第八章_向量代数与空间解析几何1
高等数学下册第八章 向量代数与空间解析几何

离.因为
PA 32 ( y 1)2 (z 2)2 , PB 42 ( y 2)2 (z 2)2 ,
PC 02 ( y 5)2 (z 1)2 ,
所以 32 ( y 1)2 (z 2)2 42 ( y 2)2 (z 2)2 02 ( y 5)2 (z 1)2 ,
零向量: 模为 0 的向量,
向量相等、向量平行向量共线、负向量、向量共面.
DMU
第一节 向量的线性运算与空间直角坐标系
向量线性运算的几何表达 ➢加法
平行四边形法则:
b ab
(a b) c
c
bc
三角形法则: a ab
a (b c) ab b
b a
a
运算规律 : 交换律 a b b a
结合律 ( a b ) c a (b c ) a b c
解 4u 3v 4 2a b 2c 3 a 4b c 5a 16b 11c.
例 如果平面上一个四边形的对角线互相平分试用向量证明
这是平行四边形
证 ABOBOA , DC OCOD 而 OC OA OD OB
所以
DC OA OB OB OA AB
这说明四边形 ABCD 的对边 AB CD 且 AB // CD 从而四边形
第八章
向量代数与空间解析几何
第一部分 向量代数 第二部分 空间解析几何
在三维空间中: 空间形式 — 点, 线, 面
数量关系 — 坐标, 方程(组) 基本方法 — 坐标法; 向量法
DMU
第八章 向量代数与空间解析几何
第一节 向量的线性运算与空间直角坐标系 第二节 数量积 向量积 混合积 第三节 平面及其方程 第四节 空间直线及其方程 第五节 曲面方程 第六节 空间曲线方程
8第八章空间解析几何答案

8第八章空间解析几何答案第八章空间解析几何与向量代数§8.1向量及其线性运算1.填空题(1)点关于面对称的点为(),关于面对称的点为(),关于面对称的点为().(2)点关于轴对称的点为(),关于轴对称的点为(),关于轴对称的点为(),关于坐标原点对称的点为().2. 已知两点和,计算向量的模、方向余弦和方向角.解:因为,故,方向余弦为,,,方向角为,, .3. 在平面上,求与、、等距离的点.解:设该点为,则,即,解得,则该点为.4. 求平行于向量的单位向量的分解式.解:所求的向量有两个,一个与同向,一个与反向. 因为,所以.5. 已知点且向量在x轴、y轴和z轴上的投影分别为,求点的坐标.解:设点的坐标为,由题意可知,则,即点的坐标为.§8.2 数量积向量积1.若,求的模.解:所以.2.已知,证明:.证明:由,可得,可知,展开可得,即,故.3. 。
4.已知,,求与的夹角及在上的投影.解:,,. 因为,所以.5..§8.3 曲面及其方程1.填空题(1)将xOz坐标面上的抛物线绕轴旋转一周,所生成的旋转曲面的方程为(),绕轴旋转一周,所生成的旋转曲面的方程为().(2)以点为球心,且通过坐标原点的球面方程为().(3)将坐标面的圆绕轴旋转一周,所生成的旋转曲面的方程为(). 2.求与点与点之比为的动点的轨迹,并注明它是什么曲面.解:设动点为,由于,所以,解之,可得,即,所以所求的动点的轨迹为以点为心,半径为的球面.3§8.4 空间曲线及其方程1. 填空题(1)二元一次方程组在平面解析几何中表示的图形是(两相交直线的交点);它在空间解析几何中表示的图形是(两平面的交线,平行于轴且过点).(2)旋转抛物面在面上的投影为(),在面上的投影为(),在面上的投影为().2.求球面与平面的交线在面上的投影方程.解:将代入,得,因此投影方程为.4.分别求母线平行于轴、轴及轴且通过曲线的柱面方程.解:在中消去得,即为母线平行于轴且通过曲线的柱面方程.在中消去得,即为母线平行于轴且通过曲线的柱面方程.在中消去得,即为母线平行于轴且通过曲线的柱面方程.4.将下列曲线的一般方程化为参数方程:(1).解:将代入得,即. 令,,所求的参数方程为..§8.5 平面及其方程1. 填空题(1)一平面过点且平行于向量和,平面的点法式方程为(),平面的一般方程为(),平面的截距式方程(),平面的一个单位法向量为().(2)设直线的方程为,当()时,直线过原点;当()且(或有一个成立)时,直线平行于轴但不与轴相交;当()时,直线与轴相交;当()时,直线与轴重合.2.求过三点,和的平面方程.解:由平面的三点式方程知,所求的平面方程为=0,即.3.求过点且垂直于两平面和的平面方程.解:该平面的法向量为,平面的方程为,即.4.分别按下列条件求平面方程:(1)平行于平面且经过点;(2)通过轴和点;(3)求平行于轴,且经过两点和的平面方程.解:(1)平面的法向量是,可作为所求平面的法向量,因此所求平面的方程为,即.(2)所求平面的法向量即垂直于轴又垂直于向量,所以所求平面的法向量为,因此所求平面的方程为,即.(3)由于所求平面平行于轴,故设所求平面方程为. 将点和分别代入得及,解得及. 因此所得方程为,即.§8.6 空间直线及其方程1. 填空题(1)直线和平面的关系是(平面与直线互相垂直).(2)过点且与直线平行的直线的方程是().(3)直线与直线的夹角为().2.化直线为对称式方程和参数方程.解:直线的方向向量为. 取,代入直线方程可得,. 所以直线的对称式方程为.令,所给直线的参数方程为.3.求过点且与直线垂直的平面方程.解:直线的方向向量可作为所求平面的法向量,即.所求平面的方程为,即.4. 确定的值,使直线与平面平行,并求直线与平面之间的距离.解:直线的方向向量,要使直线与平面平行,只要(其中为平面的法向量),即,解得. 令,代入直线的方程可得,,直线与平面之间的距离.第八章空间解析几何与向量代数综合练习1.填空题:(1)已知,,且与夹角为,则().(2)若向量,平行,则().(3)已知向量的模为,且与轴的夹角为,与y轴的夹角为,与z 轴的夹角为锐角,则=().(4)曲线 (a、b为常数)在xOy平面上投影曲线是().(5)xOy平面上曲线绕x轴旋转一周所得旋转曲面方程是().(6)直线与平面的夹角的正弦().(7)方程所表示的曲面名称为(双曲抛物面).(8)与两直线及都平行,且过原点的平面方程是().(9)已知动点到平面的距离与点到点的距离相等,则点的轨迹方程为().(10)与两平面和等距离的平面方程为().2. 设,,求向量,使得成立,这样的有多少个,求其中长度最短的.解:设,则,则,因此这样的,有无穷个.由于,因此,当时,即长度最短.3.已知点和点,试在轴上求一点,使得的面积最小.解:设,则,,,故的面积为,显然,当时,的面积最小,为,所求点为.4. 求曲线在各坐标平面上的投影曲线方程.解:在平面投影为;在平面投影为;在zOx平面投影为.5.求原点关于平面的对称点的坐标.解:过原点作垂直于平面的直线,该直线的方向向量等于平面的法向量,所求直线的对称式方程为,即为其参数方程. 将此参数方程代入平面,有,解得,即直线与平面的交点为. 设所求的对称点为,则,,,即所求的对称点为.6.求直线在平面上的投影直线绕轴线转一周所成曲面的方程.解:过作垂直于平面的平面,所求的直线在平面上的投影就是平面和的交线. 平面的法向量为:,则过点的平面的方程为:,即. 所以投影线为. 将投影线表示为以为参数的形式:,则绕轴的旋转面的方程为,即.7.求球心在直线上,且过点和点的球面方程.解:设球心为,则,即.又因为球心在直线上,直线的参数方程为,将直线的参数方程代入,可得,球心坐标为,所求球面方程为.8.已知两条直线的方程是,,求过且平行于的平面方程.解:因为所求平面过,所以点在平面上. 由于平面的法向量垂直于两直线的方向向量,因此平面的法向量为. 因此所求平面的方程为,即.9. 在过直线的所有平面中,求和原点距离最大的平面.解:设平面束方程为,即,平面与原点的距离为要使平面与原点的距离最大,只要,即该平面方程为.10. 设两个平面的方程为和(1)求两个平面的夹角. (2)求两个平面的角平分面方程.(3)求通过两个平面的交线,且和坐标面垂直的平面方程.解:(1)两个平面的法向量为和,设两个平面的夹角为,则,所以.(2)因为角平分面上任意一点到两个平面的距离相等,由点到平面的距离公式,可得,即,所求的角平分面方程为或.(3)设通过两个平面的交线的平面方程为,即,由于该平面垂直于坐标面,所以,可得,因此所求的平面方程为.。
高等数学(同济第七版)第八章课后答案

a -c.
l)3 A = -(1IH + Ill)一;)= - 卡 - c.
4
一、《高等数学》{第七版)下00习�全解
言。 .
D4r1 =
?’ … -
(
,18
+
b
BD4)
=
-
a
- c.
a,i 4.已知l网点M 1 (0.l.2)利l M2 (1. -l. 0).试用卢I生 f,T; .-t< ,1�式表不,:., :,, .11 , 叫戊
nt Fi,, 14.试iif.nJJ以气!!X A(4. I.9). R( 10. - I.的.r.(2.4.3)为顶点的 · ((1 ff�{(: :Y 1'1 <r1
?角:/巳.
iiF. 111 I A革I :=/(10-4) 1 +(-I-I) ) +(。-9) 2 ::7.
I |元 =/(2-4) 2 +<.:i-门 2 +(3-9)1::7,
” 17. 的,,Jr,川
I I I ..!.. = 饵 U知 Ir =4.贝lj l勺’j,, r
r ,·o执 0=4 ·叫 王 : 4X =2.
3
2
: J: 18. 才句 (I() 1 右,-�� fl:点IJ(2. 叶 ,7). 'l;:.° (1: .t 输 、y圳和 z 4111 l二的投影依次为4, -4和1
二
yOz
面
( 2) 111 ("O揭 β=!!刘lβ=0 , 攸向;,t与 ) 4·111 la]向.JliJI'β=0知。=β= 旦 2 . 伙向没if'i自于宫和h和I J'轨,且II与z都Ii平行,
高数A2总复习资料

(ax bx )i (ay by ) j (az bz )k
a b {ax bx , ay by , az bz }
a
(ax
{ax ,
bx )i
ay ,
(ay
az }
by
)
j
(az
bz
)k
(ax )i (ay ) j (az )k
向量模长的坐标表示式
| a |
的距离为
M0
d
n
M1
(3) 点
到直线
的距离为
M 0 (x0 , y0 , z0 ) d
d M0M1 s s
s (m,n, p)
M1(x1, y1, z1)
i
j
k
1 m2 n2 p2
x1 x0 m
y1 y0 z1 z0
n
p
(4)两直线间的距离
命题1 两平行直线
l1 :
x x1 X
T( x, z) 0
y
0
10、平面
[1] 平面的点法式方程 A( x x0 ) B( y y0 ) C(z z0 ) 0
[2] 平面的一般方程
Ax By Cz D 0
[3] 平面的截距式方程 x yz 1 a bc
z
n
M0 M
o
y
x
M 0( x0 , y0 , z0 )
n { A, B, C}
y)
2z z
xy
( ) y x
f xy ( x, y)
2 z z
yx
( ) x y
f yx (x,
y)
2 z z
y 2
( ) y y
f yy(x, y)
同济大学(高等数学)_第八章_向量代数与解析几何

同济大学(高等数学)_第八章_向量代数与解析几何-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第五篇 向量代数与空间解析几何第八章 向量代数与空间解析几何解析几何的基本思想是用代数的方法来研究几何的问题,为了把代数运算引入几何中来,最根本的做法就是设法把空间的几何结构有系统的代数化,数量化. 平面解析几何使一元函数微积分有了直观的几何意义,所以为了更好的学习多元函数微积分,空间解析几何的知识就有着非常重要的地位.本章首先给出空间直角坐标系,然后介绍向量的基础知识,以向量为工具讨论空间的平面和直线,最后介绍空间曲面和空间曲线的部分内容.第1节 空间直角坐标系1.1 空间直角坐标系用代数的方法来研究几何的问题,我们需要建立空间的点与有序数组之间的联系,为此我们通过引进空间直角坐标系来实现.1.1.1 空间直角坐标系过定点O ,作三条互相垂直的数轴,这三条数轴分别叫做x 轴(横轴)、y 轴(纵轴)、z 轴(竖轴),它们都以O 为原点且具有相同的长度单位. 通常把x 轴和y 轴配置在水平面上,而z 轴则是铅垂线;它们的正方向要符合右手规则:右手握住z 轴,当右手的四指从x 轴的正向转过2角度指向y 轴正向时,大拇指的指向就是z 轴的正向,这样就建立了一个空间直角坐标系(图8-1),称为Oxyz 直角坐标系,点O 叫做坐标原点.图8-1在Oxyz 直角坐标系下,数轴Ox ,Oy ,Oz 统称为坐标轴,三条坐标轴中每两条可以确定一个平面,称为坐标面,分别为xOy ,yOz ,zOx ,三个坐标平面yxzO将空间分为八个部分,每一部分叫做一个卦限(图8-2),分别用Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ、Ⅶ、Ⅷ表示.图8-21.1.2 空间点的直角坐标设M 为空间中的任一点,过点M 分别作垂直于三个坐标轴的三个平面,与x 轴、y 轴和z 轴依次交于A 、B 、C 三点,若这三点在x 轴、y 轴、z 轴上的坐标分别为x ,y ,z ,于是点M 就唯一确定了一个有序数组(, , )x y z ,则称该数组(, , )x y z 为点M 在空间直角坐标系Oxyz 中的坐标,如图8-3.x ,y ,z 分别称为点M 的横坐标、纵坐标和竖坐标.图8-3反之,若任意给定一个有序数组(, , )x y z ,在x 轴、y 轴、z 轴上分别取坐标为x ,y ,z 的三个点A 、B 、C ,过这三个点分别作垂直于三个坐标轴的平yxz O y xz A B C(,,)M x y z面,这三个平面只有一个交点M ,该点就是以有序数组(, , )x y z 为坐标的点,因此空间中的点M 就与有序数组(, , )x y z 之间建立了一一对应的关系.注:A 、B 、C 这三点正好是过M 点作三个坐标轴的垂线的垂足.1.2 空间中两点之间的距离设两点111(, , )M x y z ,222(, , )N x y z ,则M 与N 之间的距离为212212212)()()(z z y y x x d -+-+-= (8-1-1)事实上,过点M 和N 作垂直于xOy 平面的直线,分别交xOy 平面于点1M 和1N ,则1MM ∥1NN ,显然,点1M 的坐标为11(, , 0)x y ,点1N 的坐标为22(, , 0)x y (如图8-4).图8-4由平面解析几何的两点间距离公式知,1M 和1N 的距离为:21221211)()(||y y x x N M -+-=.过点M 作平行于xOy 平面的平面,交直线1NN 于2N ,则11M N ∥2MN ,因此2N 的坐标为221(, , )x y z ,且212212112)()(||||y y x x N M MN -+-==,在直角三角形N MN 2中,||||122z z N N -=,所以点M 与N 间的距离为2122122122222)()()(||||z z y y x x N N MN d -+-+-=+=. 例1 设(1, 2, 0)A -与(1, 0, 2)B --为空间两点,求A 与B 两点间的距离. 解 由公式(8-1-1)可得,A 与B 两点间的距离为d ==例2 在z 轴上求与点(3, 5, 2)A -和(4, 1, 5)B -等距的点M .解 由于所求的点M 在z 轴上,因而M 点的坐标可设为(0, 0, )z ,又由于MA MB =,由公式(8-1-1),得222222)5(1)4()2(53z z -++-=--++.从而解得72=z ,即所求的点为2(0, 0, )7M .习题8-11.讨论空间直角坐标系的八个卦限中的点的坐标的符号. 2.在坐标轴上的点和在坐标平面上的点的坐标各有何特点? 3.在空间直角坐标系中,画出下列各点:(2, 0, 0)A ;(0, 3, 0)B -;(3, 0, 1)C ;(3, 2, 1)D -. 4.求点(1, 2, 3)-关于各坐标平面对称的点的坐标. 5.求点(1, 2, 3)关于各坐标轴对称的点的坐标. 6.求下列各对点间的距离: (1) (0, 1, 3)A -与(2, 1, 4)B ;(2) (1, 4, 2)C -与D(2, 7, 3).7.在坐标平面yOz上求与三点(3, 1, 2)C等距A、(4,2,2)B--和(0, 5, 1)的点.8.求点(12,3, 4)A-与原点、各坐标平面和各坐标轴的距离.A4,3,1,B7,1,2,C5,2,3为顶点的三角形△ABC是一等腰三角9. 证明以()()()形.第2节空间向量的代数运算2.1 空间向量的概念在日常生活中,我们经常会遇到一些量,如质量、时间、面积、温度等,它们在取定一个度量单位后,就可以用一个数来表示.这种只有大小没有方向的量,叫做数量(或标量).但有一些量,如力、位移、速度、电场强度等,仅仅用一个实数是无法将它们确切表示出来,因为它们不仅有大小,而且还有方向,这种既有大小又有方向的量,叫做向量(或矢量).在数学上,我们用有向线段AB来表示向量,A称为向量的起点,B称为向量的终点,有向线段的长度就表示向量的大小,有向线段的方向就表示向量的方向.通常在印刷时用黑体小写字母a,b,c,…来表示向量,手写时用带箭头的小写字母, ,,a b c来记向量.向量的长度称为向量的模,记作a或AB,模为1的向量叫做单位向量,模为0的向量叫做零向量,记作0,规定:零向量的方向可以是任意的.本章我们讨论的是自由向量,即只考虑向量的大小和方向,而不考虑向量的起点,因此,我们把大小相等,方向相同的向量叫做相等向量,记作a=b.规定:所有的零向量都相等.与向量a大小相等,方向相反的向量叫做a的负向量(或反向量),记作a.平行于同一直线的一组向量称为平行向量(或共线向量).平行于同一平面的一组向量,叫做共面向量,零向量与任何共面的向量组共面.2.2 向量的线性运算2.2.1 向量的加法我们在物理学中知道力与位移都是向量,求两个力的合力用的是平行四边形法则,我们可以类似地定义两个向量的加法.定义1对向量a,b,从同一起点A作有向线段AB、AD分别表示a与b,然后以AB、AD为邻边作平行四边形ABCD,则我们把从起点A到顶点C 的向量AC称为向量a与b的和(图8-5),记作a+b.这种求和方法称为平行四边形法则.图8-5 图8-6若将向量b 平移,使其起点与向量a 的终点重合,则以a 的起点为起点,b 的终点为终点的向量c 就是a 与b 的和(图8-6),该法则称为三角形法则.多个向量,如a 、b 、c 、d 首尾相接,则从第一个向量的起点到最后一个向量的终点的向量就是它们的和a +b +c +d (图8-7).图8-7对于任意向量a ,b ,c ,满足以下运算法则: (1) a +b =b +a (交换律).(2) ()()a +b +c =a +b +c (结合律). (3) 0a +=a .2.2.2 向量的减法定义2 向量a 与b 的负向量-b 的和,称为向量a 与b 的差,即()--a b =a +b .特别地,当b =a 时,有()-0a +a =.abcda +b +c +dabAabc =a +b由向量减法的定义,我们从同一起点O 作有向线段OA ,OB 分别表示a ,b ,则()OA OB OA OB --=+-a b =OA BO BA =+=.也就是说,若向量a 与b 的起点放在一起,则a ,b 的差向量就是以b 的终点为起点,以a 的终点为终点的向量(图8-8).图8-82.2.3数乘向量定义3 实数λ与向量a 的乘积是一个向量,记作λa ,λa 的模是λa ,方向:当0λ>时,λa 与a 同向;当0λ<时,λa 与a 反向;当0λ=时,λ0a =.对于任意向量a ,b 以及任意实数λ,μ,有运算法则: (1) ()()λμλμa =a . (2) ()+λμλμ+a =a a .(3) ()+λλλ+a b =a b .向量的加法、减法及数乘向量运算统称为向量的线性运算,λμa +b 称为a ,b 的一个线性组合(, )R λμ∈.aabb-a b BAC特别地,与 a 同方向的单位向量叫做a 的单位向量,记做a e ,即aa e a=.上式表明:一个非零向量除以它的模的结果是一个与原向量同方向的单位向量.例1 如图8-9,在平行六面体///ABCD B C D /—A 中,设/=AA ,a AD =b AB =c ,试用,,a b c 来表示对角线向量//,.AC A C图8-9解 ''AC AB BC CC =++'AB BC AA =++a b c =++;'''ACA A AB BC AA AB AD =++=-++a b c =++. 由于向量λa 与a 平行,所以我们通常用数与向量的乘积来说明两个向量的平行关系.即有,定理1 向量a 与非零向量b 平行的充分必要条件是存在一个实数λ,使得λa =b .2.3 向量的坐标表示2.3.1向量在坐标轴上的投影设A 为空间中一点,过点A 作轴u 的垂线,垂足为'A ,则'A 称为点A 在轴u 上的投影(图8-10).图8-10若M 为空间直角坐标系中的一点,则M 在x 轴、y 轴、z 轴上的投影为A 、B 、C ,如图8-11所示.图8-11设向量AB 的始点与终点B 在轴u 的投影分别为A '、B ',那么轴u 上的有向线段A B ''的值A B ''叫做向量AB 在轴u 上的投影,记作u prj AB A B ''=,轴u 称为投影轴.图8-12当A B ''与轴u 同向时,投影取正号,当A B ''与轴u 反向时,投影取负号. 注 (1) 向量在轴上投影是标量.yxzOA B CM(2) 设MN 为空间直角坐标系中的一个向量,点M 的坐标为111(, , )x y z ,点N 的坐标为222(, , )x y z ,显然,向量MN 在三个坐标轴上的投影分别为12x x -,12y y -,12z z -.2.3.2向量的坐标表示取空间直角坐标系Oxyz ,在x 轴、y 轴、z 轴上各取一个与坐标轴同向的单位向量,依次记作, , i j k ,它们称为坐标向量.空间中任一向量a ,它都可以唯一地表示为, , i j k 数乘之和. 事实上,设MN a =,过M 、N 作坐标轴的投影,如图8-13所示.MN =MA+AP +PN =MA+MB +MC a =.由于MA 与i 平行,MB 与j 平行,MC 与k 平行,所以,存在唯一的实数, , x y z ,使得MA x =i ,MB y =j ,MC z =k ,即x y z a =i +j +k . (8-2-1)图 8-13我们把(8-2-1)式中, , i j k 系数组成的有序数组(, , )x y z 叫做向量a 的直角坐标,记为{, , }x y z a =,向量的坐标确定了,向量也就确定了.显然,(8-2-1)中的, , x y z 是向量a 分别在x 轴、y 轴、z 轴上的投影.因此,在空间直角坐标系中的向量a 的坐标就是该向量在三个坐标轴上的投影组成的有序数组.例2 在空间直角坐标系中设点(3, 1, 5)M -,(2, 3, 1)N -,求向量MN 及NM 的直角坐标.解 由于向量的坐标即为向量在坐标轴上的投影组成的有序数组,而向量的各投影即为终点坐标与起点坐标对应分量的差.所以向量MN 的坐标为{5, 4, 4}--,向量NM 的坐标为{5, 4, 4}-. 例3(定比分点公式) 设111(,,)A x y z 和222(,,)B x y z 为两已知点,有向线段AB 上的点M 将它分为两条有向线段AM 和MB ,使它们的值的比等于数(1)λλ≠-,即AMMBλ=,求分点(,,)M x y z 的坐标. 图8-14解 如图8-14,因为AM 与MB 在同一直线上,且同方向,故AM MB λ=⋅,而122{,,}AM x x y y z z =---, 222{,,}MB x x y y z z =--- 222{(),(),()}MB x x y y z z λλλλ=---所以 12()x x x x λ-=-,12()y y y y λ-=-,12()z z z z λ-=- 解得121212,,.111x x y y z z x y z λλλλλλ+⋅+⋅+⋅===+++当λ=1, 点M 的有向线段→AB 的中点, 其坐标为221x x x +=, 221yy y +=, 221z z z +=. 2.3.3向量的模与方向余弦的坐标表示式向量可以用它的模与方向来表示,也可以用它的坐标式来表示,这两种表示法之间的是有联系的.设空间向量12a M M =与三条坐标轴的正向的夹角分别为,,αβγ,规定:0,0,0απβπγπ≤≤≤≤≤≤,称,,αβγ为向量a 的方向角.图8-15因为向量a 的坐标就是向量在坐标轴上的投影,因此12cos cos x a M M a αα=⋅=⋅ 12cos cos y a M M a ββ=⋅=⋅ 12cos cos z a M M a γγ=⋅=⋅公式(8.2.2)中出现的cos ,cos αβ量a 的方向余弦.而{,,}{cos ,cos ,cos }x y z a a a a a a a αβγ==⋅⋅⋅{cos ,cos ,cos }a a a e αβγ=⋅=⋅{cos ,cos ,cos }a e αβγ=是与向量a 同方向的单位向量.而 a =M M =12,,x y z M P a M Q a M R a ===111,故向量a 的模为 xa a a =+2(8-2-3)从而向量a 的方向余弦为cos a αβγ===(8-2-4)并且 222cos cos cos 1αβγ++=.例4 已知两点1M 和()21,3,0M ,求向量12M M的模、方向余弦和方向角.解 12(12,32,0(1,1,M M =--=-2)2(1)1(222=-++-=;11cos ,cos ,cos 222αβγ=-==-;23,,334πππαβγ===. 例5 已知两点(4,0,5)A 和(7,1,3)B ,求与AB 同方向的单位向量e . 解 因为{74,10,35}{3,1,2},AB =---=-所以 23AB ==于是}.e =2.4 向量的数量积在物理中我们知道,一质点在恒力F 的作用下,由A 点沿直线移到B 点,若力F 与位移向量AB 的夹角为θ,则力F 所作的功为||||cos W F AB θ=⋅⋅.类似的情况在其他问题中也经常遇到.由此,我们引入两向量的数量积的概念.定义1 设a ,b 为空间中的两个向量,则数cos ,a b a b叫做向量a 与b 的数量积(也称内积或点积),记作⋅a b ,读作“a 点乘b ”.即cos ,⋅a b =a b a b (8-2-5)其中,a b 表示向量a 与b 的夹角,并且规定0, π≤≤a b .两向量的数量积是一个数量而不是向量,特别地当两向量中一个为零向量时,就有0⋅a b =.由向量数量积的定义易知: (1) 2⋅a a =a ,因此=a(2) 对于两个非零向量a ,b ,a 与b 垂直的充要条件是它们的数量积为零,即⊥a b ⇔0⋅a b =.注 数量积在解决有关长度、角度、垂直等度量问题上起着重要作用. 数量积的运算满足如下运算性质: 对于任意向量a ,b 及任意实数λ,有 (1) 交换律:⋅⋅a b =b a .(2) 分配律:()⋅⋅⋅a b +c =a b +a c .(3) 与数乘结合律:()()()λλλ⋅⋅=⋅a b =a b a b . (4) 0⋅≥a a 当且仅当0a =时,等号成立.例6 对坐标向量i ,j ,k ,求⋅i i ,⋅j j ,⋅k k ,⋅i j ,⋅j k ,⋅k i . 解 由坐标向量的特点及向量内积的定义得1⋅⋅⋅i i =j j =k k =, 0⋅⋅⋅i j =j k =k i =.例7 已知2=a ,3=b ,2, 3π=a b ,求a b ⋅,(2)()-+a b a b ⋅,+a b .解 由两向量的数量积定义有2cos , 23cos 3π⋅=⨯⨯a b =a b a b 123()=32=⨯⨯--.(2)()=22-⋅+⋅⋅-⋅-⋅a b a b a a +a b b a b b22=2-⋅-a a b b 222(3)23=11=---⨯-.2()()+=⋅+a b a +b a b =⋅⋅+⋅+⋅a a +a b b a b b222=+⋅+a a b b2222(3)3=7=+⨯-+,因此+=a b在空间直角坐标系下,设向量111{,,}x y z a =,向量222{,,}x y z b =,即111x y z ++a =i j k , 222x y z ++b =i j k .则111222()()x y z x y z ⋅++⋅++a b =i j k i j k121212()()+()x x x y x z ⋅+⋅⋅=i i i j i k 121212()()+()y x y y y z ⋅+⋅⋅+j i j j j k 121212()()+()z x z y z z ⋅+⋅⋅+k i k j k k .1⋅⋅⋅i i =j j =k k =, 0⋅⋅⋅i j =j k =k i =,所以121212x x y y z z ⋅++a b =. (8-2-6)也就是说,在直角坐标系下,两向量的数量积等于它们对应坐标分量的乘积之和.同样,利用向量的直角坐标也可以求出向量的模、两向量的夹角公式以及两向量垂直的充要条件,即设非零向量111{,,}x y z a =,向量222{,,}x y z b =,则==a (8-2-7)cos ||||⋅=a ba,b a b=. (8-2-8)⊥a b ⇔1212120x x y y z z ++=. (8-2-9)例8 在空间直角坐标系中,设三点(5, 4, 1)A -,(3, 2, 1)B ,(2, 5, 0)C -.证明:ABC ∆是直角三角形.证明 由题意可知{2, 6, 0}AB =-,={3, 1, 1}AC ---,则(2)(3)6(1)0(1)0AB AC ⋅=-⨯-+⨯-+⨯-=,AB AC ⊥.即ABC ∆是直角三角形.2.5向量的向量积在物理学中我们知道,要表示一外力对物体的转动所产生的影响,我们用力矩的概念来描述.设一杠杆的一端O 固定,力F 作用于杠杆上的点A 处,F 与OA 的夹角为θ,则杠杆在F 的作用下绕O 点转动,这时,可用力矩M 来描述.力F 对O 的力矩M 是个向量,M 的大小为||||||sin OA OA =M F ,F .M 的方向与OA 及F 都垂直,且OA ,F ,M 成右手系,如图8-16所示.图8-162.5.1向量积的定义在实际生活中,我们会经常遇到象这样由两个向量所决定的另一个向量,由此,我们引入两向量的向量积的概念.定义2 设a ,b 为空间中的两个向量,若由a ,b 所决定的向量c ,其模为sin , c =a b a b . (8-2-10)其方向与a ,b 均垂直且a ,b ,c 成右手系(如图8-17),则向量c 叫做向量a 与b 的向量积(也称外积或叉积).记作⨯a b ,读作“a 叉乘b ”.FMθ注 (1) 两向量a 与b 的向量积⨯a b 是一个向量,其模⨯a b 的几何意义是以a ,b 为邻边的平行四边形的面积.(2)⨯0a a =这是因为夹角θ=0,所以⨯0a a = 图8-17(3)对两个非零向量a 与b ,a 与b 平行(即平行)的充要条件是它们的向量积为零向量.a ∥b ⇔⨯0a b =.向量积的运算满足如下性质: 对任意向量a ,b 及任意实数λ,有 (1) 反交换律:⨯-⨯a b =b a . (2) 分配律: ()⨯⨯⨯a b +c =a b +a c ,()⨯⨯⨯a +b c =a c +b c .(3) 与数乘的结合律:()()()λλλ⨯⨯⨯a b =a b =a b .例9 对坐标向量i ,j ,k ,求⨯i i ,⨯j j ,⨯k k ,⨯i j ,⨯j k ,⨯k i .解 ⨯⨯⨯0i i =j j =k k =.⨯i j =k ,⨯j k =i ,⨯k i =j .2.5.2向量积的直角坐标运算在空间直角坐标系下,设向量111{, , }x y z a =,向量222{, , }x y z b =,即111x y z ++a =i j k ,222x y z ++b =i j k ,因为⨯⨯⨯0i i =j j =k k =. ⨯i j =k ,⨯j k =i ,⨯k i =j , ⨯-j i =k ,⨯-k j =i ,⨯-i k =j .则111222()()x y z x y z ⨯++⨯++a b =i j k i j k121212()()+()x x x y x z ⨯+⨯⨯=i i i j i k 121212()()+()y x y y y z ⨯+⨯⨯+j i j j j k 121212()()+()z x z y z z ⨯+⨯⨯+k i k j k k121212121212()()+()()()()x y y x y z z y x z z x -⨯-⨯--⨯=i j j k k i 121212121212()()+()y z z y x z z x x y y x ----=i j k .为了便于记忆,借助于线性代数中的二阶行列式及三阶行列式有111111222222y z x z xy y z x z x y ⨯-a b =i j +k 111222x y z x y z =i j k . 注 设两个非零向量111{, , }x y z a =,222{, , }x y z b =,则a ∥b ⇔⨯0a b =,⇔212121z z y y x x ==. 若某个分母为零,则规定相应的分子为零.例10 设向量{1,2,1}--a =,{2,0,1}b =,求⨯a b 的坐标.解 211112121012120201----⨯--=-ijka b =i j +k 234=--i j +k . 因此⨯a b 的直角坐标为{2, 3, 4}--.例11 在空间直角坐标系中,设向量{3, 0, 2}a =,{1, 1, 1}--b =,求同时垂直于向量a 与b 的单位向量.解 设向量⨯c =a b ,则c 同时与a ,b 垂直.而32111⨯--ij kc =a b =23=-+i j +k ,所以向量c 的坐标为{2, 1, 3}-.再将c 单位化,得02,1,3}={=-c ,即{与-- 为所求的向量. 例12 在空间直角坐标系中,设点(4, 1, 2)A -,(1, 2, 2)B -,(2, 0, 1)C ,求ABC ∆的面积.解 由两向量积的模的几何意义知:以AB 、AC 为邻边的平行四边形的面积为AB AC ⨯,由于{3, 3, 4}AB =--,{2, 1, 1}AC =--,因此33453211AB AC ⨯=--=++--ijki j k ,所以21AB AC ⨯==故ABC ∆的面积为235=∆ABC S .2.6向量的混合积定义3 给定空间三个向量,,a b c ,如果先作前两个向量a 与b 的向量积,再作所得的向量与第三个向量c 的数量积,最后得到的这个数叫做三向量,,a b c的混合积,记做()a b c ⨯⋅或abc ⎡⎤⎣⎦.说明:三个不共面向量,,a b c 的混合积的绝对值等于以,,a b c 为棱的平行六面体的体积V .定理 如果111a X i Y j Z k =++,222b X i Y j Z k =++,333c X i Y j Z k =++,那么 111222333.X Y Z abc X Y Z X Y Z ⎡⎤=⎣⎦ 习题8-21.,,,,,().ABCD AB AD AC DB MA M ==设为一平行四边形试用表示为平行四边形对角线的交点a b.a b12.,().2M AB O OM OA OB =+设为线段的中点,为空间中的任意一点证明2223.?(1)()();(2)();(3)()().==⨯=⨯对于任意三个向量与判断下列各式是否成立a,b c,a b c b c a a b a b a b c c a b4.:(1);(2)(3).利用向量证明三角形的余弦定理正弦定理;勾股定理5.设,,a b c 为单位向量,且满足0a b c ++=,求.a b b c c a ++6.1(3,2,2),(1,3,2),(8,6,2),322a b c a b+ c.求=-==--7.已知三点(3,0,2),A B AB ==求的坐标、模、方向余弦和方向角.8.一向量的终点在点B(2,-1,7),它在x 轴、y 轴和z 轴上的投影依次为4,-4和7.求这向量的起点A 的坐标.9.设2=a ,4=b ,3πa,b =,求⋅a b ,(2)-⋅a b b ,-a b . 10.设向量a ,b ,c 两两垂直,且1=a ,2=b ,3=c ,求向量d =a +b +c 的模及d,a .11.在空间直角坐标系中,已知{1,2,3}-a = ,{2,2,1}-b = ,求: (1) ⋅a b ;(2) 25⋅a b ;(3) a ;(4) cos a,b .12.已知向量2332和,,a i j k b i j k c i j =-+=-+=-,计算 (1)()();a b c a c b -(2)()();a b b c +⨯+(3)()a b c ⨯.13.设向量a ,b 的直角坐标分别为{1, 3, 2}--和{2, 4, }k -,若a b ⊥,求k 的值.14.设向量{2, 1, 1}-a =,{1, 3, 0}-b =,求以、a b 为邻边构造的平行四边形面积.15.求同时垂直于向量{3, 2, 4}-a =和纵轴的单位向量.16.已知三角形三个顶点(4, 1, 2)A -,(3, 0, 1)B -,(5, 1, 2)C ,求ABC ∆的面积.第3节 空间中的平面与直线方程在本节我们以向量为工具,在空间直角坐标系中讨论最简单的曲面和曲线——平面和直线.3.1平面及其方程首先利用向量的概念,在空间直角坐标系中建立平面的方程,下面我们将给出几种由不同条件所确定的平面的方程.3.1.1平面的点法式方程若一个非零向量n 垂直于平面π,则称向量n 为平面π的一个法向量. 显然,若n 是平面π的一个法向量,则λn (λ为任意非零实数)都是π的法向量,即平面上的任一向量均与该平面的法向量垂直.由立体几何知识知道,过一个定点0000(, , )M x y z 且垂直于一个非零向量{, , }A B C n =有且只有一个平面π.设(, , )M x y z 为平面π上的任一点,由于π⊥n ,因此0M M ⊥n .由两向量垂直的充要条件,得00M M =⋅n ,而0000{, , }M M x x y y z z =---,{, , }A B C n =,所以可得0)()()(000=-+-+-z z C y y B x x A . (8-3-1)由于平面π上任意一点(, , )M x y z 都满足方程(8-3-1),而不在平面π上的点都不满足方程(8-3-1),因此方程(8-3-1)就是平面π的方程.由于方程(8-3-1)是给定点0000(, , )M x y z 和法向量{, , }A B C n =所确定的,因而称式(8-3-1)叫做平面π的点法式方程.图8-18例1 求通过点0(1, 2, 4)M -且垂直于向量{3, 2, 1}-n =的平面方程. 解 由于{3, 2, 1}-n =为所求平面的一个法向量,平面又过点0(1, 2, 4)M -,所以,由平面的点法式方程(6-14)可得所求平面的方程为3(1)2(2)1(4)=0x y z --⋅++⋅-,整理,得32110x y z -+-=.例2 求过三点()12,1,4M -,()2M 1,3,2--,()3M 0,2,3 的平面π的方程. 解 所求平面π的法向量必定同时垂直于12M M 与13M M .因此可取12M M 与13M M 的向量积1213M M M M ⨯为该平面的一个法向量n .即1213n =M M M M ⨯.由于12{3, 4, 6}M M =--,13{2, 3, 1}M M =--,因此1213-631ij kn =M M M M =342⨯---149i j k,=+-,因此所求平面π的方程为0419214=--++-)()()(z y x ,化简得.015914=--+z y x一般地,过三点(,,)(1,2,3)k k k k M x y z k =的平面方程为1112121213131310x x y y z z x x y y z z x x y y z z ------=--- 称为平面的三点式方程。
高等数学期末复习-向量代数与空间解析几何

r a
与三个坐标面
xoy,
yoz,
zox
的夹角分别为1, 2,
3 (
0
1, 2,
3
2
),则
cos2 1 cos2 2 cos2 3
;
解: cos2 1 cos2 2 cos2 3 2 ,所以填 2。(内容要求 2)
r 4、向量 a
(1,
1,
).
(A) a b a b
(B) a b a b
(C) a b a b
(D) a b a b
解: a b 2 | a |2 | b |2 2 | a | | b | cos | a |2 | b |2 ,( cos =0)
a b 2 | a |2 | b |2 2 | a | | b | cos | a |2 | b |2
{2, 4,
}
,且
r a
/
r /b
,则
(
);
10
(A)
(B) 10
(C) 6
(D) 6
3
3
解:因为
ar
/
r /b
,所以
1
2
3
,所以选 C。(内容要求 8)
24
r
r
r
r
16、设向量 a {2, 1, 10} , b {4, 2,1},则向量 a 与向量 b 的关系是(
5)
11、已知 a 1, b
2
,且 a 与 b 的夹角为
,则
a
b
(
).
4
(A) 5
高等数学第八章空间解析几何与向量代数

|
c
|
102 52 5 5,
c0
|
c c
|
2
j
5
1 5
k
.
k
4 10 j 5k, 2
作业 P23习题8-2
1(1)、(3),3,4,9
第三节 平面及其方程
一、平面的点法式方程
z
如果一非零向量垂直于一
平面,这向量就叫做该平
面的法线向量.
o
y
x
法线向量的特征: 垂直于平面内的任一向量.
定的平面, 指向符合右手系。
定义
向量
a
与
b
的向量积为
c
a
b
(其中
为a
与b
的夹角)
c 的方向既垂直于a,又垂直于b ,
指向符合右手系。
向量积也称为“叉积”、“外积”。
1、关于向量积的说明:
(1)
a
a
0.
( 0 sin 0)
(2) a//b
a b 0.
(a
0,
b
,
ab .
()
ab,
,
2
cos 0,
ab
|
a
|| b
2
| cos
0.
2、数量积符合下列运算规律:
(1) 交换律:
a
b
b
a
(2) 分配律:
(a b) c a c b c
(3) 若 为常数:
若 、 为常数:
(a)
b
a
(b)
(a
(a)
( b )
(a
b ).
3、向量积的坐标表达式
设
a
axi
高等数学(第八章)向量代数与空间解析几何(全)

若向量a = x1i y1 j z1k,b = x2i y2 j z2k,由数量积的运算性质得
a b = x1x2 y1 y2 z1z2.
设非零向量a = x1, y1, z1,b = x2, y2, z2,则
(1) | a | a a x12 y12 z12;
(2) cos a, b a b
2
向量代数与空间解析几何
空间直角坐标系
一、空间直角坐标系 空间两点间的距离
向量的概念---大小,方向,相等,向径,坐标等.
二、向量代数 向量的运算---加减,数乘,点乘,叉乘,混合积.
❖ 向量位置关系的刻画 ---平行,垂直,夹角. ❖ 向量的方向角、方向余弦.
平面的方程
三、空间的平面 两平面的位置关系
五、 向量的坐标
空间直角坐标系Oxyz 中,在x 轴、y 轴、z 轴上各取一个与坐标轴同向的单位 向量,以此记作i,j,k,把它们称为基本单位向量或基向量.任一向量都可以 唯一地表示为i,j,k 数乘之积.
设M (x, y, z)是空间任意一点,记OM r,则r xi yj zk,我们把上式称为 向量r 的坐标分解式,xi,yj 和zk 称为向量r 沿3 个坐标轴方向的分向量,i,j,
d (x2 x1)2 ( y2 y1)2 (z2 z1)2 .
11
二、 空间两点间的距离 例 1 在z轴上求与点A(3,5, 2)和B(4,1,5)等距离的点M .
解 由于所求的点M 在z 轴上,因此M 点的坐标可设为(0, 0, z),又由于
MA MB ,
由空间两点间的距离公式,得
(3)结合律:(a) b = (a b) a (b);
(4)a a = a 2 ; (5)a b = 0 a b; (6) | a b || a | | b | . 特别地,有
同济高等数学第八章学习指导及习题详解

462第八章 向量代数与空间解析几何一、预习导引第一节 向量及其线性运算1. 中学阶段已经学习了向量的概念、线性运算及运算规律.阅读本节前两部分的内容,从中找出与你以前学过的向量有关内容不同之处.2. 尝试自己画出空间直角坐标系的图形,确认每一个卦限的方位.你能找出坐标轴上的点、坐标面上的点及各卦限内的点的坐标的特点吗?空间任意一个向量你能用坐标表示吗?阅读本节第三部分内容,从中找出答案.3. 在空间直角坐标系中,向量可以用坐标来表示,那么向量的线性运算是否也可以利用坐标作运算?点的坐标表示与向量的坐标表示有区别吗?利用坐标进行向量运算要注意什么问题?仔细阅读本节第四部分内容,你将会正确解答这些问题.4. 在空间直角坐标系中画出向量()1,2,2OM =,利用本节第三部分知识,求向量OM 的模及它与,,x y z 三个坐标轴的夹角(分别设为,,αβγ,称为向量的方向角)的余弦cos ,cos ,cos αβγ,并考察向量的模、方向余弦与其坐标的关系.这种关系式可以推广到空间任意向量吗?阅读本节第五部分的1、2,验证你的结论是否正确.在书上画出来空间任意两点间的距离公式.5 .阅读本节第五部分的3,细心体会向量在轴上的投影概念.向量(),,OM x y z =在三个坐标轴上的投影分别是什么?与向量OM 在三个坐标轴上的分向量有什么区别?注意向量投影的性质.第二节 数量积 向量积 *混合积1. 中学阶段我们已经学习了平面上两向量的数量积的定义、坐标表示及运算规律,请你尝试把数量积的定义、坐标表示及运算规463 律推广到空间向量.阅读本节第一部分内容,验证你的推论.2. 两向量的向量积是一个向量,怎样确定这个向量的模、方向及向量积如何用坐标表示、有什么运算规律?带着这些问题阅读本节第二部分,从中找出答案.3. 向量的混合积顾名思义,是指既含有向量积又含有数量积的向量运算,即()a b c ⨯⋅.根据本节前两部分所学知识,用坐标表示向量的混合积()a b c ⨯⋅;混合积()a b c ⨯⋅的几何意义是什么?阅读本节第三部分内容,检验你的结论.第三节 平面及其方程1. 在平面解析几何中,把平面曲线看作动点的轨迹,建立了曲线和二元方程之间的关系,那么空间曲面或曲线是否也可以看作动点的几何轨迹,建立三元方程或方程组之间的关系?阅读曲面方程与空间曲线方程的概念,从你熟悉的学习和生活实践中举例说明这些概念.2. 用坐标表示向量()0000,,M M x x y y z z =---垂直于向量(),,n A B C =.把(),,M x y z 看作动点,满足0M M n ⊥的点M 的集合在空间表示怎样的图形?如果把n 换为2n ,0M M n ⊥的坐标表示式会变吗?换为任意非零常数乘以n 呢?仔细阅读本节第二部分,回答上述问题,揣摩用平面的点法式方程求解的问题类型.3. 平面方程0Ax By Cz D +++=中,,,,A B C D 中任意一个为零、任意两个为零及,,A B C 中任意两个为零且0D =时,它们对应的几何图形分别有什么特点?阅读本节第三部分,总结特殊的三元一次方程所表示的平面的特点.4. 阅读本节第四部分,弄清楚两平面的夹角的概念,夹角取值的范围,并用向量的坐标表示两平面的夹角.思考如何判断两平面的位置关系.推导空间中的点到平面的距离公式.第四节 空间直线及其方程4641. 从几何的角度看,两张相交平面确定一条直线L ,直线L 用动点的坐标表示,即由两个三元一次方程构成的方程组.通过空间一条直线L 的平面有多少?L 的方程唯一吗?阅读本节第一部分,从中找出答案.2. 用坐标表示向量()0000,,M M x x y y z z =---平行于向量(),,s m n p =.把(),,M x y z 看作动点,满足0//M M s 的点M 的集合在空间表示怎样的图形?如果把s 换为2s ,0//M M s 的坐标表示式会变吗?换为任意非零常数乘以s 呢?仔细阅读本节第二部分,回答上述问题,在书上画出直线的对称式方程和参数式方程.3. 阅读本节第三部分,弄清楚两直线夹角的取值范围.如何计算两直线的夹角?如何判断两直线的位置关系?4. 阅读本节第四部分,弄清楚直线与平面的夹角的取值范围.如何计算直线与平面的夹角?如何判断直线与平面的位置关系?分析平面束方程与三元一次方程的关系.第五节 曲面及其方程1. 阅读本节第一部分内容,通过例1与例2仔细揣摩:已知空间曲面如何建立其方程;已知坐标,,x y z 间的一个方程怎样研究它所表示的曲面的形状.2. 阅读本节第二部分内容,找出在进行旋转曲面方程的推导过程中,变化的量和不变的量,总结旋转曲面的方程的特点.思考给定一个三元二次方程,你能判断出它是否是旋转曲面?如果是,你能给出它的母线的方程和轴吗?它的母线唯一吗?3. 柱面方程的特点是什么?它的图形有什么特点?柱面方程与平面曲线方程有什么区别与联系?带着这些问题,阅读本节第三部分内容,从中找出答案.4. 阅读本节第四部分内容,从中找出下列问题的答案,怎样方程表示的曲面是二次曲面?常见的二次曲面有哪些?它们的图形是怎样的?。
高等数学-第8章-空间解析几何与向量代数

-。
b与a的差b a.向量加法的性质〔运算律〕②结合律+的模一般地不等于a的模加b的模,而有a b a ba b+≤+,即三角形两边之和大于等于第三向量与数的乘法Array、向量的定义:向量a与数m的乘积是一个向量,它的模等于m a,方向与a相同〔假设反〔假设m<0〕。
、向量与数量乘法的性质(运算律)②分配律≠,则向量b平行于a得充分必要条件是:存在唯一实数λ,使b=λa。
a0在实际问题中,有些向量与其起点有关,有些向量与其起点无关。
由于一切向量的共性是它们都有大小和方向,所以在数学上我们研究与起点无关的向量,并称这种向量为自由向量〔以后简称向量〕,即只考虑向量的大小和方向,而不管它的起点在什么地方。
当遇到与起点有关的向量时〔例如,谈到某一质点的运动速度时,这速度就是与所考虑的那一质点的位置有关的向量〕,可在一般原则下作特别处理。
上的射影。
投影向量的定义:AB 的始点A B ''就定义AB 在轴u 上的投影向量。
向量在轴上的投影:向量A B ''在轴AB 在轴u 上的投影,记为投影AB 。
向量在轴上的投影性质:性质1〔投影定理〕AB =cos AB ϕ与向量AB 的夹角。
推论:相等矢量在同一轴上的射影相等。
性质2:Prj(12a a +)=Prj 1a +Prj 2a 。
性质2可推广到有限个向量的情形。
性质3:Prj u λa =λPrj u a 。
向量在坐标轴上的分向量与向量的坐标:向量a 在坐标轴上的投影向量,,y z i a j a k 称为向量在坐标轴上的分向量。
向量a 在三条坐标轴上的投影,y z a a 叫做向量的坐标,记为:a ={,,x y a a 由向量在轴上的投影定义,a 在直角坐标系Oxyz 中的坐标{,,x y z a a a a ,由此可知,向量的投影具有与坐标相同的性质。
利用向量的坐标,可得向量的加法、减法以及向量与数的乘法的运算如下:a ={,x y a a ,{,,}x y zb b b b =利用向量加法的交换律与结合律,以及向量与数乘法的结合律与分配律,有{,x y z z a b a b b a b +=+++{x a b a b -=-{,}x y a a a λλλ=由此可见,对向量进行加、减及与数相乘,只须对向量的各个坐标分别进行相应的数量运算就行了。
第八章空间解析几何与向量代数知识点题库与答案

第八章:空间解析几何与向量代数一、重点与难点1重点① 向量的基本概念、向量的线性运算、向量的模、方向角; ② 数量积(是个数)、向量积(是个向量); ③ 几种常见的旋转曲面、柱面、二次曲面;④ 平面的几种方程的表示方法(点法式、一般式方程、三点式方程、截距式方程) 的夹角;⑤ 空间直线的几种表示方法(参数方程、对称式方程、一般方程、两点式方程) 两直线的夹角、直线与平面的夹角;2、难点① 向量积(方向)、混合积(计算);② 掌握几种常见的旋转曲面、柱面的方程和二次曲面所对应的图形; ③ 空间曲线在坐标面上的投影;④ 特殊位置的平面方程(过原点、平行于坐标轴、垂直于坐标轴等; )⑤ 平面方程的几种表示方式之间的转化; ⑥ 直线方程的几种表示方式之间的转化;二、基本知识1、向量和其线性运算① 向量的基本概念:向量 既有大小 又有方向的量;向量表示方法:用一条有方向的线段(称为有向线段)来表示向量有向线段的长度表示向量的大小 有向线段的方向表示向量的方向 .;向量的符号 以A 为起点、B 为终点的有向线段所表示的向量记作表示 也可用上加箭头书写体字母表示例如a 、r 、v 、F 或a 、r 、v 、F ;向量的模 向量的大小叫做向量的模 向量a 、a 、AB 的模分别记为|a|、|a|、|AB |单位向量模等于1的向量叫做单位向量;向量的平行 两个非零向量如果它们的方向相同或相反就称这两个向量平行向量a 与b平行 记作a // b 零向量认为是与任何向量都平行; 两向量平行又称两向量共线零向量 模等于0的向量叫做零向量记作0或0 零向量的起点与终点重合 它的方向可以看作是任意的共面向量:设有k (k 3)个向量 当把它们的起点放在同一点时如果k 个终点和公共起点在一个平面上 就称这k 个向量共面;,两平面AB 向量可用粗体字母两向量夹角:当把两个非零向量a与b的起点放到同一点时两个向量之间的不超过的夹角称为向量a 与b 的夹角 记作(a :b)或(b :a)如果向量a 与b 中有一个是零向量 规定它们的夹角可以在 0与 之间任意取值;② 向量的线性运算向量的加法(三角形法则):设有两个向量a 与b 平移向量使b 的起点与a 的终点重合 此 时从a 的起点到b 的终点的向量c 称为向量a 与b 的和 记作a+b 即 c a+b .平行四边形法则 向量a 与b 不平行时 平移向量使a 与b 的起点重合 以a 、b 为邻边作一平行四边形 从公共起点到对角的向量等于向量a 与b 的和a b向量的加法的运算规律(1)交换律abba(2)结合律(a b) c a (b c)负向量 设a 为一向量 与a 的模相同而方向相反的向量叫做a 的负向量 记为a把向量a 与b 移到同一起点 0则从a 的终点A 向b 的终点B 所引向量AB 便是向量b 与a 的差b a向量a 与实数 的乘积记作规定 a 是一个向量 方向当>0时与a 相同 当<0时与a 相反 当 向量这时它的方向可以是任意的a③ 空间直角坐标系在空间中任意取定一点 O 和三个两两垂直的单位向量 i 、j 、k 就确定了三条都以 O 为 原点的两两垂直的数轴依次记为x 轴(横轴卜y 轴(纵轴卜z 轴(竖轴)统称为坐标轴 它们 构成一个空间直角坐标系称为Oxyz 坐标系注:(1)通常三个数轴应具有相同的长度单位(2) 通常把x 轴和y 轴配置在水平面上 而z 轴则是铅垂线(3) 数轴的的正向通常符合右手规则坐标面 在空间直角坐标系中 任意两个坐标轴可以确定一个平面 这种平面称为坐标面x 轴和y 轴所确定的坐标面叫做xOy 面 另两个坐标面是 yOz 面和zOx 面 卦限三个坐标面把空间分成八个部分每一部分叫做卦限含有三个正半轴的卦限叫做第一卦限它位于xOy 面的上方在xOy 面的上方按逆时针方向排列着第二卦限、 第三卦限和第四卦限 在xOy 面的下方 与第一卦限对应的是第五卦限 按逆时针方向还排列着第六卦限、 第七卦限和第八卦限 八个卦限分别用字母I 、II 、III 、IV 、V 、VI 、VII 、VIII 表示向量的坐标分解式任给向量r 对应有点M 使OM r 以OM 为对角线、三条坐标轴为棱作长方体 有 r OM OP PN NM OP OQ OR向量的减法 向量与数的乘法: 它的模| a| | ||a|它的 0时| a| 0即a 为零运算规律(1)结合律 (a) ( a) ( )a ;(2)分配律()a a a ; (a b) a b 向量的单位化 设a0则向量看是与a 同方向的单位向量记为e a ,于是a |a|e a定理1 设向量a 0那么向量b 平行于a 的充分必要条件是存在唯一的实数设 OP Xi OQ yj OR zk 贝U r OM xi yj zk上式称为向量r 的坐标分解式xi 、yj 、zk 称为向量r 沿三个坐标轴方向的分向量点M 、向量r 与三个有序x 、y 、z 之间有一一对应的关系M r OM xi yj zk (x, y, z)投影的性质性质1 (a)u |a|cos (即Prj u a |a|cos )其中 为向量与u 轴的夹角 性质 2 (a b)u (a)u (b)u (即 Prj u (a b) Prj u a Prj u b) 性质 3 ( a)u (a)u (即 Prj u ( a) Prj u a)有序数x 、y 、z 称为向量 r (在坐标系Oxyz )中的坐标 记作r (x y z) 向量r OM 称为点M 关于原点O 的向径 ④ 利用坐标作向量的线性运算设 a (a x a y a z ) b (b x b y b z )a b (a x b x a y b y a z b z ) a b (a x b x a y b y a z b z ) a ( a x a y a z )利用向量的坐标判断两个向量的平行设 a (a x a y a z ) 0 b (b x b y b z )向量 b//a b a即 b//a (b x b y b z )(a x a y a z )于是 bx b y axaybzaz⑤ 向量的模、方向角、投影 设向量r (x y z )作OM r 则 向量的模长公式|r| ..x 2 y 2 z 2设有点 A(x i y i z i )、B(x y 2 z 2) AB OB OA(x 2 y 2 Z 2)(X 1 y 1 Z 1)(X 2 X 1 y 2 y 1 Z 2 z”A 、B 两点间的距离公式为: |AB| |AB|、(X 2 %)2 (y 2 yj 2厶 乙)2方向角:非零向量r 与三条坐标轴的夹角 称为向量r 的方向角设 r (x y z) 则 x |r|cos y |r|cos z |r|coscos 、cos 、cos 称为向量 r 的方向余弦cos x cos|r|从而(cos ,cos 1,COS ) F|r e r2 2 2cos cos cos 12、数量积、向量积、混合积① 两向量的数量积数量积 对于两个向量a 和b 它们的模|a|、|b|和它们的夹角 的 余弦的乘积称为向量 a 和b 的数量积记作ab 即a b |a| |b| cos数量积的性质⑴ a a |a| 2(2)对于两个非零向量 a 、b 如果a b 0贝U a b;反之如果a b 则a b 0如果认为零向量与任何向量都垂直 则a b a b 0两向量夹角的余弦的坐标表示设 (a 人b)则当a 0、b 0时有数量积的坐标表示设 a (a x a y a z ) b (b x b y b z )贝U a b a x b x a y b y a z b z 数量积的运算律 (1) 交换律 a b b a;⑵分配律 (a b) c a c b c(3) ( a) b a ( b) (a b)(a) (• b) (a b)、为数② 两向量的向量积向量积 设向量c 是由两个向量a 与b 按下列方式定出c 的模|c| |a||b|sin其中 为a 与b 间的夹角;c 的方向垂直于a 与b 所决定的平面 c 的指向按右手规则从 a 转向b 来确定那么 向量c 叫做向量a 与b 的向量积 记作a b 即c a b向量积的性质(1) a a 0(2) 对于两个非零向量 a 、b 如果a b 0则a//b 反之 如果a//b 则a b 0 如果认为零向量与任何向量都平行 则a//b a b 0数量积的运算律(1) 交换律a b b a (2) 分配律(a b) c a c b c (3) ( a) b a ( b) (a b)(为数)数量积的坐标表示 设a (a x a y a z ) b (b x b y b z )a b (a yb z a z b y ) i ( a z b xa xb z ) j (a xb y a y b x ) kcosa xb x a y b y a z b z|a||b|X a 2 a z为了邦助记忆利用三阶行列式符号 上式可写成a yb z i a z b x j a x b y k a y b x k a x b z j a z b y ii j k a x a y a z b x b y b z(a y b z a z b y ) i ( a z b x a x b z ) j ( a x b y a y b x ) k③三向量的混合积混合积的几何意义: 混合积[abc]是这样一个数,它的绝对值表示以向量a 、b 、c 为棱的平行六面体的体积,如果向量a 、b 、c 组成右手系,那么混合积的符号是正的,如果a 、b 、c 组成左手系,那么混合积的符号是负的。
第八章答案

第八章 空间解析几何与向量代数第一节 向量及其线性运算一、填空题1.点(1,2,3)-在第Ⅴ卦限,点(2,3,1)--在第Ⅲ卦限.2.点(,,)x y z 到xoy 面、yoz 面、xoz 面的距离分别为z ,x ,y ;到x 轴、y 轴、z.3.点(,,)a b c 关于yoz 面的对称点是(,,)a b c -;与(,,)a b c -关于xoz 面对称;关于原点的 对称点是(,,)a b c ---.4.点M 的向径与x 轴成45角,与y 轴成60角,长度为6,若在z 轴上的坐标是负值,则点M的坐标为3)-.提示:设(,,)OM x y z =,cos 6x xr α===,x =1cos 26y y r β===,3y =;由222coscos cos 1αβγ++=,有1cos 2γ=-,3z =-.5.与向量(16,15,12)a =-平行,方向相反且长度为75的向量为(48,45,36)--.6.设()()11112222,,,,,M x y z M x y z ,则12M M=7.与向量(6,7,6)a =- 平行的单位向量为676,,111111⎛⎫±- ⎪⎝⎭.8.向量AB在x 轴、y 轴、z 轴上的投影依次为44-,,7,它的终点坐标为(2,1,7)B -, 则起点坐标(2,3,0)-.提示:若(,,)A x y z ,则AB(4,4,7)(2,1,7)x y z =-=----.9. 若()(),,,,,,x y z x y z a a a a b b b b ==则a b ± =(,,)x x y y z z a b a b a b ±±±. b a ⇔ ∥y x z x y za a ab b b ==.10.在xoy 面上,与三点(3,1,2),(4,2,2),(0,5,1)A B C --等距离的点为3821,,055⎛⎫-- ⎪⎝⎭.提示:设点(,,0)D x y ,由222AD BD CD ==得26108142x y x y -=⎧⎨-+=⎩.二、单项选择题1.设向量,a b互相平行,但方向相反,当0a b >> 时,必有 A .A.a b a b +=- B.a b a b +>- C.a b a b +<- D.a b a b +>+2.下列各组角可以作为某向量的方向角的是 A .A .90,150,60αβγ===B .45,135,60αβγ===C .60αβγ===D .60,120,150αβγ===三、计算题1.已知两点()1M 和()23,0,2M .计算向量12M M的模、方向余弦和方向角.解:()1M ,()23,0,2M ,∴()121,M M =-,122M M = .∴1212M M M M11,222⎛⎫-=- ⎪ ⎪⎝⎭,方向余弦为12-,,12,方向角为0120,0135,060. 2.设()()()3,5,8,2,4,7,5,1,4m n p ==--=- ,求向量43a m n p =+-在x 轴上的投影及在y 轴上的分向量.解:()()()3,5,8,2,4,7,5,1,4m n p ==--=-,∴ 43(13,7,15)a m n p =+-= , 故在x 轴上的投影为13,在y 轴上的分向量为7j . 3.向量a 与三坐标轴的正向构成相等的锐角,其模长为3,求a .解:设 (,,)a x x x = ,且0x >,由3a = ,有239x =,得x =∴a =.第二节 数量积 向量积一、填空题1.a ⇔ ⊥b 0b a ⋅= ;a b ⇔ ∥0a b ⨯=.2.向量()(),,,,,x y z x y z a a a a b b b b ==,若两向量夹角为θ,则 cos θa b a b a b ++3.向量()()3,1,2,1,2,1a b =--=- ,则()23a b -⋅= 18-,2a b ⨯= 10214i j k ++.4.已知点()()()2,4,,3,7,5,,10,9A n B C m 三点共线,则m = 4 ,n = 1 .5.已知点()()()1231,1,2,3,3,1,3,1,3M M M -,与,M M M M 1223同时垂直的单位向量为2,2)--. 提示:与,M M M M 1223 同时垂直的单位向量为M M M M M M M M ⨯±⨯12231223.6.设()()2,5,1,1,3,2a b ==- ,a b λμ+与z 轴垂直,则λ与μ的关系2λμ=. 提示:()0a b k λμ+⋅=.7.,,a b c 为三个非零向量,a b ⊥,a 与c 的夹角为π3,b 与c 的夹角为π6,且a =1,2,3bc == ,则a b c ++=提示:2()()a b c a b c a b c ++=++⋅++ . 二、单项选择题1. 已知()()0,3,4,2,1,2a b ==- ,则ab =Pr j C . A .3 B.13-C.-1 D.1提示:515a a b b a⋅-===-Prj . 2.已知向量,a b的模分别为4,2a b ==,且a b ⋅= ,则a b ⨯= C .A.2B...2 提示: cos(,)a b a b a b ⋅= ,cos(,)2a b = , sin(,)a b a b a b ⨯==三、计算题1.()()()2,3,1,1,1,3,1,2,0a b c =-=-=-,求()a b c ⨯⋅ .解:23185113i j ka b i j k ⨯=-=--+-,所以()(8,5,1)(1,2,0)2a b c ⨯⋅=--⋅-= .2.求向量()4,3,4a =- 在向量()2,2,1b =上的投影.解:6Pr j 23b a b a b ⋅====. 3.已知3,26,72a b a b ==⨯=,求a b ⋅ .解:∵sin 72a b a b θ⨯== ∴7212sin 32613θ==⨯,5cos 13θ==±,从而5cos 3263013a b a b θ⎛⎫⋅==⨯⨯±=± ⎪⎝⎭.4.化简:()()()a b c c a b c b b c a ++⨯+++⨯--⨯.解:()()()a b c c a b c b b c a ++⨯+++⨯--⨯a cbc a b c b b a c a =⨯+⨯+⨯+⨯-⨯+⨯ a c b c a b b c a b c a =⨯+⨯+⨯-⨯+⨯-⨯2()a b =⨯ .第三节 曲面及其方程一、填空题1.xoy 面上双曲线224936x y -=分别绕x 轴、y 轴旋转一周所得旋转曲面的方程依次 为36)(94222=+-z y x 和369)(4222=-+y z x .2.曲面2221x y z --=是由xoy 面上的曲线221x y -=绕x 轴旋转一周所得或由xoz 面上 曲线122=-z x 绕x 轴旋转一周所得.3.2221484x y z ++=表示的曲面为 旋转椭球面 . 4.2235x y z +=表示的曲面为 椭圆抛物面 .5.z =表示的曲面为 圆锥面的上半部分 .6.22y x =表示的曲面为 母线平行于z 轴的抛物柱面 .二、计算题1.一动点与两定点()2,3,1A 和()4,5,6B 等距离,求这动点的轨迹方程. 解:设动点为),,(z y x P ,则由题意知:22||||PB PA =,从而222222)6()5()4()1()3()2(-+-+-=-+-+-z y x z y x即 0631044=-++z y x ∴动点的轨迹方程为:0631044=-++z y x . 2.将xoz 坐标面上的曲线z x a =+分别绕x 轴及z 轴旋转一周,求所生成的旋转曲面的方程. 解:在xoz 面上的a x z +=绕x 轴旋转一周,所得旋转曲面为:a x z y +=+±22即222)(z y a x +=+,同理,绕z 轴旋转一周后,得旋转曲面方程为:a y x z ++±=22, 即222)(y x a z +=-.3.说明下列旋转曲面是怎样形成的:⑴2221499x y z ++= ⑵22214yx z -+= 解:(1) xoy 面上的曲线19422=+y x (或xoz 面上的曲线19422=+z x )绕x 轴旋转一周所得;(2) xoy 面上的曲线1422=-y x (或yoz 面上的曲线1422=-y z )绕y 轴旋转一周所得. 4.画出由曲面4z =22z x y =+及221x y +=所围立体(含z 轴部分).解:4z =)4,0,0(的下半圆锥面,22z x y =+表示旋转抛物面,221x y +=表示圆柱面,从而三者所围立体即可得到,如图所示.第四节 空间曲线及其方程一、填空题1.母线平行于y 轴且经过曲线2222222160x y z x z y ⎧++=⎨+-=⎩的柱面方程为223216x z +=. 2.球面z =z =xoy 面上的投影方程为221x y z ⎧+=⎨=⎩. z 22z x y =+ 221x y +=4z =图8-1x yO3.旋转抛物面()2204z x y z =+≤≤在xoy 面上的投影为224x y z ⎧+≤⎨=⎩,在yo z 面上的投 影为240y z x ⎧≤≤⎨=⎩.4.圆锥面z =22z x =所围立体在xoy 面上的投影为2220x y xz ⎧+≤⎨=⎩,在xoz面上的投影为0x z y ⎧≤≤⎪⎨=⎪⎩ 二、单项选择题1.曲线2221:1645230x y z x z Γ⎧+-=⎪⎨⎪-+=⎩关于xoy 面的投影柱面的方程是 A . A .2220241160x y x +--= B .22441270y z z +--=C .22202411600x y x z ⎧+--=⎨=⎩D .224412700y z z x ⎧+--=⎨=⎩2.曲线22203y z x z ⎧+-=⎨=⎩在面xoy 上的投影曲线的方程是 B .A .220y x z ⎧=⎨=⎩B .2290y x z ⎧=-⎨=⎩C .2293y x z ⎧=-⎨=⎩D .223y xz ⎧=⎨=⎩三、将曲线方程22222443812y z x zy z x z ⎧++=⎨+-=⎩化成母线分别平行于x 轴及z 轴的柱面的交线方程. 解:将22222443812y z x z y z x z ⎧++=⎨+-=⎩分别消去,x z ,得 224y z z += ① 240y x += ②再将①②联立得交线方程:222440y z zy x ⎧+=⎨+=⎩.第五节 平面及其方程一、填空题1.设一平面经过点()000,,x y z,且垂直于向量(),,A B C ,则该平面方程为000()()()0A x x B y y C z z -+-+-=. 2.平面260x y z -+-=与平面250x y z ++-=的夹角为π3.3.平行于xoz 面且经过点()2,5,3-的平面方程为50y +=.4.经过x 轴和点()3,1,2--的平面方程为20y z +=. 提示:过x 轴的平面方程设为0By CZ +=.5.点()1,2,1到平面22100x y z ++-=的距离为 1 .提示:d =.二、求平行于x 轴且经过两点()4,0,2-和()5,1,7的平面方程.解:设所求平面方程为0By Cz D ++=, 又平面过()4,0,2-()5,1,7两点2070C D B C D -+=⎧∴⎨++=⎩, 29D CB C=⎧∴⎨=-⎩, ∴所求平面方程为:920y z --=. 三、一平面过点()1,0,1-且平行于向量()2,1,1a = 和()1,1,0b =-,试求该平面方程.解:设平面的法向量为n ,则n a b =⨯ ,2113110i j kn i j k ∴==+--,从而(1,1,3)n =-. 又 平面过点(1,0,1)-,∴所求平面方程为(1)3(1)0x y z -+-+=,即340x y z +--=.四、求平面2250x y z -++=与各坐标面夹角的余弦.解:平面2250x y z -++=的法向量(2,2,1)n =-,设平面与,,yoz xoz xoy 面的夹角分别为,,αβγ, 又yoz 面的法向量(1,0,0)i =2c o s .3n i n i α⋅∴== 同理.21cos ,cos .33βγ== 第六节 空间直线及其方程一、填空题1.设直线经过点()000,,x y z ,且平行于向量(),,m n p ,则该直线的对称式方程为00o x x y y z z m n p ---==,参数方程为000x x mty y nt z z pt=+⎧⎪=+⎨⎪=+⎩. 2.直线124x y z x y z -+=⎧⎨++=⎩的对称式方程为302213x y z --+==-. 3.过点()0,2,4且与两平面21x z +=和32y z -=平行的直线方程为024231x y z ---==-. 4.直线30x y z x y z ++=⎧⎨--=⎩与平面10x y z --+=的夹角为 0 .5.点()3,1,2-到直线10240x y z x y z +-+=⎧⎨-+-=⎩的距离为. 提示:过(3,1,2)A -与10:240x y z L x y z +-+=⎧⎨-+-=⎩垂直的平面为1y z +=,该平面与直线L 的交点131,,22B ⎛⎫-⎪⎝⎭,则A 到直线L 的距离即为AB .6.过直线1:L 4020x z y +-=⎧⎨-=⎩且平行于直线221:211x y zL +-==的平面方程为 320x y z -++=.提示:过1L 的平面束:(4)(2)0x z y λ∏+-+-=, 2∥L ∏20n s ∴⋅= ,2(1,,1),(2,1,1)n s λ==210λ∴++=,得3λ=-.∴平面为43(2)0x z y +---=,即320x y z -++=..7.直线326040x y z x y z D -+-=⎧⎨+-+=⎩与z 轴相交,则D = 3 .二、单项选择题1.两直线1158:121x y z L --+==-与26:23x y L y z -=⎧⎨+=⎩的夹角为 C . A .π6 B .π4 C .π3 D .π22.直线111x x y y z z m n p---==与平面0Ax By Cz D +++=的夹角θ满足 C . A .sin θ=B .cos θ=C .sin θ=D .cos θ=3.过点()2,0,3-且与直线247035210x y z x y z -+-=⎧⎨+-+=⎩垂直的平面方程是 A .A .16(2)14(0)11(3)0x y z --+-++=B .(2)2(0)4(3)0x y z ---++=C .3(2)5(0)2(3)0x y z -+--+=D .16(2)14(0)11(3)0x y z -++++-= 4.设直线3210:21030x y z L x y z +++=⎧⎨--+=⎩及平面:4220x y z ∏-+-=,则直线L C .A .平行于∏B .在∏上C .垂直于∏D .与∏斜交提示:判断直线的方向向量与平面的法向量的关系.三、计算题1.求过点()4,1,3-且与直线230:510x y L y z --=⎧⎨-+=⎩平行的直线方程.解:设直线L 的方向向量12025051i j ks i j k =-=++-,∴所求直线的方向向量(2,1,5)s '=,从而直线方程为:413215x y z -+-==. 2.求直线2403290x y z x y z -+=⎧⎨---=⎩在平面41x y z -+=上的投影直线的方程.解:过已知直线的平面束方程为:329(24)0x y z x y z λ---+-+=,即(32)(14)(2)90x y z λλλ+-++--=.要使其与平面41x y z -+=垂直,则满足4(32)1420,λλλ++++-= 11.13λ=-1731371170.x y z ∴+--= ∴投影直线方程为 41.1731371170x y z x y z -+=⎧⎨+--=⎩ 3.求过直线20:4236x y L x y z +=⎧⎨++=⎩且切于球面2224x y z ++=的平面方程.解:设所求平面方程为:4236(2)0x y z x y λ++-++=即(42)(2)360x y z λλ++++-= 由题意知:(0,0,0)到平面的距离为22=即2440λλ++=2λ∴=-∴所求平面方程为:2z =.第八章 自测题一、填空题(每小题3分,共24分)1.设a =()2,5,1-,b =()1,3,2,问λ与μ有怎样的关系2λμ=,λa +μb 与z 轴垂直. 2.若已知向量a =()3,4,0,b =()1,2,2,则a ,b夹角平分线上的单位向量为.提示: a ,b 夹角平分线上的单位向量为a b a b a ba b+±+.3.若两个非零向量a ,b的方向余弦分别为111cos ,cos ,cos αβγ和222cos ,cos ,cos αβγ, 设a ,b夹角为ϕ,则cos ϕ=122112cos cos cos cos cos cos ααββγγ++.4.过直线122232x y z -+-==-且与平面3250x y z +--=垂直的平面方程为 81390x y z -++-=.提示:L :122232x y z -+-==-,化为一般方程12232232x y y z -+⎧=⎪⎪-⎨+-⎪=⎪-⎩, 即32102320x y y z ++=⎧⎨+-=⎩,过L 的平面束为:321(232)0x y y z λ++++-= ① (3,22,3)n λλ=+ ,(3,2,1)s =-,由0n s ⋅= 得13λ=-,代入①,可得平面方程.5.直线1l :158121x y z --+==-与直线2l :623x y y z -=⎧⎨-=⎩的夹角θ=1arccos 6. 6.点()3,-4,4到直线452221x y z ---==-的距离为 提示:过()A 3,-4,4与L :452221x y z ---==-垂直的平面为:2(3)2(4)(4)0x y z --++-=,与L 的交点为(8,1,4)B ,A 到L 的距离即为AB . 7.曲线22210x y z x y z ⎧++=⎨++=⎩在xoy 面上的投影曲线为2222210x y xy z ⎧++=⎨=⎩.8.与两直线112x y t z t=⎧⎪=-+⎨⎪=+⎩及121121x y z ++-==都平行,且过原点的平面方程为 0x y z -+=.二、单项选择题(每小题3分,共12分)1.点()3,2,2P -在平面32210x y z -+-=上的投影点是 B . A .()3,1,2- B .301720,,777⎛⎫-⎪⎝⎭ C .()7,2,1 D .()2,21,3--提示:过()3,2,2P -与平面 垂直的直线为322312x y z -+-==-,其与平面∏的交点即为投影点. 2.直线224213x y z -+-==-与平面4x y z ++=的关系是 A . A .直线在平面上 B .平行 C .垂直 D .三者都不是 3.两平行平面23490x y z -++=与234150x y z -+-=的距离为 C .A .629 B .2429 CD提示:两平行平面的距离为平面上任一点到另一平面的距离 4.xoz 平面上曲线e xz =绕x 轴旋转所得旋转曲面方程为 A .Ae x = B .22e x y z += C .22e xy z += D.z =三、计算题(共64分)1.求与坐标原点O 及点()2,3,4A 距离之比为1:2的点的全体所组成的曲面方程,它表示 怎样的曲面?(本题6分)解:设所求曲面上的点为(,,)x y z ,则由题意知:2222221(2)(3)(4)4x y z x y z ++=-+-+-, ∴ 曲面方程为:222333468290x y z x y z +++++-=,表示一球面.2.将空间曲线方程222160x y z x z ⎧++=⎨+=⎩化为参数方程.(本题5分)解:把z x =-代入22216x y z ++=,得22216x y +=,令x t =,4sin y t =,则z t =-,∴空间曲线方程的参数方程为:4sin x ty t z t⎧=⎪=⎨⎪=-⎩.3.求中心点在直线247045140x y z x y z +--=⎧⎨++-=⎩上且过点A ()0,3,3和点B ()1,3,4-的球面方程.(本题6分)解:把247045140x y z x y z +--=⎧⎨++-=⎩化为对称式方程:7002322x y z ---==-,设球心坐标为 73,2,22O t t t ⎛⎫- ⎪⎝⎭,则OA OB =,从而 ()()()222227932233423222t t t t t ⎛⎫⎛⎫-+-=-+-+- ⎪ ⎪⎝⎭⎝⎭,∴32t =, ∴(1,3,3)O -,1OA =,所以球面方程为222(1)(3)(3)1x y z ++-+-=.4.求通过直线0230x y z x y z ++=⎧⎨-+=⎩且平行于直线23x y z ==的平面方程.(本题7分)解:设所求平面的方程为:(23)0x y z x y z λ+++-+=,即(12)(1)(13)0x y z λλλ++-++=,(12,1,13)n λλλ=+-+ ,又∵直线11123x y z==平行于平面, ∴1112(1)(13)023λλλ++-++=, ∴1115λ=-, ∴所求平面方程为:726180x y z -+=.5.点()2,1,1P --关于平面∏的对称点为1P ()-2,3,11,求∏的方程.(本题7分)解:设1PP 的中点为0P ,则0(0,1,5)P ,1(4,4,12)PP =- ,∵1//PP n ,取(1,1,3)n =-,由题意知所求∏的方程为:(0)(1)3(5)0x y z --+-+-=,即3160x y z -++-=.6.直线10:10x y z L x y z +--=⎧⎨-++=⎩在平面:0x y z ∏++=上投影直线L 0的方程.(本题7分)解:设所求平面方程为:1(1)0x y z x y z λ+--+-++=,即(1)(1)(1)10x y z λλλλ++-+-+-=,1(1,1,1)n λλλ=+--, 又∵2(1,1,1)n = ,22n n ⊥, ∴1110λλλ++-+-= ∴1λ=-,∴ 10y z --=, ∴ 投影直线L 0的方程为:10y z x y z -=⎧⎨++=⎩.7.求过直线5040x y z x z ++=⎧⎨-+=⎩且与平面48120x y z --+=成π4角的平面方程.(本题7分)解:设所求平面的方程为:5(4)0x y z x z λ+++-+=,即(1)5(1)40x y z λλλ+++-+=,1(1,5,1)n λλ=+- ,又∵2(1,4,8)n =--,1212πcos 4n n n n ⋅==,=即,解得34λ=-, 又平面40x z -+=与平面48120x y z --+=的夹角余弦cos ==θ π.4∴=θ ∴所求平面方程为:207120x y z ++-=及40x z -+=.8.求过点()P 2,1,3且与直线l :11321x y z+-==-垂直相交的直线方程.(本题7分) 解:由题意知,过点P ()2,1,3且垂直与l 的平面方程为:3(2)2(1)(3)0x y z -+---=即3250x y z +--=,令3121x t y t z t=-⎧⎪=+⎨⎪=-⎩,代入上述平面方程,解得37t =.所以平面与l 的交点为02133,,777P ⎛⎫- ⎪⎝⎭,由于所求直线的方向向量0//s P P ,所以取(2,1,4)s =- , 所以直线方程为213214x y z ---==-. 9.直线过点()3,5,9A --且和直线1l :3523y x z x =+⎧⎨=-⎩,2l :47510y x z x =-⎧⎨=+⎩相交,求此直线方程.(本题7分)解:设所求直线为l ,则l 与1l ,2l 分别相交,1l :5332y z x -+==,2l :71045y z x +-==, 所以取11(0,5,3)P l -∈,1(1,3,2)s = ,1(3,0,6)AP = ;22(0,7,10)Pl -∈,2(1,4,5)s =, 2(3,12,19)AP =- ,令111(18,0,9)n s A P =⨯=-,222(136,4,24)n s AP =⨯=--,过l 与1l 的平面方程为:2(3)(9)0x z +-+=,即230x z --=;过l 与2l 的平面方程为:34(3)(5)6(9)0x y z +---+=,即346530x y z --+=;所以直线l 的方程为:230346530x z x y z --=⎧⎨--+=⎩.。
高等数学教案-向量代数与空间解析几何

高等数学教学教案第8章 向量代数与空间解析几何授课序号01教 学 基 本 指 标教学课题 第8章 第1节 向量及其运算 课的类型 新知识课 教学方法 讲授、课堂提问、讨论、启发、自学 教学手段 黑板多媒体结合教学重点 数量积、向量积、混合积,两个向量垂直、平行的条件教学难点 两个向量垂直、平行的条件参考教材 同济七版《高等数学》下册 作业布置大纲要求 1.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(向量运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用表达式进行向量运算的方法.教 学 基 本 内 容一.空间直角坐标系1.直角坐标系,点叫做坐标原点.2.在直角坐标系下,数轴统称为坐标轴,三条坐标轴中每两条可以确定一个平面,称为坐标面,分别为三个坐标平面将空间分为八个部分,每一部分叫作一个卦限,分别用Ⅰ、Ⅱ、Ⅲ、Ⅳ、Ⅴ、Ⅵ、Ⅶ、Ⅷ表示.3.数组为点在空间直角坐标系中的坐标,其中分别称为点的横坐标、纵坐标和竖坐标.二.空间两点间的距离设,为空间两点,则与之间的距离为.三.向量的概念1. 向量:既有大小又有方向的量,叫做向量(或矢量).O Oxyz 111(, , )M x y z 222(, , )N x y z M N 212212212)()()(z z y y x x d -+-+-=Oxyz Oz Oy Ox ,,zOx yOz xOy ,,(, , )x y z M Oxyz z y x ,,M2. 向量的模:向量的长度称为向量的模,记作或.3. 单位向量:模为的向量叫做单位向量.4. 零向量:模为的向量叫做零向量,记作0,规定:零向量的方向可以是任意的.5. 相等向量:大小相等,方向相同的向量叫做相等向量,记作.规定:所有的零向量都相等.6.负向量:与向量大小相等,方向相反的向量叫做的负向量(或反向量),记作.7. 平行向量:平行于同一直线的一组向量称为平行向量(或共线向量).8. 共面向量:平行于同一平面的一组向量,叫做共面向量,零向量与任何共面的向量共面.四.向量的线性运算1. 向量的加法定义 对向量,,从同一起点作有向线段、分别表示与,然后以、为邻边作平行四边形,则我们把从起点到顶点的向量称为向量与的和,记作.这种向量求和方法称为平行四边形法则.若将向量平移,使其起点与向量的终点重合,则以的起点为起点,的终点为终点的向量就是与的和,该法则称为三角形法则.对于任意向量,,,满足以下运算法则:(1)(交换律). (2) (结合律). (3).2.向量的减法定义 向量与的负向量的和,称为向量与的差,即.特别地,当时,有.若向量与的起点放在一起,则,的差向量就是以的终点为起点,以的终点为终点的向量.3.数乘向量定义 实数与向量的乘积是一个向量,记作,的模是,方向:当时,与同向;当时,与反向;当时,.对于任意向量,以及任意实数,,有下列运算法则:(1) . (2) . (3) .向量的加法、减法及数乘向量运算统称为向量的线性运算,称为,的一个线性组合.特别地,与同方向的单位向量叫做的单位向量,记作,即. 定理 向量与非零向量平行的充分必要条件是存在唯一的实数,使得.a AB10b a =a a -a a b A AB AD a b AB ADABCD A C ACa b b a +b a a b c a b a b c a +b =b +a ()()a +b +c =a +b +c 0a +=a a b -b a b ()--a b =a +b b =a ()-0a +a =a b a b b a λa λa λa λa 0λ>λa a 0λ<λa a 0λ=λ0a =a b λμ()()λμλμa =a ()+λμλμ+a =a a ()+λλλ+a b =a b λμa +b a b (, )R λμ∈a a a e ||a ae a =a b λλa =b例7 已知向量,,求.例8 已知三角形的顶点分别是,求三角形的面积.授课序号02教 学 基 本 指 标教学课题 第8章 第2节 空间平面和直线 课的类型 新知识课 教学方法 讲授、课堂提问、讨论、启发、自学 教学手段 黑板多媒体结合教学重点 平面方程和直线方程及其求法,平面与平面,平面与直线,直线与直线之间的夹角教学难点 利用平面、直线的相互关系(平行、垂直、相交等)解决问题参考教材 同济七版《高等数学》下册作业布置大纲要求 1.掌握平面方程和直线方程及其求法.2.会求平面与平面,平面与直线,直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题.3.会求点到直线以及点到平面的距离.教 学 基 本 内 容一.空间平面方程1.平面方程的各种形式(1)若一个非零向量垂直于平面,则称向量为平面的一个法向量.(2)平面的点法式方程:过点,法向量为的平面方程为.(3)平面的三点式方程:过三点的平面方程为 称为平面的三点式方程.(4)平面的截距式方程:过三点,,的平面的方程为}2,1,3{--=a }1,2,1{-=b b a 2⨯ABC (1,1,1)(1,2,3)(2,3,4)、、A B C ABC n ∏n ∏0000(, , )M x y z {, , }A B C n =000()()()0A x x B y y C z z -+-+-=(,,)(1,2,3)k k k k M x y z k =1112121213131310x x y y z z x x y y z z x x y y z z ------=---(, 0, 0)A a (0, , 0)B b (0, 0, )C c (0)abc ≠例8将直线的一般式方程化为点向式方程和参数方程.例9求直线和的夹角. 例10求直线与平面的夹角.授课序号03教 学 基 本 指 标教学课题 第8章 第3节 空间曲面和曲线 课的类型 新知识课教学方法 讲授、课堂提问、讨论、启发、自学 教学手段 黑板多媒体结合教学重点 以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程教学难点 空间曲线在坐标平面上的投影及其方程参考教材 同济七版《高等数学》下册 作业布置大纲要求 1.理解曲线方程的概念,了解常用二次曲面的方程及其图形,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程. 2.了解空间曲线的参数方程和一般方程.3.了解空间曲线在坐标平面上的投影,并会求其方程.教 学 基 本 内 容一.空间曲面定义 如果曲面与方程满足如下关系: (1) 曲面上每一点的坐标都满足方程; (2) 以满足方程的解为坐标的点都在曲面上. 则称方程为曲面的方程,而称曲面为此方程的图形.几个常见的曲面方程.1.球面(1)以坐标原点为球心,以为半径的球面方程为.(2)以为球心,以为半径的球面方程为. (3)一般方程.2310,32120,x y z x y z -+-=⎧⎨+--=⎩113:141x y z l -+==-220:20x y l x z ++=⎧⎨+=⎩300x y z x y z ++=⎧⎨--=⎩10x y z --+=∑(, , )0F x y z =∑(, , )0F x y z =(, , )0F x y z =∑(, , )0F x y z =∑∑R 2222R z y x =++000(,,)x y z R 2222000()()()x x y y z z R -+-+-=0222=++++++D Cz By Ax z y x组称作空间曲线的一般方程.2.空间曲线的参数方程对于空间曲线,若上的动点的坐标可表示成为参数的函数随着的变动可得到曲线上的全部点,此方程组叫做空间曲线的参数方程.3.空间曲线在坐标面上的投影(1)设空间曲线的一般方程为消去变量之后所得到的方程,表示一个母线平行于轴的柱面,因此,此柱面必定包含曲线.以曲线为准线,母线平行于轴的柱面叫做关于面的投影柱面.投影柱面与面的交线叫做空间曲线在面上的投影曲线,该曲线的方程可写成(2)消去方程组中的变量或,再分别与或联立,我们便得到了空间曲线在或面上的投影曲线方程:或(3)确定一个空间立体或空间曲面在坐标面上的投影.一般来说,这种投影往往是一个平面区域,我们称它为空间立体或空间曲面在坐标面的投影区域..投影区域可以利用投影柱面与投影曲线来确定.三.二次曲面1.椭圆锥面由方程所确定的曲面称为椭圆锥面.2.椭球面(,,)0,(,,)0.F x y z G x y z =⎧⎨=⎩C C x y z ,,t ⎪⎩⎪⎨⎧===),(),(),(t z z t y y t x x t C C (,,)0,(,,)0.F x y z G x y z =⎧⎨=⎩z (,)0H x y =z C C z xoy xoy C xoy (,)0,0.H x y z =⎧⎨=⎩(,,)0,(,,)0F x y zG x y z =⎧⎨=⎩x y 0x =0y =C yoz xoz (,)0,0,R y z x =⎧⎨=⎩(,)0,0.T x z y =⎧⎨=⎩22222x y z a b+=由方程 ()所确定的曲面称为椭球面,称为椭球面的半轴,此方程称为椭球面的标准方程.3.单叶双曲面由方程()所确定的曲面称为单叶双曲面.4.双叶双曲面由方程()所确定的曲面称为双叶双曲面.注 方程和也都是单叶双曲面;方程和也都是双叶双曲面.5.椭圆抛物面由方程 ()所确定的曲面称为椭圆抛物面.6.双曲抛物面由方程 ()所确定的曲面称为双曲抛物面.双曲抛物面的图形形状很象马鞍,因此也称马鞍面.四.例题讲解例1建立球面的中心是点,半径为的球面方程. 例2 方程表示怎样的曲面? 例3 分析方程表示怎样的曲面?例4 双曲线型冷却塔是电厂、核电站的循环水自然通风冷却的一种建筑物, 如图8.24所示.试分析双曲线型冷却塔外表面的数学模型.1222222=++cz b y a x 0, 0, 0a b c >>>, , a b c 1222222=-+cz b y a x 0, 0, 0a b c >>>1222222-=-+c z b y a x 0, 0, 0a b c >>>1222222=+-c z b y a x 1222222=++-cz b y a x 1222222-=+-c z b y a x 1222222-=++-cz b y a x 2222by a x z +=0, 0, 0a b c >>>2222by a x z -=0, 0, 0a b c >>>),,(0000z y x M R 024222=+-++y x z y x 222R y x =+8.24 图8.25坐标面上的双曲线分别绕绕另一条与相交的直线旋转一周,所得旋转曲面叫圆锥面.两直线的交点为圆锥面的12222=-by c z L。
同济高等数学下册第八章知识点精讲

总之:
运算律 : 结合律 分配律
可见
因此
机动 目录 上页 下页 返回 结束
设 a 为非零向量 , 则
a∥b
( 为唯一实数)
证: “ ”. 设 a∥b , 取 =±
, a , b 同向时
取正号, 反向时取负号, 则 b 与 a 同向, 且
再证数 的唯一性 . 设又有 b= a , 则
机动 目录 上页 下页 返回 结束
求三
机动 目录 上页 下页 返回 结束
导出刚体上
一点 M 的线速度 的表示式 .
解: 在轴 l 上引进一个角速度向量 使
其
方向与旋转方向符合右手法则 , 在 l 上任取一点 O, 作
向径
它与 的夹角为 , 则
点 M离开转轴的距离
且
符合右手法则
机动 目录 上页 下页 返回 结束
1. 定义 已知三向量
机动 目录 上页 下页 返回 结束
两平面法向量的夹角(常指锐角)称为两平面的夹角. 设平面∏1的法向量为
平面∏2的法向量为
则两平面夹角 的余弦为
即
机动 目录 上页 下页 返回 结束
机动 目录 上页 下页 返回 结束
和 垂直于平面∏: x + y + z = 0, 求其方程 .
解: 设所求平面的法向量为 方程为
• 坐标轴
Ⅳ
• 坐标面
Ⅰ
• 卦限(八个) Ⅶ
y轴(纵轴)
x轴(横轴) Ⅷ
Ⅵ Ⅴ
机动 目录 上页 下页 返回 结束
点M
有序数组
向径
(称为点 M 的坐标) 特殊点的坐标 :
原点 O(0,0,0) ; 坐标轴上的点 P, Q , R ;
《高等数学》向量代数和空间解析几何

a∥ b
运算律
(1) ab ba (2) 分配律 (ab)cacbc
(3) 结合律 (a)ba(b)(ab)
向量积的坐标表达式
ab ( a y b z a z b y ) i ( a z b x a x b z ) j ( a x b y a y b x ) k
i j k a b ax ay az
例5. 求通过 x 轴和点( 4, – 3, – 1) 的平面方程.
解: 因平面通过 x 轴 , 故 AD0 设所求平面方程为 ByCz0
代入已知点 (4,3,1)得 C3B
化简,得所求平面方程 y3z0
空间直线
一般式 A A 21xx B B 2 1y y C C 1 2zz D D 12 00
从柱面方程看柱面的特征:
只含 x, y而缺z的方程F(x, y) 0,在 空间直角坐标系中表示母线平行于 z 轴的柱 面,其准线为 xoy面上曲线C .
(3) 二次曲面
椭球面
a x2 2b y2 2cz2 21 (a,b,c为正 ) 数 z
x
y
抛物面
z
椭圆抛物面
x2 y2 z ( p , q 同号) 2p 2q
n (0 ,B ,C ) i,平面平行于 x 轴; • A x+C z+D = 0 表示 平行于 y 轴的平面; • A x+B y+D = 0 表示 平行于 z 轴的平面; • C z + D = 0 表示平行于 xoy 面 的平面; • A x + D =0 表示平行于 yoz 面 的平面; • B y + D =0 表示平行于 zox 面 的平面.
o
y
3、空间曲线 (1) 空间曲线的一般方程
高等数学 第八章

22 (3) 232 11 .
因 | a b |2 (a b) (a b) |a |2 2a b | b |2 22 2 (3) 32 = 7 ,
故可 得
| a b| 7 .
二、数量积的坐标运算
设非零向量 a (x1 ,y1 ,z1) , b (x2 ,y2 ,z2 ) ,则
于是可得向量 r (x ,y ,z) 的模的坐标表达式为 | r | x2 y2 z2 .
向量 M1M2 的模即为点 M1 (x1 ,y1 ,z1) 和点 M2 (x2 ,y2 ,z2 ) 之间的距离,即 | M1M2 | (x2 x1)2 (y2 y1)2 (z2 z1)2 .
方向 角为
2 , , 3 .
3
3
4
第三节
向量的数量积与向量积
一、数量积的定义及性质
定义 1 设 a,b 为空间中的两个向量,则数| a | | b | cos a ,b 称为向量 a,b 的数量积(也
称内积或点积),记作 a b ,读作“a 点乘 b”,即
a b | a | | b | cos a ,b .
在空间直角坐标系中,设点 M1 的坐标为 (x1 ,y1 ,z1) ,点 M 2 的坐标为 (x2 ,y2 ,z2 ) ,则以 M1 为
起点、 M 2 为终点的向量为
M1M2 OM2 OM1 .
因为 OM2 与 OM1 均为向径,所以 M1M2 OM2 OM1 (x2i y2 j z2k) (x1i y1 j z1k)
图8-7
交换律:a+b=b+a 结合律:(a+b)+c=a+(b+c) a+0=a a+(-a)=a
(二)向量的减法
(完整版)第八章向量代数与空间解析几何教案(同济大学版高数)

第八章 向量代数与空间解析几何第一节 向量及其线性运算教学目的:将学生的思维由平面引导到空间,使学生明确学习空间解析几何的意义和目的。
使学生对(自由)向量有初步了解,为后继内容的学习打下基础。
教学重点:1.空间直角坐标系的概念2.空间两点间的距离公式3.向量的概念4.向量的运算教学难点:1.空间思想的建立 2.向量平行与垂直的关系 教学内容:一、向量的概念1.向量:既有大小,又有方向的量。
在数学上用有向线段来表示向量,其长度表示向量的大小,其方向表示向量的方向。
在数学上只研究与起点无关的自由向量(以后简称向量)。
2. 量的表示方法有: a 、i 、F 、OM 等等。
3. 向量相等b a =:如果两个向量大小相等,方向相同,则说(即经过平移后能完全重合的向量)。
4. 量的模:向量的大小,记为a。
模为1的向量叫单位向量、模为零的向量叫零向量。
零向量的方向是任意的。
5. 量平行b a //:两个非零向量如果它们的方向相同或相反。
零向量与如何向量都平行。
6. 负向量:大小相等但方向相反的向量,记为a - 二、向量的线性运算1.加减法c b a =+: 加法运算规律:平行四边形法则(有时也称三角形法则),其满足的运算规律有交换率和结合率见图7-42.c b a =- 即c b a =-+)(3.向量与数的乘法a λ:设λ是一个数,向量a 与λ的乘积a λ规定为0)1(>λ时,a λ与a 同向,||||a a λλ= 0)2(=λ时,0a =λ0)3(<λ时,a λ与a 反向,||||||a a λλ=其满足的运算规律有:结合率、分配率。
设0a 表示与非零向量a 同方向的单位向量,那么aa a 0=定理1:设向量a ≠0,那么,向量b 平行于a 的充分必要条件是:存在唯一的实数λ,使b =a λ例1:在平行四边形ABCD 中,设a =AB ,b =AD ,试用a 和b 表示向量MA 、MB 、MC 和MD ,这里M 是平行四边形对角线的交点。
高数期末复习资料(第八章,第九章)

第八章;向量代数与空间解析几何 1.向量及其线性运算1.1向量概念及线性运算1.2 向量的方向角,方向余弦,在某轴的投影例:(,,)OA x y z =,则,cos ||||x x OA r α==,cos ||||y y OA r β==,cos ||||z z OA r γ== 投影||cos ba a Prj ϕ=2.向量的数量积,向量积,混合积:||||cos a b a b θ⋅= ,||||||sin a b a b θ⨯=,xy z xyzi j ka b a a a b b b ⨯=()xy z xy z x yza a a abc b b b c c c ⨯⋅=3.平面 3.1 平面方程(1) 平面的点法式方程:000()()()0A x x B y y C z z -+-+-= (2) 平面的一般方程:0Ax By Cz D +++=(3) 平面的截距式方程:1x y za b c++= (知三点求平面方程:利用任意两点做差乘得法向量,在利用另一点用点法式可得)3.2两平面的夹角11111:0A x B y C z D ∏+++=22222:0A x B y C z D ∏+++=夹角余弦:cos θ=121212120A A B B C C ∏⊥∏⇐⇒++=11112222//A B C A B C ∏∏⇐⇒==4.空间直线4.1 空间直线的方程(1)一般式:可看作两平面交线 (2)对称式:000x x y y z z m n p---== (3)参数式:000x x mt y y nt z z pt=+⎧⎪=+⎨⎪=+⎩4.2空间直线的位置关系121212120L L m m n n p p ⊥⇐⇒++=;11112222//m n p L L m n p ⇐⇒==5.点线面距离:66设()()()000011112222,,,,,,,,M x y z M x y z M x y z === (1)两点间距离公式:12M M =(2)点线距离,直线过M1,方向向量为v ,|1|||MM v d v ⨯=(3)两直线间距离:设L1,L2 分别过M1,M2, 且方向向量分别为1s ,2s, 则()1212|1||MM s s d s s ⋅⨯=⨯ 6.曲面及其方程6.1旋转曲面:平面曲线绕其坐标轴旋转时,则该坐标轴对应的变量不变,另一变量改为该变量与第三个变量平方和的正负平方根,如设有曲线(,)0:0f x y L z =⎧⎨=⎩其绕x 轴旋转形成的旋转曲面方程为:(,0f x =绕Y 轴旋转形成的旋转曲面方程为:()0f y =例:球面:2221x y z ++= 圆锥面:222x y z +=旋转双曲面:2222221x y z a a c+-=6.2柱面: 平行于定直线并沿定曲线C 移动的直线L 所形成的曲面,这条定曲线叫柱面的准线,动直线叫柱面的母线. (曲面方程缺一个变量) 例:圆柱面:222x y R += 抛物柱面:22(0)x pyp =>椭圆柱面:22221x y a b+=6.3二次曲面(1)椭球面:2222221x y z a b c++=(2) 椭圆抛物面:(3)马鞍面:2222x y z p q-+=(4)单叶双曲面2222221x y z a b c +-=(5)双叶双曲面:2222221x y z a b c --=(6)双曲抛物面2222x y z a b-=(马鞍面)(7)椭圆锥面:22222x y z a b+=(z=xy 为马鞍面)7. 空间曲线方程,投影(1)空间曲线的一般方程:(,,)0(,,)0F x y zG x y z =⎧⎨=⎩(2)空间曲线的参数方程:()()()x x t y y t z z t =⎧⎪=⎨⎪=⎩(3) 曲线在xoy 面上的投影曲线为:(,)0H x y z =⎧⎨=⎩练习题:1. 椭圆222210y z b c x ⎧+=⎪⎨⎪=⎩绕oy 轴旋转而成的曲面方程为( )。
高等数学第八章

第八章 向量代数与空间解析几何(数学一)第一节 向量代数中的若干运算一、向量的概念1.定义:既有大小又有方向的量称为向量。
2.坐标形式:),,(z y x a a a a =ρ3.模与方向余弦:记a ρ与x 轴、y 轴、z 轴正向的夹角分别为γβα,,,则 222cos zyxx aa a a ++=α,222cos zy x y aa a a ++=β, 222cos zyxz aa a a ++=λ且方向余弦间满足关系1cos cos cos 222=++γβα。
γβα,,描述了向量a ρ的方向,常称它们为向量的方向角(在0与π之间)。
a ρ的模可以表示为222zy x a a a a ++=ρ。
向量a ρ同方向上的单位向量常记为︒a ρ。
二、向量的运算设三个向量),,(321321a a a k a j a i a a =++=ρρρρ,),,(321321b b b k b j b i b b =++=ρρρρ, ),,(321321c c c k c j c i c c =++=ρρρρ,常数λ。
1.与差:加法 ),,(332211b a b a b a b a +++=+ρρ 减法 ),,(332211b a b a b a b a ---=-ρρ2.数乘:),,(321a a a a λλλλ=ρ3.数量积(i)定义:数⎪⎪⎭⎫ ⎝⎛⋂⋅=⋅b a b a b a ρρρρρρ,cos ,称为b a ρρ,为数量积也称点积,记为b a ρρ⋅。
其中⎪⎪⎭⎫ ⎝⎛⋂b a ρρ,为向量b a ρρ,间夹角(在0与π之间)。
(ii)性质:①a a a ρρρ⋅=2;②0b a ρρ⋅表示向量a ρ在向量b ρ上的投影,a j b a bρρρρPr 0=⋅;③a b b a ρρρρ⋅=⋅。
(iii)计算:①232221a a a a ++=ρ;②332211b a b a b a b a ++=⋅ρρ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
( )a a a
(a b) a b
定理
设
a
0
,则
b
//
a
存在唯一实数
k,使b
ka
.
向量的单位化:
设
a
0
,
则
1
a
表示与
a
方向相同的单位向量.
|a|
18
例2 试用向量证明三角形两边中点的连线平行于 第三边,且其长度等于第三边的一半.
证 如图所示,设D, E 分别为 AB, AC 的中点,则
(1) 负称向为量a:的与负a向模量相, 同记而作方向a相. 反的a向量,
a
(2) 向量减法.
规定: a b a (b)
将 a , b之一平移, 使 起
点重合, 由 b 的终点向 a 的
终点作一向量,
即为
a
b
a
.
b
b
b
b
a
c
b
c
a
(b )
ab
a
a
b
16
3、向量与数的乘法
z 轴的正向.
横轴 x
空间直角坐标系
3
Ⅲ
yoz面
Ⅳ
xoy面
Ⅶ
x
Ⅷ
z zox 面
Ⅱ
o
yⅠ
Ⅵ Ⅴ
空间直角坐标系共有八个卦限
4
空间的点 11 有序数组( x, y, z)
特殊点的表示: 坐标轴上的点 P, Q, R,
坐标面上的点 A, B, C, O(0,0,0)
z
R(0,0, z)
一个分量为零: 点在坐标面上.
M2 M1
y1
y2 y
| M1M2 | ( x1 x2 )2 ( y1 y2 )2 (z1 z2 )2
特别,点 M ( x, y, z) 与原点O(0,0,0) 的距离为
| OM | x 2 y2 z 2
6
例1 在 z 轴上求与两点 A(4, 1, 7) 和B(3, 5, 2)等 距离的点. 解 设该点为M(0, 0, z) ,
在一切理论成就中,未必 有什么像17世纪下半叶
微积分的发明那样被看
作人类精神的卓越胜利了。
恩格斯
1
第八章
向量代数与 空间解析几何
2
第一节 空间直角坐标系
三个坐标轴的正方向符合右手系.
即以右手握住 z 轴,
z 竖轴
当右手的四个手指
从
x
轴正向以
2
角
度转向 y 轴正向时,
定点o •
y 纵轴
大拇指的指向就是
定义 规定:
设为实数. 向量 a 与数
的
乘积a
为一个向量.
模:| a | | | | a |
a
a
方向:
当 > 0时, a与a同向;
0
a
当 < 0时, 当 = 0时,
aa与0,a它反的向方;向可以是任意的.
0
17
向量与数的乘积的运算规律:
(1) 结合律: (a) (a) ()a
(2) 分配律:
ab
ab
6、向量共面 当把若干个向量的起点放在一起时,若它们的
终点和公共起点在一个平面上,则称这些向量共面.
11
7、两向量 的夹角 a 0, b 0,
B b
将它们平移,使得始点重合, O
a
A
称则 为向0::量aaAa与 与与ObbB向方 方量(向 向 0b相 相 的反 夹同角,)平记行为,(aa‖ ,
作是任意的. 9
3、自由向量
自由向量:只有大小、方向, 而无特定起点的向量.
具有在空间中可以任意平移的性质.
a
a
可4若 、以向使向量它量相们a等重与合b,大称小a相与等b且相方等 向相. 记 同,作即a通过b平.移
a
b
10
5、向量平行(或共线)
平行如,记果为两a个‖ 向b量 a与 b的方向相同或相反,称为
B(0, y, z)
C( x,o, z)
o
• M(x, y,z)
y
Q(0, y,0)
两个分量为零: 点在坐标轴上.
x P( x,0,0)
A( x, y,0)
5
z
设 M1( x1, y1, z1 ) ,
z2
M2( x2, y2, z2 )
z1
为空间两点,
由勾股定理,得
x1 O
x2
两点间的距离公式: x
2、向量的几何表示法
B
用一条有方向的线段来表示向量.
a
以线段的长度表示向量的大小,
有向线段的方向表示向量的方向. A
以A为起点, B为终点的向量, 记为 AB 或 a . 向量 AB 的大小叫做向量的模. 记为|AB |或 |a | .
特别: 模为1的向量称为单位向量.
模为0的向量称为零向量.记为 0,它的方向可以看
由题设 |MA| = |MB| ,
即 (4 0)2 (1 0)2 (7 z)2 (3 0)2 (5 0)2 (2 z)2
解得 z 14 ,即所求点为 M(0, 0, 14) .
9
9
7
练习:
P3 习题8.1 1.
8
第二节 向量的线性运算和向量的坐标表示
一、向量的概念
1、向量: 既有大小, 又有方向的量, 称为向量 (或矢量).
b)或
b
(b , a )
.
:
a
与
b
垂直
,a
b
.
2
特殊地,当两个向量中有一个零向量时,规定它
们的夹角可在0与 之间任意取值.
12
二、向量的线性运算
1、向量的加法
b
向量的加法 (1) 平行四边形法则
a ab
b
(2) 三角形法则
a
b
ab
b
13
向量加法的运算规律:
(1) 交换律:
AD 1 AB , AE 1 AC ,
2
2
所以 DE AE AD
A
D
E
1 ( AC
AB)
1
BC
,
B
C
2
2
所以 DE // BC , 且 DE 1 BC . 2
19
设
a,
b,
c
两两
不平行
,
若abFra bibliotek c0
,则
a,b,c
构成一个三角形.
例3 设立方体三边为a,
b,
c
,
A,
B, C ,
D,
E, F
为各边中点,
证
证明: AB, CD, EF
AB
1
(a
b) ,
构成三角形.
E
b
D
2
CD
1
(a
c)
,
O
a
C
EF
2
1
(c
b)
,
2
F
B
c
A
AB CD EF 0 ,即构成三角形.
20
练习:设 D, E, F 分别是 ABC 三边的中点,证明
证明向量 AE, BF , CD 构成某个三角形的三边.
a
b
ab
a
ab ba
b
(2) 结合律:
(a b) c a (b c)
abc
b c
c
ab
a
b
14
多个向量相加:
a1
a2
an
从
a1
的起
点开始,首尾相接,指向an
的终点.
例如,
s a1 a2 a3 a4
a4
a3
s
a2
a1
15
2、向量的减法:
则
a类, b似, c,, d设 构a,成b,一c,个d 四两边两不形平(但行不,若一a定共b面 c).
d
0
,
21
三、向量的坐标表示
1. 起点在原点的向量(向径)OM
z zC
设点 M(x,y,z)
以 i , j , k分别表示沿x, y, z
k
轴正向的单位向量, 称为基本单