五种插值法的对比研究---开题报告
插值算法(一):各种插值方法比较
插值算法(一):各种插值方法比较整体拟合利用现有的所有已知点来估算未知点的值。
局部插值使用已知点的样本来估算位置点的值。
确定性插值方法不提供预测值的误差检验。
随机性插值方法则用估计变异提供预测误差的评价。
对于某个数据已知的点,精确插值法在该点位置的估算值与该点已知值相同。
也就是,精确插值所生成的面通过所有控制点,而非精确插值或叫做近似插值,估算的点值与该点已知值不同。
1、反距离加权法(Inverse Distance Weighted)反距离加权法是一种常用而简单的空间插值方法,IDW是基于“地理第一定律”的基本假设:即两个物体相似性随他们见的距离增大而减少。
它以插值点与样本点间的距离为权重进行加权平均,离插值点越近的样本赋予的权重越大,此种方法简单易行,直观并且效率高,在已知点分布均匀的情况下插值效果好,插值结果在用于插值数据的最大值和最小值之间,但缺点是易受极值的影响。
2、样条插值法(Spline)样条插值是使用一种数学函数,对一些限定的点值,通过控制估计方差,利用一些特征节点,用多项式拟合的方法来产生平滑的插值曲线。
这种方法适用于逐渐变化的曲面,如温度、高程、地下水位高度或污染浓度等。
该方法优点是易操作,计算量不大,缺点是难以对误差进行估计,采样点稀少时效果不好。
样条插值法又分为•张力样条插值法(Spline with Tension)•规则样条插值法(Regularized Spline)•薄板样条插值法 (Thin-Plate Splin)3、克里金法(Kriging)克里金方法最早是由法国地理学家Matheron和南非矿山工程师Krige提出的,用于矿山勘探。
这种方法认为在空间连续变化的属性是非常不规则的,用简单的平滑函数进行模拟将出现误差,用随机表面函数给予描述会比较恰当。
(克里金中包括几个因子:变化图模型、漂移类型和矿块效应)克里金方法的关键在于权重系数的确定,该方法在插值过程中根据某种优化准则函数来动态地决定变量的数值,从而使内插函数处于最佳状态。
(完整版)几种插值法比较与应用
多种插值法比较与应用(一)Lagrange 插值 1. Lagrange 插值基函数 n+1个n 次多项式∏≠=--=nkj j j kjk x xx x x l 0)( n k ,,1,0 =称为Lagrange 插值基函数 2. Lagrange 插值多项式设给定n+1个互异点))(,(k k x f x ,n k ,,1,0 =,j i x x ≠,j i ≠,满足插值条件)()(k k n x f x L =,n k ,,1,0 =的n 次多项式∏∏∏=≠==--==nk nkj j jk j k k nk k n x x x x x f x l x f x L 000))(()()()(为Lagrange 插值多项式,称∏=+-+=-=nj j x n n x x n f x L x f x E 0)1()()!1()()()()(ξ 为插值余项,其中),()(b a x x ∈=ξξ (二)Newton 插值 1.差商的定义 )(x f 关于i x 的零阶差商)(][i i x f x f = )(x f 关于i x ,j x 的一阶差商ij i j j i x x x f x f x x f --=][][],[依次类推,)(x f 关于i x ,1+i x ,……,k i x +的k 阶差商ik i k i i k i i k i i i x x x x f x x f x x x f --=+-+++++],,[],,[],,,[1112. Newton 插值多项式设给定的n+1个互异点))(,(k k x f x ,n k ,,1,0 =,j i x x ≠,j i ≠, 称满足条件)()(k k n x f x N =,n k ,,1,0 =的n 次多项式)()](,,,[)](,[][)(10100100---++-+=n n n x x x x x x x f x x x x f x f x N为Newton 插值多项式,称],[,)(],,,[)()()(010b a x x x x x x f x N x f x E nj j n n ∈-=-=∏=为插值余项。
插值方法比较范文
插值方法比较范文插值方法是数值计算中常用的一种数值逼近技术,用于通过已知数据点之间的关系来估计未知数据点的值。
在插值过程中,根据不同的插值方法,可以得到不同的近似函数,从而得到不同的结果。
常见的插值方法包括拉格朗日插值、牛顿插值、埃尔米特插值和样条插值等。
下面将对这些插值方法进行比较,包括优缺点。
首先是拉格朗日插值法,它是通过使用已知数据点的函数值来构建一个多项式,再利用这个多项式来估算未知数据点的函数值。
拉格朗日插值法的优点是简单易懂、计算简便,而且在已知数据点分布较为均匀的情况下效果较好。
然而,拉格朗日插值法的缺点是对于较多数据点的情况,构建的多项式会非常复杂,容易导致插值结果的振荡。
此外,拉格朗日插值法对于增加或减少一个数据点都需要重新计算,不够灵活。
其次是牛顿插值法,它也是通过已知数据点的函数值来构建一个多项式,但是与拉格朗日插值法不同,牛顿插值法利用差商的概念来简化多项式的计算。
牛顿插值法的优点是可以递推计算差商,避免了重复计算,因此对于增加或减少一个数据点时比较方便。
此外,牛顿插值法的插值多项式在已知数据点分布较为稀疏的情况下效果较好。
缺点是对于较多数据点的情况,插值多项式同样会变得复杂,容易导致插值结果的振荡。
再者是埃尔米特插值法,它是拉格朗日插值法的一种改进方法。
埃尔米特插值法不仅利用已知数据点的函数值,还利用已知数据点的导数值来构建插值函数,从而提高了插值的精度。
埃尔米特插值法的优点是可以通过已知数据点的导数值来更好地拟合函数的特点,从而得到更准确的插值结果。
缺点是在计算过程中需要求解一系列线性方程组,计算量较大。
最后是样条插值法,它是常用的插值方法之一、样条插值法通过将插值区间划分为若干小区间,在每个小区间上构建一个低次多项式,通过满足一定的光滑性条件来保证插值函数的平滑性。
样条插值法的优点是插值函数的平滑性较好,能够解决拉格朗日插值法和牛顿插值法的振荡问题。
缺点是在计算过程中需要求解大规模的线性方程组,计算量较大。
(完整word版)几种插值法的应用和比较
(完整word版)⼏种插值法的应⽤和⽐较插值法的应⽤与⽐较信科1302 万贤浩 132710381格朗⽇插值法在数值分析中,拉格朗⽇插值法是以法国⼗⼋世纪数学家约瑟夫·路易斯·拉格朗⽇命名的⼀种多项式插值⽅法.许多实际问题中都⽤函数来表⽰某种内在联系或规律,⽽不少函数都只能通过实验和观测来了解.如对实践中的某个物理量进⾏观测,在若⼲个不同的地⽅得到相应的观测值,拉格朗⽇插值法可以找到⼀个多项式,其恰好在各个观测的点取到观测到的值.这样的多项式称为拉格朗⽇(插值)多项式.数学上来说,拉格朗⽇插值法可以给出⼀个恰好穿过⼆维平⾯上若⼲个已知点的多项式函数.拉格朗⽇插值法最早被英国数学家爱德华·华林于1779年发现,不久后由莱昂哈德·欧拉再次发现.1795年,拉格朗⽇在其著作《师范学校数学基础教程》中发表了这个插值⽅法,从此他的名字就和这个⽅法联系在⼀起.1.1拉格朗⽇插值多项式图1已知平⾯上四个点:(?9, 5), (?4, 2), (?1, ?2), (7, 9),拉格朗⽇多项式:)(x L (⿊⾊)穿过所有点.⽽每个基本多项式:)(00x l y ,)(11x l y , )(22x l y 以及)(x l y ??各穿过对应的⼀点,并在其它的三个点的x 值上取零.对于给定的若1+n 个点),(00y x ,),(11y x ,………),(n n y x ,对应于它们的次数不超过n 的拉格朗⽇多项式L 只有⼀个.如果计⼊次数更⾼的多项式,则有⽆穷个,因为所有与L 相差))((10x x x x --λ……)(n x x -的多项式都满⾜条件.对某个多项式函数,已知有给定的1+k 个取值点:),(00y x ,……,),(k k y x ,其中i x 对应着⾃变量的位置,⽽i y 对应着函数在这个位置的取值.假设任意两个不同的i x 都互不相同,那么应⽤拉格朗⽇插值公式所得到的拉格朗⽇插值多项式为:)()(0x l y x L j kj j ∑==,其中每个)(x l j 为拉格朗⽇基本多项式(或称插值基函数),其表达式为:)()()()()()()()()(111100,0k j k j j j j j j j kj i i ij i j x x x x x x x x x x x x x x x x x x x x x l --------=--=++--≠=∏ΛΛ,拉格朗⽇基本多项式()x l i 的特点是在j x 上取值为1,在其它的点i x ,j i ≠ 上取值为0. 例:设有某个多项式函数f ,已知它在三个点上的取值为:10)4(=f , ? 25.5)5(=f , ?1)6(=f ,要求)18(f 的值.⾸先写出每个拉格朗⽇基本多项式:())64)(54()6)(5(0----=x x x l ;())65)(45()6)(4(1----=x x x l ;())56)(46()5)(4(2----=x x x l ;然后应⽤拉格朗⽇插值法,就可以得到p 的表达式(p 为函数f 的插值函数):)()6()()5()()4()(210x l f x l f x l f x p ++=)56)(46()5)(4(1)65)(45()6)(4(25.5)64)(54()6)(5(10----?+----?+----?=x x x x x x)13628(412+-=x x ,此时数值18就可以求出所需之值:11)18()18(-==p f .1.2插值多项式的存在性与唯⼀性存在性对于给定的1+k 个点:),(),,(00k k y x y x K 拉格朗⽇插值法的思路是找到⼀个在⼀点j x 取值为1,⽽在其他点取值都是0的多项式)(x l j .这样,多项式)(x l y j j 在点j x 取值为j y ,⽽在其他点取值都是0.⽽多项式()∑==kj jj x ly x L 0)(就可以满⾜∑==++++==ki j j j i y y x l y x L 0000)()(ΛΛ,在其它点取值为0的多项式容易找到,例如:)())(()(110k j j x x x x x x x x ----+-ΛΛ,它在点j x 取值为:)()()(10k j j j i x x x x x x ---+ΛΛ.由于已经假定i x 两两互不相同,因此上⾯的取值不等于0.于是,将多项式除以这个取值,就得到⼀个满⾜“在j x 取值为1,⽽在其他点取值都是0的多项式”:)()()()()()()()(111100k j k j j j j j j j i j j x x x x x x x x x x x x x x x x x x xx l --------=--=++--∏ΛΛ,这就是拉格朗⽇基本多项式. 唯⼀性次数不超过k 的拉格朗⽇多项式⾄多只有⼀个,因为对任意两个次数不超过k 的拉格朗⽇多项式:1p 和2p ,它们的差21p p -在所有1+k 个点上取值都是0,因此必然是多项式)())((10k x x x x x x ---Λ的倍数.因此,如果这个差21p p -不等于0,次数就⼀定不⼩于1+k .但是21p p -是两个次数不超过k 的多项式之差,它的次数也不超过k ,所以021=-p p 也就是说21p p =.这样就证明了唯⼀性.1.3性质拉格朗⽇插值法中⽤到的拉格朗⽇基本多项式n l l l ,,,10Λ(由某⼀组n x x x <<<Λ10 确定)可以看做是由次数不超过n 的多项式所组成的线性空间:[]X n K 的⼀组基底.⾸先,如果存在⼀组系数:n λλλ,,,10Λ使得,01100=+++=n n l l l P λλλΛ,那么,⼀⽅⾯多项式p 是满⾜n n x P x P x P λλλ===)(,,)(,)(1100Λ的拉格朗⽇插值多项式,另⼀⽅⾯p 是零多项式,所以取值永远是0.所以010====n λλλΛ,这证明了n l l l ,,,10Λ是线性⽆关的.同时它⼀共包含1+n 个多项式,恰好等于[]X n K 的维数.所以n l l l ,,,10Λ构成了[]X n K 的⼀组基底.拉格朗⽇基本多项式作为基底的好处是所有的多项式都是齐次的(都是n 次多项式).1.4优点与缺点拉格朗⽇插值法的公式结构整齐紧凑,在理论分析中⼗分⽅便,然⽽在计算中,当插值点增加或减少⼀个时,所对应的基本多项式就需要全部重新计算,于是整个公式都会变化,⾮常繁琐.这时可以⽤重⼼拉格朗⽇插值法或⽜顿插值法来代替.此外,当插值点⽐较多的时候,拉格朗⽇插值多项式的次数可能会很⾼,因此具有数值不稳定的特点,也就是说尽管在已知的⼏个点取到给定的数值,但在附近却会和“实际上”的值之间有很⼤的偏差.这类现象也被称为龙格现象,解决的办法是分段⽤较低次数的插值多项式.2 重⼼拉格朗⽇插值法重⼼拉格朗⽇插值法是拉格朗⽇插值法的⼀种改进.在拉格朗⽇插值法中,运⽤多项式)())(()(10k x x x x x x x l ---=Λ,图(2)拉格朗⽇插值法的数值稳定性:如图(2),⽤于模拟⼀个⼗分平稳的函数时,插值多项式的取值可能会突然出现⼀个⼤的偏差(图中的14⾄15中间)可以将拉格朗⽇基本多项式重新写为:∏≠=--=kji i i j jj x x x x x l x l ,0)(1)()(,定义重⼼权∏≠=-=k ji i i j j x x ,0)(1ω,上⾯的表达式可以简化为:jjj x x x l x l -=ω)()(,于是拉格朗⽇插值多项式变为:j kj jjy xx x l x L ∑=-=0)()(ω,(1)即所谓的重⼼拉格朗⽇插值公式(第⼀型)或改进拉格朗⽇插值公式.它的优点是当插值点的个数增加⼀个时,将每个j ω都除以)(1+-k j x x ,就可以得到新的重⼼权1+k ω,计算复杂度为)(n O ,⽐重新计算每个基本多项式所需要的复杂度)(2n O 降了⼀个量级.将以上的拉格朗⽇插值多项式⽤来对函数1)(≡x g 插值,可以得到:∑=-=?kj jjx x x l x g x 0)()(,ω,因为1)(≡x g 是⼀个多项式. 因此,将)(x L 除以)(x g 后可得到:∑∑==--=k j jjk j jjx x x x x L 00)(ωω,(2)这个公式被称为重⼼拉格朗⽇插值公式(第⼆型)或真正的重⼼拉格朗⽇插值公式.它继承了(1)式容易计算的特点,并且在代⼊x 值计算)(x L 的时候不必计算多项式)(x l 它的另⼀个优点是,结合切⽐雪夫节点进⾏插值的话,可以很好地模拟给定的函数,使得插值点个数趋于⽆穷时,最⼤偏差趋于零.同时,重⼼拉格朗⽇插值结合切⽐雪夫节点进⾏插值可以达到极佳的数值稳定性.第⼀型拉格朗⽇插值是向后稳定的,⽽第⼆型拉格朗⽇插值是向前稳定的,并且勒贝格常数很⼩.3.分段线性插值对于分段线性插值,我们看⼀下下⾯的情况.3.1问题的重诉已知211)(xx g +=,66≤≤-x ⽤分段线性插值法求插值,绘出插值结果图形,并观察插值误差.1.在[-6,6]中平均选取5个点作插值;2.在[-6,6]中平均选取11个点作插值;3.在[-6,6]中平均选取21个点作插值;4.在[-6,6]中平均选取41个点作插值.3.2问题的分析在数值计算中,已知数据通常是离散的,如果要得到这些离散点以外的其他点的函数值,就需要根据这些已知数据进⾏插值.⽽本题只提供了取样点和原函数)(x g .分析问题求解⽅法如下:(1)利⽤已知函数式211)(xx g +=计算取样点X 对应的函数值Y ;将Y X ,作为两个等长的已知向量,分别描述采样点和样本值.因此被插值函数是⼀个单变量函数,可利⽤⼀维插值处理该数据插值问题.⼀维插值采⽤的⽅法通常有拉格朗⽇多项式插值(本题采⽤3次多项式插值),3次样条插值法和分段线性插值.(2)分别利⽤以上插值⽅法求插值.以0.5个单位为步长划分区间[-6,6],并将每⼀点作为插值函数的取样点.再根据插值函数计算所选取样点的函数值.最后再利⽤所得函数值画出相应的函数图象,并与原函数)(x g 的图象进⾏对⽐.3.3问题的假设为了解决上述分析所提到的问题,本题可以作出如下假设:(1)假设原函数)(x g 仅作为求解取样点对应的样点值的函数关系式.⽽其他各点的函数值都是未知量,叙⽤插值函数计算.(2)为了得到理想的对⽐函数图象,假设)(x g 为已知的标准函数.可以选取0.5个单位为步长划分区间[-6,6],分别计算插值函数和标准函数)(x g 在该区间的取样点的函数值.画出函数图象进⾏对⽐.3.4分段线性插值原理给定区间[]b a ,, 将其分割成b x x x a n =<<<=Λ10,已知函数)(x f y =在这些插值结点的函数值为),1,0)((n k x f y k k Λ==;求⼀个分段函数)(x I k ,使其满⾜:(1) k k h y x I =)(,),1,0(n k Λ=;(2) 在每个区间[]1,+k k x x 上, )(x I h 是个⼀次函数.易知,)(x I h 是个折线函数, 在每个区间[]1,+k k x x 上,),1,0(n k Λ=1111)(++++--+--=k kk kk k k k k h y x x x x y x x x x x I ,于是, )(x I h 在[]b a ,上是连续的,但其⼀阶导数是不连续的. 于是即可得到如下分段线性插值函数:)()(0x l y x I ni i i n ∑==,其中=≤≤--=≤≤--=+++---.,0;,;0,111111其他时舍去时,且当时舍去时,且当n i x x x x x x x i x x x xx x x l i i i i i i i i ii i3.5问题的求解在MATLAB 中实现分段线性插值,最近点插值,3次多项式插值,3次样条插值的命令为interp 1,其调⽤格式为: Y 1=interp 1(X ,Y ,X 1,’method ’)函数根据X ,Y 的值,计算函数在X 1处的值.X ,Y 是两个等长的已知向量,分别描述采样点和样本值,X 1是⼀个向量或标量,描述欲插值点,Y 1是⼀个与X 1等长的插值结果.method 是插值⽅法,包括:linear :分段线性插值.它是把与插值点靠近的两个数据点⽤直线连接,然后在直线让选取对应插值点的数.nearest :近点插值法.根据已知两点间的插值点与这两点间的位置远近插值.当插值点距离前点远时,取前点的值,否则取后点的值.cubic :3次多项式插值.根据已知数据求出⼀个3次多项式,然后根据多项式进⾏插值. spline :3次样条插值.在每个分段(⼦区间)内构造⼀个3次多项式,使其插值函数除满⾜插值条件外,还要求个节点处具有光滑条件.再根据已知数据求出样条函数后,按照样条函数插值.运⽤Matlab ⼯具软件编写代码,并分别画出图形如下: (⼀)在[-6,6]中平均选取5个点作插值:-10-5051000.20.40.60.81分段线性插值g(x)y1-10-50510-0.500.513次样条插值g(x)y2-10-5051000.20.40.60.81最近点插值g(x)y3-10-5051000.20.40.60.813次多项式插值g(x)y4(⼆)在[-6,6]中平均选取11个点作插值:-10-5051000.20.40.60.81-10-5051000.20.40.60.81-10-5051000.20.40.60.81最近点插值-10-5051000.20.40.60.813次多项式插值g(x )y1g(x )y2g(x )y3g(x )y4(三)在[-6,6]中平均选取21个点作插值:-10-5051000.20.40.60.81分段线性插值-10-551000.20.40.60.813次样条插值-10-551000.20.40.60.81最近点插值-10-551000.20.40.60.813次多项式插值g(x )y1g(x )y2g(x )y3g(x )y4(四)在[-6,6]中平均选取41个点作插值-10-5051000.20.40.60.81g(x )y1-10-5051000.20.40.60.81g(x )y2-10-5051000.20.40.60.81最近点插值g(x )y3-10-5051000.20.40.60.813次多项式插值g(x )y43.6 分段插值⽅法的优劣性分析从以上对⽐函数图象可以看出,分段线性插值其总体光滑程度不够.在数学上,光滑程度的定量描述是函数(曲线) 的k 阶导数存在且连续,则称该曲线具有k 阶光滑性.⼀般情况下,阶数越⾼光滑程度越好.分段线性插值具有零阶光滑性,也就是不光滑.3次样条插值就是较低次数的多项式⽽达到较⾼阶光滑性的⽅法.总体上分段线性插值具有以下特点:优点: 1.分段线性插值在计算上具有简洁⽅便的特点.2.分段线性插值与3次多项式插值函数在每个⼩区间上相对于原函数都有很强的收敛性,(舍⼊误差影响不⼤),数值稳定性好且容易在计算机上编程实现等优点缺点: 分段线性插值在节点处具有不光滑性的缺点(不能保证节点处插值函数的导数连续),从⽽不能满⾜某些⼯程技术上的要求.⽽3次样条插值却具有在节点处光滑的特点.。
插值方法比较
1. 克里金法(Kriging)克里金法是通过一组具有z 值的分散点生成估计表面的高级地统计过程。
与其他插值方法不同,选择用于生成输出表面的最佳估算方法之前应对由z 值表示的现象的空间行为进行全面研究。
克里金插值与IDW插值的区别在于权重的选择,IDW仅仅将距离的倒数作为权重,而克里金考虑到了空间相关性的问题。
它首先将每两个点进行配对,这样就能产生一个自变量为两点之间距离的函数。
对于这种方法,原始的输入点可能会发生变化.在数据点多时,结果更加可靠。
该方法通常用在土壤科学和地质中。
2. 反距离权重法(Inverse Distance Weighted,IDW)反距离权重法(反距离权重法)工具所使用的插值方法可通过对各个待处理像元邻域中的样本数据点取平均值来估计像元值。
点到要估计的像元的中心越近,则其在平均过程中的影响或权重越大.此方法假定所映射的变量因受到与其采样位置间的距离的影响而减小。
例如,为分析零售网点而对购电消费者的表面进行插值处理时,在较远位置购电影响较小,这是因为人们更倾向于在家附近购物.反距离权重法主要依赖于反距离的幂值。
幂参数可基于距输出点的距离来控制已知点对内插值的影响。
幂参数是一个正实数,默认值为2。
通过定义更高的幂值,可进一步强调最近点.因此,邻近数据将受到最大影响,表面会变得更加详细(更不平滑)。
随着幂数的增大,内插值将逐渐接近最近采样点的值。
指定较小的幂值将对距离较远的周围点产生更大影响,从而导致更加平滑的表面。
由于反距离权重公式与任何实际物理过程都不关联,因此无法确定特定幂值是否过大。
作为常规准则,认为值为30 的幂是超大幂,因此不建议使用.此外还需牢记一点,如果距离或幂值较大,则可能生成错误结果。
3。
含障碍的样条函数(Spline with Barriers)含障碍的样条函数工具使用的方法类似于样条函数法工具中使用的技术,其主要差异是此工具兼顾在输入障碍和输入点数据中编码的不连续性.含障碍的样条函数工具应用了最小曲率方法,其实现方式为通过单向多格网技术,以初始的粗糙格网(在本例中是已按输入数据的平均间距进行初始化的格网)为起点在一系列精细格网间移动,直至目标行和目标列的间距足以使表面曲率接近最小值为止。
各种插值法的对比研究
各种插值法的对比研究目录1.引言 (1)2.插值法的历史背景 (1)3.五种插值法的基本思想 (2)3.1拉格朗日插值 (2)3.2牛顿插值 (3)3.3埃尔米特插值 (3)3.4分段线性插值 (4)3.5三次样条插值 (5)4.五种插值法的对比研究 (5)4.1拉格朗日插值与牛顿插值的比较 (5)4.2多项式插值法与埃尔米特插值的比较 (6)4.3多项式插值法与分段线性插值的比较 (6)4.4 分段线性插值与样条插值的比较 (6)5.插值法在实际生活中的应用 (6)6.结束语 (6)致谢 (7)参考文献 (7)各种插值法的对比研究摘要:插值法是一种古老的数学方法,也是数值计算中的一个算法.插值法不仅是微分方程、数值积分、数值微分等计算方法的基础,而且在医学、通讯、精密机械加工等领域都涉及到了它.本文首先介绍了插值的背景以及常用的五种插值法的基本思想,然后通过拉格朗日插值与牛顿插值、多项式插值与埃尔米特插值、多项式插值与分段线性插值、分段线性插值和样条函数插值给出相应的算法与MATLAB 程序,根据已学的知识对五种插值方法与被插函数的逼近程度进行对比研究,找出不同方法间的联系与区别,分析出它们的优缺点,最后在此基础上进一步研究插值法的实际应用,以提高插值法的实用性,从而能让我们在以后的应用中看到一个问题,就知道哪种方法更适合于它,然后大大地快速的提高效率.关键词:多项式插值;样条函数插值;MATLAB 程序;应用1.引言在很多解题以及应用生活中,常常需要用数量关系来反映问题,但是有时没有办法通过数学语言准确地表达出来.已知有些变量之间存在一种函数关系,但没法用函数的表达式表示出来.比如,)(x f 在某个区间上[]b a ,是存在某种数量关系的,但是根据观察和测量或者实验只能得到有限个函数值,我们可以利用这几点来确定函数表达式.或者有一些函数表达式是已经知道的,但是它们的计算是十分繁琐复杂的,不容易发现它的本质,而且它的使用方法也比较局限.函数是表达数与数之间的联系,为了能很好地用数学语言表达出函数的关系,一般通过给定的数据构造一个函数)(x P ,这样既能反映函数)(x f 的特点,又方便计算,用)(x P 近似)(x f .通常选一个简单的函数)(x P ,而且=)(i x P )(i x f ()n i ,...,2,1,0=成立,这个时候的)(x P ,从要表达的函数规律来看,就是我们需要的插值函数[1].所用方法就是插值法,由于所选用的)(x P 的多样化,得到不同的插值法.2.插值法的历史背景插值法的历史源远流长,在很早的时候就涉及到了它.它是数值计算中一个古老的分支,它来源于生产实践.因为牛顿力学的物理理论知识在一千年前没有出现,所以我们的祖先没有办法用很准确的数学解析式来表达日月五星的运行规律.后来,古代的人们有着聪慧的头脑,想出了插值方法,然后发现了日月五星的运行规律.例如唐朝数学家张遂提出了插值法的概念以及不等距节点的插值,并将其应用在天文历法观测中.现代工业革命以后欧洲著名的数学家拉格朗日给出了拉格朗日插值法的概念以及应用.微积分产生后,插值法的基本理论和结果进一步得到改善.3.五种插值法的基本思想如果一个函数)(x f y =在区间[]b a ,上有定义,且已知在点b x x x a n ≤<<<≤...10上的值0y ,1y ,2y , ,n y ,若存在一简单函数)(x P ,使得成立,)(x P 为插值函数,点0x ,1x ,2x , ,n x 称为插值节点,插值节点的区间[]b a ,称为插值区间,求插值函数)(x P 的方法称为插值法.若)(x P 的多项式次数不超过n ,即有)(x P n n x a x a x a a ++++= (2210)3.1拉格朗日插值拉格朗日插值是n 次多项式插值,它是用构造插值基函数的办法来解决n 次多项式插值的问题.拉格朗日插值多项式可以表示为=)(x L n ∑=n k k k x ly 0)(,)(x l k 为插值基函数,表达式为=)(x l k ))...()()...(())...()()...((110110n k k k k k k n k k x x x x x x x x x x x x x x x x --------+-+-,n k ,,1,0 = 截断误差为)()()(x L x f x R n n -=,也是插值余项.关于插值余项,估计有以下定理[2]:设)(x f n 在[]b a ,上连续,)(1x f n +在()b a ,内存在,节点b x x x x a n≤<<<<≤ 210,)(x L n 是满足条件(1.4)的插值多项式,则对任何[]b a x ,∈,插值余项)()!1()()()()(1)1(x n f x L x f x R n n n n +++=-=ωξ 余项表达式的应用有它的局限性,一般只适合于)(x f 高阶导数存在的情况下.若设1)1()(max ++≤≤=n n b x a M x f ,则误差为)()!1()(11x w n M x R n n n +++≤.3.2牛顿插值牛顿插值的基本思想是对n 次插值多项式)(x P n 进行逐次生成,然后用插值条件求出)(x P n 系数[3].因此,提出了均差(即差商)的概念.设 称有函数)(x f ,1x ,2x ,3x , ,n x 是一系列不相等的点,则[]=k x x f ,000)()(x x x f x f k k --为函数)(x f 关于点0x ,2x 的一阶均差; []=k x x x f ,,10[]1100],[,x x x x f x x f k k -- 称为)(x f 的二阶均差; []=k x x x f ,...,,10[][]1110210,...,,,,...,,-----k k k k k x x x x x f x x x x f 为)(x f )的k 阶均差. 我们先求出1次多项式,2次多项式,然后类推出n 次多项式,构造出n 次代数插值多项式的另外一种表达形式—牛顿插值多项式=)(x P n +)(0x f []10,x x f +-)(0x x []210,,x x x f )(0x x -+-)(1x x … []n x x x x f ,...,,,210+)(0x x -))...((11---n x x x x ,=)(x R n []n x x x x x f ,...,,,,210)(0x x -))...((1n x x x x --, =)(x f +)(x P n )(x R n . )(x P n 为牛顿插值多项式,)(x R n 为余项.3.3埃尔米特插值有的时候解决函数)(x f 的问题,不仅要在某些点上知道函数值,而且已知在一些点上的导数值.那么这时插值函数)(x P ,它在某些点处的导数值和函数值与原表达式的值相等的.那么我们从几何这个方面来思考这个问题,求出插值多项式的曲线,不但通过已知点组,而且在这些点处与原曲线"相切"[4].(一)、泰勒插值定义 [][])(,lim ,0'0000x f x x f x x f x x ==→为一阶重节点均差;[][])(21,,lim ,,0''2100000201x f x x x f x x x f x x x x ==→→为二阶重节点均差; 则n 阶重节点均差为[][])(!1,,,lim ,,,0100000x f n x x x f x x x f n n x x i ==→ . 当0x x i →时,牛顿插值公式的极限为=)(x P n +)(0x f )(0'x f +-)(0x x ...!n x f n )(0)(nx x )(0-. 称为泰勒插值多项式.它满足条件=)(0)(x P k n )(0)(x f k ,),...,2,1,0(n k =(二)、两点三次埃尔米特插值若)(x f 在k x ,1+k x 的函数值为k y ,1+k y ,k k m x f =)(',11')(++=k k m x f ,我们可以构造出一个次数不超过3的多项式,)(3x H 为插值函数.设=)(3x H +k k y x a )(+++11)(k k y x a +k k m x )(β11)(++k k m x β,k a ,1+k a ,k β,1+k β为插值基函数.可得结果 =)(3x H 2111))(21(+++----+k k k k k k x x x x x x x x k y 2111))(21(kk k k k k x x x x x x x x ----+++++++1k y )(k x x -+--++k k k k m x x x x 211)(121)(++--k k k k m x x x x , =)(3x R 2124)())((41+--k k x x x x f ξ!,),(1+∈k k x x ξ. 3.4分段线性插值分段线性插值:一般描述,如给定[]上b a ,1+n 个节点b x x x x a n =<<<<= 210和相应的函数值)(i f f i =),...,2,1,0(n i =,记k k k x x h -=+1,k kh h max =. 构造)(x I h 满足:(1)[]b a C x I h ,)(∈;(2)k k h f x I =)(),,2,1,0(n k =;(3))(x I h 在每个小区间[]1,+k k x x 上是线性函数.由以上条件直接可得)(x I h 在小区间[]1,+k k x x 上的表达式为=)(x I h +--++k k k k f x x x x 1111++--k kk k f x x x x , )1,,2,1,0(-=n k 误差估计 -)(x f =)(x I h ))((!2)(1)(''+--k k k x x x x x f ξ))((max 2121+≤≤--≤+k k x x x x x x x M k k . 当∞→h 时,0)()()(→-=x I x f x R h ,)(x I h 在[]b a ,上一致收敛到)(x f .3.5三次样条插值三次样条插值(Spline 插值)的具体要求是:函数[]b a C x S ,)(2∈,并在每个小区间[]1,+j j x x 上是一个三次多项式,其中b x x x x a n =<<<<=...210是给定节点,如果对给定的节点函数值有j y )(j x f =),...,2,1,0(n j =,并且=)(j x S j y ,),...,2,1,0(n j =成立,这时我们就把)(x S 称为三次样条插值函数.4.五种插值法的对比研究通过讨论插值法的相关内容,可以让我们更好的了解插值法.现在我们先从插值多项式的形式上、用途上、计算方法上、精确度上等进行对比研究,比较各自优缺点,然后再通过实例验证之.4.1拉格朗日插值与牛顿插值的比较(一)拉格朗日插值多项式步骤衔接紧密,条理清晰,在理论中十分重要.但是计算比较复杂,因为每添加一个点,所以的公式都要重新计算,这样计算步骤较多会导致计算量变大,反而会导致出现误差与原来的目的背道而驰.(二)牛顿插值多项式的计算量小,步骤简洁.当添加一个节点时,它仍然可以使用,即具有“承袭性”也叫“继承”,所以此类方法应用灵活.但是我们根据正常的想象和观察插值余项,我们一般局部地总是认为当原函数给出的点是越来越多时,我们借助的辅助函数的次数越高,它就和原函数越来越近,误差越来越小.然而事实并非如此,当遇到插值节点等距分布的情况时,只要求函数点值相等不能够充分反映插值函数的性质[5].4.2多项式插值法与埃尔米特插值的比较多项式插值要求在插值节点上函数值相等,计算简单,条件不怎么苛刻.但是如果有的时候一方面要在节点处函数值相等,另一方面要导数值相等,这时多项式插值否则不满足此类情况.埃尔米特插值不仅算法简单而且它具有强烈收敛性.但是它的光滑度不高,而且它的使用条件,也有局限性.在一些特定的限制条件下,有时函数的导数值在这点是完全没有必要知道的.因此,知道节点处的导数的插值函数成为能否运用Hermite插值的一个重要因素[6].4.3多项式插值法与分段线性插值的比较多项式插计算简单,比较方便,但是节点增加的同时就会出现龙格现象,图形波动较大[7].分段线性插值能够克服龙格现象,有收敛性,但是在区间内有转折点,光滑性不好.4.4 分段线性插值与样条插值的比较样条插值的插值函数算法稳定,而且插值函数光滑,收敛性强,误差小.但是它不能局部确定,常常需要解线性方程组.5.插值法在实际生活中的应用插值法是数值逼近中一个非常重要的部分,其次它在实际生活中起着不容小觑的作用,比如天文学以及数学.6.结束语插值法在解决实际问题中有很大的应用.插值方法是各种各样的,它包含拉格朗日插值法、牛顿插值法、Hermite插值法、分段线性插值法以及三次样条插值法等.我们不论使用哪个插值法,它的原理都是一样的.本课题首先介绍了插值的背景以及各类方法的基本思想;然后通过解题、画图、一道题用几种不同方法来解答,让我们哪种方法适合解答哪种类型的题,再然后进行对比,探讨出它们的优缺点,最后文章举个例子来说明插值法有很大的作用,它和我们是相连的,同时利用MATLAB给出了模拟图,通过这种数与形的结合,更好地了解各类插值法的应用于特征.致谢本论文在苏晓琴老师的悉心指导下完成的,同样也是我第一次写这样的文章。
各种插值法的对比研究报告
各种插值法的对比研究报告各种插值法的对比研究目录_Toc4852335651.引言 (2)2.插值法的历史背景 (2)3.五种插值法的基本思想 (2)3.1拉格朗日插值 (2)3.2牛顿插值 (2)3.3埃尔米特插值 (2)3.4分段线性插值 (2)3.5三次样条插值 (2)4.五种插值法的对比研究 (2)4.1拉格朗日插值与牛顿插值的比较 (2)4.2多项式插值法与埃尔米特插值的比较 (2)4.3多项式插值法与分段线性插值的比较 (2)4.4 分段线性插值与样条插值的比较 (2)5.插值法在实际生活中的应用 (2)6.结束语 (2)致谢 (2)参考文献 (2)各种插值法的对比研究摘要:插值法是一种古老的数学方法,也是数值计算中的一个算法.插值法不仅是微分方程、数值积分、数值微分等计算方法的基础,而且在医学、通讯、精密机械加工等领域都涉及到了它.本文首先介绍了插值的背景以及常用的五种插值法的基本思想,然后通过拉格朗日插值与牛顿插值、多项式插值与埃尔米特插值、多项式插值与分段线性插值、分段线性插值和样条函数插值给出相应的算法与MATLAB 程序,根据已学的知识对五种插值方法与被插函数的逼近程度进行对比研究,找出不同方法间的联系与区别,分析出它们的优缺点,最后在此基础上进一步研究插值法的实际应用,以提高插值法的实用性,从而能让我们在以后的应用中看到一个问题,就知道哪种方法更适合于它,然后大大地快速的提高效率. 关键词:多项式插值;样条函数插值;MATLAB 程序;应用1.引言在很多解题以及应用生活中,常常需要用数量关系来反映问题,但是有时没有办法通过数学语言准确地表达出来.已知有些变量之间存在一种函数关系,但没法用函数的表达式表示出来.比如,)(x f 在某个区间上[]b a ,是存在某种数量关系的,但是根据观察和测量或者实验只能得到有限个函数值,我们可以利用这几点来确定函数表达式.或者有一些函数表达式是已经知道的,但是它们的计算是十分繁琐复杂的,不容易发现它的本质,而且它的使用方法也比较局限.函数是表达数与数之间的联系,为了能很好地用数学语言表达出函数的关系,一般通过给定的数据构造一个函数)(x P ,这样既能反映函数)(x f 的特点,又方便计算,用)(x P 近似)(x f .通常选一个简单的函数)(x P ,而且=)(i x P )(i x f ()n i ,...,2,1,0=成立,这个时候的)(x P ,从要表达的函数规律来看,就是我们需要的插值函数[1].所用方法就是插值法,由于所选用的)(x P 的多样化,得到不同的插值法.2.插值法的历史背景插值法的历史源远流长,在很早的时候就涉及到了它.它是数值计算中一个古老的分支,它来源于生产实践.因为牛顿力学的物理理论知识在一千年前没有出现,所以我们的祖先没有办法用很准确的数学解析式来表达日月五星的运行规律.后来,古代的人们有着聪慧的头脑,想出了插值方法,然后发现了日月五星的运行规律.例如唐朝数学家张遂提出了插值法的概念以及不等距节点的插值,并将其应用在天文历法观测中.现代工业革命以后欧洲著名的数学家拉格朗日给出了拉格朗日插值法的概念以及应用.微积分产生后,插值法的基本理论和结果进一步得到改善.3.五种插值法的基本思想如果一个函数)(x f y =在区间[]b a ,上有定义,且已知在点b x x x an ≤<<<≤...10上的值0y ,1y ,2y , ,n y ,若存在一简单函数)(x P ,使得成立,)(x P 为插值函数,点0x ,1x ,2x , ,n x 称为插值节点,插值节点的区间[]b a ,称为插值区间,求插值函数)(x P 的方法称为插值法.若)(x P 的多项式次数不超过n ,即有 )(x P n n x a x a x a a ++++= (2210)3.1拉格朗日插值拉格朗日插值是n 次多项式插值,它是用构造插值基函数的办法来解决n 次多项式插值的问题.拉格朗日插值多项式可以表示为=)(x L n ∑=nk kk x ly 0)(,)(x l k 为插值基函数,表达式为=)(x l k ))...()()...(())...()()...((110110n k k k k k k n k k x x x x x x x x x x x x x x x x --------+-+-,n k ,,1,0 =截断误差为)()()(x L x f x R n n -=,也是插值余项.关于插值余项,估计有以下定理[2]: 设)(x f n 在[]b a ,上连续,)(1x f n +在()b a ,内存在,节点b x x x x a n ≤<<<<≤ 210,)(x L n 是满足条件(1.4)的插值多项式,则对任何[]b a x ,∈,插值余项)()!1()()()()(1)1(x n f x L x f x R n n n n +++=-=ωξ 余项表达式的应用有它的局限性,一般只适合于)(x f 高阶导数存在的情况下.若设1)1()(max ++≤≤=n n bx a M x f ,则误差为)()!1()(11x w n M x R n n n +++≤.3.2牛顿插值牛顿插值的基本思想是对n 次插值多项式)(x P n 进行逐次生成,然后用插值条件求出)(x P n 系数[3].因此,提出了均差(即差商)的概念.设称有函数)(x f ,1x ,2x ,3x , ,n x 是一系列不相等的点,则 []=k x x f ,000)()(x x x f x f k k --为函数)(x f 关于点0x ,2x 的一阶均差;[]=k x x x f ,,10[]1100],[,x x x x f x x f k k -- 称为)(x f 的二阶均差;[]=k x x x f ,...,,10[][]1110210,...,,,,...,,-----k k k k k x x x x x f x x x x f 为)(x f )的k 阶均差.我们先求出1次多项式,2次多项式,然后类推出n 次多项式,构造出n 次代数插值多项式的另外一种表达形式—牛顿插值多项式=)(x P n +)(0x f []10,x x f +-)(0x x []210,,x x x f )(0x x -+-)(1x x …[]n x x x x f ,...,,,210+)(0x x -))...((11---n x x x x ,=)(x R n[]n x x x x x f ,...,,,,210)(0x x -))...((1n x x x x --,=)(x f +)(x P n )(x R n .)(x P n 为牛顿插值多项式,)(x R n 为余项.3.3埃尔米特插值有的时候解决函数)(x f 的问题,不仅要在某些点上知道函数值,而且已知在一些点上的导数值.那么这时插值函数)(x P ,它在某些点处的导数值和函数值与原表达式的值相等的.那么我们从几何这个方面来思考这个问题,求出插值多项式的曲线,不但通过已知点组,而且在这些点处与原曲线"相切"[4]. (一)、泰勒插值定义 [][])(,lim ,0'0000x f x x f x x f x x ==→为一阶重节点均差;[][])(21,,lim ,,0''2100000201x f x x x f x x x f x x x x ==→→为二阶重节点均差; 则n 阶重节点均差为[][])(!1,,,lim ,,,0100000x f n x x x f x x x f nn x x i ==→ . 当0x x i →时,牛顿插值公式的极限为=)(x P n +)(0x f )(0'x f +-)(0x x ...!n x f n )(0)(nx x )(0-.称为泰勒插值多项式. 它满足条件=)(0)(x P k n )(0)(x f k ,),...,2,1,0(n k =(二)、两点三次埃尔米特插值若)(x f 在k x ,1+k x 的函数值为k y ,1+k y ,k k m x f =)(',11')(++=k k m x f ,我们可以构造出一个次数不超过3的多项式,)(3x H 为插值函数.设=)(3x H +k k y x a )(+++11)(k k y x a +k k m x )(β11)(++k k m x β,k a ,1+k a ,k β,1+k β为插值基函数.可得结果=)(3x H 2111))(21(+++----+k k k k k k x x x x x x x x k y 2111))(21(kk k k k k x x x x x x x x ----+++++++1k y )(k x x -+--++k k k k m x x x x 211)(121)(++--k kk k m x x x x,=)(3x R 2124)())((41+--k k x x x x f ξ!,),(1+∈k k x x ξ.3.4分段线性插值分段线性插值:一般描述,如给定[]上b a ,1+n 个节点b x x x x a n =<<<<= 210和相应的函数值)(i f f i =),...,2,1,0(n i =,记k k k x x h -=+1,k kh h max =.构造)(x I h 满足: (1)[]b a C x I h ,)(∈;(2)k k h f x I =)(),,2,1,0(n k =;(3))(x I h 在每个小区间[]1,+k k x x 上是线性函数.由以上条件直接可得)(x I h 在小区间[]1,+k k x x 上的表达式为=)(x I h +--++k k k k f x x x x 1111++--k kk kf x x x x , )1,,2,1,0(-=n k误差估计-)(x f =)(x I h ))((!2)(1)(''+--k k k x x x x x f ξ))((max 2121+≤≤--≤+k k x x x x x x x M k k . 当∞→h 时,0)()()(→-=x I x f x R h ,)(x Ih 在[]b a ,上一致收敛到)(x f .3.5三次样条插值三次样条插值(Spline 插值)的具体要求是:函数[]b a C x S ,)(2∈,并在每个小区间[]1,+j j x x 上是一个三次多项式,其中b x x x x a n =<<<<=...210是给定节点,如果对给定的节点函数值有j y )(j x f =),...,2,1,0(n j =,并且=)(j x S j y ,),...,2,1,0(n j =成立,这时我们就把)(x S 称为三次样条插值函数.4.五种插值法的对比研究通过讨论插值法的相关内容,可以让我们更好的了解插值法.现在我们先从插值多项式的形式上、用途上、计算方法上、精确度上等进行对比研究,比较各自优缺点,然后再通过实例验证之.4.1拉格朗日插值与牛顿插值的比较(一)拉格朗日插值多项式步骤衔接紧密,条理清晰,在理论中十分重要.但是计算比较复杂,。
五次PH曲线插值及其外形优化方法的研究的开题报告
五次PH曲线插值及其外形优化方法的研究的开题报告一、研究背景及意义随着科技的进步和工业的发展,PH值作为一种重要的物理量,已经成为了许多行业和领域中必不可少的参数。
在水处理、环境保护、化工生产等领域中,PH值的测量和控制对于保障产品质量和生态环境的安全至关重要。
因此,如何高效准确地获取PH值信息,成为了目前研究的重点之一。
而在实际测量中,许多PH值传感器只能测量离散数据点,因此需要通过插值技术来推断出PH值的完整曲线。
目前已有许多插值方法,如拉格朗日插值、牛顿插值、三次样条插值等,但这些方法都存在一定的局限性,如曲线过度拟合、过度平滑等问题。
因此,本文将从五次PH曲线插值及其外形优化入手,研究如何提高插值效果,以期为实际应用提供一定的参考和帮助。
二、研究内容与方法(一)研究内容:1. 建立五次PH曲线插值模型;2. 分析五次PH曲线插值中的误差来源,制定相应的优化措施;3. 设计五次PH曲线的外形优化方法,提高曲线光滑度和拟合精度;4. 验证所提出的新方法的实际效果,并与其他常用插值方法进行比较。
(二)研究方法:1. 理论分析法:对五次PH曲线插值理论进行深入研究,并分析其误差来源;2. 算法设计法:根据误差分析结果,设计五次PH曲线插值和外形优化的算法;3. 数值仿真法:利用MATLAB等数学仿真工具,对设计的算法进行仿真测试和效果验证。
三、预期研究结果通过本研究,预期能够:1. 建立五次PH曲线插值模型,提高插值精度和稳定性;2. 分析五次PH曲线插值中的误差来源,提出相应的优化措施;3. 设计五次PH曲线的外形优化方法,提高曲线光滑度和拟合精度;4. 验证所提出的新方法的实际效果,并与其他常用插值方法进行比较,为实际应用提供参考和帮助。
四、研究难点与挑战1. 插值算法的高精度和稳定性设计;2. 五次PH曲线外形优化的精细控制;3. 仿真测试和实际应用效果验证的可靠性和准确性。
五、研究计划与进度(一)研究计划:1. 文献综述:对PH值测量和插值方法进行系统综述和分析;2. 理论分析:建立五次PH曲线插值模型,并分析其误差来源;3. 算法设计:制定五次PH曲线插值和外形优化的算法,提高插值效果;4. 仿真测试:利用MATLAB等仿真工具,对算法进行仿真测试和效果验证;5. 实际应用:将所提出的算法应用到实际PH值测量中,进行效果验证和比较。
各种插值方法比较
各种插值方法比较插值是一种常见的数据处理技术,用于估计缺失数据或填充数据空缺。
在数据分析、统计学和机器学习等领域中,插值可以帮助我们处理缺失数据或者对连续数据进行平滑处理。
常见的插值方法包括线性插值、多项式插值、样条插值、Kriging插值等。
1.线性插值:线性插值是一种简单但广泛使用的插值方法,基于原始数据中的两个点之间的直线来估计缺失点的值。
这种方法适用于数据分布较为均匀的情况,但对于非线性的数据,可能会导致估计值与实际值之间的较大误差。
2.多项式插值:多项式插值是通过使用多项式函数来拟合原始数据,从而估计缺失点的值。
多项式插值方法具有较高的灵活性,可以在不同的数据点之间产生平滑曲线,但在数据点较多时,可能会导致过拟合问题。
3.样条插值:样条插值是一种常见的插值方法,它通过使用分段多项式函数来拟合数据,从而在数据点之间产生平滑曲线。
样条插值方法克服了多项式插值的一些问题,同时在数据点较少的情况下也能有效地估计缺失点的值。
4. Kriging插值:Kriging插值是一种基于统计学和地理学原理的插值方法,它考虑了数据点之间的空间关系,并使用半变异函数来估计缺失点的值。
Kriging插值方法适用于具有空间相关性的数据,例如地理信息系统中的地形数据或环境监测数据。
除了上述常见的插值方法之外,还有一些其他的插值方法,如逆距离加权插值、最近邻插值、高阶插值等。
5.逆距离加权插值:逆距离加权插值方法假设距离越近的数据点对估计值的贡献越大,它根据数据点之间的距离来计算权重,并将其与对应数据点的值进行加权平均来估计缺失点的值。
逆距离加权插值方法适用于数据点密集、分布不均匀的情况,但对于噪声较大或异常值较多的数据,可能会导致估计值的不准确。
6.最近邻插值:最近邻插值方法简单和直观,它假设与缺失点距离最近的已知点的值与缺失点的值相同。
这种方法适用于数据点之间的空间相关性较强,但在数据点分布不均匀或者缺失点周围的数据点值变化较大的情况下,可能会导致估计值的不准确。
几种插值法的对比研究1
目录一、引言………………………………………………………………………1二、插值问题的提出、发展史及简单应用……………………1(一)插值问题的提出 (1)(二)插值法的发展史 (1)(三)插值法的简单应用 (1)三、几种插值法的定义…………………………………………………2(一)Lagrange插值 (2)1. Lagrange插值基函数 (2)2. Lagrange插值多项式 (2)(二) Newton插值 (2)1. 差商的定义 (2)2. Newton插值多项式 (3)(三)Hermite插值 (3)(四)分段插值 (3)(五)样条插值 (4)四、通过举例进行分析比较 (4)(一)例题 (4)(二)分析结果 (8)五、几种插值法在MATLAB的实现 (8)1分段插值的MATLAB实现 (9)2 Hermite插值的MATLAB实现 (9)3 拉格朗日插值的MATLAB实现 (11)4牛顿插值法的MATLAB 实现 (12)六、结束语 (13)参考文献 (13)一、引言近半世纪由于计算机的广泛使用和造船、航空、精密机械加工等世纪问题的需要,使插值法在理论上和实践上得到进一步发展,尤其是20世纪40年代后期发展起来的样条插值等,更获得广泛应用,称为计算机图形学的基础.二、插值问题的提出、发展史及简单应用(一)插值问题的提出许多实际问题都用函数来表示某种内在规律的数量关系,其中相当一部分函数是通过实验或观测得到的.虽然()x f 在某个区间[]b a ,上是存在的,有的还是连续的,但却只能给出[]b a ,上一系列点i x 的函数值()() 2,1,0==i x f y i i ,这只是一张函数表.有的函数虽有解析表达式,但由于计算复杂,使用不方便,通常也造一个函数表,如大家熟悉的三角函数表、对数表、平方根和立方根表.为了研究函数的变化规律,往往需要求出不在表中的函数值.因此,我们希望根据给定的函数表做一个既能反映函数()x f 的特性,又便于计算简单函数()x p ,用()x p 近似()x f .通常选一类较简单的函数(如代数多项式或分段代数多项式)作为()x f ,并使()()i i x f x p =对() 2,1,0=i 成立.这样确定的()x p 就是我们希望得到的插值函数.(二)插值法的发展史插值法是一种古老的数学方法,它来自生产实践.早在一千多年前的隋唐时期制定历法时就应用了二次插值,隋唐刘焯将等距点二次插值应用于天文计算.但插值理论都是在17世纪微积分产生以后才逐渐发展的,牛顿的等距节点插值公式及均差插值公式都是当时的重要成果.(三)插值法的简单应用在现代机械工业中用计算机程序控制加工机械零件,根据设计可给出零件外形曲线的某些型值点()()n i y x i i ,2,1,0==,加工时为控制每步走刀方向及步数,就要算出零件外形曲线其他店的函数值,才能加工出外表光滑的零件.三、几种插值法的定义设函数()x f y =在区间[]b a ,上有定义,且已知在点b x x x a n ≤<<<≤ 10上的值,,,10n y y y 若存在一简单函数()x p ,使()n i y x p i i ,1,0,==成立,就称()x p 为()x f 的插值函数,点n x x x ,,,10 称为插值节点.(一)Lagrange 插值1. Lagrange 插值基函数 1+n 个n 次多项式()n k x x x x x l jk j nj k ,,1,0,0 =--==∏=称为Lagrange 插值基函数.2. Lagrange 插值多项式设给定1+n 个互异点()(),,,,,2,1,0,,j i x x n k x f x j i k k ≠≠= 满足插值条件()()n k x f x L k k n ,2,1,0,==的n 次多项式()()()()⎪⎪⎭⎫⎝⎛--∏∏=∏====j k j n j k nk n k nk n x x x x x f x l x f x L 000 为Lagrange 插值多项式.设()x f n 在[]b a ,上连续,()x f n 1+在[]b a ,内存在,节点b x x x a n ≤<<<≤ 10, 称()()()()()()j n j x n n x x x n f x L x f E -∏+=-=-+01!1ξ为插值余项,其中()()b a x x ,∈=ξξ(二)Newton 插值1. 差商的定义()x f 关于i x 的零阶差商[]()i i x f x f = ()x f 关于j i x x ,的一阶差商 [][][]ij i j j i x x x f x f x x f --=,以此类推,()x f 关于k i i i x x x ++ ,,1的k 阶差商 [][][]ik i k i i k i i k i i i x x x x f x x f x x x f --=+-+++++111,,,,2. Newton 插值多项式设给定的1+n 个互异点()(),,,,1,0,j i x x n k x f x j i k k ≠≠== 得()()[]()[][][]()[][][]().,,,,,,,,,,,,,,,010101110100n n n n x x x x x f x x x f x x x f x x x x x f x x f x x f x x x x f x f x f -+=-+=-+=-推导得()()[]()[]()()[]()()()()(),,,,,,,100102100100x E x N x x x x x x x x x f x x x x x x x f x x x x f x f x f n n n +=---++--+-+= 其中()()[]()[]()()10100100,,,---++-+=n n n x x x x x x x f x x x x f x f x N 为Newton 插值多项式,()()()[]()[]b a x x x x x x f x N x f x E j nj n o n ,,,01∈-∏=-==为插值余项.(三)Hermite 插值设()[],,'b a C x f ∈已知互异点[]b a x x x n ,,,10∈ 及对应的函数值为,,,10n f f f 导数值为,,,,''1'0n f f f 存在函数()x H 满足条件:(1)()x H 是一个次数不超过3的多项式 (2)()()()()()n i x f x H x f x H i i i i ,,2,1,0,'' === 则称()x H 为Hermite 插值多项式. 三次Hermite 插值多项式()x H 3:()()()20101'11010'0201001112101100032121⎪⎪⎭⎫ ⎝⎛---+⎪⎪⎭⎫ ⎝⎛---+⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛---+⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛---=x x x x x x y x x x x x x y x x x x x x x x y x x x x x x x x y x H余项为:()()()()212043!4x x x x f x R --=ξ 1+n 个12+n 次Hermite 插值多项式()x H n 12+及其余项()x R n 分别为:()()()()()()'2020'1221k k nk k k knk k k kn f x l x x f l x x x l x H ∑∑==+-+--= 其中 ()x l k 是Lagrange 插值基函数,()()()()()()⎪⎭⎫⎝⎛-∏+=-==+++j n j n n n x x n f x H x f x R 0221212!22ξ,其中()b a ,∈ξ且ξ与x有关.(四)分段插值设在区间[]b a ,上给定1+n 个插值节点b x x x a n =<<= 10和相应的函数值,,,10n y y y 记,max ,1k kk k k x x ϕϕϕ=-=+求做一个插值函数()x ϕ,具有性质:(1)()[]b a C x ,∈ϕ;(2)()()n i y x i i ,,2,1,0 ==ϕ;(3)()x ϕ在每个区间内[]()n i x x i i ,,2,1,0,1 =+上是线性函数.则称()x ϕ为分段线性插值函数.(五)样条插值设在区间[]b a ,上取1+n 个节点b x x x a n =<<<= 10 给定这些点函数值().i i x f y = 若函数()x S 满足条件: ①();,2,1,0,n i y x S i i ==②在每个区间[]()n i x x i i ,,2,1,0,1 =+上是3次多项式; ③()[]b a C x S i ,2∈;○④取下列边界条件之一: (ⅰ)第一边界条件 :()()()()n n x f x S x f x S ''0'0',==;(ⅱ)第二边界条件:()()()()n n x f x S x f x S ''0'0',==或()()0'0'==n x S x S ; (ⅲ)周期边界条件:()() ,2,1,0==k x S x S n k k 称()x S 为3次样条插值函数.四、通过举例进行分析比较(一)例题例1已知13155402--i i y x 利用朗格朗日插值多项式求()1-f .解:设10521100===-=y x y x 15343322==-==y x y x()()()()()()()()()()5408415242025400----=---------=x x x x x x x l()()()()405421--+=x x x x l()()()()24522--+=x x x x l()()()()354023--+=x x x x l()()()()()35828103404027841004552323232333221100x x x x x x x x x x x x x l y x l y x l y x l y x f --+--+++-+-+-=+++= 所以()4286.31=-f 例2已知()x f 在已知点的函数值如下,运用牛顿型插值多项式求()596.0f 的近似值.解:()()[]()[]()()()()()[]()()()()6319145.0596.0,,,632010.0596.0,,,321032102321021001002=---+==--+-+=N x x x x x x x x x x f x N x N N x x x x x x x f x x x x f x f x N欲求()x N 4只需在()x N 3之后加一项:[]()()()()()()63210432101044.3204.0654.0046.0196.0034.0,,,,-⨯=-⨯-⨯⨯⨯=----x x x x x x x x x x x x x f 故()6319179.00000034.06319145.04=+=x N 例3已知()x f 在节点1,2处函数值为()().32,21==f f ()x f 在节点1,2处的导数值为()()12,01''-==f f ,求()x f 的两点三次插值多项式及()5.1f .()()()()()()()()()()()()()()()()()()625.25.191713312122132121221211,03,22,1323222320101'121010'020101001210101001'10'011003'1'01010=≈+-+-=------+--+=⎪⎪⎭⎫ ⎝⎛---+⎪⎪⎭⎫ ⎝⎛---+⎪⎪⎭⎫⎝⎛--⎪⎪⎭⎫ ⎝⎛--++⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--+=+++=-======x H f x x x x x x x x x x H x x x x x x f x x x x x x f x x x x x x x x f x x x x x x x x f x f x f x f x f x H f f f f x x ββαα例4设()()211x x f +=,在55≤≤-x 上取10=n ,按等距节点求分段线性插值函数()x I h ,计算各节点间中点处的()x I h 与()x f 值. 解:若5,5100=-=x x 则步长1=h10,,2,1,0,0 =+=i ih x x i()211x x f +=在小区间[]1,+i i x x 上,分段线性插值函数为()()()()()21211111111++++++-++-=--+--=i ii i i i i ii i i i h x x x x x x x f x x x x x f x x x x x I各节点间中点处的()x I h 与()x f 的值为: 当5.4±=x 时,()()0486.0,00471.0==x I x f h ; 当5.3±=x 时,()()0794.0,075.0==x I x f h ; 当5.2±=x 时,()()1500.0,1379.0==x I x f h ; 当5.1±=x 时,()()3500.0,3077.0==x I x f h ; 当5.0±=x 时,()()7500.0,8000.0==x I x f h . 例5试求三次样条插值x S ,并满足条件:()().6868.053.0,0000.125.0''==S S解:174521491735314508.006.009.005.043214321111343232121010========∴-=-==-==-==-==-=---λλλλμμμμλμj j j j j j j j h h h h h h x x h x x h x x h x x h[]()()[]()()[]()()[]()()7150.0,7717.0,8533.0,9540.0,343443232332121221010110=--==--==--==--=x x x f x f x x f x x x f x f x x f x x x f x f x x f x x x f x f x x f由[][][][]()[](),,62,,62,1,,2,1.,,6,,61'11'01001011111n n n n n n j j j jj jj j j j x x f f h M M f x x f h M M n j x x xf h h x x f x x f d ---+---+-=+-=+-==+-=得1150.24300,22640.33157.45200.543210-=-=-=-=-=d d d d d由此得矩阵的方程组为:⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛1150.24300.22640.33157.45200.521742735225314921451243210M M M M M解此方程组得:6539.08070.00313.14643.10278.243210-=-=-=-=-=M M M M M三次样条表达式为:()()().1,,1,0,6666211123131-=-⎪⎪⎭⎫ ⎝⎛-+-⎪⎪⎭⎫ ⎝⎛-+-+-=+++++n j h x x h M y h x x h M y h x x M h x xM x S j j jj j j j j j j jjj jj j将43210,,,,M M M M M 代入得:()()()()()[]()()()()[]()()()()[]()()()()[]⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧∈-+-+----∈-+-+----∈-+-+----∈-+-+----=53.0,45.045.01087.953.03958.845.03623.153.06817.145.0,39.039.09662.1045.04186.1039.02422.245.08647.239.0,3.03.09544.639.01675.63.09098.139.07117.230.0,25.025.09662.103.00169.1025.08810.43.07593.633333333x x x x x x x x x x x x x x x x x x x x x S (二)分析结果通过例题可分析:Lagrange 插值法是通过构造1+n 个n 次基本多项式,然后线性组合而得到的.而Newton 法插值是通过求各阶差商,递推得到的一个()()[]()[]()()10100100,,,,---++-+=n n x x x x x x x f x x x x f x f x f 这样的公式.Lagrange 插值法在求每个基本多项式的时候要用到所有那些结点,因此如果需要再多加进去一个结点的话,需要重新求出基本多项式才可,需要大量工程比较麻烦,如果用Newton插值法在其后面再加上一项[]()()n n x x x x x x x f --+ 0110,,,就可算出结果.Hermite 插值是用一条曲线来逼近,最高次数可能高于三次,三次样条插值是用连续的曲线来逼近,最高次数是三次.分段插值: 通常可能指的是直接分段低次线插, 这样出来的线条不是很平滑. 因为在节点上不一定可导.三次样条与分段Hermite 插值的根本区别在于()x S 自身光滑(考虑了二阶倒数),不需要知道f 的导数值(除了在2个端点可能需要);而Hermite 插值依赖于f 在所有插值点的导数值.2 Hermite插值的MATLAB实现在MATLAB编辑窗口中输入x=[1,2];y=[2,3];y1=[0,-1];f=Hermite(x,y,y1,1.5)f=2.625运行程序时调用的Hermite函数如下:function f=Hermite(x,y,y_1,x0)syms t;f=0.0;if(length(x)==length(y))if(length(y)==length(y_1))n=length(x);elsedisp('y和y的导数的维数不相等!');return;endendelsedisp('x和y的维数不相等!);return;endfor i=1:nh=1.0;a=0.0;for j=1:nif(j~=i)h=h*(t-x(j))^2/((x(i)-x(j))^2);a=a+1/(x(i)-x(j));endendf=f+h*((x(i)-t)*(2*a*y(i)-y(i)-y_1(i))+y(i));if(i==n)if(nargin==4)f=subs(f,'t',x0);elsef=vpa(f,6);endendEnd3 拉格朗日插值的MATLAB实现在MATLAB编辑窗口中输入x=[-2,0,4,5];y=[5,1,-3,1];f=Language(x,y,-1)f=3.4286运行程序时调用的Language函数如下:function f=Language(x,y,x0)syms t;if(length(x)==length(y))n=length(x);elsedisp('x和y的维数不相等!');return;endf=0.0;for(i=1:n)l=y(i);for(j=1:i-1)if(j~=i)l=l*(t-x(j))/((x(i)-x(j));end;for(j=i+1:n)l=l*(t-x(j))/((x(i)-x(j));endf=f+1;simplify(f);if(i==n)if(nargin==3)f=subs(f,'t',x0);elsef=vpa(f,6);endendEnd4 牛顿插值法的MATLAB实现在MATLAB编辑窗口中输入x=[1 1.2 1.8 2.5 4];y=[1 1.44 3.24 6.25 16];f=Newton(x,y,2.0)f=4运行程序时调用的Newton函数如下:function f=Newton(x,y,x0)syms t;f=0.0;if(length(x)==length(y))n=length(x);c(1:n)=0.0;elsedisp('x和y的维数不相等!');return;endf=y(1);y1=0;l=1;for(i=1:n-1)for(j=i+1:n)y1(j)=(y(j)-y(i))/(x(j)-x(i));endc(i)=y1(i+1);l=l*(t-x(i));f=f+cc(i)*l;simplify(f);y=y1;if(i==n-1)if(nargin==3)f=subs(f,'t',x0);elsef=collect(f);f=vpa(f,6);endendend六、结束语总结:在条件有限情况下,构造固定的阶数的插值多项式可能会是一种简单的方案,当要反复计算逼近值时,最好用牛顿插值多项式;对于表格数据的常规插值,最好使用分段线性插值;如果插值总体平滑很重要,应该考虑运用三次样条插值或三次Hermite插值,同时表格数据构成函数的导数不存在时,最好使用三次样条插值.参考文献[ 1 ]李庆扬,王能超,易大义. 数值分析[M] . 武汉:华中科技大学出版社,1982.[ 2 ]吴才斌. 插值方法[ J ] . 湖北大学成人教育学院学报, 1999 .[ 3 ]徐萃薇,孙绳武. 计算方法引论[M] . 北京:高等教育出版社,2002.[ 4 ]张德丰.MATLAB数值计算方法[M]. 北京:机械工业出版社,2010.1.。
五种插值法的对比研究
1.研究现实状况:
多项式插值Lagrange公式, Newton(包含等距基点情况)和Hermite公式,形式不一样,可用于不一样场所,通常来说,前两种形式适适用于理论应用,后两种形式适于计算,带导数插值使插值函数与被插值函数更为密贴,优点是显著。
毕业论文开题汇报
题目五种插值法对比研究
学生姓名陈飞学号
所在院(系)数学与计算机科学学院
专业班级信计081班
指导老师权双燕
3月7日
题目
五种插值法对比研究
一、选题目及研究意义全文用五号宋体
在数值计算方法中,插值法是计算方法基础,数值微分、数值积分和微分方程数值解都建立在此基础上。插值法有大量实际应用。我们学习过五种基础插值方法,即插值、值、分段线性插值、分段三次插值、样条插值函数。不过这五种插值方法与被插函数迫近程度在现有文件中没有给出清楚描述,为此,可依据已学知识对这五种插值方法与被插函数迫近程度进行对比研究。
黄友谦,李岳生.(第二版).北京:高等教育出版社, 1987
蒋尔雄,赵凤光.数值迫近.上海:复旦大学出版社, 1996
五、毕业论文进程安排
3月4日-----3月8日查阅资料,列出提要,完成开题汇报;
3月8日-----4月10日查阅材料;
4月10日----5月5日阅读资料,撰写论文,完成论文初稿;
5月5日-----5月27日指导老师审阅,定稿后打印。
[2]韩中庚.数学建模方法及其应用[M].北京:高等教育出版社, .
[3]胡运权.运筹学教程第三版[M].清华大学出版社, .
[4]齐欢.数学模型方法[M].武汉:华中理工大学出版社, 1996.
几种常用高程插值方法的比较 数学模型
几种常用高程插值方法的比较数学模型
高程插值是通过已知的高程数据点来预测未知点的高程。
一种好的插值方法应该能够准确地预测出未知点的高程,同时也要考虑到计算的复杂度和数据的可用性。
以下是几种常用的高程插值方法的比较。
1.线性插值法:线性插值法是一种简单的插值方法,它基于两点之间的线性关系进行插值。
这种方法适用于数据点分布均匀且密集的情况下,但在数据点分布不均的情况下,插值精度可能会受到影响。
2.克里金插值法:克里金插值法是一种基于地质统计学的插值方法,它考虑了空间自相关性和变异性,通过权重系数来计算未知点的高程。
这种方法适用于数据点分布不均的情况下,但计算复杂度相对较高。
3.径向基函数插值法:径向基函数插值法是一种通过构建径向基函数来对数据进行插值的方法。
它具有较高的插值精度和较好的稳定性,但计算复杂度也相对较高。
4.样条插值法:样条插值法是一种通过构建样条函数来对数据进行插值的方法。
它具有较好的连续性和平滑性,但可能会受到边界效应的影响。
综上所述,不同的高程插值方法各有优缺点,应根据具体情况选择适合的插值方法。
数值分析常用的插值方法
数值分析常用的插值方法数值分析中常用的插值方法有线性插值、拉格朗日插值、分段线性插值、Newton插值、Hermite插值、样条插值等。
下面将对这些插值方法进行详细介绍。
一、线性插值(linear interpolation)线性插值是最简单的插值方法之一、假设已知函数在两个点上的函数值,通过这两个点之间的直线来估计中间点的函数值。
线性插值公式为:f(x)=f(x0)+(x-x0)*(f(x1)-f(x0))/(x1-x0)其中,f(x)表示要求的插值点的函数值,f(x0)和f(x1)是已知的两个点上的函数值,x0和x1是已知的两个点的横坐标。
二、拉格朗日插值(Lagrange interpolation)拉格朗日插值是一种基于多项式的插值方法。
它通过多个已知点的函数值构造一个多项式,并利用这个多项式来估计其他点的函数值。
拉格朗日插值多项式的一般形式为:f(x) = Σ[f(xi) * Li(x)] (i=0,1,2,...,n)其中,f(x)表示要求的插值点的函数值,f(xi)是已知的多个点的函数值,Li(x)是拉格朗日基函数。
拉格朗日基函数的表达式为:Li(x) = Π[(x-xj)/(xi-xj)] (i≠j,i,j=0,1,2,...,n)三、分段线性插值(piecewise linear interpolation)分段线性插值是一种逐段线性近似函数的方法。
通过将整个插值区间分成多个小段,在每个小段上使用线性插值来估计函数的值。
分段线性插值的过程分为两步:首先确定要插值的点所在的小段,在小段上进行线性插值来估计函数值。
四、Newton插值(Newton interpolation)Newton插值也是一种基于多项式的插值方法。
利用差商的概念来构造插值多项式。
Newton插值多项式的一般形式为:f(x)=f(x0)+(x-x0)*f[x0,x1]+(x-x0)*(x-x1)*f[x0,x1,x2]+...其中,f(x)表示要求的插值点的函数值,f(x0)是已知的一个点的函数值,f[xi,xi+1,...,xi+k]是k阶差商。
数值分析论文-几种插值方法的比较
数值分析论文——几种插值方法的比较1.插值法概述插值法是函数逼近的重要方法之一,有着广泛的应用!在生产和实验中,函数()x f 或者其表达式不便于计算复杂或者无表达式而只有函数在给定点的函数值(或其导数值) ,此时我们希望建立一个简单的而便于计算的函数()x ϕ,使其近似的代替()x f ,有很多种插值法,其中以拉格朗日(Lagrange)插值和牛顿(Newton)插值为代表的多项式插值最有特点,常用的插值还有Hermite 插值,分段插值和样条插值.这里主要介绍拉格朗日(Lagrange)插值和牛顿(Newton)插值和埃尔米特插值(Hermite 插值)。
2.插值方法的比较 2.1拉格朗日插值 2.1.1基本原理构造n 次多项式()()()()()x l y x l y x l y x l y x P n n k nk k n +⋅⋅⋅++==∑=11000,这是不超过n 次的多项式,其中基函数:()x l k =)...()()...()(()...()()...()(()1110)1110n k k k k k k k n k k x x x x x x x x x x x x x x x x x x x x ----------+-+-显然()x l k 满足()i k x l =⎩⎨⎧≠=)(0)(1k i k i此时()()x f x P n ≈,误差()()()=-=x P x f x R n n(x ))!1()(1)1(+++n n n f ωξ 其中ξ∈()b a ,且依赖于x ,()()()()n n x x x x x x x -⋅⋅⋅--=+101ω. 很显然,当1=n ,插值节点只有两个k x ,1+k x 时()()()x l y x l y x P k k k k i 11+++=其中基函数()x l k =11++--k k k x x x x , ()x l k 1+= kk kx x x x --+12.1.2优缺点可对插值函数选择多种不同的函数类型,由于代数多项式具有简单和一些良好的特性,故常选用代数多项式作为插值函数。
几种常用插值方法对比分析
几种常用插值方法比较分析王玉坤1 彭湘晖1 (1.黑龙江省水文局)提要:水文工作实践中经常采用插值,而数学中插值的计算方法有多种,本文讨论了其中比较简单的线性插值、抛物线插值、拉格朗日插值和逐次线性插值等,并以实际水文应用实例对这几种方法进行了比较,提出了水文中适用插值方法及应用条件关键词:插值;计算方法;关系线1 概述水文工作是经验与理论的结合,生产实际中经常会遇到曲线插值的问题,如水位~流量关系曲线、库水位~蓄水量曲线、单位线中的S 曲线等等,初期的插值是通过量图完成的,随着资料的完善,曲线的节点被摘录出来,为采用数学方法计算插值奠定了基础,特别是计算机技术的普及,利用程序自动插值能够大大提高计算的速度、降低了出错率。
我们常用的插值方法有以下几种:线性插值、抛物线插值、拉格朗日插值、逐次线性插值。
下面对这几种插值方法进行逐一对比分析。
2 几种插值方法的原理 2.1 线性插值函数)(x f y =在两个节点0x 、1x 处的函数值分别为直线插值就是做通过两点(0x 、0y )、(1x 、1y )的直线)(x L y =,那么可知任意点x 所对应得函数值y 为:)(001010x x x x y y y y ---+= 可见,上式为满足插值条件的一次方程,故称之为线性插值。
见图1:图1 线性插值示意图2.2抛物线插值[1],[2]函数)(x f y =在三个节点0x 、1x 、2x 处的函数值分别为抛物线插值就是假设有一个不超过二次的函数)(x L y =,该函数满足以下条件:)(00x L y =,)(11x L y =,)(22x L y =,通过基函数构造求解,可得到函数)(x L 的公式:212021012101200201021))(())(())(())(())(())(()(y x x x x x x x x y x x x x x x x x y x x x x x x x x x L ----+----+----=显然这是一个二次多项式,因此称之为抛物线插值公式,该插值方法成为抛物线插值。
五种插值法的对比研究
• 它的优点就是公式紧凑,在理论分析中十分方便,但是 它不能随意的增加插值点。又如牛顿插值多项式的构造:
当前工作的进度
• 通过上网、图书馆及自己做的习题等方式 已经查找了一些关于数学期望在经济决策 中应用的一些文献,并初步阅读这些文献。 • 通过自己查阅的资料,对几种插值的有了 更充分的认识。 • 根据几种插值的解题思路,解决一些实际 问题。
目前已查阅文献出处
• 石东洋 数值计算方法 郑州大学出版社 • 陈传璋 数学分析(第二版上册)高等教育 出版社 • 数值计算方法 冯康等编 数值计算方法 国 防工业出版社
下一步进展计划
• 细致的研读已有的资料和文献,学习基本 的科研的思想和方法。 • 通过上网、在图书馆中查询、向老师请教 等方式,进一步丰富资料。 • 对已有的资料进行提炼、融合,并结合自 己的思考,在老师的指导下写出自己的论 文。
有关题目的一些想法
• 插值是数值计算中的重要一部分,而五种插值又是我们常常见到 的,本课题就是对他们之间的差异和关系通过举例或证明得到自 己对他们的认识。
• 通过自己的举例和证明从中找到它们的优点、不足. 例如朗格朗日它的构造公式: n
( x x )( x x ) ( x x )( x x ) 1 2 k 1 n g ( x ) ( x x )( x x ) ( x x )( x x ) k 1 k 2 k k 1 k n k 1
f ( x ) f [ x ] f [ x , x ]( x x ) f [ x , x x ]( x x )( x x ) ( x x ) R ( X ) 0 0 1 0 0 1 n 0 1 n 1 n
而它的优点就是可以随意的增加一个或多个插值你只需 在它后面增加相应的想就行了他克服了上式的缺点,也 加快了了你的计算速度。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五种插值法的对比研究1. 选题依据1.1 选题背景插值法是一种古老的数学方法,插值法历史悠久。
据考证,在公元六世纪时, 我国刘焯(zhuo) 已经把等距二次插值法应用于天文计算。
十七世纪时,Newton 和 Gregory(格雷格里) 建立了等距节点上的一般插值公式,十八世纪时,Lagrange(拉格朗日) 给出了更一般的非等距节点插值公式。
而它的基本理论是在微积分产生以后逐渐完善的,它的实际应用也日益增多,特别是在计算机工程中。
许多库函数的计算实际上归结于对逼近函数的计算。
1.2 研究的目的和意义插值法是数值分析中最基本的方法之一。
在实际问题中碰到的函数是各种各样的,有的甚至给不出表达式,只提供了一些离散数据,例如,在查对数表时, 要查的数据在表中找不到,就先找出它相邻的数,再从旁边找出它的修正值, 按一定关系把相邻的数加以修正,从而找出要找的数,这种修正关系实际上就是一种插值。
在实际应用中选用不同类型的插值函数,逼近的效果也不同。
在数值计算方法中,我们学习过五种基本的插值方法,即Lagrange 插值、Newton 插值、分段线性插值、分段三次Hermite 插值、样条插值函数。
所以通过从这五种插值法的基本思想、特征、性质和具体实例入手,探讨五种插值法的优缺点和适用范围,让学习者能够迅速而准确的解决实际问题,掌握插值法的应用。
2. 研究的方法从具体实例入手并结合Matlab 在科学计算中的优势,通过实验对它们的精度和效率进行比较分析。
3. 论文结构3.1 论文的总体结构第一部分 导言主要介绍选题的背景、目的及意义、研究现状、文献综述等。
第二部分 五种插值法的基本思想、性质及特点在数值计算方法中,插值法是计算方法的基础,数值微分、数值积分和微分方程数值解都建立在此基础上。
插值问题的提法是:已知f(x)(可能未知或非常复杂函数)在彼此不同的n+1 个实点0x ,1x ,…n x 处的函数值是f(0x ),f(1x ),…,f(n x ),这时我们简单的说f(x)有n+1 个离散数据对0n i i )}y ,{(x i .要估算f(x)在其它点x 处的函数值,最常见的一种办法就是插值,即寻找一个相对简单的函数y(x),使其满足下列插值条件:y(i x )=f(i x ),i=0,1,…,n.,并以y(x)作为f(x)的近似值.其中y(x)称为插值函数,f(x)称为被插函数。
多项式插值是最常见的一种函数插值.在一般插值问题中,由插值条件可以唯一确定一个次数不超过n 的插值多项式满足上述条件.从几何上看可以理解为:已知平面上n+1 个不同点,要寻找一条次数不超过n 的多项式曲线通过这些点.插值多项式一般有两种常见的表达形式,一个是拉格朗日(Lagrange )插值多项式,另一个是牛顿(Newton )插值多项式. 且Lagrange 插值公式恒等于Newton 插值公式.分段线性插值与样条插值可以避免高次插值可能出现的大幅度波动现象,在实际应用中通常采用分段低次插值来提高近似程度,比如可用分段线性插值或分段三次埃尔米特插值来逼近已知函数,但它们的总体光滑性较差.为了克服这一缺点,一种全局化的分段插值方法———三次样条插值成为比较理想的工具.(1)拉格朗日插值Lagrange 插值是n 次多项式插值,其成功地利用构造插值基函数的方法解决了求n 次多项式插值函数问题。
对Lagrange n 次插值多项式,首先构造n+1个插值点0x 1x ,....,n x 上的n 次插值基函数)(x l i ))...()()...(())...()()...(110110n i i i i i i n i i x x x x x x x x x x x x x x x x --------=+-+-(,)...,2,1,0(n i =有了这n+1个n 次插值基函数,n 次Lagrange 插值多项式就容易写出来了,具体表达式为)()()(0x l x f x Ln i n i i ∑==。
表1 插值数值表Lagrange 插值的方法是:对给定的n 个插值节点,0x 1x ,....,n x 及对应的函数值n y y y y ,......,,,210,利用n 次Lagrange 插值多项式,则对插值区间任意的x 的函数值y 可以通过下式Ln (x )来求解。
表(1)中的n 次Lagrange 插值多项式Ln (x )的数学公式为:)()()(0x l x f x Ln i n i i ∑==。
其中,)(x l i (i=0,1,2,3...,n )是插值基函数,且∏=--=n j j i j i x x x x x l 0)(。
Lagrange 插值多项式的余项为R(x)=)()()!1(1)()()1(x f n x L x f n n ωξ++=-,其中))()(()(10n x x x x x x x ---=ω。
(2)牛顿插值Newton 插值也是n 次多项式插值,它提出另一种构造插值多项式的方法,与Lagrange 插值相比,具有承袭性和易于变动节点的特点。
Newton 插值的方法:由表(1)构造的牛顿插值多项式为],...,,[))...((...],,[))((],[)()()(1010210101000n n x x x f x x x x x x x f x x x x x x f x x x f x N ---++--+-+=用它插值时,首先要计算各阶差商,而各阶差商的计算可归结为一阶差商的逐次计算,一般的111022010),...,,(),,...,,(),...,,(-----=k k k k k n x x x x x f x x x x f x x x f其余项为:),...,,()()()(10n x x x f x N x f x Rn =-=。
(3)分段线性插值分段线性插值函数,记为y(x),y(x)具有下列性质:①y(x) 可以分段表示,在每个小区间],[1i i x x -上,它是线性函数`)(x y i ;②)(x y i i i f x f ==)(,(i=0,1,2,3...,n ).③ 在整个区间[a,b]上,y(x) 连续.作分段线性插值的目的在于克服Lagrange 插值方法可能发生的不收敛性缺点.所谓分段线性插值就是利用每两个相邻插值基点作线性插值,即可得如下分段线性插值函数:11)()()(+++=i i i i f x l f x l x y ,],[1+∈i i x x x ,i=0,1,...n.其中11)(++--=i i i i x x x x x l ,i i ii x x x x x l --=++11)(.特点:插值函数序列具有一致收敛性,克服了高次Lagrange 插值方法的缺点,故可通过增加插值基点的方法提高其插值精度. 但存在基点处不光滑、插值精度低的缺点.从几何上看所谓分段线性插值就是通过插值基点用折线段连接起来逼近原曲线,这也是计算机绘制图形的基本原理.(4)分段三次Hermite 插值对于函数f(x),常常不仅知道它在一些点的函数值,而且还知道它在这些点的导数值。
这时的插值函数P (x ),自然不仅要求在这些点等于f(x)的函数值,而且要求P (x )的导数在这些点也等于f (x )的导数值。
这就是埃尔米特插值问题,也称带导数的插值问题。
从几何上看,这种插值要寻找的多项式曲线不仅要通过平面上的一直点组,而且在这些点(或者其中一部分)与原曲线“密切”,即它们有相同的斜率。
设已知函数f(x)在插值区间[a,b]上n+1个互异的节点i x ),...,1,0(n i =处的函数值i i f x f =)(及一阶导数值),...,2,1,0()(n i f x f i i ='=',若存在函数H(x)满足条件: ①H(x)是一个次数不超过2n+1次的多项式;②)()(i i x f x H =,)()(i i x f x H '='),...,1,0(n i =.则称H(x)为f (x )在n+1个节点i x 上的埃尔米特插值多项式。
(5)样条插值函数 分段低次插值函数都有一致收敛性, 但光滑性较差; 对于像高速飞机的机翼形线, 船体放样等等型值线往往要求有二阶光滑度, 即有二阶连续导数, 早期工程师制图时, 把富有弹性的细长木条用压铁固定在样点上, 在其他地方让它自由弯曲, 然后画下长条的曲线, 称为样条曲线。
它实际上是由分段三次曲线并接而成, 在连接点即样点上要求二阶连续可导, 从数学上加以概括得到数学样条这一概念。
给定区间[a,b]上n+1个节点b x x x n =<<<=...a 10和这些点上的函数值n i y x f i i ,...,1,0,)(==,若函数s(x)满足:①s(x)在每个子区间],[1i i x x -),...,2,1(i n =上是不高于三次的多项式;②s(x),)(),(x s x s '''在[a,b]上连续;满足插值条件),...,1,0()(niyxsii==,则称s(x)为函数f(x)关于节点1,xx,...,nx的三次样条插值函数。
第三部分五种插值法的对比研究从具体例题出发,讨论五种插值法的优缺点及适用范围。
拉格朗日插值法的公式结构整齐紧凑,在理论分析中十分方便,然而在计算中,当插值点增加或减少一个时,所对应的基本多项式就需要全部重新计算,于是整个公式都会变化,非常繁琐,而且当插值点比较多的时候,拉格朗日插值多项式的次数可能会很高,因此具有数值不稳定的特点,也就是说尽管在已知的几个点取到给定的数值,但在附近却会和“实际上”的值之间有很大的偏差.牛顿插值公式是 n 次插值多项式的又一种构造形式,但它克服了拉格朗日插值多项式的缺点,它的一个明显优点是,每增加一个插值节点,只要在原牛顿 12插值公式中增添一项便可形成高一次的插值公式。
而且在实际应用中,经常会遇到插值节点是等距分布的情况,这时,牛顿插值公式可以进一步简化,得到等距节点的插值公式,从而能够大大的缩短实际运算的时间。
但是这种代数插值,只要求插值多项式在插值节点处与被插值函数有相同的函数值,但是这种插值多项式往往还不能全面反映被插值函数的性态,许多实际问题不但要求插值函数与被插值函数在各节点的函数值相同,而且还要求插值多项式在某节点或全部节点上与被插值函数的导数值也相等,甚至要求高阶导数值也相等。
而这时拉格朗日插值与牛顿插值就不满足这种要求了。
埃尔米特插值是我们知道了函数在某些点出的函数值,而且插值函数在这些点处的导数也和被插函数一致,所以在几何上,这种插值函数不仅和被插函数在插值节点处有相同的函数值“过点”,而且和被插函数在节点处有相同的切线“相切”。