2019年浙江省宁波市中考数学试卷

合集下载

2019年浙江省宁波市中考数学试卷 解析版

2019年浙江省宁波市中考数学试卷 解析版

浙江省宁波市2019年中考数学试卷一、选择题(每小题4分,共48分)1.-2的绝对值为()A. B. 2 C. D. -2【答案】B【考点】绝对值及有理数的绝对值【解析】【解答】解:∣-2∣=2.故答案为:B【分析】因为一个负数的绝对值等于它的相反数,而-2的相反数是2,所以-2的绝对值等于2。

2.下列计算正确的是()A. B. C. D.【答案】 D【考点】同底数幂的乘法,同底数幂的除法,合并同类项法则及应用,幂的乘方【解析】【解答】解:A、∵a²和a³不是同类项,∴不能加减,故此答案错误,不符合题意;B、∵,∴此答案错误,不符合题意;C、∵,∴此答案错误,不符合题意;D 、∵,∴此答案正确,符合题意。

故答案为:D【分析】(1)因为a³与a²不是同类项,所以不能合并;(2)根据同底数幂相乘,底数不变,指数相加可判断求解;(3)根据幂的乘方,底数不变,指数相乘可判断求解;(4)根据同底数幂相除,底数不变,指数相减可判断求解。

3.宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资1526000000元人民币数1526000000用科学记数法表示为()A. B. C. D.【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:。

故答案为:C【分析】任何一个绝对值大于等于1的数都可以用科学记数法表示,科学记数法的表示形式为a×10n,其中1≤|a|<10,n=整数位数-1.4.若分式有意义,则x的取值范围是()A. x>2B. x≠2C. x≠0D. x≠-2【答案】B【考点】分式有意义的条件【解析】【解答】解:由题意得:x-2≠0,解得:x≠2.故答案为:B【分析】分式有意义的条件是:分母不为0,从而列出不等式,求解即可。

5.如图,下列关于物体的主视图画法正确的是()A. B. C. D.【答案】C【考点】简单几何体的三视图【解析】【解答】解:主视图是从正面看这个几何体得到的正投影,空心圆柱从正面看是一个长方形,加两条虚竖线。

2019年浙江省宁波市中考数学试卷【精品】.docx

2019年浙江省宁波市中考数学试卷【精品】.docx

2019年浙江省宁波市中考数学试卷一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求) 1.(4分)﹣2的绝对值为( ) A .−12B .2C .12D .﹣22.(4分)下列计算正确的是( ) A .a 3+a 2=a 5B .a 3•a 2=a 6C .(a 2)3=a 5D .a 6÷a 2=a 43.(4分)宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资为1526000000元人民币.数1526000000用科学记数法表示为( ) A .1.526×108 B .15.26×108 C .1.526×109 D .1.526×10104.(4分)若分式1x−2有意义,则x 的取值范围是( ) A .x >2B .x ≠2C .x ≠0D .x ≠﹣25.(4分)如图,下列关于物体的主视图画法正确的是( )A .B .C .D .6.(4分)不等式3−x 2>x 的解为( )A .x <1B .x <﹣1C .x >1D .x >﹣17.(4分)能说明命题“关于x 的方程x 2﹣4x +m =0一定有实数根”是假命题的反例为( ) A .m =﹣1B .m =0C .m =4D .m =58.(4分)去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数x (单位:千克)及方差S 2(单位:千克2)如表所示:甲 乙 丙 丁 x 24 24 23 20 S 22.11.921.9今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是()A.甲B.乙C.丙D.丁9.(4分)已知直线m∥n,将一块含45°角的直角三角板ABC按如图方式放置,其中斜边BC与直线n交于点D.若∠1=25°,则∠2的度数为()A.60°B.65°C.70°D.75°10.(4分)如图所示,矩形纸片ABCD中,AD=6cm,把它分割成正方形纸片ABFE和矩形纸片EFCD后,分别裁出扇形ABF和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB的长为()A.3.5cm B.4cm C.4.5cm D.5cm11.(4分)小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下()A.31元B.30元C.25元D.19元12.(4分)勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和二、填空题(每小题4分,共24分)13.(4分)请写出一个小于4的无理数:.14.(4分)分解因式:x2+xy=.15.(4分)袋中装有除颜色外其余均相同的5个红球和3个白球.从袋中任意摸出一个球,则摸出的球是红球的概率为.16.(4分)如图,某海防哨所O发现在它的西北方向,距离哨所400米的A处有一艘船向正东方向航行,航行一段时间后到达哨所北偏东60°方向的B处,则此时这艘船与哨所的距离OB约为米.(精确到1米,参考数据:√2≈1.414,√3≈1.732)17.(4分)如图,Rt△ABC中,∠C=90°,AC=12,点D在边BC上,CD=5,BD=13.点P是线段AD上一动点,当半径为6的⊙P与△ABC的一边相切时,AP的长为.18.(4分)如图,过原点的直线与反比例函数y=kx(k>0)的图象交于A,B两点,点A在第一象限.点C在x轴正半轴上,连结AC交反比例函数图象于点D.AE为∠BAC的平分线,过点B作AE的垂线,垂足为E,连结DE.若AC=3DC,△ADE的面积为8,则k的值为.三、解答题(本大题有8小题,共78分)19.(6分)先化简,再求值:(x﹣2)(x+2)﹣x(x﹣1),其中x=3.20.(8分)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有5个小等边三角形已涂上阴影,请在余下的空白小等边三角形中,按下列要求选取一个涂上阴影:(1)使得6个阴影小等边三角形组成一个轴对称图形.(2)使得6个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)21.(8分)今年5月15日,亚洲文明对话大会在北京开幕.为了增进学生对亚洲文化的了解,某学校开展了相关知识的宣传教育活动.为了解这次宣传活动的效果,学校从全校1200名学生中随机抽取100名学生进行知识测试(测试满分100分,得分均为整数),并根据这100人的测试成绩,制作了如下统计图表.100名学生知识测试成绩的频数表成绩a(分)频数(人)50≤a<601060≤a<701570≤a<80m80≤a<904090≤a≤10015由图表中给出的信息回答下列问题:(1)m=,并补全频数直方图;(2)小明在这次测试中成绩为85分,你认为85分一定是这100名学生知识测试成绩的中位数吗?请简要说明理由;(3)如果80分以上(包括80分)为优秀,请估计全校1200名学生中成绩优秀的人数.22.(10分)如图,已知二次函数y=x2+ax+3的图象经过点P(﹣2,3).(1)求a的值和图象的顶点坐标.(2)点Q(m,n)在该二次函数图象上.①当m=2时,求n的值;②若点Q到y轴的距离小于2,请根据图象直接写出n的取值范围.23.(10分)如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.24.(10分)某风景区内的公路如图1所示,景区内有免费的班车,从入口处出发,沿该公路开往草甸,途中停靠塔林(上下车时间忽略不计).第一班车上午8点发车,以后每隔10分钟有一班车从入口处发车.小聪周末到该风景区游玩,上午7:40到达入口处,因还没到班车发车时间,于是从景区入口处出发,沿该公路步行25分钟后到达塔林.离入口处的路程y(米)与时间x(分)的函数关系如图2所示.(1)求第一班车离入口处的路程y(米)与时间x(分)的函数表达式.(2)求第一班车从入口处到达塔林所需的时间.(3)小聪在塔林游玩40分钟后,想坐班车到草甸,则小聪最早能够坐上第几班车?如果他坐这班车到草甸,比他在塔林游玩结束后立即步行到草甸提早了几分钟?(假设每一班车速度均相同,小聪步行速度不变)25.(12分)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC 中,AB =AC ,AD 是△ABC 的角平分线,E ,F 分别是BD ,AD 上的点.求证:四边形ABEF 是邻余四边形.(2)如图2,在5×4的方格纸中,A ,B 在格点上,请画出一个符合条件的邻余四边形ABEF ,使AB 是邻余线,E ,F 在格点上.(3)如图3,在(1)的条件下,取EF 中点M ,连结DM 并延长交AB 于点Q ,延长EF 交AC 于点N .若N 为AC 的中点,DE =2BE ,QB =3,求邻余线AB 的长.26.(14分)如图1,⊙O 经过等边△ABC 的顶点A ,C (圆心O 在△ABC 内),分别与AB ,CB 的延长线交于点D ,E ,连结DE ,BF ⊥EC 交AE 于点F . (1)求证:BD =BE .(2)当AF :EF =3:2,AC =6时,求AE 的长. (3)设AF EF=x ,tan ∠DAE =y .①求y 关于x 的函数表达式;②如图2,连结OF ,OB ,若△AEC 的面积是△OFB 面积的10倍,求y 的值.2019年浙江省宁波市中考数学试卷参考答案与试题解析一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1.(4分)﹣2的绝对值为()A.−12B.2C.12D.﹣2【解答】解:﹣2的绝对值为2,故选:B.2.(4分)下列计算正确的是()A.a3+a2=a5B.a3•a2=a6C.(a2)3=a5D.a6÷a2=a4【解答】解:A、a3与a2不是同类项,故不能合并,故选项A不合题意;B、a3•a2=a5故选项B不合题意;C、(a2)3=a6,故选项C不合题意;D、a6÷a2=a4,故选项D符合题意.故选:D.3.(4分)宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资为1526000000元人民币.数1526000000用科学记数法表示为()A.1.526×108B.15.26×108C.1.526×109D.1.526×1010【解答】解:数字1526000000科学记数法可表示为1.526×109元.故选:C.4.(4分)若分式1x−2有意义,则x的取值范围是()A.x>2B.x≠2C.x≠0D.x≠﹣2【解答】解:依题意得:x﹣2≠0,解得x≠2.故选:B.5.(4分)如图,下列关于物体的主视图画法正确的是()A .B .C .D .【解答】解:物体的主视图画法正确的是:.故选:C . 6.(4分)不等式3−x 2>x 的解为( )A .x <1B .x <﹣1C .x >1D .x >﹣1【解答】解:3−x 2>x ,3﹣x >2x , 3>3x , x <1, 故选:A .7.(4分)能说明命题“关于x 的方程x 2﹣4x +m =0一定有实数根”是假命题的反例为( ) A .m =﹣1B .m =0C .m =4D .m =5【解答】解:当m =5时,方程变形为x 2﹣4x +m =5=0, 因为△=(﹣4)2﹣4×5<0, 所以方程没有实数解,所以m =5可作为说明命题“关于x 的方程x 2﹣4x +m =0一定有实数根”是假命题的反例. 故选:D .8.(4分)去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数x (单位:千克)及方差S 2(单位:千克2)如表所示:甲 乙 丙 丁 x 24 24 23 20 S 22.11.921.9今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是( ) A .甲B .乙C .丙D .丁【解答】解:因为甲组、乙组的平均数丙组比丁组大,而乙组的方差比甲组的小,所以乙组的产量比较稳定,所以乙组的产量既高又稳定,故选:B.9.(4分)已知直线m∥n,将一块含45°角的直角三角板ABC按如图方式放置,其中斜边BC与直线n交于点D.若∠1=25°,则∠2的度数为()A.60°B.65°C.70°D.75°【解答】解:设AB与直线n交于点E,则∠AED=∠1+∠B=25°+45°=70°.又直线m∥n,∴∠2=∠AED=70°.故选:C.10.(4分)如图所示,矩形纸片ABCD中,AD=6cm,把它分割成正方形纸片ABFE和矩形纸片EFCD后,分别裁出扇形ABF和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB的长为()A .3.5cmB .4cmC .4.5cmD .5cm【解答】解:设AB =xcm ,则DE =(6﹣x )cm ,根据题意,得90πx 180=π(6﹣x ),解得x =4.故选:B .11.(4分)小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下( )A .31元B .30元C .25元D .19元 【解答】解:设每支玫瑰x 元,每支百合y 元,依题意,得:5x +3y +10=3x +5y ﹣4,∴y =x +7,∴5x +3y +10﹣8x =5x +3(x +7)+10﹣8x =31.故选:A .12.(4分)勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出( )A .直角三角形的面积B .最大正方形的面积C .较小两个正方形重叠部分的面积D .最大正方形与直角三角形的面积和【解答】解:设直角三角形的斜边长为c ,较长直角边为b ,较短直角边为a ,由勾股定理得,c 2=a 2+b 2,阴影部分的面积=c 2﹣b 2﹣a (c ﹣b )=a 2﹣ac +ab =a (a +b ﹣c ),较小两个正方形重叠部分的长=a ﹣(c ﹣b ),宽=a ,则较小两个正方形重叠部分底面积=a (a +b ﹣c ),∴知道图中阴影部分的面积,则一定能求出较小两个正方形重叠部分的面积,故选:C .二、填空题(每小题4分,共24分)13.(4分)请写出一个小于4的无理数: √15 .【解答】解:∵15<16,∴√15<4,即√15为小于4的无理数.故答案为√15.14.(4分)分解因式:x 2+xy = x (x +y ) .【解答】解:x 2+xy =x (x +y ).15.(4分)袋中装有除颜色外其余均相同的5个红球和3个白球.从袋中任意摸出一个球,则摸出的球是红球的概率为 58 .【解答】解:从袋中任意摸出一个球,则摸出的球是红球的概率=58.故答案为58. 16.(4分)如图,某海防哨所O 发现在它的西北方向,距离哨所400米的A 处有一艘船向正东方向航行,航行一段时间后到达哨所北偏东60°方向的B 处,则此时这艘船与哨所的距离OB 约为 567 米.(精确到1米,参考数据:√2≈1.414,√3≈1.732)【解答】解:如图,设线段AB 交y 轴于C ,在直角△OAC 中,∠ACO =∠CAO =45°,则AC =OC .∵OA =400米,∴OC=OA•cos45°=400×√22=200√2(米).∵在直角△OBC中,∠COB=60°,OC=200√2米,∴OB=OCcos60°=200√212=400√2≈567(米)故答案是:567.17.(4分)如图,Rt△ABC中,∠C=90°,AC=12,点D在边BC上,CD=5,BD=13.点P是线段AD上一动点,当半径为6的⊙P与△ABC的一边相切时,AP的长为 6.5或3√13.【解答】解:∵在Rt△ABC中,∠C=90°,AC=12,BD+CD=18,∴AB=√122+182=6√13,在Rt△ADC中,∠C=90°,AC=12,CD=5,∴AD=√AC2+CD2=13,当⊙P于BC相切时,点P到BC的距离=6,过P作PH⊥BC于H,则PH=6,∵∠C=90°,∴AC⊥BC,∴PH∥AC,∴△DPH∽△DAC,∴PD DA =PH AC , ∴PD 13=612,∴PD =6.5,∴AP =6.5;当⊙P 于AB 相切时,点P 到AB 的距离=6,过P 作PG ⊥AB 于G ,则PG =6,∵AD =BD =13,∴∠P AG =∠B ,∵∠AGP =∠C =90°,∴△AGP ∽△BCA ,∴AP AB =PG AC , ∴6√13=612, ∴AP =3√13,∵CD =5<6,∴半径为6的⊙P 不与△ABC 的AC 边相切,综上所述,AP 的长为6.5或3√13, 故答案为:6.5或3√13.18.(4分)如图,过原点的直线与反比例函数y =kx (k >0)的图象交于A ,B 两点,点A 在第一象限.点C 在x 轴正半轴上,连结AC 交反比例函数图象于点D .AE 为∠BAC 的平分线,过点B 作AE 的垂线,垂足为E ,连结DE .若AC =3DC ,△ADE 的面积为8,则k 的值为 6 .【解答】解:连接OE,CE,过点A作AF⊥x轴,过点D作DH⊥x轴,过点D作DG ⊥AF,∵过原点的直线与反比例函数y=kx(k>0)的图象交于A,B两点,∴A与B关于原点对称,∴O是AB的中点,∵BE⊥AE,∴OE=OA,∴∠OAE=∠AEO,∵AE为∠BAC的平分线,∴∠DAE=∠AEO,∴AD∥OE,∴S△ACE=S△AOC,∵AC=3DC,△ADE的面积为8,∴S△ACE=S△AOC=12,设点A(m,km),∵AC=3DC,DH∥AF,∴3DH=AF,∴D(3m,k3m),∵CH∥GD,AG∥DH,∴△DHC∽△AGD,∴S△HDC=14S△ADG,∵S△AOC=S△AOF+S梯形AFHD+S△HDC=12k+12×(DH+AF)×FH+S△HDC=12k+12×4k 3m ×2m+12×14×2k3m×2m=12k+4k3+k6=12,∴2k=12,∴k=6;故答案为6;三、解答题(本大题有8小题,共78分)19.(6分)先化简,再求值:(x﹣2)(x+2)﹣x(x﹣1),其中x=3.【解答】解:(x﹣2)(x+2)﹣x(x﹣1)=x2﹣4﹣x2+x=x﹣4,当x=3时,原式=x﹣4=﹣1.20.(8分)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有5个小等边三角形已涂上阴影,请在余下的空白小等边三角形中,按下列要求选取一个涂上阴影:(1)使得6个阴影小等边三角形组成一个轴对称图形.(2)使得6个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)【解答】解:(1)如图1所示:6个阴影小等边三角形组成一个轴对称图形;(2)如图2所示:6个阴影小等边三角形组成一个中心对称图形.21.(8分)今年5月15日,亚洲文明对话大会在北京开幕.为了增进学生对亚洲文化的了解,某学校开展了相关知识的宣传教育活动.为了解这次宣传活动的效果,学校从全校1200名学生中随机抽取100名学生进行知识测试(测试满分100分,得分均为整数),并根据这100人的测试成绩,制作了如下统计图表.100名学生知识测试成绩的频数表成绩a(分)频数(人)50≤a<601060≤a<701570≤a<80m80≤a<904090≤a≤10015由图表中给出的信息回答下列问题:(1)m=20,并补全频数直方图;(2)小明在这次测试中成绩为85分,你认为85分一定是这100名学生知识测试成绩的中位数吗?请简要说明理由;(3)如果80分以上(包括80分)为优秀,请估计全校1200名学生中成绩优秀的人数.【解答】解:(1)m=100﹣(10+15+40+15)=20,补全图形如下:故答案为:20;(2)不一定是,理由:将100名学生知识测试成绩从小到大排列,第50、51名的成绩都在分数段80≤a ≤90中,当他们的平均数不一定是85分;(3)估计全校1200名学生中成绩优秀的人数为1200×40+15100=660(人).22.(10分)如图,已知二次函数y=x2+ax+3的图象经过点P(﹣2,3).(1)求a的值和图象的顶点坐标.(2)点Q(m,n)在该二次函数图象上.①当m=2时,求n的值;②若点Q到y轴的距离小于2,请根据图象直接写出n的取值范围.【解答】解:(1)把点P(﹣2,3)代入y=x2+ax+3中,∴a=2,∴y=x2+2x+3,∴顶点坐标为(﹣1,2);(2)①当m=2时,n=11,②点Q到y轴的距离小于2,∴|m|<2,∴﹣2<m<2,∴2≤n<11;23.(10分)如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.【解答】解:(1)∵四边形EFGH是矩形,∴EH=FG,EH∥FG,∴∠GFH=∠EHF,∵∠BFG=180°﹣∠GFH,∠DHE=180°﹣∠EHF,∴∠BFG=∠DHE,∵四边形ABCD是菱形,∴AD∥BC,∴∠GBF=∠EDH,∴△BGF≌△DEH(AAS),∴BG=DE;(2)连接EG,∵四边形ABCD是菱形,∴AD=BC,AD∥BC,∵E为AD中点,∴AE=ED,∵BG=DE,∴AE=BG,AE∥BG,∴四边形ABGE是平行四边形,∴AB=EG,∵EG=FH=2,∴AB=2,∴菱形ABCD的周长=8.24.(10分)某风景区内的公路如图1所示,景区内有免费的班车,从入口处出发,沿该公路开往草甸,途中停靠塔林(上下车时间忽略不计).第一班车上午8点发车,以后每隔10分钟有一班车从入口处发车.小聪周末到该风景区游玩,上午7:40到达入口处,因还没到班车发车时间,于是从景区入口处出发,沿该公路步行25分钟后到达塔林.离入口处的路程y(米)与时间x(分)的函数关系如图2所示.(1)求第一班车离入口处的路程y(米)与时间x(分)的函数表达式.(2)求第一班车从入口处到达塔林所需的时间.(3)小聪在塔林游玩40分钟后,想坐班车到草甸,则小聪最早能够坐上第几班车?如果他坐这班车到草甸,比他在塔林游玩结束后立即步行到草甸提早了几分钟?(假设每一班车速度均相同,小聪步行速度不变)【解答】解:(1)由题意得,可设函数表达式为:y =kx +b (k ≠0),把(20,0),(38,2700)代入y =kx +b ,得{0=20k +b 2700=38k +b ,解得{k =150b =−3000, ∴第一班车离入口处的路程y (米)与时间x (分)的函数表达为y =150x ﹣3000(20≤x ≤38);(2)把y =1500代入y =150x ﹣3000,解得x =30,30﹣20=10(分),∴第一班车从入口处到达塔林所需时间10分钟;(3)设小聪坐上了第n 班车,则30﹣25+10(n ﹣1)≥40,解得n ≥4.5,∴小聪坐上了第5班车,等车的时间为5分钟,坐班车所需时间为:1200÷150=8(分),步行所需时间:1200÷(1500÷25)=20(分),20﹣(8+5)=7(分),∴比他在塔林游玩结束后立即步行到草甸提早了7分钟.25.(12分)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC 中,AB =AC ,AD 是△ABC 的角平分线,E ,F 分别是BD ,AD 上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF 交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.【解答】解:(1)∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∠F AB与∠EBA互余,∴四边形ABEF是邻余四边形;(2)如图所示(答案不唯一),四边形AFEB为所求;(3)∵AB=AC,AD是△ABC的角平分线,∴BD=CD,∵DE=2BE,∴BD=CD=3BE,∴CE=CD+DE=5BE,∵∠EDF=90°,点M是EF的中点,∴DM=ME,∴∠MDE =∠MED ,∵AB =AC ,∴∠B =∠C ,∴△DBQ ∽△ECN ,∴QB NC =BD CE =35, ∵QB =3,∴NC =5,∵AN =CN ,∴AC =2CN =10,∴AB =AC =10.26.(14分)如图1,⊙O 经过等边△ABC 的顶点A ,C (圆心O 在△ABC 内),分别与AB ,CB 的延长线交于点D ,E ,连结DE ,BF ⊥EC 交AE 于点F .(1)求证:BD =BE .(2)当AF :EF =3:2,AC =6时,求AE 的长.(3)设AF EF =x ,tan ∠DAE =y .①求y 关于x 的函数表达式;②如图2,连结OF ,OB ,若△AEC 的面积是△OFB 面积的10倍,求y 的值.【解答】证明:(1)∵△ABC 是等边三角形,∴∠BAC =∠C =60°,∵∠DEB =∠BAC =60°,∠D =∠C =60°,∴∠DEB =∠D ,∴BD =BE ;(2)如图1,过点A 作AG ⊥BC 于点G ,∵△ABC 是等边三角形,AC =6,∴BG =12BC =12AC =3,∴在Rt △ABG 中,AG =√3BG =3√3,∵BF ⊥EC ,∴BF ∥AG ,∴AF EF =BG EB ,∵AF :EF =3:2,∴BE =23BG =2,∴EG =BE +BG =3+2=5,在Rt △AEG 中,AE =√AG 2+EG 2=√(3√3)2+52=2√13;(3)①如图1,过点E 作EH ⊥AD 于点H ,∵∠EBD =∠ABC =60°,∴在Rt △BEH 中,EH BE =sin60°=√32, ∴EH =√32BE ,BH =12BE ,∵BG EB =AF EF =x ,∴BG =xBE ,∴AB =BC =2BG =2xBE ,∴AH =AB +BH =2xBE +12BE =(2x +12)BE ,∴在Rt △AHE 中,tan ∠EAD =EH AH =√32BE (2x+12)BE =√34x+1, ∴y =√34x+1;②如图2,过点O 作OM ⊥BC 于点M ,设BE =a ,∵BG EB =AF EF =x ,∴CG =BG =xBE =ax ,∴EC =CG +BG +BE =a +2ax ,∴EM =12EC =12a +ax ,∴BM =EM ﹣BE =ax −12a ,∵BF ∥AG ,∴△EBF ∽△EGA ,∴BF AG =BE EG =a a+ax =11+x ,∵AG =√3BG =√3ax ,∴BF =1x+1AG =√3ax x+1, ∴△OFB 的面积=BF⋅BM 2=12×√3ax x+1(ax −12a), ∴△AEC 的面积=EC⋅AG 2=12×√3ax(a +2ax), ∵△AEC 的面积是△OFB 的面积的10倍,∴12×√3ax(a +2ax)=10×12×√3ax x+1(ax −12a),∴2x2﹣7x+6=0,解得:x1=2,x2=3 2,∴y=√39或√37,。

2019年宁波市中考数学试题、答案(解析版)

2019年宁波市中考数学试题、答案(解析版)

2019年宁波市中考数学试题、答案(解析版)(满分为150分,考试时间120分钟、)试题卷Ⅰ一、选择题(每小题4分,共48分在每小题给出得四个选项中,只有一项符合题目要求)1、2-得绝对值为( )A、12-B、2 C、12D、2-2、下列计算正确得就是( )A、325a a a+=B、326a a a-=C、()325a a=D、624a a a÷=3、宁波就是世界银行在亚洲地区选择得第一个开展垃圾分类试点项目得城市,项目总投资为1 526 000 000元人民币、数1 526 000 000用科学记数法表示为( )A、81.52610⨯B、815.2610⨯C、91.52610⨯D、101.52610⨯4、若分式12x-有意义,则x得取值范围就是( )A、2x>B、2x≠C、0x≠D、2x≠-5、如图,下列关于物体得主视图画法正确得就是( )A B C D6、不等式32x->x得解为( )A、1x<B、1x<-C、1x>D、1x>-7、能说明命题“关于x得方程240x x m-+=一定有实数根”就是假命题得反例为( )A、1m=-B、0m=C、4m=D、5m=8、去年某果园随机从甲、乙、丙、丁四个品种得葡萄树中各采摘了10棵,每棵产量得平均数x(单位:千克)及方差2S(单位:千克2)如下表所示:甲乙丙丁x24 24 23 202S2、1 1、9 2 1、9( )A、甲B、乙C、丙D、丁9、已知直线m nP,将一块含45°角得直角三角板ABC按如图方式放置,其中斜边BC与直线n交于点D、若125∠=︒,则∠2得度数为( )A、60°B、65°C、70°D、7510、如图所示,矩形纸片ABCD中,AD=6 cm,把它分割成正方形纸片ABFE与矩形纸片EFCD后,分别裁出扇形ABF与半径最大得圆,恰好能作为一个圆锥得侧面与底面,则AB得长为( )A、3、5 cmB、4 cmC、4、5 cmD、5 cm11、小慧去花店购买鲜花,若买5支玫瑰与3支百合,则她所带得钱还剩下10元;若买3支玫瑰与5支百合,则她所带得钱还缺4元、若只买8支玫瑰,则她所带得钱还剩下( )A、31元B、30元C、25元D、19元12、勾股定理就是人类最伟大得科学发现之一,在我国古算书《周醉算经》中早有记载。

浙江宁波2019中考试题数学卷(解析版)-精选.doc

浙江宁波2019中考试题数学卷(解析版)-精选.doc

浙江宁波2019中考试题数学卷(解析版)满分150分,考试时间120分钟一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1. 6的相反数是 A. -6 B. 61 C. 61- D. 6 【答案】A. 【解析】试题分析:根据只有符号不同的两个数互为相反数可得6的相反数是-6,故答案选A. 考点:相反数. 2. 下列计算正确的是A. 633a a a =+B. 33=-a aC. 523)(a a = D. 32a a a =⋅ 【答案】D.考点:合并同类项法则;同底数幂乘法法则;幂的乘方运算.3. 宁波栎社国际机场三期扩建工程建设总投资84.5亿元,其中84.5亿元用科学计数法表示为A. 0.845×1010元 B. 84.5×108元 C. 8.45×109元 D. 8.45×1010元 【答案】C. 【解析】试题分析:科学计数法是指:a ×n10,且101πa ≤,n 为原数的整数位数减一.84.5亿=8 450 000 000=8.45×109,故答案选C. 考点:科学计数法.4. 使二次根式1-x 有意义的x 的取值范围是A. 1≠xB. 1>xC. 1≤xD. 1≥x【答案】D. 【解析】试题分析:使二次根式a 有意义的条件是被开方数a ≥0,所以使二次根式1 x 有意义的条件是x-1≥0,即x ≥1,故答案选D. 考点:二次根式有意义的条件. 5. 如图所示的几何体的主视图为【答案】B. 【解析】试题分析:从正面看这个几何体是由两个大小一样的矩形组成,故答案选B. 考点:几何体的三视图.6. 一个不透明布袋里装有1个白球、2个黑球、3个红球,它们除颜色外都相同。

从中任意摸出一个球,是红球的概率为 A.61 B. 31 C. 21 D. 32 【答案】C.考点:概率公式.7. 某班10名学生校服尺寸与对应人数如下表所示:尺寸(cm ) 160 165 170 175 180 学生人数(人)13222则这A. 165cm ,165cm B. 165cm ,170cm C. 170cm ,165cm D. 170cm ,170cm 【答案】B. 【解析】试题分析:众数是一组数据中出现次数最多的数据,所以众数是165;把数据按从小到大顺序排列,可得中位数=(170+170)÷2=170,故答案选B. 考点:中位数;众数.8. 如图,在△ABC 中,∠ACB=90°,CD ∥AB ,∠ACD=40°,则∠B 的度数为 A. 40° B. 50° C. 60° D. 70°【答案】B.考点:平行线的性质;直角三角形的两锐角互余.9. 如图,圆锥的底面半径r 为6cm ,高h 为8cm ,则圆锥的侧面积为 A. 30πcm 2B. 48πcm 2C. 60πcm 2D. 80πcm 2【答案】C. 【解析】试题分析:如图,根据勾股定理可求得圆锥的母线l=10,再由圆锥的侧面积公式S=πrl=π×6×8=60πcm 2,故答案选C.考点:勾股定理;圆锥的侧面积公式.10. 能说明“对于任何实数a ,a a ->”是假命题的一个反例可以是A. 2-=aB. 31=a C. 1=a D. 2=a 【答案】A. 【解析】试题分析:把选项A 代入a a ->可得)2(2-->-,即2>2,错误,其它三个选项代入都成立,故答案选A. 考点:命题.11. 已知函数122--=ax ax y (a 是常数,a ≠0),下列结论正确的是 A. 当1=a 时,函数图象过点(-1,1) B. 当2-=a 时,函数图象与x 轴没有交点 C. 若0>a ,则当1≥x 时,y 随x 的增大而减小 D. 若0<a ,则当1≤x 时,y 随x 的增大而增大 【答案】D.当0<a ,在对称轴的左侧,即当1≤x 时,y 随x 的增大而增大,所以选项C 错误,选项D 正确,故答案选D. 考点:二次函数的性质.12. 如图是一个由5张纸片拼成的平行四边形,相邻纸片之间互不重叠也无缝隙,其中两张等腰直角三角形纸片的面积都为S 1,另两张直角三角形纸片的面积都为S 2,中间一张正方形纸片的面积为S 3,则这个平行四边形的面积一定可以表示为A. 4S 1B. 4S 2C. 4S 2+S 3D. 3S 1+4S 3【答案】A.考点:直角三角形的面积.二、填空题(每小题4分,共24分)13. 实数-27的立方根是 【答案】-3. 【解析】试题分析:因为(-3)3=-27,根据立方根的定义可得实数-27的立方根是-3. 考点:立方根.14. 分解因式:xy x -2= 【答案】x(x-y). 【解析】试题分析:直接提公因式x 可得xy x -2=x(x-y). 考点:因式分解.15. 下列图案是用长度相同的火柴棒按一定规律拼搭而成,图案①需8根火柴棒,图案②需15根火柴棒,……,按此规律,图案⑦需 根火柴棒【答案】50.考点:图形规律探究题.16. 如图,在一次数学课外实践活动中,小聪在距离旗杆10m 的A 处测得旗杆顶端B 的仰角为60°,测角仪高AD 为1m ,则旗杆高BC 为 m (结果保留根号)【答案】103+1. 【解析】试题分析:如图,由题意可得AE=DC=10m ,AD=CE=1m ,在Rt △AEC 中,tan ∠BAE=AEBE,即103BE=,解得BE=103m ,所以BC=BE+CE=(103+1)m.考点:解直角三角形的应用.17. 如图,半圆O 的直径AB=2,弦CD ∥AB ,∠COD=90°,则图中阴影部分面积为【答案】4π.考点:扇形的面积. 18. 如图,点A 为函数)0(9>=x x y 图象上一点,连结OA ,交函数)0(1>=xxy 的图象于点B ,点C 是x 轴上一点,且AO=AC ,则△ABC 的面积为【答案】6. 【解析】试题分析:如图,分别作AE ⊥x 轴,BD ⊥x 轴,垂足分别为点E 、D ,根据反比例函数k 的几何意义可得21=∆OBD S ,29=∆AOE S ,由AE ⊥x 轴,BD ⊥x 轴可得△BOD ∽△AOE,根据相似三角形的性质可得AOE BOD S S OE OD ∆∆=2)(,即可得31=OE OD ,因为AO=AC ,根据等腰三角形的性质可得OE=EC ,所以61=OC OD ,又因612121==⋅⋅=∆∆OC OD BD OC BDOD S S BOCBOD,21=∆OBD S ,所以可得3=∆BOC S ,在由于AO=AC ,AE ⊥x 轴,可得29==∆∆ACE AOE S S ,9=∆AOC S ,所以639=-=-=∆∆∆BOC AOC ABC S S S .考点:反比例函数综合题.三、解答题(本大题有8小题,共78分)19.(本题6分)先化简,再求值:)3()1)(1(x x x x -+-+,其中2=x 【答案】原式=13-x ;当2=x 时,原式=5.考点:整式的化简求值.20.(本题8分)下列3×3网格都是由9个相同小正方形组成,每个网格图中有3个小正方形已涂上阴影,请在余下的6个空白小正方形中,按下列要求涂上阴影:(1)选取1个涂上阴影,使4个阴影小正方形组成一个轴对称图形,但不是中心对称图形; (2)选取1个涂上阴影,使4个阴影小正方形组成一个中心对称图形,但不是轴对称图形; (3)选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形。

2019年宁波市中考数学试卷(解析版)

2019年宁波市中考数学试卷(解析版)

2019年宁波市中考数学试卷(解析版)一、选择题(每小题4分,共48分)1.-2的绝对值为()A. B. 2 C. D. -2【答案】B【解析】【解答】解:∣-2∣=2. 故答案为:B2.下列计算正确的是()A. B. C. D.【答案】 D【解析】【解答】解:A、∵a²和a³不是同类项,∴不能加减,故此答案错误,不符合题意;B、∵,∴此答案错误,不符合题意;C、∵,∴此答案错误,不符合题意;D 、∵,∴此答案正确,符合题意。

故答案为:D3.宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资1526000000元人民币数1526000000用科学记数法表示为()A. B. C. D.【答案】C【解析】【解答】解:。

故答案为:C4.若分式有意义,则x的取值范围是()A. x>2B. x≠2C. x≠0D. x≠-2【答案】B【解析】【解答】解:由题意得:x-2≠0,解得:x≠2. 故答案为:B5.如图,下列关于物体的主视图画法正确的是()A. B. C. D.【答案】C【解析】【解答】解:主视图是从正面看这个几何体得到的正投影,空心圆柱从正面看是一个长方形,加两条虚竖线。

故答案为:C。

6.不等式的解为()A. B. C. D.【答案】A【解析】【解答】解:去分母得:3-x﹥2x,移项得:-x-2x﹥-3,合并同类项得:-3x﹥-3,系数化为1得:x﹤1. 故答案为:A7.能说明命题“关于x的方程x2-4x+m=0一定有实数根”是假命题的反例为()A. m=-1B. m=0C. m=4D. m=5【答案】 D【解析】【解答】解:∵b²-4ac=(-4)²-4×1×m≥0,解不等式得:x≤4,由一元二次方程的根的判别式可知:当x≤4时,方程有实数根,∴当m=5时,方程x²-4x+m=0没有实数根。

故答案为:D8.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数x(单位:千克)及方差S2(单位:千克2)如下表所示:今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是()A. 甲B. 乙C. 丙D. 丁【答案】B【解析】【解答】解:∵从平均数可知:甲、乙比丙和丁大,∴排除选项C和D;从方差看,乙的方差比甲的小,∴排除选项A。

2019年浙江宁波中考数学试题(解析版)

2019年浙江宁波中考数学试题(解析版)

F
C
(第 10 题图)
{答案}B
{解析}本题考查了圆锥的性质.根据题意,当裁出的扇形和圆恰好能作为一个圆锥的侧面和底面时,
扇形的弧长等于圆周长.欲从矩形 CDEF 中裁出最大的圆,矩形的两条边 CD、EF 恰好与圆相切,
( ) 90° ×p x
即 DE 长是圆的直径,不妨设 AB=x,则扇形弧长为
,圆的周长为
正确,因此本题选 C.
{分值}4
{章节:[1-17-1]勾股定理}
c-a
c-a
c
c-a
c-ac-b
c-b
{考点:代数式} {考点:列代数式} {考点:勾股定理} {考点:勾股定理的应用} {考点:几何选择压轴} {类别:思想方法} {类别:数学文化} {类别:发现探究} {难度:4-较高难度}
{题型:2-填空题}二、填空题:本大题共 6 小题,每小题 4 分,共 24 分.
{题目}11.(2019 年宁波)小慧去花店购买鲜花,若买 5 支玫瑰和 3 支百合,则她所带的钱还剩下 10
元;若买 3 支玫瑰和 5 支百合,则她所带的钱还缺 4 元.若只买 8 支玫瑰,则她所带的钱还剩下(
)
A.31 元
B.30 元
C.25 元
D.19 元
{答案}A {解析}本题考查了代数式的概念,二元一次方程的性质以及整体思想.不妨设每支玫瑰 x 元,每支 百合 y 元,根据题意可列出方程:5x+3y+10=3x+5y-4,得 x-y=-7,若小慧只买 8 支玫瑰, 则她剩下的钱可以用代数式表示为(5x+3y+10)-8x,即-3(x-y)+10,将“x-y=-7”整体代入 可得解是 31,因此本题选 A. {分值}4 {章节:[1-8-1]二元一次方程组} {考点:代数式} {考点:二元一次方程的解} {类别:思想方法} {类别:易错题} {难度:4-较高难度}

2019年浙江省宁波市中考数学试卷-答案

2019年浙江省宁波市中考数学试卷-答案
过点 D 作 DM AB 于点 M, AD BD 13, AM AB=3 13 ; 2
在 Rt△ADM 中, AD 13, AM 3 13 , DM 2 13 ;
∵当点 P 运动到点 D 时,点 P 到 AC 的距离最大为 CD 5<6, ∴半径为 6 的 P 不可能与 AC 相切; 当半径为 6 的 P 与 BC 相切时,设切点为 E,连接 PE,00 10 15 40 15 20 (人),
故答案为:20. 补全频数直方图如下:
【考点】用样本估计总体,频数(率)分布表,频数(率)分布直方图
22.【答案】(1)解: 把P( 2,3)代入y x2 ax 3,得3 ( 2)2 2a 3, 解得a 2. y x2 2x 3 (x 1)2 2,
PF BA,DM AB,
DM PF,
△APF∽△ADM, AP∶AD PF∶DM即AP∶13 6∶2 13,
AP 3 13, 13
综上所述即可得出 AP 的长度为: 或3 13 2
13 故答案为: 或3 13
2
【考点】勾股定理,切线的性质,相似三角形的判定与性质 18.【答案】6
BFG 180 GFH,DHE 180 EHF, BFG DHE. 在菱形ABCD中,AD / /BC. GBF EDH .
△BGF△DEH AAS.
BG=DE
(2)解:如图,连结 EG.
在菱形 ABCD 中, AD BC. E为AD中点, AE = ED. BG=DE, AE BG. 四边形ABGE为平行四边形。 AB=EG. 在矩形EFGH中,EG=FH=2. AB=2 . 菱形的周长为8 .

2019年浙江省宁波市中考数学试卷(word版,无答案)

2019年浙江省宁波市中考数学试卷(word版,无答案)

2019年浙江省宁波市中考数学试卷(word版,无答案)一、选择题(每小题4分,共48分,在每小题给出的四个选项中,只有一项符合题目要求)1.(4分)﹣2的绝对值为()A.﹣B.2 C.D.﹣22.(4分)下列计算正确的是()A.a3+a2=a5B.a3•a2=a6C.(a2)3=a5D.a6÷a2=a43.(4分)宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资为1526000000元人民币.数1526000000用科学记数法表示为()A.1.526×108B.15.26×108C.1.526×109D.1.526×1010 4.(4分)若分式有意义,则x的取值范围是()A.x>2 B.x≠2C.x≠0D.x≠﹣25.(4分)如图,下列关于物体的主视图画法正确的是()A.B.C.D.6.(4分)不等式>x的解为()A.x<1 B.x<﹣1 C.x>1 D.x>﹣17.(4分)能说明命题“关于x的方程x2﹣4x+m=0一定有实数根”是假命题的反例为()A.m=﹣1 B.m=0 C.m=4 D.m=58.(4分)去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数(单位:千克)及方差S2(单位:千克2)如表所示:甲乙丙丁24 24 23 20S2 2.1 1.9 2 1.9今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是()A.甲B.乙C.丙D.丁9.(4分)已知直线m∥n,将一块含45°角的直角三角板ABC按如图方式放置,其中斜边BC与直线n交于点D.若∠1=25°,则∠2的度数为()A.60°B.65°C.70°D.75°10.(4分)如图所示,矩形纸片ABCD中,AD=6cm,把它分割成正方形纸片ABFE和矩形纸片EFCD后,分别裁出扇形ABF和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB的长为()A.3.5cm B.4cm C.4.5cm D.5cm11.(4分)小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下()A.31元B.30元C.25元D.19元12.(4分)勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和二、填空题(每小题4分,共24分)13.(4分)请写出一个小于4的无理数:.14.(4分)分解因式:x2+xy=.15.(4分)袋中装有除颜色外其余均相同的5个红球和3个白球.从袋中任意摸出一个球,则摸出的球是红球的概率为.16.(4分)如图,某海防哨所O发现在它的西北方向,距离哨所400米的A处有一艘船向正东方向航行,航行一段时间后到达哨所北偏东60°方向的B处,则此时这艘船与哨所的距离OB约为米.(精确到1米,参考数据:≈1.414,≈1.732)17.(4分)如图,Rt△ABC中,∠C=90°,AC=12,点D在边BC上,CD=5,BD=13.点P是线段AD上一动点,当半径为6的⊙P与△ABC的一边相切时,AP的长为.18.(4分)如图,过原点的直线与反比例函数y=(k>0)的图象交于A,B两点,点A 在第一象限.点C在x轴正半轴上,连结AC交反比例函数图象于点D.AE为∠BAC 的平分线,过点B作AE的垂线,垂足为E,连结DE.若AC=3DC,△ADE的面积为8,则k的值为.三、解答题(本大题有8小题,共78分)19.(6分)先化简,再求值:(x﹣2)(x+2)﹣x(x﹣1),其中x=3.20.(8分)图1,图2都是由边长为1的小等边三角形构成的网格,每个网格图中有5个小等边三角形已涂上阴影,请在余下的空白小等边三角形中,按下列要求选取一个涂上阴影:(1)使得6个阴影小等边三角形组成一个轴对称图形.(2)使得6个阴影小等边三角形组成一个中心对称图形.(请将两个小题依次作答在图1,图2中,均只需画出符合条件的一种情形)21.(8分)今年5月15日,亚洲文明对话大会在北京开幕.为了增进学生对亚洲文化的了解,某学校开展了相关知识的宣传教育活动.为了解这次宣传活动的效果,学校从全校1200名学生中随机抽取100名学生进行知识测试(测试满分100分,得分均为整数),并根据这100人的测试成绩,制作了如下统计图表.100名学生知识测试成绩的频数表成绩a(分)频数(人)50≤a<60 1060≤a<70 1570≤a<80 m80≤a<90 4090≤a≤10015由图表中给出的信息回答下列问题:(1)m=,并补全频数直方图;(2)小明在这次测试中成绩为85分,你认为85分一定是这100名学生知识测试成绩的中位数吗?请简要说明理由;(3)如果80分以上(包括80分)为优秀,请估计全校1200名学生中成绩优秀的人数.22.(10分)如图,已知二次函数y=x2+ax+3的图象经过点P(﹣2,3).(1)求a的值和图象的顶点坐标.(2)点Q(m,n)在该二次函数图象上.①当m=2时,求n的值;②若点Q到y轴的距离小于2,请根据图象直接写出n的取值范围.23.(10分)如图,矩形EFGH的顶点E,G分别在菱形ABCD的边AD,BC上,顶点F,H在菱形ABCD的对角线BD上.(1)求证:BG=DE;(2)若E为AD中点,FH=2,求菱形ABCD的周长.24.(10分)某风景区内的公路如图1所示,景区内有免费的班车,从入口处出发,沿该公路开往草甸,途中停靠塔林(上下车时间忽略不计).第一班车上午8点发车,以后每隔10分钟有一班车从入口处发车.小聪周末到该风景区游玩,上午7:40到达入口处,因还没到班车发车时间,于是从景区入口处出发,沿该公路步行25分钟后到达塔林.离入口处的路程y(米)与时间x(分)的函数关系如图2所示.(1)求第一班车离入口处的路程y(米)与时间x(分)的函数表达式.(2)求第一班车从入口处到达塔林所需的时间.(3)小聪在塔林游玩40分钟后,想坐班车到草甸,则小聪最早能够坐上第几班车?如果他坐这班车到草甸,比他在塔林游玩结束后立即步行到草甸提早了几分钟?(假设每一班车速度均相同,小聪步行速度不变)25.(12分)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD 上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.26.(14分)如图1,⊙O经过等边△ABC的顶点A,C(圆心O在△ABC内),分别与AB,CB的延长线交于点D,E,连结DE,BF⊥EC交AE于点F.(1)求证:BD=BE.(2)当AF:EF=3:2,AC=6时,求AE的长.(3)设=x,tan∠DAE=y.①求y关于x的函数表达式;②如图2,连结OF,OB,若△AEC的面积是△OFB面积的10倍,求y的值.。

浙江省宁波市2019年中考数学试卷(解析版)

浙江省宁波市2019年中考数学试卷(解析版)

浙江省宁波市2019年中考数学试卷一、选择题(每小题4分,共48分)1.-2的绝对值为()A. B. 2 C. D. -2【答案】B【考点】绝对值及有理数的绝对值【解析】【解答】解:∣-2∣=2.故答案为:B【分析】因为一个负数的绝对值等于它的相反数,而-2的相反数是2,所以-2的绝对值等于2。

2.下列计算正确的是()A. B. C. D.【答案】 D【考点】同底数幂的乘法,同底数幂的除法,合并同类项法则及应用,幂的乘方【解析】【解答】解:A、∵a²和a³不是同类项,∴不能加减,故此答案错误,不符合题意;B、∵,∴此答案错误,不符合题意;C、∵,∴此答案错误,不符合题意;D、∵,∴此答案正确,符合题意。

故答案为:D【分析】(1)因为a³与a²不是同类项,所以不能合并;(2)根据同底数幂相乘,底数不变,指数相加可判断求解;(3)根据幂的乘方,底数不变,指数相乘可判断求解;(4)根据同底数幂相除,底数不变,指数相减可判断求解。

3.宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资1526000000元人民币数1526000000用科学记数法表示为()A. B. C. D.【答案】C【考点】科学记数法—表示绝对值较大的数【解析】【解答】解:。

故答案为:C【分析】任何一个绝对值大于等于1的数都可以用科学记数法表示,科学记数法的表示形式为a×10n,其中1≤|a|<10,n=整数位数-1.4.若分式有意义,则x的取值范围是()A. x>2B. x≠2C. x≠0D. x≠-2【答案】B【考点】分式有意义的条件【解析】【解答】解:由题意得:x-2≠0,解得:x≠2.故答案为:B【分析】分式有意义的条件是:分母不为0,从而列出不等式,求解即可。

5.如图,下列关于物体的主视图画法正确的是()A. B. C. D.【答案】C【考点】简单几何体的三视图【解析】【解答】解:主视图是从正面看这个几何体得到的正投影,空心圆柱从正面看是一个长方形,加两条虚竖线。

2019年浙江省宁波市中考数学试题

2019年浙江省宁波市中考数学试题

2.下列计算正确的是( )
A. a3 a2 a5 B. a3 a2 a6
C. a2 3 a5
D. a6 a2 a4
【答案】D 【解析】 【分析】 分别根据合并同类项的法则、同底数幂的乘法法则、幂的乘方法则以及同底数幂除 法法则解答即可. 【详解】
A、∵ a2 和 a3 不是同类项,∴不能加减,故此答案错误,不符合题意;
3-x>2x,
3>3x,
x<1,
故选 A.
试卷第 3页,总 25页
【点睛】
本题考查了解一元一次不等式,注意:解一元一次不等式的步骤是:去分母、去括
号、移项、合并同类项、系数化成 1.
7.能说明命题“关于 x 的方程 x2 4x m 0 一定有实数根”是假命题的反例为
()
A. m 1
科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|<10,n 为整数.确定 n 的值时,
要看把原数变成 a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当
原数绝对值>1 时,n 是正数;当原数的绝对值<1 时,n 是负数.
【详解】
数字 1526000000 科学记数法可表示为 1.526×109 元.
题的关键.
3.宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目 总投资 1526000000 元人民币数 1526000000 用科学记数法表示为( )
A.1.526 108 B.15.26 108
C.1.526 109
D.1.526 1010
【答案】C 【解析】
【分析】
故选 C.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为 a×10n 的形式,其中 1≤|a|

2019年浙江省宁波市中考数学试卷(附答案与解析)

2019年浙江省宁波市中考数学试卷(附答案与解析)

数学试卷 第1页(共22页) 数学试卷 第2页(共22页)绝密★启用前2019年浙江省宁波市中考数学试卷数 学(满分为150分,考试时间120分钟.)试题卷Ⅰ一、选择题(每小题4分,共48分在每小题给出的四个选项中,只有一项符合题目要求)1.2-的绝对值为 ( )A .12-B .2C .12D .2-2.下列计算正确的是 ( )A .325a a a +=B .326a a a -=C .()325a a =D .624a a a ÷=3.宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资为1 526 000 000元人民币.数1 526 000 000用科学记数法表示为 ( ) A .81.52610⨯ B .815.2610⨯ C .91.52610⨯D .101.52610⨯ 4.若分式12x -有意义,则x 的取值范围是( )A .2x >B .2x ≠C .0x ≠D .2x ≠- 5.如图,下列关于物体的主视图画法正确的是( )AB CD6.不等式32x->x 的解为( ) A .1x <B .1x <-C .1x >D .1x >-7.能说明命题“关于x 的方程240x x m -+=一定有实数根”是假命题的反例为( ) A .1m =- B .0m = C .4m = D .5m = 8.去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了10棵,每棵产量的平均数x22 ( ) A .甲 B .乙 C .丙 D .丁 9.已知直线m n ,将一块含45°角的直角三角板ABC 按如图方式放置,其中斜边BC 与直线n 交于点D .若125∠=︒,则∠2的度数为 ( )A .60°B .65°C .70°D .75 10.如图所示,矩形纸片ABCD 中,AD=6 cm ,把它分割成正方形纸片ABFE 和矩形纸片EFCD 后,分别裁出扇形ABF 和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则AB 的长为 ( )A .3. 5 cmB .4 cmC .4.5 cmD .5 cm 11.小慧去花店购买鲜花,若买5支玫瑰和3支百合,则她所带的钱还剩下10元;若买3支玫瑰和5支百合,则她所带的钱还缺4元.若只买8支玫瑰,则她所带的钱还剩下 ( ) A .31元 B .30元 C .25元 D .19元 12.勾股定理是人类最伟大的科学发现之一,在我国古算书《周醉算经》中早有记载。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

D. 19 元
12. 勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载,如图
1,以直角三
角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图
2 的方式放置在最大正方形内,
若知道图中阴影部分的面积,则一定能求出(

A .直角三角形的面积
B.最大正方形的面积
C .较小两个正方形重叠部分的面积

A . 3.5cm
B. 4cm
C. 4.5cm
D. 5cm
A
E
D
B
C F
11. 小惠去花店购买鲜花,若买 5 支玫瑰和 3 支百合,则她所带的钱还剩下 10 元;若买 3 支玫瑰和 5 支
百合,则她所带的钱还缺 4 元,若只买 8 支玫瑰,则她所带的钱还剩下(

A .31 元
B. 30 元
C. 25 元
D .最大正方形与直角三角形的面积和
图1
图2
二、填空题:每小题 4 分,共 24 分
13. 请写出一个小于 4 的无理数:

14. 分解因式: x2 xy

15. 袋中装有除颜色外其余均相同的 5 个红球和 3 个白球,从袋中任意摸出一个球,则摸出的球是红球的
概率为

16. 如图,某海防哨所 O 发现在它的西北方向,距离哨所 400 米的 A 处有一艘船向正东方向航行,航行一
10 棵,每棵产量的平均数 x (单位:




x
24
24
23
20
2
S
2.1
1.9
2
1.9
今年准备从四个品种中选出一种产量既高又稳定的葡萄树进行种植,应选的品种是(

A .甲
B.乙
C.丙
D .丁
9. 已知直线 m∥ n ,将一块含 45 角的直角三角板 ABC 按如图方式放置, 其中斜边 BC 与直线 n 交于点 D ,
足为 E ,连结 DE .若 AC 3DC , △ADE 的面积为 8,则 k 的值为

yB
E
三、解答题:本大题共 8 小题,共 78 分 19. 先化简,再求值 :
x 2 x 2 x x 1 ,其中 x 3.
20. 图 1,图 2 都是由边长为 1 的小等边三角形构成的网格,每个网格图中有
一动点,当半径为 6 的 P 与 △ ABC 的一边相切时, AP 的长为

A
P
C
D
B
18. 如图,过原点的直线与反比例函数
y
k (k
0) 的图象交于 A , B 两点,点 A 在第一象限.点 C 在 x
x
轴正半轴上,连结 AC 交反比例函数图象于点 D . AE 为 BAC 的平分线,过点 B 作 AE 的垂线,垂
关知识的宣传教育活动.为了解这次宣传活动的效果,学校从全校
1200 名学生中随机抽取 100 名学
生进行知识测试(测试满分 100 分,得分均为整数) ,并根据这 100 人的测试成绩,制作了如下统计
图表. 100 名学生知识测试成绩的频数表
100 名学生知识测试成绩的频数直方图 成绩 a (分) 频数(人)
段时间后到达哨所北偏东 60 方向的 B 处,则此时这艘船与哨所的距离 OB 约为
.(精确到
1 米,参考数据: 2 1.414 , 3 1.732 )

A
B
45°60°
O

17. 如图, Rt△ABC 中, C 90 , AC 12 ,点 D 在边 BC 上, CD 5 , BD 13 .点 P 是线段 AD 上
1 526 000 000
元人民币,数 1 526 000 000 用科学记数法表示为(

8
A . 1.526 10
8
B. 15.26 10
4. 若分式 1 有意义,则 x 的取值范围是( x2
9
C. 1.526 10 )
A. x 2
B. x 2
C. x 0
10
D. 1.526 10 D. x 2
5. 如图,下列关于物体的主视图画法正确的是(

主视方向
A
B
C
D
3x
6. 不等式
x 的解为(

2
A. x 1
B. x 1
C. x 1
D. x 1
7.
能说明命题“关于
x 的方程
2
x
4x
m
0 一定有实数根”是假命题的反例为(

A.m 1
B. m 0
C. m 4
D. m 5
8. 去年某果园随机从甲、乙、丙、丁四个品种的葡萄树中各采摘了 千克)及方差 S2 (单位: 千克 2 )如下表所示:
若 1 25 ,则 2 的度数为(

A . 60
B. 65
C. 70
D. 75
A 2
m C
1D
n
B
10. 如图所示,矩形纸片 ABCD 中, AD 6cm ,把它分割成正方形纸片 ABFE 和矩形纸片 EFCD 后,分
别裁出扇形 ABF 和半径最大的圆,恰好能作为一个圆锥的侧面和底面,则
AB 的长为(
5 个小等边三角形已涂上阴
影,请在余下的空白小等边三角形中,按下列要求选取一个涂上阴影.
( 1)使得 6 个阴影小等边三角形组成一个轴对称图形;
( 2)使得 6 个阴影小等边三角形组成一个中心对称图形;
(请将两个小题依次作答在图 1,图 2 中,均只需画出符合条件的一种情形) .
图1
图2
21. 今年 5 月 15 日,亚洲文明对话大会在北京开幕.为了增进学生对亚洲文化的了解,某学校开展了相
50 a 60
10
60 a 70
15
70 a 80
m
80 a 90
40
90 a 100
15
频数(人)
40 40
30
20
15
15
10 10
0 50 60 70 80 90 100
成绩(分)
由图表给出的信息回答下列问题:
(1) m
,并补全频数直方图;
( 2)小明在这次测试中成绩为 85 分,你认为 85 分一定是这 100 名学生知识测试成绩的中位数吗?
2019 浙江宁波
一、选择题:每小题 4 分,共 48 分
1. 2 的绝对值为( 1
A. 2
2. 下列计算正确的是(
3
2
5
A.a a a
) B. 2

32
6
B. a a a
1 C.
2 C. a2 3 a 5
D. 2
6
2
4
D. a a a
3. 宁波是世界银行在亚洲地区选择的第一个开展垃圾分类试点项目的城市,项目总投资为
( 3)如果 80 分以上(包括 80 分)为优秀,请估计全校 1200 名学生中成绩优秀的人数.
22. 如图,已知二次函数 y x2 ax 3 的图象经过点 P( 2,3) . ( 1)求 a 的值和图象的顶点坐标; ( 2)点 Q (m, n) 在该二次函数图象上. ①当 m 2 时,求 n 的值; ②若点 Q 到 y 轴的距离小于 2,请根据图象直接写出 n 的取值范围.
相关文档
最新文档