状元笔记-数学
状元笔记——数学配方换元
第一章高中数学解题基本方法一、配方法配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。
何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,从而完成配方。
有时也将其称为“凑配法”。
最常见的配方是进行恒等变形,使数学式子出现完全平方。
它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。
配方法使用的最基本的配方依据是二项完全平方公式(a+b)2=a2+2ab+b2,将这个公式灵活运用,可得到各种基本配方形式,如:a2+b2=(a+b)2-2ab=(a-b)2+2ab;a2+ab+b2=(a+b)2-ab=(a-b)2+3ab=(a+b2)2+(32b)2;a2+b2+c2+ab+bc+ca=12[(a+b)2+(b+c)2+(c+a)2]a2+b2+c2=(a+b+c)2-2(ab+bc+ca)=(a+b-c)2-2(ab-bc-ca)=…结合其它数学知识和性质,相应有另外的一些配方形式,如:1+sin2α=1+2sinαcosα=(sinα+cosα)2;x2+12x=(x+1x)2-2=(x-1x)2+2 ;……等等。
Ⅰ、再现性题组:1. 在正项等比数列{an }中,a1♦a5+2a3♦a5+a3∙a7=25,则 a3+a5=_______。
2. 方程x2+y2-4kx-2y+5k=0表示圆的充要条件是_____。
A. 14<k<1 B. k<14或k>1 C. k∈R D. k=14或k=13. 已知sin4α+cos4α=1,则sinα+cosα的值为______。
A. 1B. -1C. 1或-1D. 04. 函数y=log12(-2x2+5x+3)的单调递增区间是_____。
A. (-∞, 54] B. [54,+∞) C. (-12,54] D. [54,3)5. 已知方程x2+(a-2)x+a-1=0的两根x1、x2,则点P(x1,x2)在圆x2+y2=4上,则实数a=_____。
中考数学状元笔记及知识点集
ab a ba 2b 中考状元数学笔记知识点汇总一、实数(一)有理数1、有理数分类:①整数→正整数/0/负整数 ②分数→正分数/负分数2、数轴:画一条水平直线,在直线上取一点表示 0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴3、相反数 如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
4、倒数 如果两个数之积为 1,则称这两个数为倒数5、绝对值 ①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
②正数的绝对值是他本身/负数的绝对值是它的相反数/0 的绝对值是 0。
(二)实数1、实数分类:①有理数→整数/分数②无理数(无限不循环小数)2、平方根:①如果一个数 x 的平方等于 a ,那么这个数 x 就叫做 a 的平方根。
②一个正数有 2 个平方根/0 的平方根为 0/负数没有平方。
③ 求一个数 a 的平方根运算,叫做开平方,其中 a 叫做被开方数。
3、算术平方根 如果一个正数 x 的平方等于 a ,那么这个正数 x 就叫做 a 的算术平方根4、立方根:①如果一个数 x 的立方等于 a ,那么这个数 x 就叫做 a 的立方根。
②正数的立方根是正数/0 的立方根是 0/负数的立方根是负数。
③求一个数 a 的立方根的运算叫开立方,其中 a 叫做被开方数。
5、乘方性质 正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数。
6、实数的运算:加法:①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为 0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与 0 相加不变。
减法: 减去一个数,等于加上这个数的相反数。
乘法:①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与 0 相乘得 0。
③乘积为 1 的两个有理数互为倒数。
除法:①除以一个数等于乘以一个数的倒数。
②0 不能作除数。
江苏省高考数学状元笔记
江苏省高考数学状元笔记江苏省高考状元笔记第I卷 160分部分一、填空题答卷提醒:重视填空题的解法与得分,尽可能减少失误,这是取得好成绩的基石!A 、1~4题,基础送分题,做到不失一题! A1.集合性质与运算 1、性质:①任何一个集合是它本身的子集,记为A A ⊆; ②空集是任何集合的子集,记为A ⊆φ;③空集是任何非空集合的真子集; 如果B A ⊆,同时A B ⊆,那么A = B .如果C A C B B A ⊆⊆⊆,那么,. 【注意】:①Z = {整数}(√) Z ={全体整数} (×)②已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.(×) ③ 空集的补集是全集.④若集合A =集合B ,则C B A = ∅, C A B = ∅ C S (C A B )= D ( 注 :C A B = ∅). 2、若A={123,,n a a a a },则A的子集有2n 个,真子集有21n -个,非空真子集有22n -个.3、A B C A B A C A B C A B A C ==()()(),()()();A B C A B C A B C A B C ⋂⋂=⋂⋂=()(),()()4、 De Morgan 公式:()U U U C A B C A C B =;()U U U C A B C A C B =.【提醒】:数轴和韦恩图是进行交、并、补运算的有力工具.在具体计算时不要忘了集合本身和空集这两种特殊情况,补集思想常运用于解决否定型或正面较复杂的有关问题。
A2.命题的否定与否命题*1.命题p q ⇒的否定与它的否命题的区别:命题p q ⇒的否定是p q ⇒⌝,否命题是p q ⌝⇒⌝.命题“p 或q ”的否定是“p ⌝且q ⌝”,“p 且q ”的否定是“p ⌝或q ⌝”.*2.常考模式:全称命题p :,()x M p x ∀∈;全称命题p 的否定⌝p :,()x M p x ∃∈⌝. 特称命题p :,()x M p x ∃∈;特称命题p 的否定⌝p :,()x M p x ∀∈⌝.A3.复数运算*1.运算律:⑴m n m n z z z +⋅=; ⑵()m n mn z z =; ⑶1212()(,)m m m z z z z m n N ⋅=∈.【提示】注意复数、向量、导数、三角等运算率的适用范围. *2.模的性质:⑴1212||||||z z z z =; ⑵1122||||||z z z z =; ⑶nn z z =.*3.重要结论:⑴2222121212||||2||||()z z z z z z -++=+;⑵2212z z z z ⋅==; ⑶()212i i ±=±; ⑷11i i i -=-+,11ii i +=-; ⑸i 性质:T=4;1 , ,1,4342414=-=-==+++n n n n i i i i i i .【拓展】:()()3211101ωωωωω=⇔-++=⇔=或122ω=-.A4.幂函数的的性质及图像变化规律:(1)所有的幂函数在(0,)+∞都有定义,并且图像都过点(1,1);1x(2)0a >时,幂函数的图像通过原点,并且在区间[0,)+∞上是增函数.特别地,当1a >时,幂函数的图像下凸;当01a <<时,幂函数的图像上凸;(3)0a <时,幂函数的图像在区间(0,)+∞上是减函数.在第一象限内,当x 从右边趋向原点时,图像在y 轴右方无限地逼近y 轴正半轴,当x 趋于+∞时,图像在x 轴上方无限地逼近x 轴正半轴. 【说明】:对于幂函数我们只要求掌握111,2,3,,23a =的这5类,它们的图像都经过一个定点(0,0)和(0,1),并且1-=x 时图像都经过(1,1),把握好幂函数在第一象限内的图像就可以了. A5.统计1.抽样方法:(1)简单随机抽样(抽签法、随机样数表法)常常用于总体个数较少时,它的主要特征是从总体中逐个抽取.(2)分层抽样,主要特征分层按比例抽样,主要使用于总体中有明显差异.共同点:每个个体被抽到的概率都相等(nN).2.总体分布的估计就是用总体中样本的频率作为总体的概率.总体估计掌握:一“表”(频率分布表);两“图”(频率分布直方图和茎叶图). ⑴频率分布直方图用直方图反映样本的频率分布规律的直方图称为频率分布直方图。
状元笔记
初中数学知识要点及典型例题第一章实数中考要求及命题趋势1.正确理解实数的有关概念;2.借助数轴工具,理解相反数、绝对值、算术平方根等概念和性质;3.掌握科学计数法表示一个数,熟悉按精确度处理近似值。
4.掌握实数的四则运算、乘方、开方运算以及混合运算5.会用多种方法进行实数的大小比较。
6.用实际生活的题材为背景,结合当今的社会热点问题考查近似值、有效数字、科学计数法依然是中考命题的一个热点。
实数的四则运算、乘方、开方运算以及混合运算,实数的大小的比较往往结合数轴进行,并会出现探究类有规律的计算问题。
应试对策牢固掌握本节所有基本概念,特别是绝对值的意义,真正掌握数形结合的思想,理解数轴上的点与实数间的一一对应关系,还要注意本节知识点与其他知识点的结合,以及在日常生活中的运用。
第一讲实数的有关概念【回顾与思考】知识点:有理数、无理数、实数、非负数、相反数、倒数、数的绝对值课标要求:1.使学生复习巩固有理数、实数的有关概念.2. 了解有理数、无理数以及实数的有关概念;理解数轴、相反数、绝对值等概念,了解数的绝对值的几何意义。
3.会求一个数的相反数和绝对值,会比较实数的大小 4. 画数轴,了解实数与数轴上的点一一对应,能用数轴上的点表示实数,会利用数轴比较大小。
考查重点:1. 有理数、无理数、实数、非负数概念;2.相反数、倒数、数的绝对值概念;3.在已知中,以非负数a 2、|a|、 a (a ≥0)之和为零作为条件,解决有关问题。
实数的有关概念(1)实数的组成{}⎧⎧⎧⎫⎪⎪⎪⎪⎨⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎨⎪⎪⎪⎭⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数有尽小数或无尽循环小数正分数实数分数负分数正无理数无理数无尽不循环小数 负无理数 (2)数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注童上述规定的三要素缺一个不可),实数与数轴上的点是一一对应的。
数轴上任一点对应的数总大于这个点左边的点对应的数,(3)相反数实数的相反数是一对数(只有符号不同的两个数,叫做互为相反数,零的相反数是零).从数轴上看,互为相反数的两个数所对应的点关于原点对称.(4)绝对值⎪⎩⎪⎨⎧<-=>=)0()0(0)0(||a a a a a a 从数轴上看,一个数的绝对值就是表示这个数的点与原点的距离(5)倒数实数a(a ≠0)的倒数是a 1(乘积为1的两个数,叫做互为倒数);零没有倒数.【例题经典】理解实数的有关概念例1 ①a 的相反数是-15,则a 的倒数是_______.②实数a 、b 在数轴上对应点的位置如图所示:0a b则化简│b-a │.③去年泉州市林业用地面积约为10200000亩,用科学记数法表示为约______________________.例2.(-2)3与-23( ).(A)相等 (B)互为相反数 (C)互为倒数 (D)它们的和为16分析:考查相反数的概念,明确相反数的意义。
高考状元笔记数学
b a ≠ . a b
[对症下药] B
方法 1:运用特值法,如 a=-,b=-3.
1 1 0 ,则 b<a<0,故而判断. a b 1 a 1 a
方法 2:运用性质由
3.(典型例题)对于 0<a<1,给出下列四个不等式
1 ①loga(1+o)<loga(1+ ) a 1 ②1oga(1+o)>loga(1+ ) a
4 的最小值是 sin x
2.(典型例题)设 x∈(0,π),则函数 f(x)=sinx+ A.4 C.3 [考场错解] 是 4.故选 A B.5 D.6 因为 x∈(0,π)4 2 sin x >0, f(x)=sinx+ =4,因此 f(x)的最小值 sin x sin x sin x
2 2
D. ( ) n ( ) b
答案: C 又 0<
解析:利用特值法可看出某些选择不能成立,而事实上,∵|a|,|b|>0,
2
1 <1,∴10g |a|<log 1 |b|,由此也可直接得结论,应选 C 2
2 已知 a、b 为不等正数,s<t<0,M=
s ( a b) 2t ,N= ,则 M、N 的大小关系是_________. ab 2ab
1 1 ” a b 1 1 ” a b
.不能弱化条件变成“ a b
1 1 ” a b
考场思维训练 1 若,|a|>,|b|>0,且 ab>0,则下列不等式中能成立的是 A.
1 1 a b
(
)
B.
1 2
1 1 a b a 1 2
中考状元必备笔记_初中数学知识点总结
初中数学知识点总结其他学科2011-03-22 09:27中数学知识点总结(转)一、基本知识㈠、数与代数A、数与式1、有理数有理数①整数→正整数/0/负整数②分数→正分数/负分数数轴①画一条水平直线,在直线上取一点表示0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。
②任何一个有理数都可以用数轴上的一个点来表示。
③如果两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。
在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。
④数轴上两个点表示的数,右边的总比左边的大。
正数大于0,负数小于0,正数大于负数。
绝对值①在数轴上,一个数所对应的点与原点的距离叫做该数的绝对值。
②正数的绝对值是他的本身、负数的绝对值是他的相反数、0的绝对值是0。
两个负数比较大小,绝对值大的反而小。
有理数的运算加法①同号相加,取相同的符号,把绝对值相加。
②异号相加,绝对值相等时和为0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
③一个数与0相加不变。
减法减去一个数,等于加上这个数的相反数。
乘法①两数相乘,同号得正,异号得负,绝对值相乘。
②任何数与0相乘得0。
③乘积为1的两个有理数互为倒数。
除法①除以一个数等于乘以一个数的倒数。
②0不能作除数。
乘方求N个相同因数A的积的运算叫做乘方,乘方的结果叫幂,A叫底数,N叫次数。
混合顺序先算乘法,再算乘除,最后算加减,有括号要先算括号里的。
2、实数无理数无限不循环小数叫无理数平方根①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。
②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。
③一个正数有2个平方根/0的平方根为0/负数没有平方根。
④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。
立方根①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。
②正数的立方根是正数、0的立方根是0、负数的立方根是负数。
江苏省高考数学状元笔记
江苏省高考状元笔记第I 卷 160分部分一、填空题答卷提醒:重视填空题的解法与得分,尽可能减少失误,这是取得好成绩的基石! A 、1~4题,基础送分题,做到不失一题! A1.集合性质与运算 1、性质:①任何一个集合是它本身的子集,记为A A ⊆; ②空集是任何集合的子集,记为A ⊆φ;③空集是任何非空集合的真子集; 如果B A ⊆,同时A B ⊆,那么A = B .如果C A C B B A ⊆⊆⊆,那么,. 【注意】:①Z = {整数}(√) Z ={全体整数} (×)②已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.(×) ③ 空集的补集是全集.④若集合A =集合B ,则C B A = ∅, C A B = ∅ C S (C A B )= D ( 注 :C A B = ∅).2、若A={123,,n a a a a },则A的子集有2n 个,真子集有21n -个,非空真子集有22n -个.3、A B C A B A C A B C A B A C ==()()(),()()();A B C A B C A B C A B C ⋂⋂=⋂⋂=()(),()()C BA U4、 De Morgan 公式:()U U U C A B C A C B =;()U U U C A B C A C B =. 【提醒】:数轴和韦恩图是进行交、并、补运算的有力工具. 在具体计算时不要忘了集合本身和空集这两种特殊情况,补集思想常运用于解决否定型或正面较复杂的有关问题。
A2.命题的否定与否命题*1.命题p q ⇒的否定与它的否命题的区别:命题p q ⇒的否定是p q ⇒⌝,否命题是p q ⌝⇒⌝.命题“p 或q ”的否定是“p ⌝且q ⌝”,“p 且q ”的否定是“p ⌝或q ⌝”. *2.常考模式:全称命题p :,()x M p x ∀∈;全称命题p 的否定⌝p :,()x M p x ∃∈⌝. 特称命题p :,()x M p x ∃∈;特称命题p 的否定⌝p :,()x M p x ∀∈⌝.A3.复数运算*1.运算律:⑴m n m n z z z +⋅=; ⑵()m n mn z z =; ⑶1212()(,)m m m z z z z m n N ⋅=∈.【提示】注意复数、向量、导数、三角等运算率的适用范围. *2.模的性质:⑴1212||||||z z z z =; ⑵1122||||||z z z z =; ⑶nn z z =.*3.重要结论:⑴2222121212||||2||||()z z z z z z -++=+;⑵2212z z z z ⋅==; ⑶()212i i ±=±; ⑷11i i i-=-+,11i i i +=-; ⑸i 性质:T=4;1 , ,1,4342414=-=-==+++n n n n i i i i i i . 【拓展】:()()3211101ωωωωω=⇔-++=⇔=或13i 22ω=-±.A4.幂函数的的性质及图像变化规律: (1)所有的幂函数在(0,)+∞都有定义,并且图像都过点(1,1); (2)0a >时,幂函数的图像通过原点,并且在区间[0,)+∞上是增函数.特别地,当1a >时,幂函数的图像下凸;当01a <<时,幂函数的图像上凸; (3)0a <时,幂函数的图像在区间(0,)+∞上是减函数.在第一象限内,当x 从右边趋向原点时,图像在y 轴右方无限地逼近y 轴正半轴,当x 趋于+∞时,图像在x 轴上方无限地逼近x 轴正半轴.【说明】:对于幂函数我们只要求掌握111,2,3,,23a =的这5类,它们的图像都经过一个定点(0,0)和(0,1),并且1-=x 时图像都经过(1,1),把握好幂函数在第一象限内的图像就可以了. A5.统计1.抽样方法:(1)简单随机抽样(抽签法、随机样数表法)常常用于总体个数较少时,它的主要特征是从总体中逐个抽取.(2)分层抽样,主要特征分层按比例抽样,主要使用于总体中有明显差异.共同点:每个个体被抽到的概率都相等(nN).2.总体分布的估计就是用总体中样本的频率作为总体的概率.总体估计掌握:一“表”(频率分布表);两“图”(频率分布直方图和茎叶图).12y x =3y x=12y x =yx1xy =1O⑴频率分布直方图用直方图反映样本的频率分布规律的直方图称为频率分布直方图。
衡水重点中学状元笔记——数学
衡水重点中学状元笔记——数学典型易错题(一)集合一、混淆集合中元素的形成 例1 集合{}()|0A x y x y =+=,,{}()|2B x y x y =-=,,则A B = 。
错解:解方程组02x y x y +=⎧⎨-=⎩ 得11x y =⎧⎨=-⎩{}11A B =-,∴【易错分析】 产生错误的原因在于没有弄清楚集合中元素的形式,混淆点集与数集.集合A B ,中的元素都是有序数对,即平面直角坐标系中的点,而不是数,因而A B ,是点集,而不是数集。
{}(11)AB =-,∴二、忽视空集的特殊性 例2 已知{}|(1)10A x m x =-+=,{}2|230B x x x =--=,若A B ⊆,则m 的值为 。
错解: 由(1)10m x -+= 得11x m =-由2230x x --= 得1x =-或3x =1|1A x x m ⎧⎫==⎨⎬-⎩⎭∴ {}13B =-, A B ⊆∵111m =--∴或3 2m =∴或23m = 【易错分析】由于忽视空集的特殊性――空集是任何集合的子集,产生丢解的错误,以上只讨论了A ≠∅的情形,还应讨论A =∅的情形,当A =∅时,1m =。
m ∴的值为2123, , 。
三、忽视集合中的元素的互异性这一特征 例3 已知集合{}22342A a a =++,,,{}207422B a a a =+--,,,,且{}37AB =,,求a 的值.错解: ∵{}37AB =,, ∴必有2427a a ++=2450(5)(1)0a a a a +-=⇔+-=∴5a =-∴或1a = 【易错分析】由于忽视集合中元素应互异这一特征,产生增解的错误.求出a 的值后,还必须检验是否满足集合中元素应互异这一特征.事实上,(1)当5a =-时,2423a a +-=,27a -=不满足B 中元素应互异这一特征,故5a =-应舍去.(2)当1a =时,2423a a +-=,21a -=满足{}37AB =,且集合B 中元素互异.a ∴的值为1。
247页!黄冈状元高中数学笔记,活题巧解与方法总论都囊括!
247页!黄冈状元高中数学笔记,活题巧解与方法总论都囊
括!
高中要不要记数学笔记?还是只有文科要记笔记?
最近好多同学和家长私信问我记笔记的问题,如果需要记笔记,到底记什么呢?
抄书?显然是错误的,不过不要急,咱们这整理了一份《黄冈状元的高中笔记》,共计247页,包括高中数学活题巧解方法总论、综合测试与答案详解等等多项内容,快来看看状元的笔记是如何记的!
也许状元笔记我们不一定能做到,但是从笔记中能看到状元的学习方法和学习态度,这是我们应该学习并用到自身的。
数学150分单科状元手写笔记,以后就这样做笔记吧!
数学150分单科状元手写笔记,以后就这样做笔记吧!
数学150分单科状元手写笔记,以后就这样做笔记吧!
小数老师说
刚开学几天,同学们好好做笔记了吗?好的开始是成功的一半,相信很多同学都准备了精美的笔记本做笔记了,关键还要知道需要记什么?还得坚持哦!
小数老师推荐笔记记这3方面内容:1,老师讲的,但是课本上又没有的,例如:公式定理的推导,例题的别种解题方法,例题的分析思路等;2,自己预习不太明白的地方;3,课下补足本节课的知识框架等。
当然,一切还是根据具体情况实行啊!
下面看看这个数学考满分的同学的部分笔记吧!
小数老师推荐。
状元笔记第5讲 数量关系(无水印)
三、深度课程 (一)枚举归纳 注例:十阶楼梯,小张每次只能走 1 阶或 2 阶,问走完有多少种方法?A55 B67 C74 89 解析:有 n 阶,迈第一步可以是 1 阶,也可以是 2 阶,所以 an=a(n-1)+a(n-2)故而是递 推和数列。 所以 1+2+3+5+8+13+21+34+55=89,选 D。 (二)运算拓展 定义运算: 恒等变换: 极值求解: 注例:已知 x^1/2=a^1/2-1/(a^1/2),则 x+2+(x^2+4x)^1/2=? A1/a Ba C2a D2/a 解析,带入特殊值 1,根据单调性选 C,或者带入 2。 (三)数列综合 1、基础数列型: (1)求和公式:Sn=平均数×n=中位数×n=(a1+an)*n/2; (2)项数公式:n=(an-a1)/d+1; 2、奇数求和型:前 n 个奇数错和=n^2。 3、等比数列型:an=a1*q^(n-1);Sn=a1(1-q^n)/(1-q) (四)拓展排列组合 捆绑插空型: 错位排列型:3 个全错 4 种,4 个全错 9 种,5 个全错 44 种。 分配插板型: 注例:某领导要把 20 项任务分给三个下属,每个下属至少分得三项任务,则共有()种不 同的分配方案?A28 B36 C54 D78 解析:转化成每人分配 1 个,即 20-2×3=14,每人至少分一个,即 C13 2=D。 (五)抽屉原理 最不利情形+1 (六)拓展牛吃草 (七)约数倍数:整数计算性、小数分数型、约数个数型。 如果将一个数字进行质因数分解,把各个质因数的幂次数字分别加 1,再相乘,得到的数字 就是这个数字的约数的个数,最小的约数为 1,最大的约数就是这个数字自己。(原理是分 步法) 注例:一个数有 6 个约数,其最小的 3 个约数之和为 11,z 满足条件的所有数字之和是? A210
数学运算状元笔记
数学运算1,行测考的不是计算能力,数学运算中很少很少出现需要大计算量的题目,一般都可以“巧取豪夺”。
2,要善于运用排除法。
比较常见的是首尾数法和量级法。
量级法也就是选项数字不接近,完全可以估算结果的量级(也就是几位数)来直接选出。
3,选项是关键,看到选项要想到如何利用它们。
4,特殊值是个很好的方法,选个最简单的满足题意的数,代入,往往就直接能得出答案,反正是选择题,这是合情合理合法合心的。
5,裂项求和差法m/(a×b)=(1/a-1/b)×m/(b-a)常见b=a+1,m=1.有的分式加法没有给出乘积形式,需要自己去拆分。
6,我个人觉得,在数学运算中解方程是件吃力不讨好的事情,不如直接去算~~当然,也许这只是我个人感觉,还是看你自己喜欢哪个7,差分法是个非常实用的方法,在资料分析中也往往能用到~当然啦,首尾数法和量级法也是常客。
所谓差分法,就是2个看上去差不多大的分数,比如a/b和m/n,假设a>m,b>n,那么a/b就是大分数,m/n就是小分数,而(a-m)/(b-n)就是差分数。
若差分数比小分数大(小/相等),则大分数比小分数大(小/相等)。
另外有时候是a×n和m×b的形式,需要同时除以b×n,化为a/b和m/n的形式但是万法随心,不可拘泥~比如我看有本书上为差分法配的例子,是4个分数的比较,这个完全可以与和他们接近的某个值相减,得到差再比较,省时省力多矣~~8,十字交叉法也是个好方法~可惜我不会在WORD上打出来,可以在网上找下9,对于某些题目,题目条件较为复杂,而答案相对简单,可以考虑代入法10,、基础知识与基本思想一,公倍数与公约数1,质因子法是求最大公因数和最小公倍数的基本方法2,短除式法也是常用方法二,数的整除性质1,7整除判定基本法则一个数是7的倍数,当且仅当其末三位数,与剩下的数之差为7的倍数。
这个好证明:设一个数为Xabc(X除去末三位后剩下的数,abc为末三位),那么Xabc=1000X+abc=1000(X-abc)+1001abc,因为1001=7*11*13,所以1001abc必然是7的倍数(同理也必然是11的倍数,13的倍数),所以,若X-abc能被7整除,则Xabc能被7整除。