscopic single crystal ,S ingle chain crystal ,M orphology 结晶形态单层聚合物单晶———极稀溶液结晶多层聚合物结晶———稀溶液结晶聚合物球晶浓溶液结晶熔体结晶聚合物串晶———应力作用下结晶伸直链晶体———高压下结晶单链单晶———特殊条件下结晶聚合物宏观单晶体———单体单晶固态聚合图1 聚合物的7种结晶形态 Fig.1 Seven crystalline morphologies of polymers 在一次博士研究生入学考试的试卷中曾出了这 样一个试题:“聚合物结晶形态有哪几种?是在什么 条件下得到的?如何鉴别每一种结晶形态?……如 果有人说已经制备得了>10mm 的聚合物宏观单晶 体,你认为是事实吗?为什么?” 回答上述问题的前半部分是很容易的,许多高分子物理的教科书中都有明确的答案 [1~3],譬如,《高聚物的结构与性能》一书就有图文并茂的叙述[1],简要归并为图1。本文在这方面补充了球晶的扫描电镜照片。此外,本文还就一般教材上不曾 提到过的聚合物另两类结晶形态作一介绍,它们是高分子科学近年来的最新研究成果———聚合物 宏观单晶体和高分子单链单晶。?012?化学通报 2003年第3期 http :ΠΠw w https://www.360docs.net/doc/3611891202.html,

固体聚合物形貌的表征

固体聚合物形貌的表征 用途 同种高分子聚合物中的凝聚状态是随外部因素的不同而不同的,所谓外部因素,包括制备条件(合成条件),受外力情况(剪切力、振动剪切,力的大小和频率等),温度变化的历程等情况。而固体聚合物凝聚态结构的差异,更直接影响到聚合物作为材料使用时的性能。因此观察固体聚合物表面、断面及内部的微相分离结构,微孔及缺欠的分布,晶体尺寸、性状及分布,以及纳米尺度相分散的均匀程度等形貌特点,将为我们改进聚合物的加工制备条件,共混组份的选择,材料性能的优化提供数据。 表征方法及原理 (1)扫描电镜(SEM) 用扫描电镜,通过扫描表面观察聚合物表面或断面的方法,来表征聚合物表面及内部的形貌。对导电性样品,可用导电胶将其粘在铜或铝的样品座上,对绝缘性样品需对其表面喷镀导电层(金、银或炭)。用SEM可以观察聚合物表面形态,聚合物多相体系填充体系表面的相分离尺寸及相分离图案形状,聚合物断面的断裂特征,纳米材料断面中纳米尺度分散相的尺寸及均匀程度等有关信息。可为判断是否真正纳米材料提供依据。 (2)透射电镜(TEM) 用透射电镜,通过电子透射聚合物样品,来表征聚合物内部结构的形貌。将待测聚合物粉末样品分别用悬浮液法,喷物法,超声波分散法等均匀分散到样品支撑膜表面;或使聚合物溶于溶剂中,滴到平滑表面制膜;或用超薄切片机切成50nm 薄的试样等方法制样。用TEM可观察聚合物样品的晶体结构,晶体形状,结晶相的分布,高分辩TEM还可观察聚合物结晶的晶体结构、晶体缺陷等。 (3)原子力显微镜(AFM) 用原子力显微镜表征聚合物表面的形貌。原子力显微镜使用微小探针来扫描被测聚合物的表面,当探针尖接近样品时,样品分子和探针尖端将产生范德华力。因高分子种类、结构的不同、产生范德华力的大小也不同。记录范德华力变化的情况,从而“观察”到聚合物表面的形貌。由于原子力显微镜探针对聚合物表面的扫描是三维扫描,因此原子力显微镜形成的图像是聚合物表面的三维形貌。用原子力显微镜可以观察聚合物表面的形貌,高分子链的构象,高分子链堆砌的有序情况和取向情况,纳米结构中相分离尺寸的大小和均匀程度,晶体结构、形状,结晶形成过程

(整理)聚合物的表征概述

精品文档 目录1 前言 0 2 表征方法 (1) 2.1 红外光谱法(IR) (1) 2.2 核磁共振法(NMR) (3) 2.3 热分析法 (3) 2.4 扫描电镜法 (5) 2.5 X-射线衍射法 (5) 2.6 原子力显微镜法 (6) 2.7 透射电镜法 (7) 3 聚合物表征的相关研究 (8) 4 结论 (8) 参考文献 (9)

精品文档 聚合物表征方法概述 摘要:介绍了常规的聚合物的表征方法,具体叙述了红外光谱(IR)、X射线衍射(XRD)、透射电镜(TEM)、核磁共振(NMR)等的原理、方法、特点、局限性及改进方法并展望了聚合物表征方法的发展趋势。 关键词: 聚合物表征方法 Summary of polymer characterization methods Abstrac t:The conventional polymer characterization methods were introduced in this paper. The principle, method, characteristics infrared spectra (IR), X-ray diffraction (XRD), transmission electron microscopy (TEM) and the nuclear magnetic resonance (NMR) have been described, the limitations, the improved method and the predicts the development trend of those polymer characterization methods have been summarized. Keyword:polymer characterization method 1 前言 功能高分子是指具有某些特定功能的高分子材料[1]。它们之所以具有特定的功能,是由于在其大分子链中结合了特定的功能基团,或大分子与具有特定功能的其他材料进行了复合,或者二者兼而有之。功能高分子材料从20世纪50年代才初露端倪,到70年代方成为高分子学科的一个分支,目前正处于成长时期。它是在合成或天然高分子原有力学性能的基础上,再赋予传统使用性能以外的各种特定功能而制得的一类高分子[2]。一般在功能高分子的主链或侧链上具有显示某种功能的基团,其功能性的显示往往十分复杂,不仅决定于高分子链的化学结构、结构单元的序列分布、分子量及其分布、支化、立体结构等一级结构,还决定于高分子链的构象、高分子链在聚集时的高级结构等,后者对生物活性功能的显示更为重要[3]。

高聚物表征

1. 材料的结构层次有哪些? 2. 分别列举出几种用于测定链结构、聚集态结构、结晶度、取向度的方法。 链结构:X射线衍射(广角),电子能谱,核磁共振,拉曼光谱,红外吸收光谱,紫外吸收光谱; 聚集态结构:X射线小角衍射,电子衍射,原子力显微镜,透射电子显微镜,扫描电子显微镜,光学显微镜; 结晶度:偏光显微镜(POM)观察聚合物晶体形貌:单晶,球晶,树枝状晶,伸直链片晶,串晶;高分辨率投射电镜(TEM)观察聚合物晶体的结晶形态,原子力显微镜(AFM)观察晶体切面的三维形貌;取向度:双折射法,广角X射线衍射法(W AXS) 1. 红外光谱的范围。 红外光的三个区域:1.近红外区:13300-4000cm-1:研究分子中的O-H,N-H,C-H基团的合频和振动倍频;2.中红外区:4000-400cm-1:研究分子中原子的震动基频;3,远红外区:400-25cm-1 研究分子的转动光谱和警惕的晶格振动等 2. 红外光谱产生的两个基本条件是什么? 1,辐射应具有能满足物质产生振动跃迁所需的能量;2,辐射和物质之间有相互偶合作用对称分子:无偶极矩,辐射不能引起共振,无红外活性 3. 分子振动形式有哪些?

伸缩(对称)摇摆(面内)扭曲(面外)伸缩(反对称)摇摆(面外)剪式(面内) 4. 牢记红外光谱中各种键(基团)的特征频率,学会利用特征频率进行光谱解析。 5. 红外光谱试验中有哪几种制样方法?分别适应于哪种类型的样品? 1.溶液流延薄膜法,可溶于某些挥发性好的溶剂中的聚合物;2,热压成膜法适用于不易降解的热塑性树脂材料;3,溴化钾压片法,适用于粉末状物质;4 溴化钾晶体涂膜法适用于粘稠的低聚物或者胶黏剂类的物质;5,液体池法适用于粘度和沸点低的液体样本 6. 试分析影响吸收谱带位移的因素有那些?有何影响? 影响因素有两类:内部和外部因素 内部因素:诱导效应、氢键效应、共轭效应、耦合效应、费米效应、空间效应 外部因素:物质的状态,溶剂效应等因素,通常蒸汽状态振动频率最高,非极性溶剂中次之,在极性溶剂液体固体中测定的频率最低; 内部因素(以羟基化合物为例)1、诱导效应: 羟基是高强电子基,任何增加单键或增加极性的效应(给电子基)都会降低C-O键的键力常数,使得羟基吸收谱带移向低波数,反之,当有吸电子基和羟基的碳原子相连,它与氧原子争夺电子,是羟基极性变小,C=O键的键力常数加强,吸收移向高波数 红外光谱的测定时常采用非极性溶剂; 氢键效应:氢键的形成往往使基团吸收频率降低,谱峰变宽,例如“乙醇在0.01M的CCL4溶液中,分子之间不形成氢键,其O-H的伸缩振动在3640cm-1,当溶液中乙醇浓度增大(如C>0.1M),乙醇分子间形成分子间氢键,生成二缔合体和多缔合体,吸收峰逐渐移动向低波数,分子内氢键同样使集团的振动频率向低波数移动;共轭效应:使共轭体系中电子云的密度平均化,双键略有伸长,单键略有缩短导致大于C=O的吸收频率降低;、耦合效应:当两个频率相同或相近的基团连接在一起时会发生耦合作用,分裂成两个峰,如:酸酐犹如两个C=O振动耦合,出现两个吸收峰,一个比原来谱带高,一个低;、费米效应、空间效应 1. 什么是连续X射线?什么是特征X射线? 前者即在高能电子束和阳极靶冲撞过程中,由于不同电子的运动状态、撞击条件等存在差异,使所产生的x射线波长不一,最终形成波长航连续分布的连续X射线 后者是由于阳极靶物质原子核K层电子被高能电子撞出,形成空位后高能级电子进行补充,剩余能量以X射线形式释放,最终形成特征X射线,具有单一分布的波长 2. 什么是相干散射?什么是非相干散射? X光子和原子内的紧束缚电子碰撞时,X光子仅改变运动方向,能量没有损失,这种散射线

综述 聚合物结晶结构的表征

聚合物结晶度的表征 摘要:结晶度是表征聚合物的重要研究内容,聚合物的一些物理性能和机械性能与其结晶度有着密切的关系。过去的研究主要集中在聚烯烃、纤维、淀粉类物质结晶度的测量。本文着重综述了不同方法测量聚烯烃,纤维素,淀粉类物质的结晶度,并对不同方法进行比较和分析,总结出每类物质最适宜的表征结晶度的方法。 关键词:结晶度聚烯烃纤维素淀粉 前言:目前测定结晶度的方法有很多,有DSC测定法,密度测定法,X-射线衍射法,红外测定法等。目前。前三种方法是比较成熟和常用的[1]。目前,测定淀粉的结晶度最常用的是X-射线衍射法[2],侯斌等人[3]在“聚丙烯结晶度测试方法的对比分析”一文中采用DSC 法、X-射线衍射法、密度法测量聚丙烯的结晶度,其中在表征不同种类的pp的结晶度差异方面,DSC法最灵敏,其次是X-射线衍射法,密度法最差。纤维素结晶度的测定方法较多,马晓娟等人[4]采用X- 射线衍射法、红外光谱法、核磁共振法对纤维素的测定进行了研究,王妮等人[5]对差示扫描量热法(DSC)、X-射线衍射法、密度梯度法测量涤纶纤维结晶度进行了比较研究,杨淑敏等人[6]利用X-射线衍射法测定竹纤维的结晶度。张本山[7]等人采用X-射线衍射法对淀粉多晶体系结晶度的测定进行了研究,徐斌等人[8]对粉末X射线衍射图谱计算植物淀粉结晶度的方法进行了探讨。 正文:不同方法测量结晶度的原理不同,导致其测得的数值也不尽

相同。 1、测量聚烯烃类聚合物的结晶度 在“聚丙烯结晶度测试方法的对比分析”一文中,作者选用了三个不同种类的聚丙烯(PP)最为对象,即:均聚PP(T30S),乙烯-丙烯嵌段共聚PP(EPS30R),乙烯-丙烯无规共聚PP(PPR)。分别用DSC法、X-射线衍射法、密度法对它们的结晶度进行了测试分析。通过比较,为了便于直观的比较,作者将三种方法的数据绘制成 图1: 1 从图中我们可以得出结论,T30S的结晶度最高,EPS30R次之,PPR 最低,这与事实相符合。因此,作为相对比较,可根据所持实验设备,采用任何一种方法测试聚合物的结晶度,但是从图三中各曲线的走势,表征不同种类PP结晶度的差异方面,DSC法最灵敏,其次是WAXD法,密度法最差。 在王燕来[9]采用密度法测定聚丙烯结晶度的实验研究中,作者将采用密度法和X-射线衍射法测量聚丙烯的数据做对比如下表2:

《聚合物表征》试卷及答案

化工大学2007——2008学年第一学期 《聚合物表征》期末考试试卷 一.选择题(下面每个选择题中有一个或多个正确答案,每题2分,共40分) 1.最早发现X射线的人是 D 。 A. 傅立叶 B. 布拉格 C. 劳厄 D. 伦琴 2.中红外光谱的波数围是指 B 。 A. 4000~13000cm-1 B. 400~4000 cm-1 C.6000~13000 cm-1 D.0~400cm-1 3.在聚对苯二甲酸乙二醇酯(PET)的DSC曲线图中,介于玻璃化温度和熔点之间有时会出现 一放热峰,产生此峰对应的结构变化是 C 。 A.晶型转变 B.僵化的分子链段开始运动 C冷结晶 D.不完善晶区熔融 4.红外光谱图解析的基本的要素是 A B C 。 A. 峰的位置 B. 峰的强度 C. 峰的形状 D. 峰的朝向 5. 动态力学分析仪可以进行 A B C D 等多种扫描模式的实验。 A. 温度 B. 时间 C.频率 D. 应变 6聚合物的平衡熔点总是 B 其测定到的熔点。 A. 低于 B. 高于 C. 等于 7. GPC谱图的横坐标如果以“保留体积”表示,“保留体积”的含义是 C 。 A.分子链体积 B. 流体力学体积 C. 泵输送的流动相溶剂的体积 D. 抽取样品的量 8. 可用 A 和 B 等方法测定聚合物结晶度。 A. X射线衍射(XRD) B. 差示量热扫描(DSC) C. GPC D. 毛细管流变仪 9. GPC仪器中正确的连接是 A 。 A.泵-进样器-色谱柱-检测器 B. 进样器-泵-色谱柱-检测器 C. 进样器-色谱柱-泵-检测器 D. 泵-进样器-检测器- 色谱柱 10. 采用 D 可同时获知粘合剂固化后的玻璃化温度及模量. A.DTA B.TGA C. DSC D. DMTA 11.将聚合物链插入无机纳米粘土的层间,形成的纳米插层结构,导致XRD谱图上相应的衍射峰如何移动 A 。 A. 向低角度移动 B. 向高角度移动 C.不发生移动 12. 红外光谱实验中所使用的载体是 C 。 A. 玻璃片 B. 透明体 C. 溴化钾晶体 D. 水 13.做一次DSC实验需要的样品量大约是 A 。 A.3mg B. 3g C. 30g D. 300g 14. 一种聚和物材料的熔融指数值越高,说明其熔体 B 。 A.流动性越差 B. 流动性越好 C. 越容易发生交联 D. 越容易发生降解 15. 差热扫描量热仪(DSC)测量的是维持样品和参比物处于相同温度所需要的 热流率差;它反映了样品 C 的变化率。

《聚合物表征》试卷及答案

北京化工大学2007——2008学年第一学期 《聚合物表征》期末考试试卷 一.选择题(下面每个选择题中有一个或多个正确答案,每题2分,共40分) 1.最早发现X射线的人是 D 。 A. 傅立叶 B. 布拉格 C. 劳厄 D. 伦琴 2. 中红外光谱的波数范围是指 B 。 A. 4000~13000cm-1 B. 400~4000 cm-1 C.6000~13000 cm-1 D.0~400cm-1 3. 在聚对苯二甲酸乙二醇酯(PET)的DSC曲线图中,介于玻璃化温度和熔点之间有时会出 现一放热峰,产生此峰对应的结构变化是 C 。 A.晶型转变 B.僵化的分子链段开始运动C冷结晶 D.不完善晶区熔融 4. 红外光谱图解析的基本的要素是 A B C 。 A. 峰的位置 B. 峰的强度 C. 峰的形状 D. 峰的朝向 5. 动态力学分析仪可以进行A B C D 等多种扫描模式的实验。 A. 温度 B. 时间 C.频率 D. 应变 6聚合物的平衡熔点总是 B 其测定到的熔点。 A. 低于 B. 高于 C. 等于 7. GPC谱图的横坐标如果以“保留体积”表示,“保留体积”的含义是 C 。 A. 分子链体积 B. 流体力学体积 C. 泵输送的流动相溶剂的体积 D. 抽取样品的量 8. 可用 A 和 B 等方法测定聚合物结晶度。 A. X射线衍射(XRD) B. 差示量热扫描(DSC) C. GPC D. 毛细管流变仪 9. GPC仪器中正确的连接是 A 。 A.泵-进样器-色谱柱-检测器 B. 进样器-泵-色谱柱-检测器 C. 进样器-色谱柱-泵-检测器 D. 泵-进样器-检测器- 色谱柱 10. 采用 D 可同时获知粘合剂固化后的玻璃化温度及模量. A.DTA B.TGA C. DSC D. DMTA 11.将聚合物链插入无机纳米粘土的层间,形成的纳米插层结构,导致XRD谱图上相应的衍射峰如何移动 A 。 A. 向低角度移动 B. 向高角度移动 C.不发生移动 12. 红外光谱实验中所使用的载体是 C 。 A. 玻璃片 B. 透明体 C. 溴化钾晶体 D. 水 13.做一次DSC实验需要的样品量大约是 A 。 A.3mg B. 3g C. 30g D. 300g 14. 一种聚和物材料的熔融指数值越高,说明其熔体 B 。 A.流动性越差 B. 流动性越好 C. 越容易发生交联 D. 越容易发生降解 15. 差热扫描量热仪(DSC)测量的是维持样品和参比物处于相同温度所需要的 热流率差;它反映了样品 C 的变化率。 A.内能 B.自由能 C.焓 D.温度

《聚合物表征》试卷及答案

《聚合物表征》试卷及答案

北京化工大学2007——2008学年第一学期 《聚合物表征》期末考试试卷 一.选择题(下面每个选择题中有一个或多个正确答案,每题2分,共40分) 1.最早发现X射线的人是 D 。 A. 傅立叶 B. 布拉格 C. 劳厄 D. 伦琴 2. 中红外光谱的波数范围是指 B 。 A. 4000~13000cm-1 B. 400~4000 cm-1 C.6000~13000 cm-1 D.0~400cm-1 3. 在聚对苯二甲酸乙二醇酯(PET)的DSC曲线图中,介于玻璃化温度和熔点之间有时会出现一放热峰,产生此峰对应的结构变化是 C 。A.晶型转变 B.僵化的分子链段开始运动C冷结晶 D.不完善晶区熔融 4. 红外光谱图解析的基本的要素是 A B C 。 A. 峰的位置 B. 峰的强度 C. 峰的形状 D. 峰的朝向 5. 动态力学分析仪可以进行A B C D 等多种扫描模式的实验。 A. 温度 B. 时间 C.频率 D. 应变 第 2 页

6聚合物的平衡熔点总是 B 其测定到的熔点。 A. 低于 B. 高于 C. 等于 7. GPC谱图的横坐标如果以“保留体积”表示,“保留体积”的含义是 C 。 A. 分子链体积 B. 流体力学体积 C. 泵输送的流动相溶剂的体积 D. 抽取样品的量 8. 可用 A 和 B 等方法测定聚合物结晶度。 A. X射线衍射(XRD) B. 差示量热扫描(DSC) C. GPC D. 毛细管流变仪 9. GPC仪器中正确的连接是 A 。 A.泵-进样器-色谱柱-检测器 B. 进样 器-泵-色谱柱-检测器 C. 进样器-色谱柱-泵-检测器 D. 泵-进 样器-检测器- 色谱柱 10. 采用 D 可同时获知粘合剂固化后的玻璃化温度及模量. A.DTA B.TGA C. DSC D. 第 3 页

第四章 聚合物成型加工过程的物理和化学变化

第四章聚合物成型加工过程的物理和化学变化 一、本章基本内容: 1、聚合物的结晶 2、成型过程中的定向作用 3、聚合物的降解 4 热固性塑料的交联作用 3、聚合物液体流动性测量方法简介 二、学习目的与要求: 1、了解聚合物的结晶过程,明确结晶对性能影响 2、能够分析制品的流动取向程度及对制品性能影响,掌握拉伸取向的影响因素 3、注意不同聚合物对不同降解的敏感性,如何有效的防止降解,注意硬化、熟化、交联度之间的关系 三、本章重点、难点: 重点:1、冷却速率、成核剂、拉伸对结晶的影响 2、拉伸取向收缩问题 3、热降解,氧化降解 难点:1、结晶过程 2、结晶速度分析取向和解取向的分析 3、降解的原理和影响因素 课时:6

第一节成型加工过程中聚合物的结晶 塑料成型、薄膜拉伸及纤维纺丝过程中常出现聚合物结晶现象,但结晶速度慢、结晶具有不完全性和结晶聚合物没有清晰的熔点是大多数聚合物结晶的基本特点。聚合物加工过程,熔体冷却结晶时,通常生成球晶,在高应力作用下的熔体还能生成纤维状晶体。 一、聚合物晶体的形态 结构形成条件 单晶:折叠链晶片极稀溶液 树枝晶:折叠链晶片聚集体稀溶液 球晶:折叠链晶片聚集体浓溶液、熔体 微丝晶:折叠链晶片聚集体搅拌 伸展链晶:伸展链拉伸、高温高压 串晶:折叠链、伸展链拉伸等 柱晶:折叠链晶片聚集体搅拌等 二、结晶过程和结晶速度 1. 成核过程: 均相成核和异相成核 2. 生长过程: 有序链折叠在一起,有晶区和非晶区。 3. 结晶速度: T>Tm,热运动显著,难形成有序结构,不能结晶。 T

实验3光学显微镜法观察聚合物的结晶形态

实验3 光学显微镜法观察聚合物的结晶形态 1. 实验目的 (1)熟悉偏光显微镜的构造及原理,掌握偏光显微镜的使用方法。 (2)学习用熔融法制备聚合物球晶,观察不同结晶温度下得到的球晶的形态,测量聚合物球晶的半径。 2. 实验原理 晶体和无定形体是聚合物聚集态的两种基本形式,很多聚合物都能结晶。结晶聚合物材料的实际使用性能(如光学透明性、冲击强度等)与材料内部的结晶形态、晶粒大小及完善程度有着密切的联系。因此,对于聚合物结晶形态等的研究具有重要的理论和实际意义。聚合物在不同条件下形成不同的结晶,比如单晶、球晶、纤维晶等等,聚合物从熔融状态冷却时主要生成球晶,它是聚合物结晶时最常见的一种形式,对制品性能有很大影响。 球晶是以晶核为中心成放射状增长构成球形而得名,是“三维结构”。但在极薄的试片中也可以近似的看成是圆盘形的“二维结构”,球晶是多面体。由分子链构成晶胞,晶胞的堆积构成晶片,晶片迭合构成微纤束,微纤束沿半径方向增长构成球晶。晶片间存在着结晶缺陷,微纤束之间存在着无定形夹杂物。球晶的大小取决于聚合物的分子结构及结晶条件,因此随着聚合物种类和结晶条件的不同,球晶尺寸差别很大,直径可以从微米级到毫米级,甚至可以大到厘米。球晶分散在无定形聚合物中,一般说来无定形是连续相,球晶的周边可以相交,成为不规则的多边形。球晶具有光学各向异性,对光线有折射作用,因此能够用偏光显微镜进行观察。聚合物球晶在偏光显微镜的正交偏振片之间呈现出特有的黑十字消光图象。有些聚合物生成球晶时,晶片沿半径增长时可以进行螺旋性扭曲,因此还能在偏光显微镜下看到同心圆消光图象。 偏光显微镜的最佳分辨率为200 nm,有效放大倍数超过500~1000倍,与电子显微镜、X-射线衍射法结合可提供较全面的晶体结构信息。 光是电磁波,也就是横波,它的传播方向与振动方向垂直。但对于自然光来说,它的振动方向均匀分布,没有任何方向占优势。但是自然光通过反射、折射或选择吸收后,可以转变为只在一个方向上振动的光波,即偏振光。一束自然光经过两片偏振片,如果两个偏振轴相互垂直,光线就无法通过了。光波在各向异性介质中传播时,其传播速度随振动方向不同而变化,折射率值也随之改变,一般都发生双折射,分解成振动方向相互垂直、传播速度不同、折射率不同的两条偏振光。而这两束偏振光通过第二个偏振片时,只有在与第二偏振轴平行方向的光线可以通过。而通过的两束光由于光程差将会发生干涉现象。 在正交偏光显微镜下观察,非晶体聚合物因为其各向同性,没有发生双折射现象,光线被正交的偏振镜阻碍,视场黑暗。球晶会呈现出特有的黑十字消光现象,黑十字的两臂分别平行于两偏振轴的方向。而除了偏振片的振动方向外,其余部分就出现了因折射而产生的光亮。如图2-7是等规聚丙烯的球晶照片。

相关文档
最新文档