2020年全国中考数学试卷分类汇编(一)专题30 圆的有关性质(含解析)
2020年中考数学试题《圆》试题精编含答案
(1)求证:直线DC是⊙O的切线;
(2)若BC=2,∠CAB=30°,求图中阴影部分的面积(结果保留π).
24.(2020•临沂)已知⊙O1的半径为r1,⊙O2的半径为r2.以O1为圆心,以r1+r2的长为半径画弧,再以线段O1O2的中点P为圆心,以 O1O2的长为半径画弧,两弧交于点A,连接O1A,O2A,O1A交⊙O1于点B,过点B作O2A的平行线BC交O1O2于点C.
(1)求证:△ABD≌△ACD;
(2)判断直线DE与⊙O的位置关系,并说明理由.
27.(2020•深圳)如图,AB为⊙O的直径,点C在⊙O上,AD与过点C的切线互相垂直,垂足为D.连接BC并延长,交AD的延长线于点E.
(1)求证:AE=AB;
(2)若AB=10,BC=6,求CD的长.
28.(2020•咸宁)如图,在Rt△ABC中,∠C=90°,点O在AC上,以OA为半径的半圆O交AB于点D,交AC于点E,过点D作半圆O的切线DF,交BC于点F.
1.【解答】解:(1)证明:连接OC,如图,
∵CD与⊙O相切于点C,
∴∠OCD=90°,
∴∠ACD+∠ACO=90°,
∵AD⊥DC,
∴∠ADC=90°,
∴∠ACD+∠DAC=90°,
∴∠ACO=∠DAC,∵O Nhomakorabea=OC,
∴∠OAC=∠OCA,
∴∠DAC=∠OAC,
∴AC是∠DAB的角平分线;
(2)∵AB是⊙O的直径,
(1)求证:BF=DF;
(2)若AC=4,BC=3,CF=1,求半圆O的半径长.
2020年中考数学第一轮复习暨2019年全国中考试题分类汇编 专题30 圆的有关性质(含解析)(002)
圆的有关性质一.选择题1.(2019湖北宜昌3分)如图,点A,B,C均在⊙O上,当∠OBC=40°时,∠A的度数是()A.50°B.55°C.60°D.65°【分析】先利用等腰三角形的性质和三角形内角和计算出∠BOC的度数,然后根据圆周角定理可得到∠A的度数.【解答】解:∵OB=OC,∴∠OCB=∠OBC=40°,∴∠BOC=180°﹣40°﹣40°=100°,∴∠A=∠BOC=50°.故选:A.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.2. (2019•甘肃庆阳•3分)如图,点A,B,S在圆上,若弦AB的长度等于圆半径的倍,则∠ASB的度数是()A.22.5°B.30°C.45°D.60°【分析】设圆心为0,连接OA、OB,如图,先证明△OAB为等腰直角三角形得到∠AOB =90°,然后根据圆周角定理确定∠ASB的度数.【解答】解:设圆心为O,连接OA、OB,如图,∵弦AB的长度等于圆半径的倍,即AB=OA,∴OA2+OB2=AB2,∴△OAB为等腰直角三角形,∠AOB=90°,∴∠ASB=∠AOB=45°.故选:C.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3. (2019·贵州安顺·3分)如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC为()A.B.2C.D.【解答】解:作直径CD,在Rt△OCD中,CD=6,OC=2,则OD==4,tan∠CDO==,由圆周角定理得,∠OBC=∠CDO,则tan∠OBC=,故选:D.4. (2019•河北省•3分)根据圆规作图的痕迹,可用直尺成功找到三角形外心的是()A.B.C.D.C.【解答】解:三角形外心为三边的垂直平分线的交点,由基本作图得到C选项作了两边的垂直平分线,从而可用直尺成功找到三角形外心.5. (2019•贵州省铜仁市•4分)如图,四边形ABCD为⊙O的内接四边形,∠A=100°,则∠DCE的度数为;100°【解答】解:∵四边形ABCD为⊙O的内接四边形,∴∠DCE=∠A=100°,6. (2019•海南省•3分)如图,直线l1∥l2,点A在直线l1上,以点A为圆心,适当长度为半径画弧,分别交直线l1、l2于B、C两点,连结AC、B C.若∠ABC=70°,则∠1的大小为()A.20°B.35°C.40°D.70°【分析】根据平行线的性质解答即可.【解答】解:∵点A为圆心,适当长度为半径画弧,分别交直线l1、l2于B、C,∴AC=AB,∴∠CBA=∠BCA=70°,∵l1∥l2,∴∠CBA+∠BCA+∠1=180°,∴∠1=180°﹣70°﹣70°=40°,故选:C.【点评】此题考查平行线的性质,关键是根据平行线的性质解答.7.(2019•山东威海•3分)如图,⊙P与x轴交于点A(﹣5,0),B(1,0),与y轴的正半轴交于点C.若∠ACB=60°,则点C的纵坐标为()A.+B.2+C.4D.2+2【分析】连接P A,PB,PC,过P作PD⊥AB于D,PE⊥BC于E,根据圆周角定理得到∠APB=120°,根据等腰三角形的性质得到∠P AB=∠PBA=30°,由垂径定理得到AD=BD=3,解直角三角形得到PD=,P A=PB=PC=2,根据勾股定理得到CE===2,于是得到结论.【解答】解:连接P A,PB,PC,过P作PD⊥AB于D,PE⊥BC于E,∵∠ACB=60°,∴∠APB=120°,∵P A=PB,∴∠P AB=∠PBA=30°,∵A(﹣5,0),B(1,0),∴AB=6,∴AD=BD=3,∴PD=,P A=PB=PC=2,∵PD⊥AB,PE⊥BC,∠AOC=90°,∴四边形PEOD是矩形,∴OE=PD=,PE=OD=2,∴CE===2,∴OC=CE+OE=2+,∴点C的纵坐标为2+,故选:B.【点评】本题考查了圆周角定理,坐标与图形性质,垂径定理,勾股定理,正确的作出辅助线是解题的关键.8.(2019•山东潍坊•3分)如图,四边形ABCD内接于⊙O,AB为直径,AD=CD,过点D 作DE⊥AB于点E,连接AC交DE于点F.若sin∠CAB=,DF=5,则BC的长为()A.8 B.10 C.12 D.16【分析】连接BD,如图,先利用圆周角定理证明∠ADE=∠DAC得到FD=F A=5,再根据正弦的定义计算出EF=3,则AE=4,DE=8,接着证明△ADE∽△DBE,利用相似比得到BE=16,所以AB=20,然后在Rt△ABC中利用正弦定义计算出BC的长.【解答】解:连接BD,如图,∵AB为直径,∴∠ADB=∠ACB=90°,∵∠AD=CD,∴∠DAC=∠DCA,而∠DCA=∠ABD,∴∠DAC=∠ABD,∵DE⊥AB,∴∠ABD+∠BDE=90°,而∠ADE+∠BDE=90°,∴∠ABD=∠ADE,∴∠ADE=∠DAC,∴FD=F A=5,在Rt△AEF中,∵sin∠CAB==,∴EF=3,∴AE==4,DE=5+3=8,∵∠ADE=∠DBE,∠AED=∠BED,∴△ADE∽△DBE,∴DE:BE=AE:DE,即8:BE=4:8,∴BE=16,∴AB=4+16=20,在Rt△ABC中,∵sin∠CAB==,∴BC=20×=12.故选:C.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了解直角三角形.9.(2019•湖北宜昌•3分)如图,点A,B,C均在⊙O上,当∠OBC=40°时,∠A的度数是( ) A.50°B.55°C.60°D.65°【考点】圆周角定理.【分析】先利用等腰三角形的性质和三角形内角和计算出∠BOC的度数,然后根据圆周角定理可得到∠A的度数.【解答】解:∵OB=OC,∴∠OCB=∠OBC=40°,∴∠BOC=180°-40°-40°=100°,∴∠A=∠BOC=50°.故选A.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.二.填空题1.(2019•湖北省随州市•3分)如图,点A,B,C在⊙O上,点C在优弧上,若∠OBA=50°,则∠C的度数为______.【答案】40°【解析】解:∵OA=OB,∴∠OAB=∠OBA=50°,∴∠AOB=180°-50°-50°=80°,∴∠C=∠AOB=40°.故答案为40°.先利用等腰三角形的性质和三角形内角和计算出∠AOB的度数,然后根据圆周角定理得到∠C的度数.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.2.(2019•四川省凉山州•4分)如图所示,AB是⊙O的直径,弦CD⊥AB于H,∠A=30°,CD=2,则⊙O的半径是2.【分析】连接BC,由圆周角定理和垂径定理得出∠ACB=90°,CH=DH=CD=,由直角三角形的性质得出AC=2CH=2,AC=BC=2,AB=2BC,得出BC=2,AB=4,求出OA=2即可.【解答】解:连接BC,如图所示:∵AB是⊙O的直径,弦CD⊥AB于H,∴∠ACB=90°,CH=DH=CD=,∵∠A=30°,∴AC=2CH=2,在Rt△ABC中,∠A=30°,∴AC=BC=2,AB=2BC,∴BC=2,AB=4,∴OA=2,即⊙O的半径是2;故答案为:2.【点评】本题考查的是垂径定理、圆周角定理、含30°角的直角三角形的性质、勾股定理等知识;熟练掌握圆周角定理和垂径定理是解题的关键.3. (2019•广西北部湾•3分)《九章算术》作为古代中国乃至东方的第一部自成体系的数学专著,与古希腊的《几何原本》并称现代数学的两大源泉.在《九章算术》看记载有一问题“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问几何?”小辉同学根据原文题意,画出圆材截面如图所示,已知:锯口深为1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为寸.【答案】26【解析】解:设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r-1,OA=r,则有r2=52+(r-1)2,解得r=13,∴⊙O的直径为26寸,故答案为:26.设⊙O的半径为r.在Rt△ADO中,AD=5,OD=r-1,OA=r,则有r2=52+(r-1)2,解方程即可.本题考查垂径定理、勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.4. (2019•黑龙江省绥化市•3分)半径为5的⊙O是锐角三角形ABC的外接圆,AB=AC,连接OB、OC,延长CO交弦AB于点D.若△OBD是直角三角形,则弦BC的长为.答案:53或52考点:等边三角形,三角函数。
2020浙教版九年级数学上 圆的有关性质(含答案点拨)
【文库独家】圆的有关性质知识梳理一、圆的有关概念及其对称性1.圆的定义(1)圆是平面内到一定点的距离等于定长的所有点组成的图形.这个定点叫做________,定长叫做________;(2)平面内一个动点绕一个定点旋转一周所形成的图形叫做圆,定点叫做圆心,定点与动点的连线段叫做半径.2.圆的有关概念(1)连接圆上任意两点的________叫做弦;(2)圆上任意两点间的________叫做圆弧,简称弧.(3)________相等的两个圆是等圆.(4)在同圆或等圆中,能够互相________的弧叫做等弧.3.圆的对称性(1)圆的轴对称性:圆是轴对称图形,经过圆心的每一条直线都是它的对称轴;(2)圆的中心对称性:圆是以圆心为对称中心的中心对称图形;(3)圆是旋转对称图形:圆绕圆心旋转任意角度,都能和原来的图形重合.这就是圆的旋转不变性.二、垂径定理及推论1.垂径定理垂直于弦的直径________这条弦,并且________弦所对的两条弧.2.推论1(1)平分弦(________)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过________,并且平分弦所对的________弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.3.推论2圆的两条平行弦所夹的弧________.4.(1)过圆心;(2)平分弦(不是直径);(3)垂直于弦;(4)平分弦所对的优弧;(5)平分弦所对的劣弧.若一条直线具备这五项中任意两项,则必具备另外三项.三、圆心角、弧、弦之间的关系1.定理在同圆或等圆中,相等的圆心角所对的弧________,所对的弦________.2.推论同圆或等圆中:(1)两个圆心角相等;(2)两条弧相等;(3)两条弦相等.三项中有一项成立,则其余对应的两项也成立.四、圆心角与圆周角1.定义顶点在________上的角叫做圆心角;顶点在________上,角的两边和圆都________的角叫做圆周角.2.性质(1)圆心角的度数等于它所对的______的度数.(2)一条弧所对的圆周角的度数等于它所对________的度数的一半.(3)同弧或等弧所对的圆周角________,同圆或等圆中相等的圆周角所对的弧________.(4)半圆(或直径)所对的圆周角是______,90°的圆周角所对的弦是________.五、圆内接四边形的性质圆内接四边形的对角互补.自主测试1.如图,⊙O的弦AB垂直平分半径OC,若AB=6,则⊙O的半径为()A . 2B .2 2C .22 D .622.如图,⊙O 是△ABC 的外接圆,∠BAC =60°,若⊙O 的半径OC 为2,则弦BC 的长为( )5.如图,在平面直角坐标系中,⊙A 与y 轴相切于原点O ,平行于x 轴的直线交⊙A 于M ,N 两点,若点M 的坐标是(-4,-2),则弦MN 的长为__________.(第5题图)考点一、垂径定理及推论【例1】在圆柱形油槽内装有一些油.截面如图,油面宽AB 为6分米,如果再注入一些油后,油面AB 上升1分米,油面宽变为8分米,圆柱形油槽直径MN 为( )A .6分米B .8分米C .10分米D .12分米分析:如图,油面AB 上升1分米得到油面CD ,依题意得AB =6,CD =8,过O 点作AB 的垂线,垂足为E ,交CD 于F 点,连接OA ,OC ,由垂径定理,得AE =12AB =3,CF =12CD =4,设OE =x ,则OF =x -1,在Rt △OAE 中,OA 2=AE 2+OE 2,在Rt △OCF 中,OC 2=CF 2+OF 2,由OA =OC ,列方程求x 即可求得半径OA ,得出直径MN .解析:如图,依题意得AB =6,CD =8,过O 点作AB 的垂线,垂足为E ,交CD 于F 点,连接OA ,OC ,由垂径定理,得AE =12AB =3,CF =12CD =4,设OE =x ,则OF =x -1,在Rt △OAE 中,OA 2=AE 2+OE 2, 在Rt △OCF 中,OC 2=CF 2+OF 2,∵OA =OC ,∴32+x 2=42+(x -1)2,解得x =4,∴半径OA =32+42=5,∴直径MN =2OA =10(分米).故选C.答案:C方法总结 有关弦长、弦心距与半径的计算,常作垂直于弦的直径,利用垂径定理和解直角三角形来达到求解的目的.触类旁通1 如图所示,若⊙O 的半径为13 cm ,点P 是弦AB 上一动点,且到圆心的最短距离为5 cm ,则弦AB 的长为__________ cm.考点二、圆心(周)角、弧、弦之间的关系【例2】如图,已知A ,B ,C ,D 是⊙O 上的四个点,AB =BC ,BD 交AC 于点E ,连接CD ,AD .(1)求证:DB 平分∠ADC ;(2)若BE =3,ED =6,求AB 的长. 解:(1)证明:∵AB =BC , ∴AB BC =.∴∠ADB =∠BDC , ∴DB 平分∠ADC .(2)由(1)知AB BC =,∴∠BAE =∠ADB .∵∠ABE =∠ABD ,∴△ABE ∽△DBA .∴AB BE =BDAB.∵BE =3,ED =6,∴BD =9. ∴AB 2=BE ·BD =3×9=27.∴AB =3 3.方法总结 圆心角、弧、弦之间的关系定理,提供了从圆心角到弧到弦的转化方式,为我们证明角相等、线段相等和弧相等提供了新思路,解题时要根据具体条件灵活选择应用.触类旁通2 如图,AB 是⊙O 的直径,C ,D 两点在⊙O 上,若∠C =40°,则∠ABD 的度数为( )A .40°B .50°C .80°D .90°考点三、圆周角定理及推论【例3】如图,若AB 是⊙O 的直径,CD 是⊙O 的弦,∠ABD =58°,则∠BCD =( )A .116°B .32°C .58°D .64°解析:根据圆周角定理求得,∠AOD =2∠ABD =116°(同弧所对的圆周角是所对的圆心角的一半),∠BOD =2∠BCD (同弧所对的圆周角是所对的圆心角的一半);根据平角是180°知∠BOD =180°-∠AOD .还有一种解法,即利用直径所对的圆周角等于90°,可得∠ADB =90°,则∠DAB =90°-∠ABD =32°,∵∠DAB =∠DCB ,∴∠DCB =32°.答案:B方法总结 求圆中角的度数时,通常要利用圆周角与圆心角或圆心角与弧之间的关系.触类旁通3 如图,点A,B,C,D都在⊙O上,CD的度数等于84°,CA是∠OCD 的平分线,则∠ABD+∠CAO=__________.A.CM=DM B.CD DBC.∠ACD=∠ADC D.OM=MD3.(2012浙江湖州)如图,△ABC是⊙O的内接三角形,AC是⊙O的直径,∠C=50°,∠ABC的平分线BD交⊙O于点D,则∠BAD的度数是()(第3题图)A.45°B.85°C.90°D.95°4.(2012浙江衢州)工程上常用钢珠来测量零件上小圆孔的宽口,假设钢珠的直径是10 mm,测得钢珠顶端离零件表面的距离为8 mm,如图所示,则这个小圆孔的宽口AB的长度为__________ mm.7.(2012湖南长沙)如图,A,P,B,C是半径为8的⊙O上的四点,且满足∠BAC=∠APC =60°.(1)求证:△ABC是等边三角形;(2)求圆心O到BC的距离OD.1.如图,AB是⊙O的直径,弦CD⊥AB,垂足为E,如果AB=10,CD=8,那么线段OE的长为()A .5B .4C .3D .22.如图,直径为10的⊙A 经过点C (0,5)和点O (0,0),B 是y 轴右侧⊙A 优弧上一点,则∠OBC 的余弦值为( )A .12B .34C .32D .453.一条排水管的截面如图所示.已知排水管的截面圆半径OB =10,截面圆圆心O 到水面的距离OC 是6,则水面宽AB 是( )A .16B .10C .8D .64.如图,小华同学设计了一个圆直径的测量器,标有刻度的尺子OA ,OB 在O 点钉在一起,并使它们保持垂直,在测直径时,把O 点靠在圆周上,读得刻度OE =8个单位,OF =6个单位,则圆的直径为( )(第4题图)A .12个单位B .10个单位C .4个单位D .15个单位5.已知如图,在圆内接四边形ABCD 中,∠B =30°,则∠D =__________.(第5题图)6.如图,过A ,C ,D 三点的圆的圆心为E ,过B ,F ,E 三点的圆的圆心为D ,如果∠A =63°,那么∠DBE =__________.(第6题图)7.如图,△ABC 是⊙O 的内接三角形,AD ⊥BC 于D 点,且AC =5,DC =3,AB =42,则⊙O 的直径等于________.(第7题图)8.如图,在圆内接四边形ABCD 中,CD 为∠BCA 外角的平分线,F 为弧AD 上一点,BC =AF ,延长DF 与BA 的延长线交于点E .求证:(1)△ABD 为等腰三角形; (2)AC ·AF =DF ·FE .参考答案导学必备知识 自主测试1.A 2.D 3.60° 4.90°5.3 如图,过点A 作AB ⊥MN ,连接AM ,设MB 为x ,则AM =AO =4-x . 在Rt △AMB 中, ∵AM 2=MB 2+AB 2,∴(4-x )2=x 2+22,解得x =32.∴MN =2MB =3. 探究考点方法触类旁通1.24 连接OA ,当OP ⊥AB 时,OP 最短,此时OP =5 cm ,且AB =2AP .在Rt △AOP 中,AP =OA 2-OP 2=132-52=12,所以AB =24 cm.触类旁通2.B 由题意,得∠A =∠C =40°,由直径所对的圆周角是直角,得∠ADB =90°,根据直角三角形两锐角互余或三角形内角和定理得∠A +∠ABD =90°,从而得∠ABD =50°. 触类旁通3.48° 因为CD 的度数等于84°,所以∠COD =84°.因为OC =OD ,所以∠OCD =48°.因为CA 是∠OCD 的平分线,所以∠ACD =∠ACO =24°,因为OA =OC ,所以∠OAC =∠ACO =24°,因为∠ABD =∠ACD =24°,所以∠ABD +∠CAO =48°.品鉴经典考题1.A ∵OA ⊥OB ,∴∠AOB =90°,∴∠ACB =45°.故选A. 2.D ∵AB 是⊙O 的直径,弦CD ⊥AB ,垂足为M , ∴M 为CD 的中点,即CM =DM ,选项A 成立; B 为CD 的中点,即CB =DB ,选项B 成立; 在△ACM 和△ADM 中,∵AM =AM ,∠AMC =∠AMD =90°,CM =DM , ∴△ACM ≌△ADM (SAS),∴∠ACD =∠ADC ,选项C 成立;而OM 与MD 不一定相等,选项D 不成立. 故选D.3.B ∵AC 是⊙O 的直径,∴∠ABC =90°.∵∠ABC 的平分线BD 交⊙O 于点D ,∴∠ABD =45°.∵∠C =50°,∴∠D =50°,∴∠BAD 的度数是180°-45°-50°=85°.4.8 如图所示,在⊙O 中,连接OA ,过点O 作OD ⊥AB 于点D ,则AB =2AD .∵钢珠的直径是10 mm , ∴钢珠的半径是5 mm.∵钢珠顶端离零件表面的距离为8 mm , ∴OD =3 mm. 在Rt △AOD 中,∵AD =OA 2-OD 2=52-32=4(mm). ∴AB =2AD =2×4=8(mm). 故答案为8.5.2 ∵AB 是⊙O 的弦,OC ⊥AB 于C ,AB =23,∴BC =12AB = 3.∵OC =1,∴在Rt △OBC 中,OB =OC 2+BC 2=12+(3)2=2. 故答案为2.6.150 因为∠AOC =60°,则它所对的弧度为60°,所以∠ABC 所对的弧度为300°.因为∠ABC 是圆周角,所以∠ABC =150°.7.(1)证明:在△ABC 中,∵∠BAC =∠APC =60°, ∠APC =∠ABC ,∴∠ABC =60°, ∴∠ACB =180°-∠BAC -∠ABC =180°-60°-60°=60°,∴△ABC 是等边三角形.(2)解:如图,连接OB ,则OB =8,∠OBD =30°.又∵OD ⊥BC 于D ,∴OD =12OB =4.研习预测试题1.C 2.C 3.A 4.B 5.150° 6.18°7.52 连接AO 并延长交圆于点E ,连接BE .(如图)∵AE 为⊙O 的直径, ∴∠ABE =90°. ∴∠ABE =∠ADC . 又∵∠AEB =∠ACD , ∴△ABE ∽△ADC . ∴AB AD =AEAC.∵在Rt △ADC 中,AC =5,DC =3, ∴AD =4.∴AE =5 2.8.证明:(1)由圆的性质知∠MCD =∠DAB ,∠DCA =∠DBA ,而∠MCD =∠DCA , ∴∠DBA =∠DAB ,故△ABD 为等腰三角形. (2)∵∠DBA =∠DAB ,∴AD BD =.又∵BC =AF ,∴BC AF =,∠CDB =∠FDA ,∴CD DF =,∴CD =DF .由“圆的内接四边形外角等于它的内对角”知, ∠AFE =∠DBA =∠DCA ,① ∠F AE =∠BDE .∴∠CDA =∠CDB +∠BDA =∠FDA +∠BDA =∠BDE =∠F AE ,②由①②得△CDA ∽△F AE .∴AC FE =CDAF,∴AC ·AF =CD ·FE . 而CD =DF ,∴AC ·AF =DF ·FE .。
2020全国各中考数学试题分考点解析汇编圆的有关性质
2020全国各中考数学试题分考点解析汇编圆的有关性质一、选择题1.(2020上海4分)矩形ABCD中,AB=8,BC35=,点P在边AB上,且BP=3AP,如果圆P是以点P 为圆心,PD为半径的圆,那么下列判断正确的是.(A) 点B、C均在圆P外; (B) 点B在圆P外、点C在圆P内;(C) 点B在圆P内、点C在圆P外;(D) 点B、C均在圆P内.【答案】 C。
2020全国各中考数学试题分考点解析汇编圆的有关性质【考点】点与圆的位置关系,矩形的性质,勾股定理。
【分析】根据BP=3AP和AB的长度求得AP=2,然后利用勾股定理求得圆P的半径PD=()2222AP+AD2357=+=。
点B、C到P点的距离分别为:PB=6,PC=()2222PB+BC6359=+=。
∴由PB<半径PD,PC>半径PD,得点B在圆P内、点C在外。
故选C。
2.(2020重庆4分)如图,⊙O是△ABC的外接圆,∠OCB=40°,则∠A的度数等于A、60°B、50°C、40°D、30°【答案】B。
【考点】等腰三角形的性质,三角形内角和定理,圆周角定理。
【分析】在等腰三角形OCB中,由已知∠OCB=40°和三角形内角和定理求得顶角∠COB的度数100°,然后由同弧所对的圆周角是圆心角的度数一半的圆周角定理,求得∠A=∠C0B=50°。
故选B。
3.(2020重庆綦江4分)如图,PA、PB是⊙O的切线,切点是A、B,已知∠P=60°,OA=3,那么∠AOB所对弧的长度为A、6πB、5πC、3πD、2π【答案】D。
【考点】切线的性质,多边形内角和定理,弧长的计算。
【分析】由于PA、PB是⊙O的切线,由此得到∠OAP=∠OBP=90°,而∠P=60°,利用四边形的内角和即可求出∠AOB=120°;利用已知条件和弧长公式即可求出∠AOB所对弧的长度=12032180=ππ⋅⋅。
2020届中考数学 几何专题:与圆有关的性质(含答案)
2020届中考数学 几何专题:与圆有关的性质(含答案)一、选择题1.如图,⊙O 是△ABC 的外接圆,已知∠B =60°,则∠CAO 的度数是( )A .15°B .30°C .45°D .60°2.如图,⊙O 的半径为1,AB 是⊙O 的一条弦,且AB=,则弦AB 所对圆周角的度数为()A.30°B.60° C.30°或150° D.60°或120°3.如图,⊙P 内含于⊙O ,⊙O 的弦AB 切⊙P 于点C ,且AB ∥OP .若阴影部分的面积为,则弦AB 的长为( )A .3B .4C .6D .94.如图,△ABC 内接于⊙O ,若∠OAB =28°,则∠C 的大小为( )A .28°B .56°C .60°D .62°5.如图,弦CD 垂直于⊙O 的直径AB ,垂足为H ,且CD =BD ,则AB 的长为( ) A .2 B .3 C .4 D .53 96.如图,∠AOB 是⊙0的圆心角,∠AOB =80°,则弧AB 所对圆周角∠ACB 的度数是( )A .40°B .45°C .50°D .80°7.如图,已知⊙O 的两条弦AC ,BD 相交于点E ,∠A =70o ,∠C =50o,那么sin ∠AEB 的值为( )A. B. C. D.8.如图,某公园的一座石拱桥是圆弧形(劣弧),其跨度为24米, 拱的半径为13米,则拱高为( ) A .5米 B .8米 C .7米 D .5米9.如图,△ABC 内接于⊙O ,连结OA 、OB ,若∠ABO=25°,则∠C 的度数为( )A .55°B .60°C .65°D .70°10.一根水平放置的圆柱形输水管道横截面如图所示,其中有水部分水面宽0.8米,最深处水深0.2米,则此输水管道的直径是( ).213322233A .0.4米B .0.5米C .0.8米D .1米11.如图,AB 是半圆O 的直径,点P 从点O 出发,沿的路径运动一周.设为,运动时间为,则下列图形能大致地刻画与之间关系的是( )12.如图,AB 是⊙O 的弦,OD ⊥AB 于D 交⊙O 于E ,则下列说法错误..的是( )A .AD =BDB .∠ACB =∠AOEC .D .OD =DE13.如图,⊙O 的直径AB 垂直弦CD 于点P ,且P 是半径OB 的中点,CD =6cm ,则直径AB 的 长是( )A .B .C .D .14.如图,⊙O 的弦AB =6,M 是AB 上任意一点,且OM 最小值为4,则⊙O 的半径为( )A .5B .4C .3D .2OA AB BO --OP s t s t AE BE =O A . B .C .D .15.如图,⊙O 的半径为5,弦AB =8,M 是弦AB 上的动点,则OM 不可能为( )A .2B .3C .4D .516.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,∠CDB =30°,⊙O的半径为,则弦CD 的长为( )A .B .C .D .二、填空题1.如图,AB 为半圆O 的直径,延长AB 到点P ,使BP =AB ,PC 切半圆O 于点C ,点D 是上和点C 不重合的一点,则的度数为 .2.如图,在⊙O 中,∠ACB =20°,则∠AOB =______度.3.如图所示,A 、B 、C 、D 是圆上的点,则 度. cm 33cm 23cm 9cm 12AC D ∠17040A ∠=∠=°,°,C ∠=4.在⊙O 中,已知⊙O 的直径AB 为2,弦AC 长为,弦AD 长为.则DC 2=______5.如图,AB 是⊙O 的直径,点C 在⊙O 上 ,OD∥AC ,若BD =1,则BC 的长为6.已知的直径为上的一点,,则= _ .7.如图,的半径弦点为弦上一动点,则点到圆心的最短距离是 cm .8.如图,AB 为⊙O 的直径,弦CD ⊥AB ,E 为上一点,若∠CEA =,则∠ABD =°.9.如图,AB 是⊙O 的直径,AC 是弦,若∠A CO =32°,则∠COB 的度数等于 . 32O ⊙8cm AB C =,O ⊙30BAC ∠=°BC cm O 5cm OA =,8cm AB =,P AB P O BC 28BABCD 1三、解答题1.如图,AB 是⊙O 的直径,C 是弧BD 的中点,CE⊥AB,垂足为E ,BD 交CE 于点F .(1)求证:CF =BF ;(2)若AD =2,⊙O 的半径为3,求BC 的长.2.已知:如图,⊙O 1与坐标轴交于A (1,0)、B (5,0)两点,点O 1的纵坐标为.求⊙O 1的半径.3.已知:如图,⊙O 的直径AD =2,,∠BAE =90°.(1)求△CAD 的面积;(2)如果在这个圆形区域中,随机确定一个点P ,那么点P 落在四边形ABCD 区域的概率是多少?5图2 BC CD DE ==4.如图,已知AB 是⊙O 的直径,点C 是⊙O 上一点,连结BC ,AC ,过点C 作直线CD⊥AB 于点D ,点E 是AB 上一点,直线CE 交⊙O 于点F ,连结BF ,与直线CD 交于点G .求证:.【参考答案】选择题1. B2.DBF BG BC ⋅=23. C4. D5. B6. A7. D8. B9. C10. D11. C12. D13. D14. A15. A16. B填空题1. 30°2. 403. 304.5. 26. 47. 38. 289. 64º解答题1. 证明:(1) 连结AC ,如图。
2020-2021全国中考数学圆的综合的综合中考真题分类汇总及详细答案
2020-2021全国中考数学圆的综合的综合中考真题分类汇总及详细答案一、圆的综合1.如图,AB 为⊙O 的直径,点E 在⊙O 上,过点E 的切线与AB 的延长线交于点D ,连接BE ,过点O 作BE 的平行线,交⊙O 于点F ,交切线于点C ,连接AC(1)求证:AC 是⊙O 的切线;(2)连接EF ,当∠D= °时,四边形FOBE 是菱形.【答案】(1)见解析;(2)30.【解析】【分析】(1)由等角的转换证明出OCA OCE ∆∆≌,根据圆的位置关系证得AC 是⊙O 的切线. (2)根据四边形FOBE 是菱形,得到OF=OB=BF=EF ,得证OBE ∆为等边三角形,而得出60BOE ∠=︒,根据三角形内角和即可求出答案.【详解】(1)证明:∵CD 与⊙O 相切于点E ,∴OE CD ⊥,∴90CEO ∠=︒,又∵OC BE P ,∴COE OEB ∠=∠,∠OBE=∠COA∵OE=OB ,∴OEB OBE ∠=∠,∴COE COA ∠=∠,又∵OC=OC ,OA=OE ,∴OCA OCE SAS ∆∆≌(), ∴90CAO CEO ∠=∠=︒,又∵AB 为⊙O 的直径,∴AC 为⊙O 的切线;(2)解:∵四边形FOBE 是菱形,∴OF=OB=BF=EF ,∴OE=OB=BE ,∴OBE ∆为等边三角形,∴60BOE ∠=︒,而OE CD ⊥,∴30D ∠=︒.故答案为30.【点睛】本题主要考查与圆有关的位置关系和圆中的计算问题,熟练掌握圆的性质是本题的解题关键.2.如图,△ABC 的内接三角形,P 为BC 延长线上一点,∠PAC=∠B ,AD 为⊙O 的直径,过C 作CG ⊥AD 于E ,交AB 于F ,交⊙O 于G .(1)判断直线PA 与⊙O 的位置关系,并说明理由;(2)求证:AG 2=AF·AB ; (3)若⊙O 的直径为10,AC=25,AB=45,求△AFG 的面积.【答案】(1)PA 与⊙O 相切,理由见解析;(2)证明见解析;(3)3.【解析】试题分析:(1)连接CD ,由AD 为⊙O 的直径,可得∠ACD=90°,由圆周角定理,证得∠B=∠D ,由已知∠PAC=∠B ,可证得DA ⊥PA ,继而可证得PA 与⊙O 相切.(2)连接BG ,易证得△AFG ∽△AGB ,由相似三角形的对应边成比例,证得结论.(3)连接BD ,由AG 2=AF•AB ,可求得AF 的长,易证得△AEF ∽△ABD ,即可求得AE 的长,继而可求得EF 与EG 的长,则可求得答案.试题解析:解:(1)PA 与⊙O 相切.理由如下:如答图1,连接CD ,∵AD 为⊙O 的直径,∴∠ACD=90°.∴∠D+∠CAD=90°.∵∠B=∠D ,∠PAC=∠B ,∴∠PAC=∠D.∴∠PAC+∠CAD=90°,即DA ⊥PA.∵点A 在圆上,∴PA 与⊙O 相切.(2)证明:如答图2,连接BG ,∵AD 为⊙O 的直径,CG ⊥AD ,∴»»AC AD =.∴∠AGF=∠ABG.∵∠GAF=∠BAG ,∴△AGF ∽△ABG.∴AG :AB=AF :AG. ∴AG 2=AF•AB.(3)如答图3,连接BD ,∵AD 是直径,∴∠ABD=90°.∵AG 2=AF•AB ,55∴5∵CG ⊥AD ,∴∠AEF=∠ABD=90°.∵∠EAF=∠BAD ,∴△AEF ∽△ABD. ∴AE AF AB AD =545=,解得:AE=2. ∴221EF AF AE =-=. ∵224EG AG AE =-=,∴413FG EG EF =-=-=. ∴1132322AFG S FG AE ∆=⋅⋅=⨯⨯=.考点:1. 圆周角定理;2.直角三角形两锐角的关系;3. 相切的判定;4.垂径定理;5.相似三角形的判定和性质;6.勾股定理;7.三角形的面积.3.如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD 的延长线于点E,点F为CE的中点,连接DB, DF.(1)求证:DF是⊙O的切线;(2)若DB平分∠ADC,AB=52AD,∶DE=4∶1,求DE的长.【答案】(1)见解析5【解析】分析:(1)直接利用直角三角形的性质得出DF=CF=EF,再求出∠FDO=∠FCO=90°,得出答案即可;(2)首先得出AB=BC即可得出它们的长,再利用△ADC~△ACE,得出AC2=AD•AE,进而得出答案.详解:(1)连接OD.∵OD=CD,∴∠ODC=∠OCD.∵AC为⊙O的直径,∴∠ADC=∠EDC=90°.∵点F为CE的中点,∴DF=CF=EF,∴∠FDC=∠FCD,∴∠FDO=∠FCO.又∵AC⊥CE,∴∠FDO=∠FCO=90°,∴DF是⊙O的切线.(2)∵AC为⊙O的直径,∴∠ADC=∠ABC=90°.∵DB平分∠ADC,∴∠ADB=∠CDB,∴¶AB=¶BC,∴BC=AB2.在Rt△ABC中,AC2=AB2+BC2=100.又∵AC⊥CE,∴∠ACE=90°,∴△ADC~△ACE,∴ACAD =AEAC,∴AC2=AD•AE.设DE为x,由AD:DE=4:1,∴AD=4x,AE=5x,∴100=4x•5x,∴x=5,∴DE=5.点睛:本题主要考查了切线的判定以及相似三角形的判定与性质,正确得出AC2=AD•AE是解题的关键.4.如图1,在Rt△ABC中,AC=8cm,BC=6cm,D、E分别为边AB、BC的中点,连结DE,点P从点A出发,沿折线AD﹣DE运动,到点E停止,点P在AD上以5cm/s的速度运动,在DE上以1cm/s的速度运动,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN.设点P的运动时间为t(s).(1)当点P在线段DE上运动时,线段DP的长为_____cm.(用含t的代数式表示)(2)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式,并写出t的取值范围.(3)如图2,若点O在线段BC上,且CO=1,以点O为圆心,1cm长为半径作圆,当点P 开始运动时,⊙O的半径以0.2cm/s的速度开始不断增大,当⊙O与正方形PQMN的边所在直线相切时,求此时的t值.【答案】(1)t﹣1;(2)S=﹣38t2+3t+3(1<t<4);(3)t=103s.【解析】分析:(1)根据勾股定理求出AB,根据D为AB中点,求出AD,根据点P在AD上的速度,即可求出点P在AD段的运动时间,再求出点P在DP段的运动时间,最后根据DE段运动速度为1c m/s,即可求出DP;(2)由正方形PQMN与△ABC重叠部分图形为五边形,可知点P在DE上,求出DP=t﹣1,PQ =3,根据MN ∥BC ,求出FN 的长,从而得到FM 的长,再根据S =S 梯形FMHD +S 矩形DHQP ,列出S 与t 的函数关系式即可;(3)当圆与边PQ 相切时,可求得r =PE =5﹣t ,然后由r 以0.2c m/s 的速度不断增大,r =1+0.2t ,然后列方程求解即可;当圆与MN 相切时,r =CM =8﹣t =1+0.2t ,从而可求得t 的值.详解:(1)由勾股定理可知:AB =22AC BC +=10. ∵D 、E 分别为AB 和BC 的中点,∴DE =12AC =4,AD =12AB =5, ∴点P 在AD 上的运动时间=55=1s ,当点P 在线段DE 上运动时,DP 段的运动时间为(t ﹣1)s . ∵DE 段运动速度为1c m/s ,∴DP =(t ﹣1)cm .故答案为t ﹣1.(2)当正方形PQMN 与△ABC 重叠部分图形为五边形时,有一种情况,如下图所示.当正方形的边长大于DP 时,重叠部分为五边形,∴3>t ﹣1,t <4,DP >0,∴t ﹣1>0,解得:t >1,∴1<t <4.∵△DFN ∽△ABC ,∴DN FN =AC BC =86=43. ∵DN =PN ﹣PD ,∴DN =3﹣(t ﹣1)=4﹣t , ∴4t FN -=43,∴FN =344t -(), ∴FM =3﹣344t -()=34t , S =S 梯形FMHD +S 矩形DHQP , ∴S =12×(34t +3)×(4﹣t )+3(t ﹣1)=﹣38t 2+3t +3(1<t <4). (3)①当圆与边PQ 相切时,如图:当圆与PQ相切时,r=PE,由(1)可知,PD=(t﹣1)cm,∴PE=DE﹣DP=4﹣(t﹣1)=(5﹣t)cm.∵r以0.2c m/s的速度不断增大,∴r=1+0.2t,∴1+0.2t=5﹣t,解得:t=103s.②当圆与MN相切时,r=CM.由(1)可知,DP=(t﹣1)cm,则PE=CQ=(5﹣t)cm,MQ=3cm,∴MC=MQ+CQ=5﹣t+3=(8﹣t)cm,∴1+0.2t=8﹣t,解得:t=356s.∵P到E点停止,∴t﹣1≤4,即t≤5,∴t=356s(舍).综上所述:当t=103s时,⊙O与正方形PQMN的边所在直线相切.点睛:本题主要考查的是圆的综合应用,解答本题主要应用了勾股定理、相似三角形的性质和判定、正方形的性质,直线和圆的位置关系,依据题意列出方程是解题的关键.5.某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径.如图,若这个输水管道有水部分的水面宽AB=16cm,水最深的地方的高度为4cm,求这个圆形截面的半径.【答案】10cm【解析】分析:先过圆心O作半径CO⊥AB,交AB于点D设半径为r,得出AD、OD的长,在Rt△AOD中,根据勾股定理求出这个圆形截面的半径.详解:解:过点O作OC⊥AB于D,交⊙O于C,连接OB,∵OC⊥AB∴BD=12AB=12×16=8cm由题意可知,CD=4cm∴设半径为xcm,则OD=(x﹣4)cm在Rt△BOD中,由勾股定理得:OD2+BD2=OB2(x﹣4)2+82=x2解得:x=10.答:这个圆形截面的半径为10cm.点睛:此题考查了垂经定理和勾股定理,关键是根据题意画出图形,再根据勾股定理进行求解.6.如图,△ABC内接于⊙O,AB是直径,⊙O的切线PC交BA的延长线于点P,OF∥BC 交AC于点E,交PC于点F,连结AF.(1)判断AF与⊙O的位置关系并说明理由;(2)若AC=24,AF=15,求sin B.【答案】(1) AF与⊙O相切理由见解析;(2)3 5【解析】试题分析:(1)连接OC ,先证∠OCF =90°,再证明△OAF ≌△OCF ,得出∠OAF =∠OCF =90°即可;(2)先求出AE 、EF ,再证明△OAE ∽△AFE ,得出比例式OA AE AF EF =,可求出半径,进而求出直径,由三角函数的定义即可得出结论. 试题解析:解:(1)AF 与⊙O 相切.理由如下:连接OC .如图所示.∵PC 是⊙O 的切线,∴OC ⊥PC ,∴∠OCF =90°.∵OF ∥BC ,∴∠B =∠AOF ,∠OCB =∠COF .∵OB =OC ,∴∠B =∠OCB ,∴∠AOF =∠COF .在△OAF 和△OCF 中,∵OA =OC ,∠AOF =∠COF ,OF =OF ,∴△OAF ≌△OCF (SAS ),∴∠OAF =∠OCF =90°,∴AF 与⊙O 相切;(2)∵△OAF ≌△OCF ,∴∠OAE =∠COE ,∴OE ⊥AC ,AE =12AC =12,∴EF =2215129-=.∵∠OAF =90°,∴△OAE ∽△AFE ,∴OA AE AF EF =,即12159OA =,∴OA =20,∴AB =40,sin B =243405AC AB ==.点睛:本题考查了切线的性质与判定和全等三角形的判定与性质以及相似三角形的判定与性质;熟练掌握切线的证法和三角形相似是解题的关键.7.如图,AN 是⊙M 的直径,NB ∥x 轴,AB 交⊙M 于点C .(1)若点A (0,6),N (0,2),∠ABN=30°,求点B 的坐标;(2)若D 为线段NB 的中点,求证:直线CD 是⊙M 的切线.【答案】(1) B (,2).(2)证明见解析.【解析】 试题分析:(1)在Rt △ABN 中,求出AN 、AB 即可解决问题;(2)连接MC ,NC .只要证明∠MCD=90°即可试题解析:(1)∵A 的坐标为(0,6),N (0,2),∴AN=4,∵∠ABN=30°,∠ANB=90°,∴AB=2AN=8,∴由勾股定理可知:NB=,∴B(,2).(2)连接MC,NC∵AN是⊙M的直径,∴∠ACN=90°,∴∠NCB=90°,在Rt△NCB中,D为NB的中点,∴CD=NB=ND,∴∠CND=∠NCD,∵MC=MN,∴∠MCN=∠MNC,∵∠MNC+∠CND=90°,∴∠MCN+∠NCD=90°,即MC⊥CD.∴直线CD是⊙M的切线.考点:切线的判定;坐标与图形性质.8.问题发现.(1)如图①,Rt△ABC中,∠C=90°,AC=3,BC=4,点D是AB边上任意一点,则CD的最小值为______.(2)如图②,矩形ABCD中,AB=3,BC=4,点M、点N分别在BD、BC上,求CM+MN的最小值.(3)如图③,矩形ABCD中,AB=3,BC=4,点E是AB边上一点,且AE=2,点F是BC边上的任意一点,把△BEF沿EF翻折,点B的对应点为G,连接AG、CG,四边形AGCD的面积是否存在最小值,若存在,求这个最小值及此时BF的长度.若不存在,请说明理由.【答案】(1) 125CD =;(2) CM MN +的最小值为9625.(3) 152【解析】试题分析:(1)根据两种不同方法求面积公式求解;(2)作C 关于BD 的对称点C ',过C '作BC 的垂线,垂足为N ,求C N '的长即可;(3) 连接AC ,则ADC ACG AGCD S S S =+V V 四,321GB EB AB AE ==-=-=,则点G 的轨迹为以E 为圆心,1为半径的一段弧.过E 作AC 的垂线,与⊙E 交于点G ,垂足为M ,由AEM ACB V V ∽求得GM 的值,再由ACD ACG AGCD S S S =+V V 四边形 求解即可.试题解析:(1)从C 到AB 距离最小即为过C 作AB 的垂线,垂足为D ,22ABC CD AB AC BCS ⋅⋅==V , ∴341255AC BC CD AB ⋅⨯===, (2)作C 关于BD 的对称点C ',过C '作BC 的垂线,垂足为N ,且与BD 交于M ,则CM MN +的最小值为C N '的长, 设CC '与BD 交于H ,则CH BD ⊥, ∴BMC BCD V V ∽,且125CH =, ∴C CB BDC ∠=∠',245CC '=,∴C NC BCD 'V V ∽,∴244965525CC BC C N BD ⨯⋅==='', 即CM MN +的最小值为9625.(3)连接AC ,则ADC ACG AGCD S S S =+V V 四,321GB EB AB AE ==-=-=,∴点G 的轨迹为以E 为圆心,1为半径的一段弧. 过E 作AC 的垂线,与⊙E 交于点G ,垂足为M , ∵AEM ACB V V ∽, ∴EM AEBC AC=, ∴24855AE BC EM AC ⋅⨯===, ∴83155GM EM EG =-=-=,∴ACD ACG AGCD S S S =+V V 四边形,113345225=⨯⨯+⨯⨯, 152=. 【点睛】本题考查圆的综合题、最短问题、勾股定理、面积法、两点之间线段最短等知识,解题的关键是利用轴对称解决最值问题,灵活运用两点之间线段最短解决问题.9.如图①,抛物线y =ax 2+bx+c 经过点A (﹣2,0)、B (4,0)、C (0,3)三点.(1)试求抛物线的解析式;(2)点P 是y 轴上的一个动点,连接PA ,试求5PA+4PC 的最小值;(3)如图②,若直线l 经过点T (﹣4,0),Q 为直线l 上的动点,当以A 、B 、Q 为顶点所作的直角三角形有且仅有三个时,试求直线l 的解析式. 【答案】(1)233384y x x =-++;(2)5PA+4PC 的最小值为18;(3)直线l 的解析式为334y x =+或334y x =--.【解析】 【分析】(1)设出交点式,代入C 点计算即可 (2)连接AC 、BC ,过点A 作AE ⊥BC 于点E ,过点P 作PD ⊥BC 于点D ,易证△CDP ∽△COB ,得到比例式PC PD BC OB =,得到PD=45PC ,所以5PA+4PC =5(PA+45PC )=5(PA+PD ),当点A 、P 、D 在同一直线上时,5PA+4PC =5(PA+PD )=5AE 最小,利用等面积法求出AE=185,即最小值为18 (3)取AB 中点F ,以F 为圆心、FA 的长为半径画圆, 当∠BAQ =90°或∠ABQ =90°时,即AQ 或BQ 垂直x 轴,所以只要直线l 不垂直x 轴则一定找到两个满足的点Q 使∠BAQ =90°或∠ABQ =90°,即∠AQB =90°时,只有一个满足条件的点Q ,∴直线l 与⊙F 相切于点Q 时,满足∠AQB =90°的点Q 只有一个;此时,连接FQ ,过点Q 作QG ⊥x 轴于点G ,利用cos ∠QFT 求出QG ,分出情况Q 在x 轴上方和x 轴下方时,分别代入直接l 得到解析式即可 【详解】解:(1)∵抛物线与x 轴交点为A (﹣2,0)、B (4,0) ∴y =a (x+2)(x ﹣4) 把点C (0,3)代入得:﹣8a =3 ∴a =﹣38∴抛物线解析式为y =﹣38(x+2)(x ﹣4)=﹣38x 2+34x+3 (2)连接AC 、BC ,过点A 作AE ⊥BC 于点E ,过点P 作PD ⊥BC 于点D ∴∠CDP =∠COB =90° ∵∠DCP =∠OCB ∴△CDP ∽△COB ∴PC PDBC OB= ∵B (4,0),C (0,3)∴OB =4,OC =3,BC ∴PD =45PC∴5PA+4PC =5(PA+45PC )=5(PA+PD ) ∴当点A 、P 、D 在同一直线上时,5PA+4PC =5(PA+PD )=5AE 最小 ∵A (﹣2,0),OC ⊥AB ,AE ⊥BC ∴S △ABC =12AB•OC =12BC•AE ∴AE =631855AB OC BC ⨯==n ∴5AE =18∴5PA+4PC 的最小值为18.(3)取AB 中点F ,以F 为圆心、FA 的长为半径画圆 当∠BAQ =90°或∠ABQ =90°时,即AQ 或BQ 垂直x 轴,∴只要直线l 不垂直x 轴则一定找到两个满足的点Q 使∠BAQ =90°或∠ABQ =90° ∴∠AQB =90°时,只有一个满足条件的点Q∵当Q 在⊙F 上运动时(不与A 、B 重合),∠AQB =90° ∴直线l 与⊙F 相切于点Q 时,满足∠AQB =90°的点Q 只有一个 此时,连接FQ ,过点Q 作QG ⊥x 轴于点G ∴∠FQT =90°∵F 为A (﹣2,0)、B (4,0)的中点 ∴F (1,0),FQ =FA =3 ∵T (﹣4,0) ∴TF =5,cos ∠QFT =35FQ TF = ∵Rt △FGQ 中,cos ∠QFT =35FG FQ = ∴FG =35FQ =95∴x Q =1﹣9455=-,QG125== ①若点Q 在x 轴上方,则Q (41255-,) 设直线l 解析式为:y =kx+b∴4041255k b k b -+=⎧⎪⎨-+=⎪⎩ 解得:343k b ⎧=⎪⎨⎪=⎩ ∴直线l :334y x =+ ②若点Q 在x 轴下方,则Q (41255--,)∴直线l :334y x =-- 综上所述,直线l 的解析式为334y x =+或334y x =--【点睛】本题是二次函数与圆的综合题,同时涉及到三角函数、勾股定理等知识点,综合度比较高,需要很强的综合能力,第三问能够找到满足条件的Q 点是关键,同时不要忘记需要分情况讨论10.如图,四边形ABCD 内接于⊙O ,∠BAD =90°,AD 、BC 的延长线交于点F ,点E 在CF 上,且∠DEC =∠BAC . (1)求证:DE 是⊙O 的切线;(2)当AB =AC 时,若CE =2,EF =3,求⊙O 的半径.【答案】(1)证明见解析;(235. 【解析】 【分析】(1)先判断出BD 是圆O 的直径,再判断出BD ⊥DE ,即可得出结论;(2)根据余角的性质和等腰三角形的性质得到∠F =∠EDF ,根据等腰三角形的判定得到DE =EF =3,根据勾股定理得到CD 225DE CE =-=,证明△CDE ∽△DBE ,根据相似三角形的性质即可得到结论. 【详解】(1)如图,连接BD .∵∠BAD =90°,∴点O 必在BD 上,即:BD 是直径,∴∠BCD =90°,∴∠DEC +∠CDE =90°. ∵∠DEC =∠BAC ,∴∠BAC +∠CDE =90°.∵∠BAC =∠BDC ,∴∠BDC +∠CDE =90°,∴∠BDE =90°,即:BD ⊥DE . ∵点D 在⊙O 上,∴DE 是⊙O 的切线;(2)∵∠BAF =∠BDE =90°,∴∠F +∠ABC =∠FDE +∠ADB =90°. ∵AB =AC ,∴∠ABC =∠ACB .∵∠ADB =∠ACB ,∴∠F =∠FDE ,∴DE =EF =3. ∵CE =2,∠BCD =90°,∴∠DCE =90°,∴CD 225DE CE =-=.∵∠BDE =90°,CD ⊥BE ,∴∠DCE =∠BDE =90°.∵∠DEC =∠BED ,∴△CDE ∽△DBE ,∴CD BD CE DE =,∴BD 5335⨯==,∴⊙O 的半径35=.【点睛】本题考查了圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定,勾股定理,求出DE =EF 是解答本题的关键.11.已知:如图,四边形ABCD 为菱形,△ABD 的外接圆⊙O 与CD 相切于点D ,交AC 于点E .(1)判断⊙O与BC的位置关系,并说明理由;(2)若CE=2,求⊙O的半径r.【答案】(1)相切,理由见解析;(2)2.【解析】试题分析:(1)根据切线的性质,可得∠ODC的度数,根据菱形的性质,可得CD与BC 的关系,根据SSS,可得三角形全等,根据全等三角形的性质,可得∠OBC的度数,根据切线的判定,可得答案;(2)根据等腰三角形的性质,可得∠ACD=∠CAD,根据三角形外角的性质,∠COD=∠OAD+∠AOD,根据直角三角形的性质,可得OC与OD的关系,根据等量代换,可得答案.(1)⊙O与BC相切,理由如下连接OD、OB,如图所示:∵⊙O与CD相切于点D,∴OD⊥CD,∠ODC=90°.∵四边形ABCD为菱形,∴AC垂直平分BD,AD=CD=CB.∴△ABD的外接圆⊙O的圆心O在AC上,∵OD=OB,OC=OC,CB=CD,∴△OBC≌△ODC.∴∠OBC=∠ODC=90°,又∵OB为半径,∴⊙O与BC相切;(2)∵AD=CD,∴∠ACD=∠CAD.∵AO=OD,∴∠OAD=∠ODA.∵∠COD=∠OAD+∠AOD,∠COD=2∠CAD.∴∠COD=2∠ACD又∵∠COD+∠ACD=90°,∴∠ACD=30°.∴OD=12OC,即r=12(r+2).∴r=2.【点睛】运用了切线的判定与性质,利用了切线的判定与性质,菱形的性质,直角三角形的性质.12.如图,AB是⊙O的直径,AD是⊙O的弦,点F是DA延长线上的一点,过⊙O上一点C作⊙O的切线交DF于点E,CE⊥DF.(1)求证:AC平分∠FAB;(2)若AE=1,CE=2,求⊙O的半径.【答案】(1)证明见解析;(2)5 2【解析】试题分析:(1)连接OC,根据切线的性质和圆周角定理,得出∠OCA=∠OAC与∠CAE=∠OCA,然后根据角平分线的定义可证明;(2)由圆周角定理得到∠BCA=90°,由垂直的定义,可求出∠CEA=90°,从而根据两角对应相等的两三角形相似可证明△ACB∽△AEC,再根据相似三角形的对应边成比例求得AB的长,从而得到圆的半径.试题解析:(1)证明:连接OC.∵CE是⊙O的切线,∴∠OCE =90°∵CE⊥DF,∴∠CEA=90°,∴∠ACE+∠CAE=∠ACE+∠OCA=90°,∴∠CAE=∠OCA∵OC=OA,∴∠OCA=∠OAC.∴∠CAE=∠OAC,即AC平分∠FAB(2)连接BC.∵AB是⊙O的直径,∴∠ACB =∠AEC =90°.又∵∠CAE=∠OAC,∴△ACB∽△AEC,∴AB AC AC AE.∵AE =1,CE =2,∠AEC =90°,∴2222125AC AE CE =+=+=∴()22551AC AB AE===,∴⊙O 的半径为52.13.在△ABC 中,0090,60ACB BAC ∠=∠=,AC=2,P 为△ABC 所在平面内一点,分别连PA,PB ,PC .(1)如图1,已知,APB BPC APC ∠=∠=∠,以A 为旋转中心,将APB ∆顺时针旋转60度,得到AMN ∆.①请画出图形,并求证:C 、P 、M 、N 四点在同一条直线上; ②求PA+PB+PC 的值.(2)如图2,如果点P 满足090BPC ∠=,设Q 为AB 边中点,求PQ 的取值范围.【答案】(1)①详见解析;②7;(231312PQ PQ ≤≤≠且; 【解析】 【分析】(1)①欲证明C 、P 、M 、N 四点在同一条直线上,只要证明∠APC+∠APM=180°,∠AMN+∠AMP=180°即可;②只要证明PA+PB+PC=PC+PM+MN=CN ,在Rt △CBN 中,利用勾股定理求出NC 即可; (2)如图2中,由∠BPC=90°,推出点P 在以BC 为直径的圆上(P 不与B 、C 重合),设BC 的中点为O ,作直线OQ 交⊙O 与P 和P′,可得PQ 3-1,PQ 的最大值为3+1,PQ≠2,由此即可解决问题;【详解】(1)①证明:如图,∵△APB≌△AMN,△APM是等边三角形,∴∠APM=∠APM=60°,∵∠APB=∠BPC=∠APC=120°,∴∠APB=∠BPC=∠APC=∠AMN=120°,∴∠APC+∠APM=180°,∠AMN+∠AMP=180°,∴C、P、M、N四点在同一条直线上;②解:连接BN,易得ΔABN是等边三角形∴∠ABN=60°,∵∠ABC=30°,∴∠NBC=90°,∵AC=2,∴AB=BN=4,BC=23,∵PA=PM,PB=MN,∴PA+PB+PC=PC+PM+MN=CN,在Rt△CBN中,CN=22BC BN27+=,∴PA+PB+PC=27.(2) 如图2中,∵∠BPC=90°,∴点P在以BC为直径的圆上(P不与B、C重合),设BC的中点为O,作直线OQ交⊙O与P和P′,可得PQ3-1,PQ3+1,PQ≠2,∴33+1且PQ≠2.PQ31PQ31PQ2的取值范围是且∴-≤≤+≠【点睛】本题考查几何变换综合题、等边三角形的性质和判定、全等三角形的性质、勾股定理、圆的有关知识等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,学会利用辅助圆解决问题,属于中考压轴题.14.结果如此巧合!下面是小颖对一道题目的解答.题目:如图,Rt△ABC的内切圆与斜边AB相切于点D,AD=3,BD=4,求△ABC的面积.解:设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x.根据切线长定理,得AE=AD=3,BF=BD=4,CF=CE=x.根据勾股定理,得(x+3)2+(x+4)2=(3+4)2.整理,得x2+7x=12.所以S△ABC=12 AC•BC=12(x+3)(x+4)=12(x2+7x+12)=12×(12+12)=12.小颖发现12恰好就是3×4,即△ABC的面积等于AD与BD的积.这仅仅是巧合吗?请你帮她完成下面的探索.已知:△ABC的内切圆与AB相切于点D,AD=m,BD=n.可以一般化吗?(1)若∠C=90°,求证:△ABC的面积等于mn.倒过来思考呢?(2)若AC•BC=2mn,求证∠C=90°.改变一下条件……(3)若∠C=60°,用m、n表示△ABC的面积.【答案】(1)证明见解析;(2)证明见解析;(3)S△ABC=3mn;【解析】【分析】(1)设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,仿照例题利用勾股定理得(x+m)2+(x+n)2=(m+n)2,再根据S△ABC=AC×BC,即可证明S△ABC=mn.(2)由AC•BC=2mn,得x2+(m+n)x=mn,因此AC2+BC2=(x+m)2+(x+n)2=AB2,利用勾股定理逆定理可得∠C=90°.(3)过点A作AG⊥BC于点G,在Rt△ACG中,根据条件求出AG、CG,又根据BG=BC-CG得到BG .在Rt△ABG中,根据勾股定理可得x2+(m+n)x=3mn,由此S△ABC=BC•AG=mn.【详解】设△ABC的内切圆分别与AC、BC相切于点E、F,CE的长为x,根据切线长定理,得:AE=AD=m、BF=BD=n、CF=CE=x,(1)如图1,在Rt△ABC中,根据勾股定理,得:(x+m)2+(x+n)2=(m+n)2,整理,得:x2+(m+n)x=mn,所以S△ABC=AC•BC=(x+m)(x+n)=[x2+(m+n)x+mn]=(mn+mn)=mn;(2)由AC•BC=2mn,得:(x+m)(x+n)=2mn,整理,得:x2+(m+n)x=mn,∴AC2+BC2=(x+m)2+(x+n)2=2[x2+(m+n)x]+m2+n2=2mn+m2+n2=(m+n)2=AB2,根据勾股定理逆定理可得∠C=90°;(3)如图2,过点A作AG⊥BC于点G,在Rt△ACG中,AG=AC•sin60°=(x+m),CG=AC•cos60°=(x+m),∴BG=BC﹣CG=(x+n)﹣(x+m),在Rt△ABG中,根据勾股定理可得:[(x+m)]2+[(x+n)﹣(x+m)]2=(m+n)2,整理,得:x2+(m+n)x=3mn,∴S△ABC=BC•AG=×(x+n)•(x+m)=3[x2+(m+n)x+mn]=3×(3mn+mn)=3mn.【点睛】本题考查了圆中的计算问题、与圆有关的位置关系以及直角三角形,注意掌握方程思想与数形结合思想的应用.15.如图,已知四边形ABCD内接于⊙O,点E在CB的延长线上,连结AC、AE,∠ACB=∠BAE=45°.(1)求证:AE是⊙O的切线;(2)若AB=AD,AC=32,tan∠ADC=3,求BE的长.【答案】(1)证明见解析;(2)52 BE【解析】试题分析:(1)连接OA 、OB ,由圆周角定理得出∠AOB=2∠ACB=90°,由等腰直角三角形的性质得出∠OAB=∠OBA=45°,求出∠OAE=∠OAB+∠BAE=90°,即可得出结论;(2)过点A 作AF ⊥CD 于点F,由AB=AD ,得到∠ACD =∠ACB =45°,在Rt △AFC 中可求得AF=3,在Rt △AFD 中求得DF =1,所以AB =AD = ,CD = CF +DF =4,再证明△ABE ∽△CDA ,得出BE AB DA CD =,即可求出BE 的长度; 试题解析:(1)证明:连结OA ,OB ,∵∠ACB =45°,∴∠AOB =2∠ACB = 90°,∵OA=OB ,∴∠OAB =∠OBA =45°,∵∠BAE =45°,∴∠OAE =∠OAB +∠BAE =90°,∴OA ⊥AE .∵点A 在⊙O 上,∴AE 是⊙O 的切线.(2)解:过点A 作AF ⊥CD 于点F ,则∠AFC =∠AFD =90°.∵AB=AD , ∴AB u u u r =AD u u u r∴∠ACD =∠ACB =45°,在Rt △AFC 中,∵AC =∠ACF =45°,∴AF=CF=AC ·sin ∠ACF =3,∵在Rt △AFD 中, tan ∠ADC=3AF DF=, ∴DF =1,∴AB AD ==且CD = CF +DF =4,∵四边形ABCD 内接于⊙O ,∴∠ABE =∠CDA ,∵∠BAE =∠DCA ,∴△ABE ∽△CDA ,∴BE AB=,DA CD∴10=,410∴5BE=.2。
2019-2020年中考数学试题分类汇编:圆(含答案解析)
2019-2020年中考数学试题分类汇编:圆(含答案解析)2019-2020年中考数学试题分类汇编:圆(含答案解析)⼀.选择题(2015?嘉兴)下列四个图形分别是四届国际数学家⼤会的会标,其中属于中⼼对称图形的有()(A )1个(B )2个(C )3个(D )4个考点:中⼼对称图形.分析:根据中⼼对称的概念对各图形分析判断即可得解.解答:解:第⼀个图形是中⼼对称图形,第⼆个图形不是中⼼对称图形,第三个图形是中⼼对称图形,第四个图形不是中⼼对称图形,所以,中⼼对称图有2个.故选:B .点评:本题考查了中⼼对称图形的概念,中⼼对称图形是要寻找对称中⼼,旋转180度后两部分重合.1.(菏泽)如图,在平⾯直⾓坐标系xOy 中,直线y=3x 经过点A,作AB ⊥x 轴于点B ,将⊿ABO绕点B 逆时针旋转60°得到⊿CBD ,若点B 的坐标为(2,0),则点C 的坐标为A)2,3.(D )1,3.(C )3,2.(B )3,1.(A ----1.(福建龙岩)如图,等边△ABC 的周长为6π,半径是1的⊙O 从与AB相切于点D 的位置出发,在△ABC 外部按顺时针⽅向沿三⾓形滚动,⼜回到与AB 相切于点D 的位置,则⊙O ⾃转了()A .2周B .3周C .4周D .5周2.(兰州)如图,经过原点O 的⊙P 与x 、y 轴分别交于A 、B 两点,点C是劣弧上⼀点,则∠ACB=A. 80°B. 90°C. 100°D. ⽆法确定3.(兰州)如图,⊙O 的半径为2,AB ,CD 是互相垂直的两条直径,点P 是⊙O上任意⼀点(P 与A ,B ,C ,D 不重合),过点P 作PM ⊥AB 于点M ,PN ⊥CD 于点N ,点Q 是MN 的中点,当点P 沿着圆周转过45°时,点Q ⾛过的路径长为 A.4π B. 2π C. 6π D. 3π4.(⼴东) 如题9图,某数学兴趣⼩组将边长为3的正⽅形铁丝框ABCD 变形为以A 为圆⼼,AB 为半径的扇形 (忽略铁丝的粗细),则所得的扇形DAB 的⾯积为A.6B.7C.8D.9A BCOD【答案】D.【解析】显然弧长为BC +CD 的长,即为6,半径为3,则16392S =??=扇形. 5.(⼴东梅州)如图,AB 是⊙O 的弦,AC 是⊙Or 切线,A 为切点,BC 经过圆⼼.若∠B=20°,则∠C 的⼤⼩等于()A .20° B.25° C. 40° D.50°考点:切线的性质..分析:连接OA ,根据切线的性质,即可求得∠C 的度数.解答:解:如图,连接OA ,∵AC 是⊙O 的切线,∴∠OAC=90°,∵OA=OB ,∴∠B=∠OAB=20°,∴∠AOC=40°,∴∠C=50°.故选:D .点评:本题考查了圆的切线性质,以及等腰三⾓形的性质,掌握已知切线时常⽤的辅助线是连接圆⼼与切点是解题的关键.6.(汕尾)如图,AB 是⊙O 的弦,AC 是⊙O 的切线,A 为切点,BC 经过圆⼼。
2020年全国各地中考数学真题及模拟题汇编:圆(附答案解析)
2020年全国各地中考数学真题及模拟题汇编:圆一.选择题(共20小题)1.(2020•射阳县一模)圆的直径是8cm,若圆心与直线的距离是4cm,则该直线和圆的位置关系是()A.相离B.相切C.相交D.相交或相切2.(2020•如东县模拟)若用半径为6,圆心角为120°的扇形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径为()A.1B.2C.3D.4 3.(2020•新北区一模)如图,AB是半圆的直径,点D是弧AC的中点,∠ABC=50°,则∠BCD=()A.105°B.110°C.115°D.120°4.(2020•宁波模拟)将一个底面半径为3cm,高为4cm的圆锥形纸筒沿一条母线剪开,所得的侧面展开图的面积为()A.24πcm2B.18πcm2C.15πcm2D.12πcm2 5.(2020•西城区一模)如图,AB是⊙O的直径,C,D是⊙O上的两点.若∠CAB=65°,则∠ADC的度数为()A.65°B.35°C.32.5°D.25°6.(2020•南岸区校级模拟)如图,圆O是△ABC的外接圆,连接OB,OC,若∠A=55°,则∠OBC的度数为()A.30°B.35°C.45°D.55°7.(2020•海曙区模拟)如图,AB为⊙O的直径,AB=30,点C在⊙O上,∠A=24°,则AĈ的长为()A.9πB.10πC.11πD.12π8.(2020•宁波模拟)如图,⊙O的弦AB=16,M是AB的中点,且OM=6,则⊙O的直径等于()A.12B.16C.20D.24 9.(2020•宁波模拟)圆的一条弦长为6,其弦心距为4,则圆的半径为()A.5B.6C.8D.1010.(2020•朝阳区一模)如图,⊙O的直径AB垂直于弦CD,垂足为E,CD=4,tan C=1 2,则AB的长为()A.2.5B.4C.5D.10 11.(2020•宁波模拟)如图,圆中两条弦AC,BD相交于点P.点D是AĈ的中点,连结AB,。
圆的有关性质(优选真题60道):三年(2021-2023)中考数学真题分项汇编(全国通用)(解析版)
三年(2021-2023)中考数学真题分项汇编(全国通用)圆的有关性质(优选真题60道)一.选择题(共23小题)1.(2023•吉林)如图,AB,AC是⊙O的弦,OB,OC是⊙O的半径,点P为OB上任意一点(点P不与点B重合),连接CP.若∠BAC=70°,则∠BPC的度数可能是()A.70°B.105°C.125°D.155°【分析】利用圆周角定理求得∠BOC的度数,然后利用三角形外角性质及等边对等角求得∠BPC的范围,继而得出答案.【解答】解:如图,连接BC,∵∠BAC=70°,∴∠BOC=2∠BAC=140°,∵OB=OC,=20°,∴∠OBC=∠OCB=180°−140°2∵点P为OB上任意一点(点P不与点B重合),∴0°<∠OCP<20°,∵∠BPC=∠BOC+∠OCP=140°+∠OCP,∴140°<∠BPC<160°,故选:D.【点评】本题考查圆与三角形外角性质的综合应用,结合已知条件求得∠BPC的范围是解题的关键.2.(2023•赤峰)如图,圆内接四边形ABCD中,∠BCD=105°,连接OB,OC,OD,BD,∠BOC=2∠COD.则∠CBD的度数是()A.25°B.30°C.35°D.40°【分析】利用圆内接四边形的性质及圆周角定理求得∠BOD的度数,再结合已知条件求得∠COD的度数,然后利用圆周角定理求得∠CBD的度数.【解答】解:∵四边形ABCD是⊙O的内接四边形,∴∠A+∠BCD=180°,∵∠BCD=105°,∴∠A=75°,∴∠BOD=2∠A=150°,∵∠BOC=2∠COD,∴∠BOD=3∠COD=150°,∴∠COD=50°,∠COD=25°,∴∠CBD=12故选:A.【点评】本题考查圆内接四边形性质及圆周角定理,结合已知条件求得∠BOD的度数是解题的关键.3.如图,点A,B,C在⊙O上,若∠C=55°,则∠AOB的度数为()A.95°B.100°C.105°D.110°【分析】根据同弧所对的圆周角是圆心角的一半即可得到答案.【解答】解:∵∠AOB =2∠C ,∠C =55°,∴∠AOB =110°,故选:D .【点评】本题考查圆周角定理的应用,解题的关键是掌握同弧所对的圆周角是圆心角的一半.4.(2023•广东)如图,AB 是⊙O 的直径,∠BAC =50°,则∠D =( )A .20°B .40°C .50°D .80°【分析】由AB 是⊙O 的直径,得∠ACB =90°,而∠BAC =50°,即得∠ABC =40°,故∠D =∠ABC =40°,【解答】解:∵AB 是⊙O 的直径,∴∠ACB =90°,∴∠BAC+∠ABC =90°,∵∠BAC =50°,∴∠ABC =40°,∵AĈ=AC ̂, ∴∠D =∠ABC =40°,故选:B .【点评】本题考查圆周角定理的应用,解题的关键是掌握直径所对的圆周角是直角和同弧所对的圆周角相等.5.(2023•广西)赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为37m ,拱高约为7m ,则赵州桥主桥拱半径R 约为( )A .20mB .28mC .35mD .40m【分析】设主桥拱半径R ,根据垂径定理得到AD =372,再利用勾股定理列方程求解,即可得到答案. 【解答】解:由题意可知,AB =37m ,CD =7m ,设主桥拱半径为Rm ,∴OD =OC ﹣CD =(R ﹣7)m ,∵OC 是半径,OC ⊥AB ,∴AD =BD =12AB =372m ,在RtADO 中,AD2+OD2=OA2,∴(372)2+(R ﹣7)2=R2, 解得R =156556≈28.故选:B .【点评】本题主要考查垂径定理的应用,涉及勾股定理,解题的关键是用勾股定理列出关于R 的方程解决问题.6.(2023•广元)如图,AB 是⊙O 的直径,点C ,D 在⊙O 上,连接CD ,OD ,AC ,若∠BOD =124°,则∠ACD 的度数是( )A .56°B .33°C .28°D .23°【分析】先由平角定义求得∠AOD =56°,再利用圆周角定理可求∠ACD .【解答】解:∵∠BOD =124°,∴∠AOD =180°﹣124°=56°,∴∠ACD =12∠AOD =28°,【点评】本题主要考查的是圆周角定理的应用,利用平角定义求得∠AOD =56°是解决本题的关键.7.(2023•温州)如图,四边形ABCD 内接于⊙O ,BC ∥AD ,AC ⊥BD .若∠AOD =120°,AD =√3,则∠CAO 的度数与BC 的长分别为( )A .10°,1B .10°,√2C .15°,1D .15°,√2【分析】由平行线的性质,圆周角定理,垂直的定义,推出∠AOB =∠COD =90°,∠CAD =∠BDA =45°,求出∠BOC =60°,得到△BOC 是等边三角形,得到BC =OB ,由等腰三角形的性质求出圆的半径长,求出∠OAD 的度数,即可得到BC 的长,∠CAO 的度数.【解答】解:∵BC ∥AD ,∴∠DBC =∠ADB ,∴AB̂=CD ̂, ∴∠AOB =∠COD ,∠CAD =∠∵DB ⊥AC ,∴∠AED =90°,∴∠CAD =∠BDA =45°,∴∠AOB =2∠ADB =90°,∠COD =2∠CAD =90°,∵∠AOD =120°,∴∠BOC =360°﹣90°﹣90°﹣120°=60°,∵OB =OC ,∴△OBC 是等边三角形,∴BC =OB ,∵OA =OD ,∠AOD =120°,∴∠OAD =∠ODA =30°,∴AD =√3OA =√3,∴BC=1,∴∠CAO=∠CAD﹣∠OAD=45°﹣30°=15°.故选:C.【点评】本题考查圆周角定理,平行线的性质,等边三角形的判定和性质,等腰三角形的性质,关键是由圆周角定理推出∠AOB=∠COD=90°,∠CAD=∠BDA=45°,证明△OBC是等边三角形.8.(2023•山西)如图,四边形ABCD内接于⊙O,AC,BD为对角线,BD经过圆心O.若∠BAC=40°,则∠DBC的度数为()A.40°B.50°C.60°D.70°【分析】由圆周角定理可得∠BCD=90°,∠BDC=∠BAC=40°,再利用直角三角形的性质可求解.【解答】解:∵BD经过圆心O,∴∠BCD=90°,∵∠BDC=∠BAC=40°,∴∠DBC=90°﹣∠BDC=50°,故选:B.【点评】本题主要考查圆周角定理,直角三角形的性质,掌握圆周角定理是解题的关键.9.(2023•宜昌)如图,OA,OB,OC都是⊙O的半径,AC,OB交于点D.若AD=CD=8,OD=6,则BD的长为()A .5B .4C .3D .2【分析】根据垂径定理得OB ⊥AC ,在根据勾股定理得OA =√AD 2+OD 2=√82+62=10,即可求出答案.【解答】解:∵AD =CD =8,∴OB ⊥AC ,在Rt △AOD 中,OA =√AD 2+OD 2=√82+62=10,∴OB =10,∴BD =10﹣6=4.故选:B .【点评】本题考查了垂径定理和勾股定理,由垂径定理得OB ⊥AC 是解题的关键.10.(2023•枣庄)如图,在⊙O 中,弦AB ,CD 相交于点P .若∠A =48°,∠APD =80°,则∠B 的度数为( )A .32°B .42°C .48°D .52°【分析】根据外角∠APD ,求出∠C ,由同弧所对圆周角相等即可求出∠B .【解答】解:∵∠A =48°,∠APD =80°,∴∠C =80°﹣48°=32°,∵AD̂=AD ̂, ∴∠B =∠C =32°.故选:A .【点评】本题考查了圆周角的性质的应用,三角形外角的性质应用是解题关键.11.(2023•杭州)如图,在⊙O中,半径OA,OB互相垂直,点C在劣弧AB上.若∠ABC=19°,则∠BAC =()A.23°B.24°C.25°D.26°【分析】连接OC,根据圆周角定理可求解∠AOC的度数,结合垂直的定义可求解∠BOC 的度数,再利用圆周角定理可求解.【解答】解:连接OC,∵∠ABC=19°,∴∠AOC=2∠ABC=38°,∵半径OA,OB互相垂直,∴∠AOB=90°,∴∠BOC=90°﹣38°=52°,∴∠BAC=1∠BOC=26°,2故选:D.【点评】本题主要考查圆周角定理,掌握圆周角定理是解题的关键.12.(2023•湖北)如图,在⊙O中,直径AB与弦CD相交于点P,连接AC,AD,BD,若∠C=20°,∠BPC =70°,则∠ADC=()A.70°B.60°C.50°D.40°【分析】先根据外角性质得∠BAC=∠BPC﹣∠C=50°=∠BDC,,再由AB是⊙O的直径得∠ADB=90°即可求得∠ADC.【解答】解:∵∠C=20°,∠BPC=70°,∴∠BAC=∠BPC﹣∠C=50°=∠BDC,∵AB是⊙O的直径,∴∠ADB=90°,∴∠ADC=∠ADB﹣∠BDC=40°,故选:D.【点评】本题主要考查了三角形的外角性质以及直径所对的圆周角是直角,熟练掌握各知识点是解决本题的关键.13.(2022•泰安)如图,AB是⊙O的直径,∠ACD=∠CAB,AD=2,AC=4,则⊙O的半径为()A.2√3B.3√2C.2√5D.√5【分析】根据圆周角定理及推论解答即可.【解答】解:方法一:连接CO并延长CO交⊙O于点E,连接AE,∵OA=OC,∴∠OAC=∠OCA,∵∠ACD=∠CAB,∴∠ACD=∠ACO,∴AE=AD=2,∵CE是直径,∴∠EAC=90°,在Rt△EAC中,AE=2,AC=4,∴EC=√22+42=2√5,∴⊙O 的半径为√5.方法二:连接BC ,∵AB 是直径,∴∠ACB =90°,∵∠ACD =∠CAB ,∴AD̂=BC ̂, ∴AD =BC =2,在Rt △ABC 中,AB =√AC 2+BC 2=2√5,∴圆O 的半径为√5.故选:D .【点评】本题主要考查了圆周角定理及推论,熟练掌握这些性质定理是解决本题的关键.14.(2022•贵阳)如图,已知∠ABC =60°,点D 为BA 边上一点,BD =10,点O 为线段BD 的中点,以点O 为圆心,线段OB 长为半径作弧,交BC 于点E ,连接DE ,则BE 的长是( )A .5B .5√2C .5√3D .5√5【分析】解法一:根据题意和等边三角形的判定,可以得到BE 的长.解法二:先根据直径所对的圆周角是90°,然后根据直角三角形的性质和直角三角形中30°角所对的直角边是斜边的一半,可以求得BE的长.【解答】解:解法一:连接OE,BD=5,由已知可得,OE=OB=12∵∠ABC=60°,∴△BOE是等边三角形,∴BE=OB=5,故选:A.解法二:由题意可得,BD为⊙O的直径,∴∠BED=90°,∵∠ABC=60°,∴∠EDB=30°,∵BD=10,∴BE=5,故选:A.【点评】本题考查等边三角形的判定与性质、与圆相关的知识,解答本题的关键是明确题意,求出△OBE 的形状.15.(2022•温州)如图,AB,AC是⊙O的两条弦,OD⊥AB于点D,OE⊥AC于点E,连结OB,OC.若∠DOE=130°,则∠BOC的度数为()A.95°B.100°C.105°D.130°【分析】根据四边形的内角和等于360°计算可得∠BAC=50°,再根据圆周角定理得到∠BOC=2∠BAC,进而可以得到答案.【解答】解:∵OD⊥AB,OE⊥AC,∴∠ADO=90°,∠AEO=90°,∵∠DOE=130°,∴∠BAC=360°﹣90°﹣90°﹣130°=50°,∴∠BOC=2∠BAC=100°,故选:B.【点评】本题考查的是圆周角定理,在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.16.(2022•贵港)如图,⊙O是△ABC的外接圆,AC是⊙O的直径,点P在⊙O上,若∠ACB=40°,则∠BPC的度数是()A.40°B.45°C.50°D.55°【分析】根据直径所对的圆周角是直角得到∠ABC=90°,进而求出∠CAB,根据圆周角定理解答即可.【解答】解:∵AC是⊙O的直径,∴∠ABC=90°,∴∠ACB+∠CAB=90°,∵∠ACB=40°,∴∠CAB=90°﹣40°=50°,由圆周角定理得:∠BPC=∠CAB=50°,故选:C.【点评】本题考查的是圆周角定理,掌握直径所对的圆周角是直角是解题的关键.17.(2022•株洲)如图所示,等边△ABC的顶点A在⊙O上,边AB、AC与⊙O分别交于点D、E,点F ̂上一点,且与D、E不重合,连接DF、EF,则∠DFE的度数为()是劣弧DEA.115°B.118°C.120°D.125°【分析】根据圆的内接四边形对角互补及等边△ABC的每一个内角是60°,求出∠EFD=120°.【解答】解:四边形EFDA是⊙O内接四边形,∴∠EFD+∠A=180°,∵等边△ABC的顶点A在⊙O上,∴∠A=60°,∴∠EFD=120°,故选:C.【点评】本题考查了圆内接四边形的性质、等边三角形的性质,掌握两个性质定理的应用是解题关键.18.(2022•荆门)如图,CD是圆O的弦,直径AB⊥CD,垂足为E,若AB=12,BE=3,则四边形ACBD 的面积为()A.36√3B.24√3C.18√3D.72√3【分析】根据AB=12,BE=3,求出OE=3,OC=6,并利用勾股定理求出EC,根据垂径定理求出CD,即可求出四边形的面积.【解答】解:如图,连接OC,∵AB=12,BE=3,∴OB=OC=6,OE=3,∵AB⊥CD,在Rt△COE中,EC=√OC2−OE2=√36−9=3√3,∴CD=2CE=6√3,∴四边形ACBD的面积=12AB⋅CD=12×12×6√3=36√3.故选:A.【点评】本题考查了垂径定理,解题的关键是熟练运用定理.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.19.(2021•青海)如图是一位同学从照片上剪切下来的海上日出时的画面,“图上”太阳与海平线交于A,B两点,他测得“图上”圆的半径为10厘米,AB=16厘米.若从目前太阳所处位置到太阳完全跳出海平面的时间为16分钟,则“图上”太阳升起的速度为()A.1.0厘米/分B.0.8/分C.1.2厘米/分D.1.4厘米/分【分析】连接OA,过点O作OD⊥AB于D,由垂径定理求出AD的长,再由勾股定理求出OD的长,然后计算出太阳在海平线以下部分的高度,即可求解.【解答】解:设“图上”圆的圆心为O,连接OA,过点O作OD⊥AB于D,如图所示:∵AB=16厘米,∴AD=12AB=8(厘米),∵OA=10厘米,∴OD=√OA2−AD2=√102−82=6(厘米),∴海平线以下部分的高度=OA+OD=10+6=16(厘米),∵太阳从所处位置到完全跳出海平面的时间为16分钟,∴“图上”太阳升起的速度=16÷16=1.0(厘米/分),故选:A.【点评】本题考查的是垂径定理的运用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.20.(2021•攀枝花)如图,在矩形ABCD中,已知AB=3,BC=4,点P是BC边上一动点(点P不与B,C重合),连接AP,作点B关于直线AP的对称点M,则线段MC的最小值为()A.2B.52C.3D.√10【分析】当A,M,C三点共线时,线段CM的长度最小,求出此时CM的长度即可.【解答】解:连接AM,∵点B和M关于AP对称,∴AB=AM=3,∴M在以A为圆心,3为半径的圆上,∴当A,M,C三点共线时,CM最短,∵AC=√32+42=5,AM=AB=3,∴CM=5﹣3=2,故选:A.【点评】本题主要考查圆的性质,关键是要考虑到点M在以A为圆心,3为半径的圆上.21.(2021•吉林)如图,四边形ABCD内接于⊙O,点P为边AD上任意一点(点P不与点A,D重合)连接CP.若∠B=120°,则∠APC的度数可能为()A.30°B.45°C.50°D.65°【分析】由圆内接四边形的性质得∠D度数为60°,再由∠APC为△PCD的外角求解.【解答】解:∵四边形ABCD内接于⊙O,∴∠B+∠D=180°,∵∠B=120°,∴∠D=180°﹣∠B=60°,∵∠APC为△PCD的外角,∴∠APC>∠D,只有D满足题意.故选:D.22.(2021•雅安)如图,四边形ABCD为⊙O的内接四边形,若四边形OBCD为菱形,则∠BAD的度数为()A.45°B.60°C.72°D.36°【分析】根据圆内接四边形的性质得到∠BAD+∠BCD=180°,根据圆周角定理得到∠BOD=2∠BAD,根据菱形的性质得到∠BOD=∠BCD,计算即可.【解答】解:∵四边形ABCD为⊙O的内接四边形,∴∠BAD+∠BCD =180°,由圆周角定理得:∠BOD =2∠BAD ,∵四边形OBCD 为菱形,∴∠BOD =∠BCD ,∴∠BAD+2∠BAD =180°,解得:∠BAD =60°,故选:B .【点评】本题考查的是圆内接四边形的性质、圆周角定理、菱形的性质,掌握圆内接四边形的对角互补是解题的关键.23.(2021•眉山)如图,在以AB 为直径的⊙O 中,点C 为圆上的一点,BĈ=3AC ̂,弦CD ⊥AB 于点E ,弦AF 交CE 于点H ,交BC 于点G .若点H 是AG 的中点,则∠CBF 的度数为( )A .18°B .21°C .22.5°D .30°【分析】由圆周角定理可求∠ACB =90°,由弧的关系得出角的关系,进而可求∠ABC =22.5°,∠CAB =67.5CAH =∠ACE =22.5°,即可求解.【解答】解:∵AB 是直径,∴∠ACB =90°,∴∠ABC+∠CAB =90°,∵BĈ=3AC ̂, ∴∠CAB =3∠ABC ,∴∠ABC =22.5°,∠CAB =67.5°,∵CD ⊥AB ,∴∠ACE =22.5°,∵点H 是AG 的中点,∠ACB =90°,∴AH =CH =HG ,∴∠CAH =∠ACE =22.5°,∵∠CAF =∠CBF ,∴∠CBF =22.5°,故选:C .【点评】本题考查了圆周角定理,圆心角、弧、弦的关系,直角三角形的性质,求出∠CAB 的度数是本题的关键.二.填空题(共25小题)24.(2023•长沙)如图,点A ,B ,C 在半径为2的⊙O 上,∠ACB =60°,OD ⊥AB ,垂足为E ,交⊙O 于点D ,连接OA ,则OE 的长度为 .【分析】连接OB ,利用圆周角定理及垂径定理易得∠AOD =60°,则∠OAE =30°,结合已知条件,利用直角三角形中30°角对的直角边等于斜边的一半即可求得答案.【解答】解:如图,连接OB ,∵∠ACB =60°,∴∠AOB =2∠ACB =120°,∵OD ⊥AB ,∴AD̂=BD ̂,∠OEA =90°, ∴∠AOD =∠BOD =12∠AOB =60°,∴∠OAE =90°﹣60°=30°,∴OE =12OA =12×2=1,故答案为:1.【点评】本题考查圆与直角三角形性质的综合应用,结合已知条件求得∠AOD =60°是解题的关键.25.(2023•深圳)如图,在⊙O中,AB为直径,C为圆上一点,∠BAC的角平分线与⊙O交于点D,若∠ADC=20°,则∠BAD=°.【分析】先根据直径所对的圆周角是直角可得∠ACB=90°,再利用圆周角定理可得∠ADC=∠ABC=20°,然后利用直角三角形的两个锐角互余可得∠BAC=70°,从而利用角平分线的定义进行计算,即可解答.【解答】解:∵AB为⊙O的直径,∴∠ACB=90°,∵∠ADC=20°,∴∠ADC=∠ABC=20°,∴∠BAC=90°﹣∠ABC=70°,∵AD平分∠BAC,∠BAC=35°,∴∠BAD=12故答案为:35.【点评】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.26.(2023•东营)“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问:径几何?”转化为现在的数学语言表达就是:如图,CD为⊙O的直径,弦AB⊥CD,垂足为E,CE=1寸,AB=10寸,则直径CD的长度为寸.【分析】连接OA ,设⊙O 的半径是r 寸,由垂径定理得到AE =12AB =5寸,由勾股定理得到r2=(r ﹣1)2+52,求出r ,即可得到圆的直径长.【解答】解:连接OA ,设⊙O 的半径是r 寸,∵直径CD ⊥AB ,∴AE =12AB =12×10=5寸,∵CE =1寸,∴OE =(r ﹣1)寸,∵OA2=OE2+AE2,∴r2=(r ﹣1)2+52,∴r =13,∴直径CD 的长度为2r =26寸.故答案为:26.【点评】本题考查垂径定理的应用,勾股定理的应用,关键是连接OA 构造直角三角形,应用垂径定理,勾股定理列出关于圆半径的方程.27.(2023•郴州)如图,某博览会上有一圆形展示区,在其圆形边缘的点P 处安装了一台监视器,它的监控角度是55°,为了监控整个展区,最少需要在圆形边缘上共安装这样的监视器 台.【分析】根据一条弧所对的圆周角等于它所对的圆心角的一半,得该圆周角所对的弧所对的圆心角是110°,则共需安装360°÷110°=3311≈4台.【解答】解:∵∠P=55°,∴∠P所对弧所对的圆心角是110°,,∵360°÷110°=3311∴最少需要在圆形边缘上共安装这样的监视器4台.故答案为:4.【点评】此题考查了要圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.注意把实际问题转化为数学问题,能够把数学和生活联系起来.28.(2023•绍兴)如图,四边形ABCD内接于圆O,若∠D=100°,则∠B的度数是.【分析】由圆内接四边形的性质:圆内接四边形的对角互补,即可得到答案.【解答】解:∵四边形ABCD内接于圆O,∴∠B+∠D=180°,∵∠D=100°,∴∠B=80°.故答案为:80°.【点评】本题考查圆内接四边形的性质,关键是掌握圆内接四边形的性质.29.(2023•南充)如图,AB是⊙O的直径,点D,M分别是弦AC,弧AC的中点,AC=12,BC=5,则MD的长是.【分析】根据垂径定理得OM⊥AC,根据圆周角定理得∠C=90°,根据勾股定理得AB=√122+52=13,BC=2.5,OD∥BC,所以OD⊥AC,MD=OM﹣OD=6.5﹣2.5=4.根据三角形中位线定理得OD=12【解答】解:∵点M是弧AC的中点,∴OM⊥AC,∵AB是⊙O的直径,∴∠C=90°,∵AC=12,BC=5,∴AB=√122+52=13,∴OM=6.5,∵点D是弦AC的中点,∴OD=1BC=2.5,OD∥BC,2∴OD⊥AC,∴O、D、M三点共线,∴MD=OM﹣OD=6.5﹣2.5=4.故答案为:4.【点评】本题考查了垂径定理,圆周角定理,勾股定理,三角形中位线定理,熟练掌握和运用这些定理是解题的关键.30.(2022•锦州)如图,四边形ABCD内接于⊙O,AB为⊙O的直径,∠ADC=130°,连接AC,则∠BAC 的度数为.【分析】利用圆内接四边形的性质和∠ADC的度数求得∠B的度数,利用直径所对的圆周角是直角得到∠ACB =90°,然后利用直角三角形的两个锐角互余计算即可.【解答】解:∵四边形ABCD内接于⊙O,∠ADC=130°,∴∠B=180°﹣∠ADC=180°﹣130°=50°,∵AB为⊙O的直径,∴∠ACB=90°,∴∠CAB=90°﹣∠B=90°﹣50°=40°,故答案为:40°.【点评】本题考查了圆内接四边形的性质及圆周角定理的知识,解题的关键是了解圆内接四边形的对角互补.31.(2022•上海)如图所示,小区内有个圆形花坛O ,点C 在弦AB 上,AC =11,BC =21,OC =13,则这个花坛的面积为 .(结果保留π)【分析】根据垂径定理,勾股定理求出OB2,再根据圆面积的计算方法进行计算即可.【解答】解:如图,连接OB ,过点O 作OD ⊥AB 于D ,∵OD ⊥AB ,OD 过圆心,AB 是弦,∴AD =BD =12AB =12(AC+BC )=12×(11+21)=16, ∴CD =BC ﹣BD =21﹣16=5,在Rt △COD 中,OD2=OC2﹣CD2=132﹣52=144,在Rt △BOD 中,OB2=OD2+BD2=144+256=400,∴S ⊙O =π×OB2=400π,故答案为:400π.【点评】本题考查垂径定理、勾股定理以及圆面积的计算,掌握垂径定理、勾股定理以及圆面积的计算公式是正确解答的前提.32.(2022•日照)一圆形玻璃镜面损坏了一部分,为得到同样大小的镜面,工人师傅用直角尺作如图所示的测量,测得AB =12cm ,BC =5cm ,则圆形镜面的半径为 .【分析】连接AC,根据∠ABC=90°得出AC是圆形镜面的直径,再根据勾股定理求出AC即可.【解答】解:连接AC,∵∠ABC=90°,且∠ABC是圆周角,∴AC是圆形镜面的直径,由勾股定理得:AC=√AB2+BC2=√122+52=13(cm),所以圆形镜面的半径为13cm,2cm.故答案为:132【点评】本题考查了圆周角定理和勾股定理等知识点,能根据圆周角定理得出AC是圆形镜面的直径是解此题的关键.33.(2022•阿坝州)如图,点A,B C在⊙O上,若∠ACB=30°,则∠AOB的大小为.【分析】根据圆周角定理即可得出答案.∠AOB,∠ACB=30°,【解答】解:∵∠ACB=12∴∠AOB=2∠ACB=2×30°=60°.故答案为:60°.【点评】本题主要考查了圆周角定理,熟练掌握圆周角定理是解题的关键.34.(2022•湖州)如图,已知AB是⊙O的弦,∠AOB=120°,OC⊥AB,垂足为C,OC的延长线交⊙O ̂所对的圆周角,则∠APD的度数是.于点D.若∠APD是AD【分析】由垂径定理得出AD̂=BD ̂,由圆心角、弧、弦的关系定理得出∠AOD =∠BOD ,进而得出∠AOD =60°,由圆周角定理得出∠APD =12∠AOD =30°,得出答案.【解答】解:∵OC ⊥AB ,∴AD̂=BD ̂, ∴∠AOD =∠BOD ,∵∠AOB =120°,∴∠AOD =∠BOD =12∠AOB =60°,∴∠APD =12∠AOD =12×60°=30°,故答案为:30°.【点评】本题考查了圆周角定理,垂径定理,圆心角、弧、弦的关系,熟练掌握圆周角定理,垂径定理,35.(2022•自贡)一块圆形玻璃镜面碎成了几块,其中一块如图所示,测得弦AB 长20厘米,弓形高CD 为2厘米,则镜面半径为 厘米.【分析】根据题意,弦AB 长20厘米,弓形高CD 为2厘米,根据勾股定理和垂径定理可以求得圆的半径.【解答】解:如图,点O 是圆形玻璃镜面的圆心,连接OC ,则点C ,点D ,点O 三点共线,由题意可得:OC ⊥AB ,AC =12AB =10(厘米),设镜面半径为x 厘米,由题意可得:x2=102+(x ﹣2)2,∴x =26,∴镜面半径为26厘米,故答案为:26.【点评】本题考查了垂径定理和勾股定理的应用,解决与弦有关的问题时,往往需构造以半径、弦心距和弦长的一半为三边的直角三角形,由勾股定理可求解.36.(2022•黄石)如图,圆中扇子对应的圆心角α(α<180°)与剩余圆心角β的比值为黄金比时,扇子会显得更加美观,若黄金比取0.6,则β﹣α的度数是 .【分析】根据已知,列出关于α,β的方程组,可解得α,β的度数,即可求出答案.【解答】解:根据题意得:{αβ=0.6α+=360°,解得{α=135°β=225°, ∴β﹣α=225°﹣135°=90°,故答案为:90°.【点评】本题考查圆心角,解题的关键是根据周角为360°和已知,列出方程组.37.(2022•荆州)如图,将一个球放置在圆柱形玻璃瓶上,测得瓶高AB =20cm ,底面直径BC =12cm ,球的最高点到瓶底面的距离为32cm ,则球的半径为 cm (玻璃瓶厚度忽略不计).【分析】设球心为O,过O作OM⊥AD于M,连接OA,设球的半径为rcm,由垂径定理得AM=DM=1AD2=6(cm)然后在Rt△OAM中,由勾股定理得出方程,解方程即可.【解答】解:如图,设球心为O,过O作OM⊥AD于M,连接OA,设球的半径为rcm,由题意得:AD=12cm,OM=32﹣20﹣r=(12﹣r)(cm),AD=6(cm),由垂径定理得:AM=DM=12在Rt△OAM中,由勾股定理得:AM2+OM2=OA2,即62+(12﹣r)2=r2,解得:r=7.5,即球的半径为7.5cm,故答案为:7.5.【点评】本题考查了垂径定理的应用以及勾股定理的应用等知识,熟练掌握垂径定理,由勾股定理得出方程是解题的关键.38.(2021•盘锦)如图,在平面直角坐标系xOy中,点A在x轴负半轴上,点B在y轴正半轴上,⊙D经过A,B,O,C四点,∠ACO=120°,AB=4,则圆心点D的坐标是.【分析】先利用圆内接四边形的性质得到∠ABO=60°,再根据圆周角定理得到AB为⊙D的直径,则D点为AB的中点,接着利用含30度的直角三角形三边的关系得到OB=2,OA=2√3,所以A(﹣2√3,0),B (0,2),然后利用线段的中点坐标公式得到D点坐标.【解答】解:∵四边形ABOC为圆的内接四边形,∴∠ABO+∠ACO=180°,∴∠ABO=180°﹣120°=60°,∵∠AOB=90°,∴AB为⊙D的直径,∴D点为AB的中点,在Rt△ABO中,∵∠ABO=60°,AB=2,∴OB=12∴OA=√3OB=2√3,∴A(﹣2√3,0),B(0,2),∴D点坐标为(−√3,1).故答案为(−√3,1).【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的90°的圆周角所对的弦是直径.也考查了坐标与图形性质.39.(2021•黑龙江)如图,在⊙O中,AB是直径,弦AC的长为5cm,点D在圆上且∠ADC=30°,则⊙O 的半径为cm.【分析】连接OC,证明△AOC是等边三角形,可得结论.【解答】解:如图,连接OC.∵∠AOC=2∠ADC,∠ADC=30°,∴∠AOC=60°,∵OA=OC,∴△AOC是等边三角形,∴OA=AC=5(cm),∴⊙O的半径为5cm.故答案为:5.【点评】本题考查圆周角定理,等边三角形的判定和性质等知识,解题的关键是证明△AOC是等边三角形.40.(2021•天津)如图,在每个小正方形的边长为1的网格中,△ABC的顶点A,C均落在格点上,点B 在网格线上.(Ⅰ)线段AC的长等于;(Ⅱ)以AB O,在线段AB上有一点P,满足AP=AC.请用无刻度的直尺,在如图所示的网格中,画出点P,并简要说明点P的位置是如何找到的(不要求证明).【分析】(Ⅰ)利用勾股定理求解即可.(Ⅱ)取BC与网格线的交点D,连接OD延长OD交⊙O于点E,连接AE交BC于点G,连接BE,延长AC 交BE的延长线于F,连接FG延长FG交AB于点P,点P即为所求.【解答】解:(Ⅰ)AC=√22+12=√5.故答案为:√5.(Ⅱ)如图,点P即为所求.故答案为:如图,取BC与网格线的交点D,则点D为BC中点,连接OD并延长OD交⊙O于点E,连接AE 交BC于点G,连接BE,延长AC交BE的延长线于F,则OE为△BFA的中位线,则AB=AF,连接FG延长FG交AB于点P,则BG=FG,∠AFG=∠ABG,即△FAP≌△BAC,则点P即为所求.【点评】本题考查圆周角定理,勾股定理,等腰三角形的判定和性质,全等三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.41.(2021•黑龙江)如图,在Rt△AOB中,∠AOB=90°,OA=4,OB=6,以点O为圆心,3为半径的⊙O,与OB交于点C,过点C作CD⊥OB交AB于点D,点P是边OA上的动点,则PC+PD的最小值为.【分析】延长CO交⊙O于点E,连接ED,交AO于点P,则PC+PD的值最小.【解答】解:延长CO交⊙O于点E,连接ED,交AO于点P,则PC+PD的值最小,最小值为线段DE的长.∵CD⊥OB,∴∠DCB=90°,∵∠AOB=90°,∴∠DCB=∠AOB,∴CD∥AO,∴CDAO =BCBO,∴CD4=36,∴CD=2,在Rt△CDE中,DE=√CD2+CE2=√22+62=2√10,∴PC+PD的最小值为2√10.故答案为:2√10.【点评】本题考查圆周角定理,垂径定理,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型.42.(2021•宿迁)如图,在Rt△ABC中,∠ABC=90°,∠A=32°,点B、C在⊙O上,边AB、AC分别交⊙O于D、E两点,点B是CD̂的中点,则∠ABE=.【分析】由∠ABC=90°,可得CD是⊙O的直径,由点B是CD̂的中点以及三角形的内角和,可得∠BDC=∠BCD=45°,利用三角形的内角和求出∠ACB,再根据角的和差关系求出∠DCE,由圆周角定理可得∠ABE =∠DCE得出答案.【解答】解:如图,连接DC,∵∠DBC=90°,∴DC是⊙O的直径,∵点B是CD̂的中点,∴∠BCD=∠BDC=45°,在Rt△ABC中,∠ABC=90°,∠A=32°,∴∠ACB=90°﹣32°=58°,∴∠ACD=∠ACB﹣∠BCD=58°﹣45°=13°=∠ABE,故答案为:13°.【点评】本题考查圆周角定理,弦、弧、圆心角之间的关系以及三角形内角和定理,掌握圆周角定理和推论是正确计算的前提.43.(2021•成都)如图,在平面直角坐标系xOy 中,直线y =√33x +2√33与⊙O 相交于A ,B 两点,且点A 在x 轴上,则弦AB 的长为 .【分析】设直线AB 交y 轴于C ,过O 作OD ⊥AB 于D ,先求出A 、C 坐标,得到OA 、OC 长度,可得∠CAO =30°,Rt △AOD 中求出AD 长度,从而根据垂径定理可得答案.【解答】解:设直线AB 交y 轴于C ,过O 作OD ⊥AB 于D ,如图:在y =√33x +2√33中,令x =0得y =2√33, ∴C(0,2√33),OC =2√33, 在y =√33x +2√33中令y =0得√33x +2√33=0,解得x =﹣2,∴A(﹣2,0),OA =2,Rt △AOC 中,tan ∠CAO =OC OA =2√332=√33,∴∠CAO=30°,Rt△AOD中,AD=OA•cos30°=2×√3=√3,2∵OD⊥AB,∴AD=BD=√3,∴AB=2√3,故答案为:2√3.得到【点评】本题考查一次函数、锐角三角函数及垂径定理等综合知识,解题的关键是利用tan∠CAO=OCOA∠CAO=30°.44.(2022•苏州)如图,AB是⊙O的直径,弦CD交AB于点E,连接AC,AD.若∠BAC=28°,则∠D =°.【分析】如图,连接BC,证明∠ACB=90°,求出∠ABC,可得结论.【解答】解:如图,连接BC.∵AB是直径,∴∠ACB=90°,∴∠ABC=90°﹣∠CAB=62°,∴∠D=∠ABC=62°,故答案为:62.【点评】本题考查圆周角定理,解题的关键是熟练掌握圆周角定理,属于中考常考题型.45.(2022•牡丹江)⊙O的直径CD=10,AB是⊙O的弦,AB⊥CD,垂足为M,OM:OC=3:5,则AC 的长为.【分析】连接OA,由AB⊥CD,设OC=5x,OM=3x,根据CD=10可得OC=5,OM=3,根据垂径定理得到AM=4,然后分类讨论:当如图1时,CM=8;当如图2时,CM=2,再利用勾股定理分别计算即可.【解答】解:连接OA,∵OM:OC=3:5,设OC=5x,OM=3x,则OD=OC=5x,∵CD=10,∴OM=3,OA=OC=5,∵AB⊥CD,AB,∴AM=BM=12在Rt△OAM中,OA=5,AM=√OA2−OM2=√52−32=4,当如图1时,CM=OC+OM=5+3=8,在Rt△ACM中,AC=√AM2+CM2=√42+82=4√5;当如图2时,CM=OC﹣OM=5﹣3=2,在Rt△ACM中,AC=√AM2+MC2=√42+22=2√5.综上所述,AC的长为4√5或2√5.故答案为:4√5或2√5.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.46.(2021•黔东南州)小明很喜欢钻研问题,一次数学杨老师拿来一个残缺的圆形瓦片(如图所示)让小明求瓦片所在圆的半径,小明连接瓦片弧线两端AB,量得弧AB的中心C到AB的距离CD=1.6cm,AB =6.4cm,很快求得圆形瓦片所在圆的半径为cm.【分析】先根据垂径定理的推论得到CD 过圆心,AD =BD =3.2cm ,设圆心为O ,连接OA ,如图,设⊙O 的半径为Rcm ,则OD =(R ﹣1.6)cm ,利用勾股定理得到(R ﹣1.6)2+3.22=R2,然后解方程即可.【解答】解:∵C 点是AB̂的中点,CD ⊥AB , ∴CD 过圆心,AD =BD =12AB =12×6.4=3.2(cm ),设圆心为O ,连接OA ,如图,设⊙O 的半径为Rcm ,则OD =(R ﹣1.6)cm ,在Rt △OAD 中,(R ﹣1.6)2+3.22=R2,解得R =4(cm ),所以圆形瓦片所在圆的半径为4cm .故答案为4.【点评】本题考查了垂径定理的应用:利用垂径定理和勾股定理相结合,构造直角三角形,可解决计算弦长、半径、弦心距等问题.47.(2021•德阳)在锐角三角形ABC 中,∠A =30°,BC =2,设BC 边上的高为h ,则h 的取值范围是 .【分析】如图,BC 为⊙O 的弦,OB =OC =2,证明△OBC 为等边三角形得到∠BOC =60°,则根据圆周角定理得到∠BAC =30°,作直径BD 、CE ,连接BE 、CD ,则∠DCB =∠EBC =90°,当点A 在DÊ上(不含D 、E 点)时,△ABC 为锐角三角形,易得CD =√3BC =2√3,当A 点为DÊ的中点时,A 点到BC 的距离最大,即h 最大,延长AO 交BC 于H ,如图,根据垂径定理得到AH ⊥BC ,所以BH =CH =1,OH =√3,则AH =2+√3,然后写出h 的范围.【解答】解:如图,BC 为⊙O 的弦,OB =OC =2,∵BC =2,∴OB =OC =BC ,∴△OBC 为等边三角形,∴∠BOC =60°,∴∠BAC =12∠BOC =30°,作直径BD 、CE ,连接BE 、CD ,则∠DCB =∠EBC =90°,∴当点A 在DÊ上(不含D 、E 点)时,△ABC 为锐角三角形, 在Rt △BCD 中,∵∠D =∠BAC =30°,∴CD =√3BC =2√3,当A 点为DÊ的中点时,A 点到BC 的距离最大,即h 最大, 延长AO 交BC 于H ,如图,∵A 点为DÊ的中点, ∴AB̂=AC ̂, ∴AH ⊥BC ,∴BH =CH =1,∴OH =√3BH =√3,∴AH =OA+OH =2+√3,∴h 的范围为2√3<h ≤2+√3.故答案为2√3<h ≤2+√3.【点评】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了垂径定理和勾股定理.48.(2023•成都)为传承非遗文化,讲好中国故事,某地准备在一个场馆进行川剧演出.该场馆底面为一个圆形,如图所示,其半径是10米,从A 到B 有一笔直的栏杆,圆心O 到栏杆AB 的距离是5米,观众在阴影区域里观看演出,如果每平方米可以坐3名观众,那么最多可容纳 名观众同时观看演出.(π取3.14,√3取1.73)。
2020年中考数学圆的有关性质专题复习(带答案)
2020年中考数学圆的有关性质专题复习(名师精选全国真题,值得下载练习)一、单选题(共15题;共30分)1.如图,⊙O的半径OD垂直于弦AB,垂足为点C,连接AO并延长交⊙O于点E,连接BE,CE.若AB=8,CD=2,则△BCE的面积为()A. 12B. 15C. 16D. 18【答案】A【解析】【解答】解:∵⊙O的半径OD垂直于弦AB,垂足为点C,AB=8,∴AC=BC= AB=4.设OA=r,则OC=r﹣2,在Rt△AOC中,∵AC2+OC2=OA2,即42+(r﹣2)2=r2,解得r=5,∴AE=10,∴BE= = =6,∴△BCE的面积= BC?BE= ×4×6=12.故选A.【分析】先根据垂径定理求出AC的长,再设OA=r,则OC=r﹣2,在Rt△AOC中利用勾股定理求出r的值,再求出BE的长,利用三角形的面积公式即可得出结论.2.如图,B,C是⊙A上的两点,AB的垂直平分线与⊙A交于E,F两点,与线段AC交于D点.若∠BFC=20°,则∠DBC=()C. 28°A. 30° B. 29°D. 20°【答案】 A【解析】【解答】∵∠BFC=20°,∴∠BAC=2∠BFC=40°,∵AB=AC,∴∠ABC=∠ACB= =70°.又EF是线段AB的垂直平分线,∴AD=BD,∴∠A=∠ABD=40°,∴∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°.故答案为:A.【分析】根据圆周角定理结合已知条件得出∠BAC=2∠BFC=40°,再根据等腰三;由线段垂直平分线的性质得出AD=BD,再角形性质得出∠ABC=∠ACB =70°由等腰三角形的性质得出∠A=∠ABD=40°,从而求出∠DBC=∠ABC﹣∠ABD=70°﹣40°=30°.3.如图是“明清影视城”的一扇圆弧形门,小红到影视城游玩,他了解到这扇门的相关数据:这扇圆弧形门所在的圆与水平地面是相切的,AB=CD=0.25米,BD=1.5米,且AB,CD与水平地面都是垂直的.根据以上数据,请你帮小红计算出这扇圆弧形门的最高点离地面的距离是()A. 2米B. 2.5米C. 2.4米 D. 2.1米【答案】 B【解析】【解答】连接OF,交AC于点E,∵BD是⊙O的切线,∴OF⊥BD,∵四边形ABDC是矩形,∴AC∥BD,∴OE⊥AC,EF=AB,设圆O的半径为R,在Rt△AOE中,AE= = =0.75米,OE=R﹣AB=R﹣0.25,∵AE2+OE2=OA2,∴0.752+(R﹣0.25)2=R2,解得R=1.25.1.25×2=2.5(米).答:这扇圆弧形门的最高点离地面的距离是 2.5米.故答案为:B.【分析】连接OF,交AC于点E,设圆O的半径为R米,根据勾股定理列出方程,解方程即可.4.如图将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为()A. 2cmB. cmC. 2cm D. 2 cm【答案】 D【解析】【解答】过点O作OD⊥AB交AB于点D,连接OA,∵OA=2OD=2cm,∴AD= = = (cm),∵OD⊥AB,∴AB=2AD=2 cm.故答案为:D.【分析】过点O作OD⊥AB交AB于点D,连接OA,根据题意得出OA=2OD=2,由勾股定理得出AD的长,再根据垂径定理得出AB=2AD即可.5.如图,四边形ABCD是⊙O的内接四边形,AD与BC的延长线交于点E,BA与CD的延长线交于点F,∠DCE=80°,∠F=25°,则∠E的度数为()C. 45°A. 55° B. 50°D. 40°【答案】 C【解析】【解答】解:∠B=∠DCE﹣∠F=55°,∵四边形ABCD是⊙O的内接四边形,∴∠EDC=∠B=55°,∴∠E=180°﹣∠DCE﹣∠EDC=45°,故答案为:C.【分析】根据四边形ABCD是⊙O的内接四边形,得到∠EDC=∠B=55°,得到∠E=180°﹣∠DCE﹣∠EDC=45°.6.已知∠AOB,作图.步骤1:在OB上任取一点M,以点M为圆心,MO长为半径画半圆,分别交OA、OB于点P、Q;步骤2:过点M作PQ的垂线交于点C;步骤3:画射线OC.则下列判断:①= ;②MC∥OA;③OP=PQ;④OC平分∠AOB,其中正确的个数为()A. 1B. 2C. 3D. 4【答案】 C【解析】【解答】∵OQ为直径,∴∠OPQ=90°,OA⊥PQ.∵MC⊥PQ,∴OA∥MC,结论②正确;∵OA∥MC,∴∠POQ=∠CMQ.∵∠CMQ=2∠COQ,∴∠COQ= ∠POQ=∠POC,∴= ,OC平分∠AOB,结论①④正确;∵∠AOB的度数未知,∠POQ和∠PQO互余,∴∠POQ不一定等于∠PQO,∴OP不一定等于PQ,结论③错误.综上所述:正确的结论有①②④.故答案为:C.【分析】根据由OQ为直径可得出OA⊥PQ,结合MC⊥PQ可得出OA∥MC,结论②正确;根据平行线的性质可得出∠POQ=∠CMQ,结合圆周角定理可得∠COQ=∠POC,OC平分∠AOB,结论①④正确;由∠AOB的度数未知,不能得出OP=PQ,即结论③错误.根据以上作图的过程逐一分析四条结论的正误,即可得到结论.7.小红不小心把家里的一块圆形玻璃打碎了,需要配制一块同样大小的玻璃镜,工人师傅在一块如图所示的玻璃镜残片的边缘描出了点A,B,C,给出三角形ABC,则这块玻璃镜的圆心是()A. AB,AC边上的中线的交点B. AB,AC边上的垂直平分线的交点C. AB,AC边上的高所在直线的交点D. ∠BAC与∠ABC的角平分线的交点【答案】 B【解析】【解答】由题意可得,所求的圆形玻璃是△ABC的外接圆,∴这块玻璃镜的圆心是△ABC三边垂直平分线的交点,故答案为:B.【分析】外接圆的圆心到三个点的距离相等,因此是三边垂直平分线的交点. 8.如图,在⊙O中,AB是⊙O的直径,AB=10,= = ,点E是点D关于AB的对称点,M是AB上的一动点,下列结论:①∠BOE=60°;②∠CED= ∠DOB;③DM⊥CE;④CM+DM的最小值是10,上述结论中正确的个数是()A. 1B. 2C. 3D. 4【答案】 C【解析】【解答】∵= = ,点E是点D关于AB的对称点,∴= ,∴∠DOB=∠BOE=∠COD= =60°,∴①正确;∠CED= ∠COD= =30°= ,∴②正确;∵的度数是60°,∴的度数是120°,∴只有当M和A重合时,∠MDE=60°,∵∠CED=30°,∴只有M和A重合时,DM⊥CE,∴③错误;做C关于AB的对称点F,连接CF,交AB于N,连接DF交AB于M,此时CM+DM的值最短,等于DF长,连接CD,∵= = = ,并且弧的度数都是60°,∴∠D= =60°,∠CFD= =30°,∴∠FCD=180°﹣60°﹣30°=90°,∴DF是⊙O的直径,即DF=AB=10,∴CM+DM的最小值是10,∴④正确;故答案为:C.【分析】由已知条件求出,求出∠DOB=∠COD=∠BOE=60°,求出∠CED,即可判断①②;根据圆周角定理求出当M和A重合时∠MDE=60°即可判断③;求出M点的位置,根据圆周角定理得出此时DF是直径,即可求出DF长,即可判断④,最后得到所求的结论..9.把一张圆形纸片按如图所示方式折叠两次后展开,图中的虚线表示折痕,则的度数是()A. 120°B. 135°C. 150°D. 165°【答案】C【解析】【解答】解:如图所示:连接BO,过点O作OE⊥AB于点E,由题意可得:EO= BO,AB∥DC,可得∠EBO=30°,故∠BOD=30°,则∠BOC=150°,故的度数是150°.故选:C.【分析】直接利用翻折变换的性质结合锐角三角函数关系得出∠BOD=30°,再利用弧度与圆心角的关系得出答案.10.如图,AB是⊙O的直径,点C,D,E在⊙O上,若∠AED=20°,则∠BCD 的度数为()A. 100°B. 110°C. 115°D. 120°【答案】B【解析】【解答】解:连接AC,∵AB为⊙O的直径,∴∠ACB=90°,∵∠AED=20°,∴∠ACD=20°,∴∠BCD=∠ACB+∠ACD=110°,故选B.【分析】连接AC,根据圆周角定理,可分别求出∠ACB=90°,∠ACD=20°,即可求∠BCD的度数.11.如图,?ABCD中,∠B=70°,BC=6,以AD为直径的⊙O交CD于点E,则的长为()A. πB. πC.π D. π【答案】B【解析】【解答】解:连接OE,如图所示:∵四边形ABCD是平行四边形,∴∠D=∠B=70°,AD=BC=6,∴OA=OD=3,∵OD=OE,∴∠OED=∠D=70°,∴∠DOE=180°﹣2×70°=40°,∴的长= = ;故选:B.【分析】连接OE,由平行四边形的性质得出∠D=∠B=70°,AD=BC=6,得出OA=OD=3,由等腰三角形的性质和三角形内角和定理求出∠DOE=40°,再由弧长公式即可得出答案.12.如图,A,B,C,D是⊙O上的四个点,B是的中点,M是半径OD上任意一点.若∠BDC=40°,则∠AMB的度数不可能是()A. 45°B. 60°C. 75°D. 85°【答案】D【解析】【解答】解:∵B是的中点,∴∠AOB=2∠BDC=80°,又∵M是OD上一点,∴∠AMB≤∠AOB=80°.则不符合条件的只有85°.故选D.【分析】根据圆周角定理求得∠AOB的度数,则∠AOB的度数一定不小于∠AMB的度数,据此即可判断.13.如图,AB是⊙O的直径,= = ,∠COD=34°,则∠AEO的度数是()A. 51°B. 56°C. 68°D. 78°【答案】A【解析】【解答】解:如图,∵= = ,∠COD=34°,∴∠BOC=∠EOD=∠COD=34°,∴∠AOE=180°﹣∠EOD﹣∠COD﹣∠BOC=78°.又∵OA=OE,∴∠AEO=∠OAE,∴∠AEO= ×(180°﹣78°)=51°.故选:A.【分析】由= = ,可求得∠BOC=∠EOD=∠COD=34°,继而可求得∠AOE的度数;然后再根据等腰三角形的性质和三角形内角和定理来求∠AEO的度数.14.如图,AB是⊙O的直径,弦CD⊥AB于点E.若AB=8,AE=1,则弦CD的长是()A. B. 2C. 6D. 8【答案】B【解析】【解答】解:由题意,得OE=OB﹣AE=4﹣1=3,CE=CD= = ,CD=2CE=2 ,故选:B.【分析】根据垂径定理,可得答案.15.如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A. B. 2 C. 2D. 8【答案】C【解析】【解答】解:作OH⊥CD于H,连结OC,如图,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=30°,∴OH= OP=1,在Rt△OHC中,∵OC=4,OH=1,∴CH= = ,∴CD=2CH=2 .故选C.【分析】作OH⊥CD于H,连结OC,如图,根据垂径定理由OH⊥CD得到HC=HD,再利用AP=2,BP=6可计算出半径OA=4,则OP=OA﹣AP=2,接着在Rt△OPH中根据含30度的直角三角形的性质计算出OH= OP=1,然后在Rt△OHC中利用勾股定理计算出CH= ,所以CD=2CH=2 .二、填空题(共6题;共6分)16.如图,点M,N在半圆的直径AB上,点P,Q在上,四边形MNPQ为正方形.若半圆的半径为,则正方形的边长为________.【答案】2【解析】【解答】解:连接OP,设正方形的边长为a,则ON= ,PN=a,在Rt△OPN中,ON2+PN2=OP2,即()2+a2=()2,解得a=2.故答案为:2.【分析】连结半径,构造出直角三角形,利用勾股定理建立方程求出边长. 17.如图,△ABC内接于⊙O,∠ACB=90°,∠ACB的角平分线交⊙O于D.若AC=6,BD=5 ,则BC的长为________.【答案】8【解析】【解答】解:连接BD,∵∠ACB=90°,∴AB是⊙O的直径.∵ACB的角平分线交⊙O于D,∴∠ACD=∠BCD=45°,∴AD=BD=5 .∵AB是⊙O的直径,∴△ABD是等腰直角三角形,∴AB= = =10.∵AC=6,∴BC= = =8.故答案为:8.【分析】连接BD,根据CD是∠ACB的平分线可知∠ACD=∠BCD=45°,故可得出AD=BD,再由AB是⊙O的直径可知△ABD是等腰直角三角形,利用勾股定理求出AB的长,在Rt△ABC中,利用勾股定理可得出BC的长.18.如图,AB是⊙O的弦,AB=5,点C是⊙O上的一个动点,且∠ACB=45°,若点M、N分别是AB、AC的中点,则MN长的最大值是________.【答案】【解析】【解答】解:如图,∵点M,N分别是AB,AC的中点,∴MN= BC,∴当BC取得最大值时,MN就取得最大值,当BC是直径时,BC最大,连接BO并延长交⊙O于点C′,连接AC′,∵BC′是⊙O的直径,∴∠BAC′=90°.∵∠ACB=45°,AB=5,∴∠AC′B=45°,∴BC′= = =5 ,∴MN最大= .故答案为:.【分析】根据中位线定理得到MN的最大时,BC最大,当BC最大时是直径,从而求得直径后就可以求得最大值.19.如图,四边形ABCD是菱形,⊙O经过点A、C、D,与BC相交于点E,连.接AC、AE.若∠D=78°,则∠EAC=________°【答案】27【解析】【解答】解:∵四边形ABCD是菱形,∠D=78°,∴∠ACB= ∠DCB= (180°﹣∠D)=51°,∵四边形AECD是圆内接四边形,∴∠AEB=∠D=78°,∴∠EAC=∠AEB﹣∠ACE=27°,故答案为:27.【分析】根据菱形的性质得到∠ACB= ∠DCB= (180°﹣∠D)=51°,根据圆内接四边形的性质得到∠AEB=∠D=78°,由三角形的外角的性质即可得到结论.。
试卷分类汇编_圆的有关性质
圆的有关性质一、选择题1. (2012重庆市4分)已知:如图,OA ,OB 是⊙O 的两条半径,且OA⊥OB,点C 在⊙O 上,则∠ACB 的度数为【 】A .45°B .35°C .25°D .20° 【答案】A 。
【考点】圆周角定理。
【分析】∵OA⊥OB,∴∠AOB=90°。
∴∠ACB=45°。
故选A 。
2. (2012海南省3分)如图,点A 、B 、O 是正方形网格上的三个格点,⊙O 的半径为OA ,点P 是优弧 AmB 上的一点,则tan APB ∠的值是【 】A .1 BD【答案】A 。
【考点】圆周角定理,勾股定理,锐角三角函数定义。
【分析】如图,连接AO 并延长交⊙O 于点P 1,连接AB ,BP 1。
设网格的边长为a 。
则由直径所对圆周角是直角的性质,得∠ABP 1=900。
根据勾股定理,得AB=BP 1。
根据正切函数定义,得11AB tan AP B=BP ∠。
根据同弧所对圆周角相等的性质,得∠ABP=∠ABP。
∴1tan APB=tan AP B=1∠∠。
P 1故选A。
3. (2012陕西省3分)如图,在半径为5的圆O中,AB,CD是互相垂直的两条弦,垂足为P,且AB=CD=8,则OP的长为【】4A.3 B.4 C.D.2【答案】C。
【考点】垂径定理,全等三角形的判定和性质,勾股定理。
【分析】作OM⊥AB于M,ON⊥CD于N,连接OP,OB,OD,∵AB=CD=8,∴由垂径定理和全等三角形的性质得,AM=BM=CN=DN=4,OM=ON。
又∵OB=5,∴由勾股定理得:OM3∵弦AB、CD互相垂直,∴∠DPB=90°。
∵OM⊥AB于M,ON⊥CD于N,∴∠OMP=∠ONP=90°。
∴四边形MONP是正方形。
∴PM=PN=OM=ON=3。
∴由勾股定理得:OP==。
故选C。
4. (2012广东深圳3分)如图,⊙C过原点,且与两坐标轴分别交于点A、点B,点A的坐标为(0,3),M是第三象限内 OB上一点,∠BM0=120o,则⊙C的半径长为【】A.6 B.5 C.3 D。
圆的有关性质(共46题)(解析版)--2023年中考数学真题分项汇编
圆的有关性质(46题)一、单选题1(2023·四川自贡·统考中考真题)如图,△ABC 内接于⊙O ,CD 是⊙O 的直径,连接BD ,∠DCA =41°,则∠ABC 的度数是()A.41°B.45°C.49°D.59°【答案】C 【分析】由CD 是⊙O 的直径,得出∠DBC =90°,进而根据同弧所对的圆周角相等,得出∠ABD =∠ACD =41°,进而即可求解.【详解】解:∵CD 是⊙O 的直径,∴∠DBC =90°,∵AD =AD,∴∠ABD =∠ACD =41°,∴∠ABC =∠DBC -∠DBA =90°-41°=49°,故选:C .【点睛】本题考查了圆周角定理的推论,熟练掌握圆周角定理是解题的关键.2(2023·四川凉山·统考中考真题)如图,在⊙O 中,OA ⊥BC ,∠ADB =30°,BC =23,则OC =()A.1B.2C.23D.4【答案】B【分析】连接OB ,由圆周角定理得∠AOB =60°,由OA ⊥BC 得,∠COE =∠BOE =60°,CE =BE =3,在Rt △OCE 中,由OC =CE sin60°,计算即可得到答案.【详解】解:连接OB ,如图所示,,∵∠ADB =30°,∴∠AOB =2∠ADB =2×30°=60°,∵OA ⊥BC ,∴∠COE =∠BOE =60°,CE =BE =12BC =12×23=3,在Rt △OCE 中,∠COE =60°,CE =3,∴OC =CE sin60°=332=2,故选:B .【点睛】本题主要考查了圆周角定理,垂径定理,解直角三角形,解题的关键是熟练掌握圆周角定理,垂径定理,添加适当的辅助线.3(2023·四川宜宾·统考中考真题)《梦溪笔谈》是我国古代科技著作,其中它记录了计算圆弧长度的“会圆术”.如图,AB是以点O 为圆心、OA 为半径的圆弧,N 是AB 的中点,MN ⊥AB .“会圆术”给出AB 的弧长l 的近似值计算公式:l =AB +MN 2OA .当OA =4,∠AOB =60°时,则l 的值为()A.11-23B.11-43C.8-23D.8-43【答案】B【分析】连接ON ,根据等边三角形的性质,垂径定理,勾股定理,特殊角的三角函数,后代入公式计算即可.【详解】连接ON ,根据题意,AB 是以点O 为圆心、OA 为半径的圆弧,N 是AB 的中点,MN ⊥AB ,得ON ⊥AB ,∴点M ,N ,O 三点共线,∵OA =4,∠AOB =60°,∴△OAB 是等边三角形,∴OA =AB =4,∠OAN =60°,ON =OA sin60°=23,∴OA =AB =4,∠OAN =60°,ON =OA sin60°=23∴l =AB +MN 2OA=4+4-23 24=11-43.故选:B .【点睛】本题考查了等边三角形的性质,垂径定理,勾股定理,特殊角的函数值,熟练掌握相关知识是解题的关键.4(2023·四川宜宾·统考中考真题)如图,已知点A 、B 、C 在⊙O 上,C 为AB的中点.若∠BAC =35°,则∠AOB 等于()A.140°B.120°C.110°D.70°【答案】A【分析】连接OC ,如图所示,根据圆周角定理,找到各个角之间的关系即可得到答案.【详解】解:连接OC ,如图所示:∵点A 、B 、C 在⊙O 上,C 为AB的中点,∴BC =AC ,∴∠BOC =∠AOC =12∠AOB ,∵∠BAC =35°,根据圆周角定理可知∠BOC =2∠BAC =70°,∴∠AOB =2∠BOC =140°,故选:A .【点睛】本题考查圆中求角度问题,涉及圆周角定理,找准各个角之间的和差倍分关系是解决问题的关键.5(2023·安徽·统考中考真题)如图,正五边形ABCDE 内接于⊙O ,连接OC ,OD ,则∠BAE -∠COD =()A.60°B.54°C.48°D.36°【答案】D【分析】先计算正五边形的内角,再计算正五边形的中心角,作差即可.【详解】∵∠BAE =180°-360°5,∠COD =360°5,∴∠BAE -∠COD =180°-360°5-360°5=36°,故选:D .【点睛】本题考查了正五边形的外角,内角,中心角的计算,熟练掌握计算公式是解题的关键.6(2023·江苏连云港·统考中考真题)如图,甲是由一条直径、一条弦及一段圆弧所围成的图形:乙是由两条半径与一段圆弧所围成的图形;丙是由不过圆心O 的两条线段与一段圆弧所围成的图形,下列叙述正确的是()A.只有甲是扇形B.只有乙是扇形C.只有丙是扇形D.只有乙、丙是扇形【答案】B 【分析】根据扇形的定义,即可求解.扇形,是圆的一部分,由两个半径和和一段弧围成.【详解】解:甲是由一条直径、一条弦及一段圆弧所围成的图形:乙是由两条半径与一段圆弧所围成的图形;丙是由不过圆心O 的两条线段与一段圆弧所围成的图形,只有乙是扇形,故选:B .【点睛】本题考查了扇形的定义,熟练掌握扇形的定义是解题的关键.7(2023·云南·统考中考真题)如图,AB 是⊙O 的直径,C 是⊙O 上一点.若∠BOC =66°,则∠A =()A.66°B.33°C.24°D.30°【答案】B 【分析】根据圆周角定理即可求解.【详解】解:∵BC =BC,∠BOC =66°,∴∠A =12∠BOC =33°,故选:B .【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.8(2023·新疆·统考中考真题)如图,在⊙O 中,若∠ACB =30°,OA =6,则扇形OAB (阴影部分)的面积是()A.12πB.6πC.4πD.2π【答案】B【分析】根据圆周角定理求得∠AOB =60°,然后根据扇形面积公式进行计算即可求解.【详解】解:∵AB =AB ,∠ACB =30°,∴∠AOB =60°,∴S =60360π×62=6π.故选:B .【点睛】本题考查了圆周角定理,扇形面积公式,熟练掌握扇形面积公式以及圆周角定理是解题的关键.9(2023·浙江温州·统考中考真题)如图,四边形ABCD 内接于⊙O ,BC ∥AD ,AC ⊥BD .若∠AOD =120°,AD =3,则∠CAO 的度数与BC 的长分别为()A.10°,1B.10°,2C.15°,1D.15°,2【答案】C【分析】过点O 作OE ⊥AD 于点E ,由题意易得∠CAD =∠ADB =45°=∠CBD =∠BCA ,然后可得∠OAD =∠ODA =30°,∠ABD =∠ACD =12∠AOD =60°,AE =12AD =32,进而可得CD =2OC =2,CF =12CD =22,最后问题可求解.【详解】解:过点O 作OE ⊥AD 于点E ,如图所示:∵BC∥AD,∴∠CBD=∠ADB,∵∠CBD=∠CAD,∴∠CAD=∠ADB,∵AC⊥BD,∴∠AFD=90°,∴∠CAD=∠ADB=45°=∠CBD=∠BCA,∵∠AOD=120°,OA=OD,AD=3,∴∠OAD=∠ODA=30°,∠ABD=∠ACD=12∠AOD=60°,AE=12AD=32,∴∠CAO=∠CAD-∠OAD=15°,OA=AEcos30°=1=OC=OD,∠BCD=∠BCA+∠ACD=105°,∴∠COD=2∠CAD=90°,∠CDB=180°-∠BCD-∠CBD=30°,∴CD=2OC=2,CF=12CD=22,∴BC=2CF=1;故选:C.【点睛】本题主要考查平行线的性质、圆周角定理及三角函数,熟练掌握平行线的性质、圆周角定理及三角函数是解题的关键.10(2023·浙江台州·统考中考真题)如图,⊙O的圆心O与正方形的中心重合,已知⊙O的半径和正方形的边长都为4,则圆上任意一点到正方形边上任意一点距离的最小值为( ).A.2B.2C.4+22D.4-22【答案】D【分析】设正方形四个顶点分别为A、B、C、D,连接OA并延长,交⊙O于点E,由题意可得,EA的长度为圆上任意一点到正方形边上任意一点距离的最小值,求解即可.【详解】解:设正方形四个顶点分别为A、B、C、D,连接OA并延长,交⊙O于点E,过点O作OF⊥AB,如下图:则EA的长度为圆上任意一点到正方形边上任意一点距离的最小值,由题意可得:OE=AB=4,AF=OF=12AB=2由勾股定理可得:OA=OF2+AF2=22,∴AE =4-22,故选:D .【点睛】此题考查了圆与正多边形的性质,勾股定理,解题的关键是熟练掌握圆与正多边形的性质,确定出圆上任意一点到正方形边上任意一点距离的最小值的位置.11(2023·山东枣庄·统考中考真题)如图,在⊙O 中,弦AB ,CD 相交于点P ,若∠A =48°,∠APD =80°,则∠B 的度数为()A.32°B.42°C.48°D.52°【答案】A【分析】根据圆周角定理,可以得到∠D 的度数,再根据三角形外角的性质,可以求出∠B 的度数.【详解】解:∵∠A =∠D ,∠A =48°,∴∠D =48°,∵∠APD =80°,∠APD =∠B +∠D ,∴∠B =∠APD -∠D =80°-48°=32°,故选:A .【点睛】本题考查圆周角定理、三角形外角的性质,解答本题的关键是求出∠D 的度数.12(2023·四川内江·统考中考真题)如图,正六边形ABCDEF 内接于⊙O ,点P 在AF 上,Q 是DE 的中点,则∠CPQ 的度数为()A.30°B.36°C.45°D.60°【答案】C 【分析】先计算正六边形的中心角,再利用同圆或等圆中,等弧对的圆心角相等,圆周角定理计算即可.【详解】如图,连接OC ,OD ,OQ ,OE ,∵正六边形ABCDEF ,Q 是DE的中点,∴∠COD =∠DOE =360°6=60°,∠DOQ =∠EOQ =12∠DOE =30°,∴∠COQ =∠COD +∠DOQ =90°,∴∠CPQ =12∠COQ =45°,故选:C .【点睛】本题考查了正多边形与圆,圆周角定理,熟练掌握正多边形中心角计算,圆周角定理是解题的关键.13(2023·湖北十堰·统考中考真题)如图,⊙O是△ABC的外接圆,弦BD交AC于点E,AE=DE,BC=CE,过点O作OF⊥AC于点F,延长FO交BE于点G,若DE=3,EG=2,则AB的长为()A.43B.7C.8D.45【答案】B【分析】作BM⊥AC于点M,由题意可得出△AEB≌△DEC,从而可得出△EBC为等边三角形,从而得到∠GEF=60°,∠EGF=30°,再由已知得出EF,BC的长,进而得出CM,BM的长,再求出AM的长,再由勾股定理求出AB的长.【详解】解:作BM⊥AC于点M,在△AEB和△DEC中,∠A=∠DAE=ED∠AEB=∠DEC,∴△AEB≌△DEC ASA,∴EB=EC,又∵BC=CE,∴BE=CE=BC,∴△EBC为等边三角形,∴∠GEF=60°,BC=EC∴∠EGF=30°,∵EG=2,OF⊥AC,∠EGF=30°∴EF=12EG=1,又∵AE=ED=3,OF⊥AC∴CF=AF=AE+EF=4,∴AC=2AF=8,EC=EF+CF=5,∴BC=EC=5,∵∠BCM=60°,∴∠MBC=30°,∴CM=52,BM=BC 2-CM2=532,∴AM=AC-CM=112,∴AB=AM2+BM2=7.故选:B.【点睛】本题考查全等三角形的判定与性质、等边三角形的判定与性质、三角形的外接圆与外心、勾股定理等知识点,综合性较强,掌握基本图形的性质,熟练运用勾股定理是解题关键.14(2023·山西·统考中考真题)如图,四边形ABCD 内接于⊙O ,AC ,BD 为对角线,BD 经过圆心O .若∠BAC =40°,则∠DBC 的度数为()A.40°B.50°C.60°D.70°【答案】B【分析】由同弧所对圆周角相等及直角三角形的性质即可求解.【详解】解:∵BC =BC ,∴∠BDC =∠BAC =40°,∵BD 为圆的直径,∴∠BCD =90°,∴∠DBC =90°-∠BDC =50°;故选:B .【点睛】本题考查了直径所对的圆周角是直角,同圆中同弧所对的圆周角相等,直角三角形两锐角互余,掌握它们是关键.15(2023·湖北宜昌·统考中考真题)如图,OA ,OB ,OC 都是⊙O 的半径,AC ,OB 交于点D .若AD =CD =8,OD =6,则BD 的长为( ).A.5B.4C.3D.2【答案】B 【分析】根据等腰三角形的性质得出OD ⊥AC ,根据勾股定理求出OC =10,进一步可求出BD 的长.【详解】解:∵AD =CD =8,∴点D 为AC 的中点,∵AO =CO ,∴OD ⊥AC ,由勾股定理得,OC =CD 2+OD 2=62+82=10,∴OB =10,∴BD =OB -OD =10-6=4,故选:B .【点睛】本题主要考查了等腰三角形的性质,勾股定理以及圆的有关性质,正确掌握相关性质是解答本题的关键16(2023·河北·统考中考真题)如图,点P 1~P 8是⊙O 的八等分点.若△P 1P 3P 7,四边形P 3P 4P 6P 7的周长分别为a ,b ,则下列正确的是()A.a <bB.a =bC.a >bD.a ,b 大小无法比较【答案】A【分析】连接P 1P 2,P 2P 3,依题意得P 1P 2=P 2P 3=P 3P 4=P 6P 7,P 4P 6=P 1P 7,△P 1P 3P 7的周长为a =P 1P 3+P 1P 7+P 3P 7,四边形P 3P 4P 6P 7的周长为b =P 3P 4+P 4P 6+P 6P 7+P 3P 7,故b -a =P 1P 2+P 2P 3-P 1P 3,根据△P 1P 2P 3的三边关系即可得解.【详解】连接P 1P 2,P 2P 3,∵点P 1~P 8是⊙O 的八等分点,即P 1P 2 =P 2P 3 =P 3P 4=P 4P 5 =P 5P 6 =P 6P 7 =P 7P 8=P 8P 1∴P 1P 2=P 2P 3=P 3P 4=P 6P 7,P 4P 6 =P 4P 5 +P 5P 6 =P 7P 8+P 8P 1 =P 1P 7∴P 4P 6=P 1P 7又∵△P 1P 3P 7的周长为a =P 1P 3+P 1P 7+P 3P 7,四边形P 3P 4P 6P 7的周长为b =P 3P 4+P 4P 6+P 6P 7+P 3P 7,∴b -a =P 3P 4+P 4P 6+P 6P 7+P 3P 7 -P 1P 3+P 1P 7+P 3P 7 =P 1P 2+P 1P 7+P 2P 3+P 3P 7 -P 1P 3+P 1P 7+P 3P 7 =P 1P 2+P 2P 3-P 1P 3在△P 1P 2P 3中有P 1P 2+P 2P 3>P 1P 3∴b -a =P 1P 2+P 2P 3-P 1P 3>0故选:A .【点睛】本题考查等弧所对的弦相等,三角形的三边关系等知识,利用作差比较法比较周长大小是解题的关键.17(2023·浙江杭州·统考中考真题)如图,在⊙O 中,半径OA ,OB 互相垂直,点C 在劣弧AB 上.若∠ABC =19°,则∠BAC =()A.23°B.24°C.25°D.26°【答案】D【分析】根据OA ,OB 互相垂直可得ADB 所对的圆心角为270°,根据圆周角定理可得∠ACB =12×270°=135°,再根据三角形内角和定理即可求解.【详解】解:如图,∵半径OA ,OB 互相垂直,∴∠AOB =90°,∴ADB 所对的圆心角为270°,∴ADB 所对的圆周角∠ACB =12×270°=135°,又∵∠ABC =19°,∴∠BAC =180°-∠ACB -∠ABC =26°,故选:D .【点睛】本题考查圆周角定理、三角形内角和定理,解题的关键是掌握:同圆或等圆中,同弧所对的圆周角等于圆心角的一半.18(2023·湖北黄冈·统考中考真题)如图,在⊙O 中,直径AB 与弦CD 相交于点P ,连接AC ,AD ,BD ,若∠C =20°,∠BPC =70°,则∠ADC =()A.70°B.60°C.50°D.40°【答案】D【分析】先根据圆周角定理得出∠B =∠C =20°,再由三角形外角和定理可知∠BDP =∠BPC -∠B =70°-20°=50°,再根据直径所对的圆周角是直角,即∠ADB =90°,然后利用∠ADB =∠ADC +∠BDP 进而可求出∠ADC .【详解】解:∵∠C =20°,∴∠B =20°,∵∠BPC =70°,∴∠BDP =∠BPC -∠B =70°-20°=50°,又∵AB 为直径,即∠ADB =90°,∴∠ADC =∠ADB -∠BDP =90°-50°=40°,故选:D .【点睛】此题主要考查了圆周角定理,三角形外角和定理等知识,解题关键是熟知圆周角定理的相关知识.19(2023·广西·统考中考真题)赵州桥是当今世界上建造最早,保存最完整的中国古代单孔敞肩石拱桥.如图,主桥拱呈圆弧形,跨度约为37m ,拱高约为7m ,则赵州桥主桥拱半径R 约为()A.20mB.28mC.35mD.40m【答案】B【分析】由题意可知,AB =37m ,CD =7m ,主桥拱半径R ,根据垂径定理,得到AD =372m ,再利用勾股定理列方程求解,即可得到答案.【详解】解:如图,由题意可知,AB =37m ,CD =7m ,主桥拱半径R ,∴OD =OC -CD =R -7 m ,∵OC 是半径,且OC ⊥AB ,∴AD =BD =12AB =372m ,在Rt △ADO 中,AD 2+OD 2=OA 2,∴372 2+R -7 2=R 2,解得:R =156556≈28m ,故选:B .【点睛】本题考查了垂径定理,勾股定理,利用直角三角形求解是解题关键.20(2023·四川·统考中考真题)如图,AB 是⊙O 的直径,点C ,D 在⊙O 上,连接CD ,OD ,AC ,若∠BOD =124°,则∠ACD 的度数是()A.56°B.33°C.28°D.23°【答案】C 【分析】根据圆周角定理计算即可.【详解】解:∵∠BOD =124°,∴∠AOD =180°-124°=56°,∴∠ACD =12∠AOD =28°,故选:C .【点睛】此题考查圆周角定理,熟知同弧所对的圆周角是圆心角的一半是解题的关键.21(2023·山东聊城·统考中考真题)如图,点O 是△ABC 外接圆的圆心,点I 是△ABC 的内心,连接OB ,IA .若∠CAI =35°,则∠OBC 的度数为()A.15°B.17.5°C.20°D.25°【答案】C【分析】根据三角形内心的定义可得∠BAC 的度数,然后由圆周角定理求出∠BOC ,再根据三角形内角和定理以及等腰三角形的性质得出答案.【详解】解:连接OC ,∵点I 是△ABC 的内心,∠CAI =35°,∴∠BAC =2∠CAI =70°,∴∠BOC =2∠BAC =140°,∵OB =OC ,∴∠OBC =∠OCB =180°-∠BOC 2=180°-140°2=20°,故选:C .【点睛】本题主要考查了三角形内心的定义和圆周角定理,熟知三角形的内心是三角形三个内角平分线的交点是解题的关键.22(2023·福建·统考中考真题)我国魏晋时期数学家刘徽在《九章算术注》中提到了著名的“割圆术”,即利用圆的内接正多边形逼近圆的方法来近似估算,指出“割之弥细,所失弥少.割之又割,以至于不可割,则与圆周合体,而无所失矣”.“割圆术”孕育了微积分思想,他用这种思想得到了圆周率π的近似值为3.1416.如图,⊙O 的半径为1,运用“割圆术”,以圆内接正六边形面积近似估计⊙O 的面积,可得π的估计值为332,若用圆内接正十二边形作近似估计,可得π的估计值为()A.3B.22C.3D.23【答案】C【分析】根据圆内接正多边形的性质可得∠AOB =30°,根据30度的作对的直角边是斜边的一半可得BC=12,根据三角形的面积公式即可求得正十二边形的面积,即可求解.【详解】解:圆的内接正十二边形的面积可以看成12个全等的等腰三角形组成,故等腰三角形的顶角为30°,设圆的半径为1,如图为其中一个等腰三角形OAB ,过点B 作BC ⊥OA 交OA 于点于点C ,∵∠AOB =30°,∴BC =12OB =12,则S △OAB =12×1×12=14,故正十二边形的面积为12S △OAB =12×14=3,圆的面积为π×1×1=3,用圆内接正十二边形面积近似估计⊙O 的面积可得π=3,故选:C .【点睛】本题考查了圆内接正多边形的性质,30度的作对的直角边是斜边的一半,三角形的面积公式,圆的面积公式等,正确求出正十二边形的面积是解题的关键.23(2023·广东·统考中考真题)如图,AB 是⊙O 的直径,∠BAC =50°,则∠D =()A.20°B.40°C.50°D.80°【答案】B【分析】根据圆周角定理可进行求解.【详解】解:∵AB 是⊙O 的直径,∴∠ACB =90°,∵∠BAC =50°,∴∠ABC =90°-∠BAC =40°,∵AC =AC ,∴∠D =∠ABC =40°;故选:B .【点睛】本题主要考查圆周角的相关性质,熟练掌握直径所对圆周角为直角是解题的关键.24(2023·河南·统考中考真题)如图,点A ,B ,C 在⊙O 上,若∠C =55°,则∠AOB 的度数为()A.95°B.100°C.105°D.110°【答案】D【分析】直接根据圆周角定理即可得.【详解】解:∵∠C =55°,∴由圆周角定理得:∠AOB =2∠C =110°,故选:D .【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题关键.25(2023·全国·统考中考真题)如图,AB ,AC 是⊙O 的弦,OB ,OC 是⊙O 的半径,点P 为OB 上任意一点(点P 不与点B 重合),连接CP .若∠BAC =70°,则∠BPC 的度数可能是()A.70°B.105°C.125°D.155°【答案】D【分析】根据圆周角定理得出∠BOC =2∠BAC =140°,进而根据三角形的外角的性质即可求解.【详解】解:∵BC =BC ,∠BAC =70°,∴∠BOC =2∠BAC =140°,∵∠BPC =∠BOC +∠PCO ≥140°,∴∠BPC 的度数可能是155°故选:D .【点睛】本题考查了圆周角定理,三角形的外角的性质,熟练掌握圆周角定理是解题的关键.26(2023·内蒙古赤峰·统考中考真题)如图,圆内接四边形ABCD 中,∠BCD =105°,连接OB ,OC ,OD ,BD ,∠BOC =2∠COD .则∠CBD 的度数是()A.25°B.30°C.35°D.40°【答案】A【分析】根据圆内接四边形对角互补得出∠A =180°-105°=75°,根据圆周角定理得出∠BOD =2∠A =150°,根据已知条件得出∠COD =13∠BOD =50°,进而根据圆周角定理即可求解.【详解】解:∵圆内接四边形ABCD 中,∠BCD =105°,∴∠A =180°-105°=75°∴∠BOD =2∠A =150°∵∠BOC =2∠COD∴∠COD =13∠BOD =50°,∵CD =CD∴∠CBD =12∠COD =12×50°=25°,故选:A .【点睛】本题考查了圆内接四边形对角互补,圆周角定理,熟练掌握以上知识是解题的关键.27(2023·甘肃兰州·统考中考真题)我国古代天文学确定方向的方法中蕴藏了平行线的作图法.如《淮南子天文训》中记载:“正朝夕:先树一表东方;操一表却去前表十步,以参望日始出北廉.日直入,又树一表于东方,因西方之表,以参望日方入北康.则定东方两表之中与西方之表,则东西也.”如图,用几何语言叙述作图方法:已知直线a 和直线外一定点O ,过点O 作直线与a 平行.(1)以O 为圆心,单位长为半径作圆,交直线a 于点M ,N ;(2)分别在MO 的延长线及ON 上取点A ,B ,使OA =OB ;(3)连接AB ,取其中点C ,过O ,C 两点确定直线b ,则直线a ∥b .按以上作图顺序,若∠MNO =35°,则∠AOC =()A.35°B.30°C.25°D.20°【答案】A【分析】证明∠NMO=∠MNO=35°,可得∠AOB=2×35°=70°,结合OA=OB,C为AB的中点,可得∠AOC=∠BOC=35°.【详解】解:∵∠MNO=35°,MO=NO,∴∠NMO=∠MNO=35°,∴∠AOB=2×35°=70°,∵OA=OB,C为AB的中点,∴∠AOC=∠BOC=35°,故选A.【点睛】本题考查的是圆的基本性质,等腰三角形的性质,平行线的判定,三角形的外角的性质,熟记等腰三角形的性质是解本题的关键.二、填空题28(2023·四川南充·统考中考真题)如图,AB是⊙O的直径,点D,M分别是弦AC,弧AC的中点,AC=12,BC=5,则MD的长是.【答案】4【分析】根据圆周角定理得出∠ACB=90°,再由勾股定理确定AB=13,半径为132,利用垂径定理确定OM⊥AC,且AD=CD=6,再由勾股定理求解即可.【详解】解:∵AB是⊙O的直径,∴∠ACB=90°,∵AC=12,BC=5,∴AB=13,∴AO=12AB=132,∵点D,M分别是弦AC,弧AC的中点,∴OM⊥AC,且AD=CD=6,∴OD=AO2-AD2=52,∴MD=OM-OD=AO-OD=4,故答案为:4.【点睛】题目主要考查圆周角定理、垂径定理及勾股定理解三角形,理解题意,综合运用这些知识点是解题关键.29(2023·浙江金华·统考中考真题)如图,在△ABC中,AB=AC=6cm,∠BAC=50°,以AB为直径作半圆,交BC于点D,交AC于点E,则弧DE的长为cm.【答案】5π6【分析】连接AD ,OD ,OE ,根据等腰三角形三线合一性质,圆周角定理,中位线定理,弧长公式计算即可.【详解】解:如图,连接AD ,OD ,OE ,∵AB 为直径,∴AD ⊥AB ,∵AB =AC =6cm ,∠BAC =50°,∴BD =CD ,∠BAD =∠CAD =12∠BAC =25°,∴∠DOE =2∠BAD =50°,OD =12AB =12AC =3cm ,∴弧DE 的长为50×π×3180=5π6cm ,故答案为:5π6cm .【点睛】本题考查了等腰三角形三线合一性质,中位线定理,弧长公式,熟练掌握三线合一性质,弧长公式,圆周角定理是解题的关键.30(2023·四川广安·统考中考真题)如图,△ABC 内接于⊙O ,圆的半径为7,∠BAC =60°,则弦BC 的长度为.【答案】73【分析】连接OB ,OC ,过点O 作OD ⊥BC 于点D ,先根据圆周角定理可得∠BOC =2∠BAC =120°,再根据等腰三角形的三线合一可得∠BOD =60°,BC =2BD ,然后解直角三角形可得BD 的长,由此即可得.【详解】解:如图,连接OB ,OC ,过点O 作OD ⊥BC 于点D ,∵∠BAC =60°,∴∠BOC =2∠BAC =120°,∵OB =OC ,OD ⊥BC ,∴∠BOD =12∠BOC =60°,BC =2BD ,∵圆的半径为7,∴OB =7,∴BD =OB ⋅sin60°=723,∴BC =2BD =73,故答案为:73.【点睛】本题考查了圆周角定理、解直角三角形、等腰三角形的三线合一,熟练掌握圆周角定理和解直角三角形的方法是解题关键.31(2023·甘肃武威·统考中考真题)如图,△ABC 内接于⊙O ,AB 是⊙O 的直径,点D 是⊙O 上一点,∠CDB =55°,则∠ABC =°.【答案】35【分析】由同弧所对的圆周角相等,得∠A =∠CDB =55°,再根据直径所对的圆周角为直角,得∠ACB =90°,然后由直角三角形的性质即可得出结果.【详解】解:∵∠A ,∠CDB 是BC所对的圆周角,∴∠A =∠CDB =55°,∵AB 是⊙O 的直径,∵∠ACB =90°,在Rt △ACB 中,∠ABC =90°-∠A =90°-55°=35°,故答案为:35.【点睛】本题考查了圆周角定理,以及直角三角形的性质,利用了转化的思想,熟练掌握圆周角定理是解本题的关键.32(2023·浙江绍兴·统考中考真题)如图,四边形ABCD 内接于圆O ,若∠D =100°,则∠B 的度数是.【答案】80°【分析】根据圆内接四边形的性质:对角互补,即可解答.【详解】解:∵四边形ABCD 内接于⊙O ,∴∠B+∠D=180°,∵∠D=100°,∴∠B=180°-∠D=80°.故答案为:80°.【点睛】本题主要考查了圆内接四边形的性质,掌握圆内接四边形的对角互补是解答本题的关键.33(2023·山东烟台·统考中考真题)如图,将一个量角器与一把无刻度直尺水平摆放,直尺的长边与量角器的外弧分别交于点A,B,C,D,连接AB,则∠BAD的度数为.【答案】52.5°【分析】方法一∶如图:连接OA,OB,OC,OD,AD,AB,由题意可得:OA=OB=OC=OD,∠AOB=50°-25°=25°,然后再根据等腰三角形的性质求得∠OAB=65°、∠OAD=25°,最后根据角的和差即可解答.方法二∶连接OB,OD,由题意可得:∠BAD=105°,然后根据圆周角定理即可求解.【详解】方法一∶解:如图:连接OA,OB,OC,OD,AD,AB,由题意可得:OA=OB=OC=OD,∠AOB=50°-25°=25°,∠AOD=155°-25°=130°,∴∠OAB=12180°-∠AOB=77.5°,∠OAD=12180°-∠AOB=25°,∴∠BAD=∠OAB-∠OAD=52.5°.故答案为52.5°.方法二∶解∶连接OB,OD,由题意可得:∠BAD=155°-50°=105°,根据圆周角定理,知∠BAD=12∠BOD=12×105°=52.5°.故答案为:52.5°.【点睛】本题主要考查了角的度量、圆周角定理等知识点,掌握圆周角的度数等于它所对弧上的圆心角度数的一半是解答本题的关键.34(2023·湖南·统考中考真题)如图,用若干个全等的正五边形排成圆环状,图中所示的是其中3个正五边形的位置.要完成这一圆环排列,共需要正五边形的个数是个.【答案】10【分析】先求出正五边形的外角为72°,则∠1=∠2=72°,进而得出∠AOB=36°,即可求解.【详解】解:根据题意可得:∵正五边形的一个外角=360°5=72°,∴∠1=∠2=72°,∴∠AOB=180°-72°×2=36°,∴共需要正五边形的个数=360°36°=10(个),故答案为:10.【点睛】本题主要考查了圆的基本性质,正多边形的外角,解题的关键是掌握正多边形的外角的求法.35(2023·湖南永州·统考中考真题)如图,⊙O是一个盛有水的容器的横截面,⊙O的半径为10cm.水的最深处到水面AB的距离为4cm,则水面AB的宽度为cm.【答案】16【分析】过点O作OD⊥AB于点D,交⊙O于点E,则AD=DB=12AB,依题意,得出OD=6,进而在Rt△AOD中,勾股定理即可求解.【详解】解:如图所示,过点O作OD⊥AB于点D,交⊙O于点E,则AD=DB=12 AB,∵水的最深处到水面AB 的距离为4cm ,⊙O 的半径为10cm .∴OD =10-4=6cm ,在Rt △AOD 中,AD =AO 2-OD 2=102-62=8cm∴AB =2AD =16cm故答案为:16.【点睛】本题考查了垂径定理的应用,勾股定理,熟练掌握垂径定理是解题的关键.36(2023·湖北随州·统考中考真题)如图,在⊙O 中,OA ⊥BC ,∠AOB =60°,则∠ADC 的度数为.【答案】30°【分析】根据垂径定理得到AB =AC,根据圆周角定理解答即可.【详解】解:∵OA ⊥BC ,∴AB =AC ,∴∠ADC =12∠AOB =30°,故答案为:30°.【点睛】本题考查的是垂径定理和圆周角定理,掌握同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.37(2023·湖南·统考中考真题)如图所示,点A 、B 、C 是⊙O 上不同的三点,点O 在△ABC 的内部,连接BO 、CO ,并延长线段BO 交线段AC 于点D .若∠A =60°,∠OCD =40°,则∠ODC =度.【答案】80【分析】先根据圆周角定理求出∠BOC 的度数,再根据三角形的外角定理即可得出结果.【详解】解:在⊙O 中,∵∠BOC =2∠A =2×60°=120°,∴∠ODC =∠BOC -∠OCD =120°-40°=80°故答案为:80.【点睛】本题考查了圆周角定理,三角形的外角定理,熟练掌握圆周角定理是本题的关键.38(2023·湖南郴州·统考中考真题)如图,某博览会上有一圆形展示区,在其圆形边缘的点P 处安装了一台监视器,它的监控角度是55°,为了监控整个展区,最少需要在圆形边缘上共安装这样的监视器台.【答案】4【分析】圆周角定理求出∠P 对应的圆心角的度数,利用360°÷圆心角的度数即可得解.【详解】解:∵∠P =55°,∴∠P 对应的圆心角的度数为110°,∵360°÷110°≈3.27,∴最少需要在圆形边缘上共安装这样的监视器4台;故答案为:4【点睛】本题考查圆周角定理,熟练掌握同弧所对的圆周角是圆心角的一半,是解题的关键.39(2023·浙江杭州·统考中考真题)如图,六边形ABCDEF 是⊙O 的内接正六边形,设正六边形ABCDEF 的面积为S 1,△ACE 的面积为S 2,则S 1S 2=.【答案】2【分析】连接OA ,OC ,OE ,首先证明出△ACE 是⊙O 的内接正三角形,然后证明出△BAC ≌△OAC ASA ,得到S △BAC =S △AFE =S △CDE ,S △OAC =S △OAE =S △OCE ,进而求解即可.【详解】如图所示,连接OA ,OC ,OE ,∵六边形ABCDEF 是⊙O 的内接正六边形,∴AC =AE =CE ,∴△ACE 是⊙O 的内接正三角形,∵∠B =120°,AB =BC ,∴∠BAC =∠BCA =12180°-∠B =30°,∵∠CAE =60°,∴∠OAC =∠OAE =30°,∴∠BAC =∠OAC =30°,同理可得,∠BCA =∠OCA =30°,又∵AC =AC ,∴△BAC ≌△OAC ASA ,∴S △BAC =S △OAC ,由圆和正六边形的性质可得,S △BAC =S △AFE =S △CDE ,由圆和正三角形的性质可得,S △OAC =S △OAE =S △OCE ,∵S 1=S △BAC +S △AFE +S △CDE +S △OAC +S △OAE +S △OCE =2S △OAC +S △OAE +S △OCE =2S 2,∴S 1S 2=2.故答案为:2.【点睛】此题考查了圆内接正多边形的性质,正六边形和正三角形的性质,全等三角形的性质和判定等知识,解题的关键是熟练掌握以上知识点.40(2023·广东深圳·统考中考真题)如图,在⊙O 中,AB 为直径,C 为圆上一点,∠BAC 的角平分线与⊙O 交于点D ,若∠ADC =20°,则∠BAD =°.【答案】35【分析】由题意易得∠ACB =90°,∠ADC =∠ABC =20°,则有∠BAC =70°,然后问题可求解.【详解】解:∵AB 是⊙O 的直径,∴∠ACB =90°,∵AC =AC,∠ADC =20°,∴∠ADC =∠ABC =20°,∴∠BAC =70°,∵AD 平分∠BAC ,∴∠BAD =12∠BAC =35°;故答案为:35.【点睛】本题主要考查圆周角的性质,熟练掌握直径所对圆周角为直角是解题的关键.41(2023·山东东营·统考中考真题)“圆材埋壁”是我国古代数学名著《九章算术》中的一个问题:“今有圆材,埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺.问:径几何?”.用现在的几何语言表达即:如图,CD 为⊙O 的直径,弦AB ⊥CD ,垂足为点E ,CE =1寸,AB =10寸,则直径CD 的长度是寸.【答案】26【分析】连接OA 构成直角三角形,先根据垂径定理,由DE 垂直AB 得到点E 为AB 的中点,由AB =6可求出AE 的长,再设出圆的半径OA 为x ,表示出OE ,根据勾股定理建立关于x 的方程,求解方程可得2x 的值,即为圆的直径.【详解】解:连接OA ,∵AB ⊥CD ,且AB =10寸,∴AE =BE =5寸,设圆O 的半径OA 的长为x ,则OC =OD =x ,∵CE =1,∴OE =x -1,在直角三角形AOE 中,根据勾股定理得:x 2-(x -1)2=52,化简得:x 2-x 2+2x -1=25,即2x =26,∴CD =26(寸).故答案为:26.【点睛】本题考查了垂径定理和勾股定理,解题的关键是正确作出辅助线构造直角三角形.三、解答题42(2023·浙江金华·统考中考真题)如图,点A 在第一象限内,⊙A 与x 轴相切于点B ,与y 轴相交于点C ,D .连接AB ,过点A 作AH ⊥CD 于点H .(1)求证:四边形ABOH 为矩形.(2)已知⊙A 的半径为4,OB =7,求弦CD 的长.【答案】(1)见解析(2)6【分析】(1)根据切线的性质及有三个角是直角的四边形是矩形判定即可.(2)根据矩形的性质、垂径定理及圆的性质计算即可.【详解】(1)证明:∵⊙A 与x 轴相切于点B ,∴AB ⊥x 轴.∵AH ⊥CD ,HO ⊥OB ,∴∠AHO =∠HOB =∠OBA =90°,∴四边形AHOB 是矩形.(2)如图,连接AC .∵四边形AHOB 是矩形,∴AH =OB =7.在Rt △AHC 中,CH 2=AC 2-AH 2,∴CH =42-(7)2=3.∵点A 为圆心,AH ⊥CD ,∴CD =2CH =6.【点睛】本题考查了矩形的判定,垂径定理,圆的性质,熟练掌握矩形的判定和垂径定理是解题的关键.43(2023·甘肃武威·统考中考真题)1672年,丹麦数学家莫尔在他的著作《欧几里得作图》中指出:只用圆规可以完成一切尺规作图.1797年,意大利数学家马斯凯罗尼又独立发现此结论,并写在他的著作《圆规的几何学》中.请你利用数学家们发现的结论,完成下面的作图题:如图,已知⊙O ,A 是⊙O 上一点,只用圆规将⊙O 的圆周四等分.(按如下步骤完成,保留作图痕迹)①以点A 为圆心,OA 长为半径,自点A 起,在⊙O 上逆时针方向顺次截取AB =BC =CD;②分别以点A ,点D 为圆心,AC 长为半径作弧,两弧交于⊙O 上方点E ;③以点A 为圆心,OE 长为半径作弧交⊙O 于G ,H 两点.即点A ,G ,D ,H 将⊙O 的圆周四等分.【答案】见解析。
2020年中考数学试题圆与多边形分类汇编及答案详解
2020年中考数学试题圆与多边形分类汇编圆与多边形一、选择题1.(2020北京)正五边形的外角和为()A.180°B.360°C.540°D.720°【解析】任意多边形的外角和都为360°,与边数无关,故选B2.(2020安徽)(4分)已知点A,B,C在O上,则下列命题为真命题的是() A.若半径OB平分弦AC,则四边形OABC是平行四边形B.若四边形OABC是平行四边形,则120ABC∠=︒C.若120∠=︒,则弦AC平分半径OBABCD.若弦AC平分半径OB,则半径OB平分弦AC【解答】解:A、如图,若半径OB平分弦AC,则四边形OABC不一定是平行四边形;原命题是假命题;B、若四边形OABC是平行四边形,则AB OC=,=,OA BC==,OA OB OCAB OA OB BC OC∴====,ABO OBC∴∠=∠=︒,60∴∠=︒,是真命题;120ABCC、如图,若120∠=︒,则弦AC不平分半径OB,原命题是假命题;ABCD、如图,若弦AC 平分半径OB ,则半径OB 不一定平分弦AC ,原命题是假命题;故选:B .3.(2020广州)如图3,Rt △ABC 中,∠C =90°,AB =5,4cos 5A =,以点B 为圆心,r 为半径作⊙B ,当3r =时,⊙B 与AC 的位置关系是( * ).(A )相离 (B ) 相切 (C ) 相交(D )无法确定【答案】B4.(2020广州)往直径为52 cm 的圆柱形容器内装入一些水以后,截面如图4所示,若水面宽48AB =cm ,则水的最大深度为( * ).(A )8 cm (B )10 cm (C )16 cm (D )20 cm【答案】C5.(2020陕西)如图,△ABC 内接于⊙O ,∠A =50°.E 是边BC 的中点,连接OE 并延长,交⊙O 于点D ,连接BD ,则∠D 的大小为( )图3C BA 图4A.55°B.65°C.60°D.75°解:连接CD,∵∠A=50°,∴∠CDB=180°﹣∠A=130°,∵E是边BC的中点,∴OD⊥BC,∴BD=CD,∴∠ODB=∠ODC=BDC=65°,故选:B.6.(2020哈尔滨)(3分)如图,AB为O的切线,点A为切点,OB交O于点C,点D 在O上,连接AD、CD,OA,若35∠=︒,则ABO∠的度数为()ADCA.25︒B.20︒C.30︒D.35︒【解答】解:AB为圆O的切线,∠=︒,OABAB OA∴⊥,即90∠=︒,35ADCAOB ADC∴∠=∠=︒,270∴∠=︒-︒=︒.907020ABO故选:B .7.(2020杭州)(3分)如图,已知BC 是⊙O 的直径,半径OA ⊥BC ,点D 在劣弧AC 上(不与点A ,点C 重合),BD 与OA 交于点E .设∠AED =α,∠AOD =β,则( )A .3α+β=180°B .2α+β=180°C .3α﹣β=90°D .2α﹣β=90°解:∵OA ⊥BC ,∴∠AOB =∠AOC =90°,∴∠DBC =90°﹣∠BEO =90°﹣∠AED =90°﹣α,∴∠COD =2∠DBC =180°﹣2α,∵∠AOD +∠COD =90°,∴β+180°﹣2α=90°,∴2α﹣β=90°,故选:D .8.(2020河北)有一题目:“已知;点O 为ABC ∆的外心,130BOC ∠=︒,求A ∠.”嘉嘉的解答为:画ABC ∆以及它的外接圆O ,连接OB ,OC ,如图.由2130BOC A ∠=∠=︒,得65A ∠=︒.而淇淇说:“嘉嘉考虑的不周全,A ∠还应有另一个不同的值.”,下列判断正确的是( )A. 淇淇说的对,且A ∠的另一个值是115°B. 淇淇说的不对,A ∠就得65°C. 嘉嘉求的结果不对,A ∠应得50°D. 两人都不对,A ∠应有3个不同值解:如图所示:∵∵BOC=130°,∵∵A=65°,∵A 还应有另一个不同的值∵A′与∵A 互补.故∵A′=180°−65°=115°.9.(2020河北).正六边形的一个内角是正n 边形一个外角的4倍,则n =_________. 解:由多边形的外角和定理可知,正六边形的外角为:360°÷6=60°,故正六边形的内角为180°-60°=120°,又正六边形的一个内角是正n 边形一个外角的4倍,∵正n 边形的外角为30°,∵正n 边形的边数为:360°÷30°=12.故答案为:12.故选:A .10.(2020苏州)如图,在扇形OAB 中,已知90AOB ∠=︒,OA =AB 的中点C 作CD OA ⊥,CE OB ⊥,垂足分别为D 、E ,则图中阴影部分的面积为( )A. 1π-B. 12π-C. 12π-D. 122π- 解:连接OC点C 为AB 的中点AOC BOC ∠=∠∴在CDO 和CEO 中90AOC BOC CDO CEO CO CO ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩()CDO CEO AAS ∴≅△△,OD OE CD CE ∴==又90CDO CEO DOE ∠=∠=∠=︒∴四边形CDOE 为正方形OC OA ==1OD OE ∴===11=1CDOE S ∴⨯正方形由扇形面积公式得290==3602AOB S ππ⨯扇形==12CDOE AOB S S S π∴--阴影正方形扇形故选B .11.(2020乐山)在ABC ∆中,已知90ABC ∠=︒,30BAC ∠=︒,1BC =.如图所示,将ABC ∆绕点A 按逆时针方向旋转90︒后得到''AB C ∆.则图中阴影部分面积( )A. 4πB.C.D. 解:在Rt∵ABC 中,∵30BAC ∠=︒,∵AC=2BC=2,∵AB =∵ABC ∆绕点A 按逆时针方向旋转90︒后得到''AB C ∆,∵='''1,'90AB AB BC B C CAC ===∠=∵'60CAB ∠= ∵()22''''9039021==1=3602360AB C CAC DAB S S S S πππ---⨯-阴影扇形扇形故选:B12.(2020南京)(2分)如图,在平面直角坐标系中,点P 在第一象限,P 与x 轴、y 轴都相切,且经过矩形AOBC 的顶点C ,与BC 相交于点D .若P 的半径为5,点A 的坐标是(0,8).则点D 的坐标是( )A .(9,2)B .(9,3)C .(10,2)D .(10,3) 解:设O 与x 、y 轴相切的切点分别是F 、E 点,连接PE 、PF 、PD ,延长EP 与CD 交于点G ,则PE y ⊥轴,PF x ⊥轴,90EOF ∠=︒,∴四边形PEOF 是矩形,PE PF =,//PE OF ,∴四边形PEOF 为正方形,5OE PF PE OF ∴====,(0,8)A ,8OA ∴=,853AE ∴=-=,四边形OACB 为矩形,8BC OA ∴==,//BC OA ,//AC OB ,//EG AC ∴,∴四边形AEGC 为平行四边形,四边形OEGB 为平行四边形,3CG AE ∴==,EG OB =,PE AO ⊥,//AO CB ,PG CD ∴⊥,26CD CG ∴==,862DB BC CD ∴=-=-=,5PD =,3DG CG ==,4PG ∴=,549OB EG ∴==+=,(9,2)D ∴.故选:A .13.(2020湖北黄冈)如果一个多边形的每一个外角都是36°,那么这个多边形的边数是() A. 7 B. 8 C. 9 D. 10【答案】D【详解】∵一个多边形的每个外角都是36°,∵n =360°÷36°=10.故选D .14.(2020无锡)正十边形的每一个外角的度数为( )A. 36︒B. 30C. 144︒D. 150︒解:360°÷10=36°,故选:A . 15.(2020山东青岛).如图,BD 是O 的直径,点A ,C 在O 上,AB AD =,AC 交BD 于点G .若126COD ∠=︒.则AGB ∠的度数为( )A. 99︒B. 108︒C. 110︒D. 117︒ 解:∵BD 是O 的直径∵∵BAD 90=︒∵AB AD = ∵AB AD = ∵∵ABD 45=︒∵126COD ∠=︒ ∵∵1CAD 632COD =∠=︒ ∵∵BAG 906327=︒-︒=︒ ∵∵AGB 1802745108=︒-︒-︒=︒故选:B .16.(2020湖北武汉)如图,在半径为3的∵O 中,AB 是直径,AC 是弦,D 是AC 的中点,AC 与BD 交于点E .若E 是BD 的中点,则AC 的长是( )A. B. C. D. 【答案】D解:连接DO 、DA 、DC 、OC ,设DO 与AC 交于点H ,如下图所示,∵D 是AC 的中点,∵DA=DC ,∵D 在线段AC 的垂直平分线上,∵OC=OA ,∵O 在线段AC 的垂直平分线上,∵DO∵AC ,∵DHC=90°,∵AB 是圆的直径,∵∵BCA=90°,∵E 是BD 的中点,∵DE=BE ,且∵DEH=∵BEC ,∵∵DHE∵∵BCE(AAS),∵DH=BC ,又O 是AB 中点,H 是AC 中点,∵HO 是∵ABC 的中位线,设OH=x ,则BC=DH=2x ,∵OD=3x=3,∵x=1,即BC=2x=2,Rt∵ABC 中,==AC 故选:D .17.(2020重庆A 卷)如图,AB 是O 的切线,A 切点,连接OA ,OB ,若20B ∠=︒,则AOB ∠的度数为( )A. 40°B. 50°C. 60°D. 70° 解:∵AB 是O 的切线∴90?OAB ∠=B OA ∵20B ∠=︒∴18070AOB OAB B ∠=︒-∠-∠=︒故选D.18.(2020重庆B 卷)如图,AB 是⊙O 的直径,A 为切点,连接OA,OB ,若∠B=35°, 则∠AOB 的度数为( )A.65°B.55°C.45°D.35°答案B. 19.(2020四川南充)(4分)如图,四个三角形拼成一个风车图形,若AB =2,当风车转动90°,点B 运动路径的长度为( )A .πB .2πC .3πD .4π 解:由题意可得:点B 运动路径的长度为=90×π×2180=π, 故选:A .20.(2020甘肃定西)如图,A 是O 上一点,BC 是直径,2AC =,4AB =,点D 在O 上且平分BC ,则DC 的长为( )A.C.答案:D21.(2020吉林)(2分)如图,四边形ABCD 内接于⊙O ,若∠B =108°,则∠D 的大小为( )A.54°B.62°C.72°D.82°解:∵四边形ABCD内接于⊙O,∠B=108°,∴∠D=180°﹣∠B=180°﹣108°=72°,故选:C.22.(2020宁夏)(3分)如图,等腰直角三角形ABC中,∠C=90°,AC=,以点C为圆心画弧与斜边AB相切于点D,交AC于点E,交BC于点F,则图中阴影部分的面积是()A.1﹣B.C.2﹣D.1+解:连接CD,如图,∵AB是圆C的切线,∴CD⊥AB,∵△ABC是等腰直角三角形,∴AB=AC=×=2,∴CD=AB=1,∴图中阴影部分的面积=S△ABC﹣S扇形ECF=××﹣=1﹣.故选:A.23.(2020江苏泰州)(3分)如图,半径为10的扇形AOB 中,90AOB ∠=︒,C 为AB 上一点,CD OA ⊥,CE OB ⊥,垂足分别为D 、E .若CDE ∠为36︒,则图中阴影部分的面积为( )A .10πB .9πC .8πD .6π【解答】解:连接OC ,90AOB ∠=︒,CD OA ⊥,CE OB ⊥,∴四边形CDOE 是矩形,//CD OE ∴,36DEO CDE ∴∠=∠=︒,由矩形CDOE 易得到DOE CEO ∆≅∆,36COB DEO ∴∠=∠=︒∴图中阴影部分的面积=扇形OBC 的面积,2361010360OBC S ππ⋅⨯==扇形 ∴图中阴影部分的面积10π=,故选:A .24.(2020四川遂宁)(4分)如图,在Rt △ABC 中,∠C =90°,AC =BC ,点O 在AB 上,经过点A 的⊙O 与BC 相切于点D ,交AB 于点E ,若CD =√2,则图中阴影部分面积为( )A.4−π2B.2−π2C.2﹣πD.1−π4【解答】解:连接OD,过O作OH⊥AC于H,如图,∵∠C=90°,AC=BC,∴∠B=∠CAB=45°,∵⊙O与BC相切于点D,∴OD⊥BC,∴四边形ODCH为矩形,∴OH=CD=√2,在Rt△OAH中,∠OAH=45°,∴OA=√2OH=2,在Rt△OBD中,∵∠B=45°,∴∠BOD=45°,BD=OD=2,∴图中阴影部分面积=S△OBD﹣S扇形DOE=12×2×2−45×π×2180=2−12π.故选:B.25.(3分)(2020•徐州)如图,AB是⊙O的弦,点C在过点B的切线上,OC⊥OA,OC 交AB于点P.若∠BPC=70°,则∠ABC的度数等于()A.75°B.70°C.65°D.60°解:∵OC⊥OA,∴∠AOC=90°,∵∠APO=∠BPC=70°,∴∠A=90°﹣70°=20°,∵OA=OB,∴∠OBA=∠A=20°,∵BC为⊙O的切线,∴OB⊥BC,∴∠OBC=90°,∴∠ABC=90°﹣20°=70°.故选:B.26.(3分)(2020•荆门)如图,⊙O中,OC⊥AB,∠APC=28°,则∠BOC的度数为()A.14°B.28°C.42°D.56°解:∵在⊙O中,OC⊥AB,∴AĈ=BĈ,∵∠APC=28°,∴∠BOC=2∠APC=56°,选:D.27.(3分)(2020•常德)一个圆锥的底面半径r=10,高h=20,则这个圆锥的侧面积是()A.100√3πB.200√3πC.100√5πD.200√5π解:这个圆锥的母线长=√102+202=10√5,这个圆锥的侧面积=12×2π×10×10√5=100√5π.故选:C.28.(2020山西)(3分)中国美食讲究色香味美,优雅的摆盘造型也会让美食锦上添花.图①中的摆盘,其形状是扇形的一部分,图②是其几何示意图(阴影部分为摆盘),通过测量得到AC=BD=12cm,C,D两点之间的距离为4cm,圆心角为60°,则图中摆盘的面积是()A.80πcm2B.40πcm2C.24πcm2D.2πcm2解:如图,连接CD.∵OC =OD ,∠O =60°,∴△COD 是等边三角形,∴OC =OD =CD =4cm ,∴S 阴=S 扇形OAB ﹣S 扇形OCD =﹣=40π(cm 2),选:B .29.(2020青海)(3分)如图是一个废弃的扇形统计图,小明同学利用它的阴影部分制作一个圆锥,则这个圆锥的底面半径是( )A .3.6B .1.8C .3D .6解:设这个圆锥的底面半径为r ,根据题意得2πr =, 解得r =3.6,即这个圆锥的底面半径是3.6. 故选:A .30.(2020山东滨州)(3分)在O 中,直径15AB =,弦DE AB ⊥于点C ,若:3:5OC OB =,则DE 的长为( )A .6B .9C .12D .15 解:如图所示:直径15AB =,7.5BO ∴=,:3:5OC OB =, 4.5CO ∴=, 226DC DO CO ∴=-=,212DE DC ∴==.故选:C .31.(2020四川眉山)(4分)如图,四边形ABCD 的外接圆为⊙O ,BC =CD ,∠DAC =35°,∠ACD =45°,则∠ADB 的度数为( )A.55°B.60°C.65°D.70°解:∵BC=CD,∴=,∴∠BAC=∠DAC=35°,∵∠ABD=∠ACD=45°,∴∠ADB=180°﹣∠BAD﹣∠ABD=180°﹣70°﹣45°=65°.故选:C.32.(2020云南)(4分)如图,正方形ABCD的边长为4,以点A为圆心,AD为半径,画圆弧DE得到扇形DAE(阴影部分,点E在对角线AC上).若扇形DAE正好是一个圆锥的侧面展开图,则该圆锥的底面圆的半径是()A.B.1C.D.解:设圆椎的底面圆的半径为r,根据题意可知:AD=AE=4,∠DAE=45°,∴2πr=,解得r=.答:该圆锥的底面圆的半径是.故选:D.33.(3分)(2020•怀化)若一个多边形的内角和为1080°,则这个多边形的边数为()A.6B.7C.8D.9解:根据题意得:180(n﹣2)=1080,解得:n=8.故选:C.34.(2020山东泰安)(4分)如图,P A是⊙O的切线,点A为切点,OP交⊙O于点B,∠P=10°,点C在⊙O上,OC∥AB.则∠BAC等于()A .20°B .25°C .30°D .50°解:连接OA ,∵P A 是⊙O 的切线,∴OA ⊥AP ,∴∠P AO =90°,∴∠AOP =90°﹣∠P =80°,∵OA =OB ,∴∠OAB =∠OBA =50°,∵OC ∥AB ,∴∠BOC =∠OBA =50°,由圆周角定理得,∠BAC =12∠BOC =25°,故选:B .35.(2020山东泰安)(4分)如图,△ABC 是⊙O 的内接三角形,AB =BC ,∠BAC =30°,AD 是直径,AD =8,则AC 的长为( )A .4B .4√3C .83√3D .2√3选:B .36.(2020浙江温州)(4分)如图,菱形OABC 的顶点A ,B ,C 在⊙O 上,过点B 作⊙O 的切线交OA 的延长线于点D .若⊙O 的半径为1,则BD 的长为( )A.1B.2C.√2D.√3【解答】解:连接OB,∵四边形OABC是菱形,∴OA=AB,∵OA=OB,∴OA=AB=OB,∴∠AOB=60°,∵BD是⊙O的切线,∴∠DBO=90°,∵OB=1,∴BD=√3OB=√3,故选:D.37.(2020海南)(3分)如图,已知AB是⊙O的直径,CD是弦,若∠BCD=36°,则∠ABD等于()A.54°B.56°C.64°D.66°解:∵AB是⊙O的直径,∴∠ADB=90°,∵∠DAB=∠BCD=36°,∴∠ABD=∠ADB﹣∠DAB=90°﹣36°=54°.故选:A.38.(4分)(2020•株洲)如图所示,点A、B、C对应的刻度分别为0、2、4、将线段CA 绕点C按顺时针方向旋转,当点A首次落在矩形BCDE的边BE上时,记为点A1,则此时线段CA扫过的图形的面积为()A .4πB .6C .4√3D .83π 解:由题意,知AC =4,BC =4﹣2=2,∠A 1BC =90°.由旋转的性质,得A 1C =AC =4.在Rt △A 1BC 中,cos ∠ACA 1=BC A 1C =12. ∴∠ACA 1=60°.∴扇形ACA 1的面积为60×π×42360=83π.即线段CA 扫过的图形的面积为83π. 故选:D .二、填空题39.(2020成都)(4分)如图,A ,B ,C 是O 上的三个点,50AOB ∠=︒,55B ∠=︒,则A ∠的度数为 30︒ .【解答】解:OB OC =,55B ∠=︒180270BOC B ∴∠=︒-∠=︒,50AOB ∠=︒,7050120AOC AOB BOC ∴∠=∠+∠=︒+︒=︒,OA OC =,180120302A OCA ︒-︒∴∠=∠==︒, 故答案为:30︒.40.(2020福建)一个扇形的圆心角是90︒,半径为4,则这个扇形的面积为______.(结果保留π)【答案】4π解:∵扇形的半径为4,圆心角为90°,∵扇形的面积是:29044360ππ⨯⨯==S .故答案为:4π. 41.(2020福建)如图所示的六边形花环是用六个全等的直角三角形拼成的,则ABC ∠等于_______度.【答案】30【详解】解:由题意六边形花环是用六个全等的直角三角形拼成,可得BD=AC ,BC=AF , ∵CD=CF ,同理可证小六边形其他的边也相等,即里面的小六边形也是正六边形,∵∵1=()1621801206-⨯︒=︒, ∵∵2=180°-120°=60°,∵∵ABC=30°,故答案为:30.42.(2020陕西)如图,在正五边形ABCDE 中,DM 是边CD 的延长线,连接BD ,则∠BDM 的度数是 144° .【解答】解:因为五边形ABCDE 是正五边形,所以∠C ==108°,BC =DC , 所以∠BDC ==36°,所以∠BDM =180°﹣36°=144°,故答案为:144°.43.(2020哈尔滨)(3分)一个扇形的面积是213cm π,半径是6cm ,则此扇形的圆心角是 130 度.【解答】解:设这个扇形的圆心角为n ︒,2613360n ππ⨯=,解得,130n =, 故答案为:130.44.(2020杭州)(4分)如图,已知AB 是⊙O 的直径,BC 与⊙O 相切于点B ,连接AC ,OC .若sin ∠BAC =13,则tan ∠BOC = √22.【解答】解:∵AB 是⊙O 的直径,BC 与⊙O 相切于点B ,∴AB ⊥BC ,∴∠ABC =90°,∵sin ∠BAC =BC AC =13,∴设BC =x ,AC =3x ,∴AB =√AC 2−BC 2=√(3x)2−x 2=2√2x ,∴OB =12AB =√2x ,∴tan ∠BOC =BC OB =x √2x =√22, 故答案为:√22. 45.(2020河南).如图,在扇形BOC 中,60,BOC OD ∠=︒平分BOC ∠交狐BC 于点D .点E 为半径OB 上一动点若2OB =,则阴影部分周长的最小值为__________.【答案】.3π 【详解】解:C 阴影=,CE DE CD ++∴ C 阴影最短,则CE DE +最短,如图,作扇形OCB 关于OB 对称的扇形,OAB 连接AD 交OB 于E ,则,CE AE =,CE DE AE DE AD ∴+=+=此时E 点满足CE DE +最短,60,COB AOB OD ∠=∠=︒平分,CB30,90,DOB DOA ∴∠=︒∠=︒2,OB OA OD ===AD ∴==而CD 的长为:302,1803ππ⨯=∴ C 阴影最短为.3π故答案为:.3π46..(2020苏州)如图,已知AB 是O 的直径,AC 是O 的切线,连接OC 交O 于点D ,连接BD .若40C ∠=︒,则B 的度数是_________︒.【详解】解:∵AC 是O 的切线,∵∵OAC=90°∵40C ∠=︒,∵∵AOD=50°, ∵∵B=12∵AOD=25° 故答案为:25.47.(2020南京)(2分)如图,在边长为2cm 的正六边形ABCDEF 中,点P 在BC 上,则PEF ∆的面积为 2.【解答】解:连接BF ,BE ,过点A 作AT BF ⊥于TABCDEF 是正六边形,//CB EF ∴,AB AF =,120BAF ∠=︒,PEF BEF S S ∆∆∴=,AT BE ⊥,AB AF =,BT FT ∴=,60BAT FAT ∠=∠=︒,sin 60BT FT AB ∴==︒=2BF BT ∴==,120AFE ∠=︒,30AFB ABF ∠=∠=︒,90BFE ∴∠=︒,11222PEF BEF S S EF BF ∆∆∴===⨯⨯=故答案为48.(2020贵阳)如图,ABC ∆是O 的内接正三角形,点O 是圆心,点D ,E 分别在边AC ,AB 上,若DA EB =,则DOE ∠的度数是____度.【答案】120解:连接OA ,OB ,作OH∵AC ,OM∵AB ,如下图所示:因为等边三角形ABC ,OH∵AC ,OM∵AB ,由垂径定理得:AH=AM ,又因为OA=OA ,故∵OAH ≅∵OAM (HL ).∵∵OAH=∵OAM .又∵OA=OB,AD=EB,∵∵OAB=∵OBA=∵OAD,∵∵ODA ∵OEB (SAS ),∵∵DOA=∵EOB,∵∵DOE=∵DOA+∵AOE=∵AOE+∵EOB=∵AOB .又∵∵C=60°以及同弧AB ,∵∵AOB=∵DOE=120°.故本题答案为:120.49.(2020贵州黔西南)(3分)如图,在△ABC 中,CA =CB ,∠ACB =90°,AB =2,点D 为AB 的中点,以点D 为圆心作圆心角为90°的扇形DEF ,点C 恰在弧EF 上,则图中阴影部分的面积为 π4−12 .【解答】解:连接CD ,作DM ⊥BC ,DN ⊥AC .∵CA =CB ,∠ACB =90°,点D 为AB 的中点,∴DC =12AB =1,四边形DMCN 是正方形,DM =√22.则扇形FDE 的面积是:90π×12360=π4.∵CA =CB ,∠ACB =90°,点D 为AB 的中点,∴CD 平分∠BCA ,又∵DM ⊥BC ,DN ⊥AC ,∴DM =DN ,∵∠GDH =∠MDN =90°,∴∠GDM =∠HDN ,在△DMG 和△DNH 中,{∠DMG =∠DNH∠GDM =∠HDN DM =DN,∴△DMG ≌△DNH (AAS ),∴S 四边形DGCH =S 四边形DMCN =12.则阴影部分的面积是:π4−12. 故答案为π4−12.50.(2020无锡)已知圆锥的底面半径为1cm ,则它的侧面展开图的面积为=__________.解:根据题意可知,圆锥的底面半径r=1cm ,高,∵圆锥的母线2l ==,∵S 侧=πrl=π×1×2=2π(cm 2).故答案为:2πcm 2.51.(2020长沙).若一个圆锥的母线长是3,底面半径是1,则它的侧面展开图的面积是_____. 解:圆锥的底面周长为:2×π×1=2π, 侧面积为:12×2π×3=3π. 故答案为:3π.52.(2020长沙)如图,点P 在以MN 为直径的半圆上运动,(点P 与M ,N 不重合),PQ MN NE ⊥平分MNP ∠,交PM 于点E ,交PQ 于点F . (1) PF PE PQ PM+=___________________.(2)若2PN PM PN =⋅,则MQ NQ =___________________.【答案】 (1). 1 (2). 1解:(1)如图所示,过E 作GE MN ⊥于G ,则90NGE ∠=︒,∵MN 为半圆的直径,∵90MPN ∠=︒,又∵NE 平分MNP ∠,90NGE ∠=︒,∵PE GE =.∵NE 平分MNP ∠,∵PNE MNE ∠=∠,∵90EPN FQN ∠=∠=︒,∵90,90PNE PEN MNE QFN ∠+∠=︒∠+∠=︒,又QFN PFE ∠=∠,∵90,90PNE PEN MNE PFE ∠+∠=︒∠+∠=︒,又∵PNE MNE ∠=∠,∵PEN PFE ∠=∠,∵PE PF =,又∵PE GE =,∵GE PF =.∵PQ MN ⊥,GE MN ⊥,∵//GE PQ ,∵在PMQ 中,EM GE PM PQ=, 又∵EM PM PE =-, ∵PM PE GE PM PQ-=, ∵将GE PF =,PE PF =,代入PM PE GE PM PQ -=得,PM PF PF PM PQ -=, ∵1PF PE PM PF PF PQ PM PM PM-+=+=, 即1PF PE PQ PM+=. (2)∵2PN PM PN =⋅,∵PN PM =,又∵PQ MN ⊥,∵PQ 平分MN ,即MQ NQ =, ∵1MQ NQ=, 故答案为:(1) 1PF PE PQ PM +=;(2) 1MQ NQ=. 53.(2020山东青岛)如图,在ABC 中,O 为BC 边上的一点,以O 为圆心的半圆分别与AB ,AC 相切于点M ,N .已知120BAC ∠=︒,16AB AC +=,MN 的长为π,则图中阴影部分的面积为__________.解:如图,连接OM 、ON 、OA ,设半圆分别交BC 于点E ,F ,则OM∵AB ,ON∵AC ,∵∵AMO=∵ANO=90º,∵∵BAC=120º,∵∵MON=60º,∵MN 的长为π,∵60180OM ππ=, ∵OM=3,∵在Rt∵AMO 和Rt∵ANO 中, OM ON OA OA =⎧⎨=⎩, ∵Rt∵AMO∵Rt∵ANO(HL),∵∵AOM=∵AON=12∵MON=30º,∵AM=OM·tan30º=33⨯= ∵122332AMO AMON S SAM OM ==⨯=四边形 ∵∵MON=60º, ∵∵MOE+∵NOF=120º,∵211=3=333MOE NOF S S S ππ+=圆扇形扇形, ∵图中阴影面积为()AOB AOC AMON MOE NOF SS S S S +--+四边形扇形扇形=13()32AB AC π⨯+-=243π-,故答案为:243π-.54.(2020重庆A 卷)若多边形的内角和是外角和的2倍,则该多边形是_____边形.【答案】六55.(2020重庆A 卷)如图,在边长为2的正方形ABCD 中,对角线AC 的中点为O ,分别以点A ,C 为圆心,以AO 的长为半径画弧,分别与正方形的边相交.则图中的阴影部分的面积为__________.(结果保留π)【答案】4π- 解:由图可知,S 2ABCD S S =-阴影扇形,224ABCD S =⨯=,∵四边形ABCD 是正方形,边长为2,∴AC ,∵点O 是AC 的中点,∴,∴2903602S ππ︒==︒扇形,∴S 2=4-ABCD S S π=-阴影扇形, 故答案为:4π-.56.(2020上海)(4分)在矩形ABCD 中,AB =6,BC =8,点O 在对角线AC 上,圆O 的半径为2,如果圆O 与矩形ABCD 的各边都没有公共点,那么线段AO 长的取值范围是103<AO <203 .【解答】解:在矩形ABCD 中,∵∠D =90°,AB =6,BC =8, ∴AC =10,如图1,设⊙O 与AD 边相切于E ,连接OE , 则OE ⊥AD , ∴OE ∥CD , ∴△AOE ∽△ACD , ∴OE CD=AO AC,∴AO 10=26,∴AO =103, 如图2,设⊙O 与BC 边相切于F ,连接OF , 则OF ⊥BC ,∴OF ∥AB , ∴△COF ∽△CAB ,∴OC AC=OF AB,OD C B A HG FE O DC B A ∴OC 10=26,∴OC =103,∴AO =203, ∴如果圆O 与矩形ABCD 的各边都没有公共点,那么线段AO 长的取值范围是103<AO <203, 故答案为:103<AO <203.57.(2020重庆B 卷)如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,∠ABC=120°,AB=2√3,以点O 为圆心,OB 长为半径画弧,分别与菱形的边相交,则图中阴影部分的面积为 .(结果保留π)解析:如图,菱形面积的二分之一减去两个60°扇形的面积.答案:3√3−π.58.(2020新疆生产建设兵团)(5分)如图,⊙O 的半径是2,扇形BAC 的圆心角为60°.若将扇形BAC 剪下围成一个圆锥,则此圆锥的底面圆的半径为√33.解:连接OA ,作OD ⊥AB 于点D .在直角△OAD 中,OA =2,∠OAD =12∠BAC =30°, 则AD =OA •cos30°=√3. 则AB =2AD =2√3, 则扇形的弧长是:60⋅π×2√3180=2√33π,设底面圆的半径是r ,则2π×r =2√33π, 解得:r =√33. 故答案为:√33.59.(2020四川南充)(4分)△ABC 内接于⊙O ,AB 为⊙O 的直径,将△ABC 绕点C 旋转到△EDC ,点E 在⊙O 上,已知AE =2,tan D =3,则AB =103.【解答】解:∵AB 为⊙O 的直径, ∴∠AEB =∠ACB =90°, ∵将△ABC 绕点C 旋转到△EDC ,∴AC =CE ,BC =CD ,∠ACE =∠BCD ,∠ECD =∠ACB =90°, ∵tan D =CECD =3,∴设CE =3x ,CD =x ,∴DE =√10x , ∵∠ACE =∠BCD ,∠D =∠ABC =∠AEC ,∴△ACE ∽△DCB ,∴AC BC=CE CD=AE BD=3,∵AE =2,∴BD =23∴BE =DE ﹣BD =√10x −23,∵AE 2+BE 2=AB 2,∴22+(√10x −23)2=(√10x )2, ∴x =√103,∴AB =DE =103, 故答案为:103.60.(2020甘肃定西)若一个扇形的圆心角为60°,面积为2cm 6π,则这个扇形的弧长为_________cm (结果保留π). 答案:3π 61.(2020吉林)(3分)如图,在四边形ABCD 中,AB =CB ,AD =CD ,我们把这种两组邻边分别相等的四边形叫做“筝形”.筝形ABCD 的对角线AC ,BD 相交于点O .以点B 为圆心,BO 长为半径画弧,分别交AB ,BC 于点E ,F .若∠ABD =∠ACD =30°,AD =1,则的长为(结果保留π).解:在△ABD 与△CBD 中,,∴△ABD ≌△CBD (SSS ),∴∠ABD =∠CBD =30°,∠ADB =∠CDB ,CD =AD =1, ∴∠ABC =60°,∵AD =CD ,∠ADB =∠CDB , ∴BD ⊥AC ,且AO =CO , ∴∠ACB =90°﹣30°=60°, ∴∠BCD =∠ACB +∠ACD =90°, 在Rt △BCD 中,∵∠CBD =30°, ∴BD =2CD =2, 在Rt △COD 中,∵∠ACD =30°, ∴OD =CD =, ∴OB =BD ﹣OD =2﹣=,∴的长为:=,故答案为.62.(2020内蒙古呼和浩特)(3分)如图,△ABC中,D为BC的中点,以D为圆心,BD 长为半径画一弧,交AC于点E,若∠A=60°,∠ABC=100°,BC=4,则扇形BDE 的面积为.解:∵∠A=60°,∠B=100°,∴∠C=20°,又∵D为BC的中点,∵BD=DC=BC=2,DE=DB,∴DE=DC=2,∴∠DEC=∠C=20°,∴∠BDE=40°,∴扇形BDE的面积=,故答案为:.63.(2020内蒙古呼和浩特)(3分)已知AB为⊙O的直径且长为2r,C为⊙O上异于A,B的点,若AD与过点C的⊙O的切线互相垂直,垂足为D.①若等腰三角形AOC的顶角为120度,则CD=r,②若△AOC为正三角形,则CD=r,③若等腰三角形AOC的对称轴经过点D,则CD=r,④无论点C在何处,将△ADC沿AC折叠,点D 一定落在直径AB上,其中正确结论的序号为②③④.解:①∵∠AOC=120°,∴∠CAO=∠ACO=30°,∵CD和圆O相切,AD⊥CD,∴∠OCD=90°,AD∥CO,∴∠ACD=60°,∠CAD=30°,∴CD=AC,过点O作OE⊥AC,垂足为E,则CE=AE=AC=CD,而OE=OC=r,∠OCA≠∠COE,∴CE≠OE,∴CD≠r,故①错误;②若△AOC为正三角形,∠AOC=∠OAC=60°,AC=OC=OA=r,∴∠OAE=30°,∴OE=AO,AE=AO=r,过点A作AE⊥OC,垂足为E,∴四边形AECD为矩形,∴CD=AE=r,故②正确;③若等腰三角形AOC的对称轴经过点D,如图,∴AD=CD,而∠ADC=90°,∴∠DAC=∠DCA=45°,又∠OCD=90°,∴∠ACO=∠CAO=45°∴∠DAO=90°,∴四边形AOCD为矩形,∴CD=AO=r,故③正确;④过点C作CE⊥AO,垂足为E,∵OC⊥CD,AD⊥CD,∴OC∥AD,∴∠CAD=∠ACO,∵OC=OA,∴∠ACO=∠CAO,∴∠CAD=∠CAO,∴CD=CE,在△ADC和△AEC中,∠D=∠AEC,CD=CE,AC=AC,∴△ADC≌△AEC(HL),∴AD=AE,∴AC垂直平分DE,则点D和点E关于AC对称,即点D一定落在直径上,故④正确.故正确的序号为:②③④,故答案为:②③④.64.(2020宁夏)(3分)我国古代数学经典著作《九章算术》中记载了一个“圆材埋壁”的问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”意思是:今有一圆柱形木材,埋在墙壁中,不知其大小.用锯去锯这木材,锯口深ED=1寸,锯道长AB=1尺(1尺=10寸).问这根圆形木材的直径是26寸.解:由题意可知OE⊥AB,∵OE为⊙O半径,∴尺=5寸,设半径OA=OE=r,∵ED=1,∴OD=r﹣1,则Rt△OAD中,根据勾股定理可得:(r﹣1)2+52=r2,解得:r=13,∴木材直径为26寸;故答案为:26.65.(2020黑龙江牡丹江)(3分)AB是O的弦,OM AB⊥,垂足为M,连接OA.若AOM∆中有一个角是30︒,23OM=,则弦AB的长为12或4.【解答】解:OM AB⊥,AM BM∴=,若30OAM∠=︒,则233 tan3OMOAMAM AM∠===,6AM∴=,212 AB AM∴==;若30AOM∠=︒,则3 tan323AM AMAOMOM∠===,2AM∴=,24AB AM∴==.故答案为:12或4.66.(2020黑龙江龙东)(3分)如图,AD是ABC∆的外接圆O的直径,若40BAD∠=︒,则ACB∠=50︒.【解答】解:连接BD ,如图,AD 为ABC ∆的外接圆O 的直径,90ABD ∴∠=︒,90904050D BAD ∴∠=︒-∠=︒-︒=︒, 50ACB D ∴∠=∠=︒.故答案为50.67.(2020黑龙江龙东)(3分)小明在手工制作课上,用面积为2150cm π,半径为15cm 的扇形卡纸,围成一个圆锥侧面,则这个圆锥的底面半径为 10 cm . 解:12S l R =,∴1151502l π=,解得20l π=, 设圆锥的底面半径为r ,220r ππ∴=,10()r cm ∴=. 故答案为:10.68.(2020黑龙江牡丹江)(3分)如图,四边形ABCD 内接于O ,连接BD .若AC BC =,50BDC ∠=︒,则ADC ∠的度数是( )A .125︒B .130︒C .135︒D .140︒【解答】解:连接OA ,OB ,OC , 50BDC ∠=︒,2100BOC BDC ∴∠=∠=︒, AC BC =,100BOC AOC ∴∠=∠=︒,1502ABC AOC ∴∠=∠=︒,180130ADC ABC ∴∠=︒-∠=︒.故选:B .69.(2020江苏连云港)(3分)用一个圆心角为90︒,半径为20cm 的扇形纸片围成一个圆锥的侧面,这个圆锥的底面圆半径为 5 cm . 解:设这个圆锥的底面圆半径为r , 根据题意得90202180r ππ⨯=,解得5()r cm =. 故答案为:5.70.(2020江苏连云港)(3分)如图,正六边形123456A A A A A A 内部有一个正五边形12345B B B B B ,且3434//A A B B ,直线l 经过2B 、3B ,则直线l 与12A A 的夹角α= 48 ︒.【解答】解:延长12A A 交43A A 的延长线于C ,设l 交12A A 于E 、交43A A 于D ,如图所示: 六边形123456A A A A A A 是正六边形,六边形的内角和(62)180720=-⨯︒=︒, 1232347201206A A A A A A ︒∴∠=∠==︒,232318012060CA A A A C ∴∠=∠=︒-︒=︒, 180606060C ∴∠=︒-︒-︒=︒,五边形12345B B B B B 是正五边形,五边形的内角和(52)180540=-⨯︒=︒, 2345401085B B B ︒∴∠==︒, 3434//A A B B ,4234108EDA B B B ∴∠=∠=︒,18010872EDC ∴∠=︒-︒=︒,180180607248CED C EDC α∴=∠=︒-∠-∠=︒-︒-︒=︒,故答案为:48.71.(2020江苏泰州)(3分)如图,直线a b ⊥,垂足为H ,点P 在直线b 上,4PH cm =,O 为直线b 上一动点,若以1cm 为半径的O 与直线a 相切,则OP 的长为 3cm 或5cm .【解答】解:直线a b ⊥,O 为直线b 上一动点, O ∴与直线a 相切时,切点为H , 1OH cm ∴=,当点O 在点H 的左侧,O 与直线a 相切时,如图1所示:413()OP PH OH cm =-=-=;当点O 在点H 的右侧,O 与直线a 相切时,如图2所示:415()OP PH OH cm =+=+=;O ∴与直线a 相切,OP 的长为3cm 或5cm ,故答案为:3cm 或5cm .72.(2020山东枣庄)(4分)如图,AB 是O 的直径,PA 切O 于点A ,线段PO 交O 于点C .连接BC ,若36P ∠=︒,则B ∠= 27︒ .【解答】解:PA 切O 于点A ,90OAP ∴∠=︒,36P ∠=︒,54AOP ∴∠=︒,1272B AOP ∴∠=∠=︒. 故答案为:27︒.73.(2020湖南岳阳)(4分)(2020•岳阳)如图,AB 为半圆O 的直径,M ,C 是半圆上的三等分点,AB =8,BD 与半圆O 相切于点B .点P 为AM ̂上一动点(不与点A ,M 重合),直线PC 交BD 于点D ,BE ⊥OC 于点E ,延长BE 交PC 于点F ,则下列结论正确的是 ②⑤ .(写出所有正确结论的序号)①PB =PD ;②BC ̂的长为43π;③∠DBE =45°;④△BCF ∽△PFB ;⑤CF •CP 为定值.【解答】解:①连接AC ,并延长AC ,与BD 的延长线交于点H ,如图1,∵M ,C 是半圆上的三等分点,∴∠BAH =30°,∵BD 与半圆O 相切于点B .∴∠ABD =90°,∴∠H =60°,∵∠ACP =∠ABP ,∠ACP =∠DCH ,∴∠PDB =∠H +∠DCH =∠ABP +60°,∵∠PBD =90°﹣∠ABP ,若∠PDB =∠PBD ,则∠ABP +60°=90°﹣∠ABP ,∴∠ABP =15°,∴P 点为AM̂的中点,这与P 为AM ̂上的一动点不完全吻合, ∴∠PDB 不一定等于∠ABD ,∴PB 不一定等于PD ,故①错误;②∵M ,C 是半圆上的三等分点,∴∠BOC =13×180°=60°,∵直径AB =8,∴OB =OC =4,∴BC ̂的长度=60π×4180=43π, 故②正确;③∵∠BOC =60°,OB =OC ,∴∠ABC =60°,OB =OC =BC ,∵BE ⊥OC ,∴∠OBE =∠CBE =30°,∵∠ABD =90°,∴∠DBE =60°,故③错误;④∵M 、N 是AB̂的三等分点,∴∠BPC =30°, ∵∠CBF =30°,但∠BFP =∠FCB ,∠PBF <∠BFC ,∴△BCF ∽△PFB 不成立,故④错误;⑤∵△BCF ∽△PCB ,∴CB CP =CF CB ,∴CF •CP =CB 2,∵CB =OB =OC =12AB =4,∴CF •CP =16,故⑤正确.故答案为:②⑤.74.(3分)(2020•玉林)如图,在边长为3的正六边形ABCDEF 中,将四边形ADEF 绕顶点A 顺时针旋转到四边形AD 'E 'F ′处,此时边AD ′与对角线AC 重叠,则图中阴影部分的面积是 3π .解:∵在边长为3的正六边形ABCDEF中,∠DAC=30°,∠B=∠BCD=120°,AB =BC,∴∠BAC=∠BCA=30°,∴∠ACD=90°,∵CD=3,∴AD=2CD=6,∴图中阴影部分的面积=S四边形ADEF+S扇形DAD′﹣S四边形AF′E′D′,∵将四边形ADEF绕顶点A顺时针旋转到四边形AD'E'F′处,∴S四边形ADEF=S四边形AD′E′F′∴图中阴影部分的面积=S扇形DAD′=30⋅π×62360=3π,故答案为:3π.75.(3分)(2020•徐州)如图,在Rt△ABC中,∠C=90°,AC=4,BC=3.若以AC所在直线为轴,把△ABC旋转一周,得到一个圆锥,则这个圆锥的侧面积等于15π.【解答】解:由已知得,母线长l=5,底面圆的半径r为3,∴圆锥的侧面积是s=πlr=5×3×π=15π.故答案为:15π.76.(3分)(2020•徐州)如图,A、B、C、D为一个正多边形的顶点,O为正多边形的中心,若∠ADB=18°,则这个正多边形的边数为10.【解答】解:连接OA,OB,∵A 、B 、C 、D 为一个正多边形的顶点,O 为正多边形的中心,∴点A 、B 、C 、D 在以点O 为圆心,OA 为半径的同一个圆上,∵∠ADB =18°,∴∠AOB =2∠ADB =36°,∴这个正多边形的边数=360°36°=10, 故答案为:10. 77.(2020贵州遵义)(4分)如图,⊙O 是△ABC 的外接圆,∠BAC =45°,AD ⊥BC 于点D ,延长AD 交⊙O 于点E ,若BD =4,CD =1,则DE 的长是 √41−52 .【解答】解:连结OB ,OC ,OA ,过O 点作OF ⊥BC 于F ,作OG ⊥AE 于G , ∵⊙O 是△ABC 的外接圆,∠BAC =45°,∴∠BOC =90°,∵BD =4,CD =1,∴BC =4+1=5,∴OB =OC =5√22, ∴OA =5√22,OF =BF =52,∴DF =BD ﹣BF =32, ∴OG =32,GD =52,在Rt △AGO 中,AG =√OA 2−OG 2=√412,∴AD =AG +GD =√41+52,∴AD ×DE =BD ×CD ,DE =4×1√41+52=√41−52.故答案为:√41−52. 78.(3分)(2020•荆门)如图所示的扇形AOB 中,OA =OB =2,∠AOB =90°,C 为AB̂上一点,∠AOC =30°,连接BC ,过C 作OA 的垂线交AO 于点D ,则图中阴影部分的面积为 23π−√32.【解答】解:∵∠AOB =90°,∠AOC =30°,∴∠BOC =60°,∵扇形AOB 中,OA =OB =2,∴OB =OC =2,∴△BOC 是等边三角形,∵过C 作OA 的垂线交AO 于点D ,∴∠ODC =90°,∵∠AOC =30°,∴OD =√32OC =√3,CD =12OC =1, ∴图中阴影部分的面积═S 扇形BOC ﹣S △OBC +S △COD=60⋅π×22360−12×2×2×√32+12×√3×1 =23π−√32. 故答案为23π−√32.79.(3分)(2020•烟台)已知正多边形的一个外角等于40°,则这个正多边形的内角和的度数为 1260° .解:正n 边形的每个外角相等,且其和为360°,据此可得360°n =40°,解得n =9.(9﹣2)×180°=1260°,即这个正多边形的内角和为1260°.故答案为:1260°.80.(2020四川自贡)(4分)如图,矩形ABCD 中,E 是AB 上一点,连接DE ,将△ADE 沿DE 翻折,恰好使点A 落在BC 边的中点F 处,在DF 上取点O ,以O 为圆心,OF 长为半径作半圆与CD 相切于点G .若AD =4,则图中阴影部分的面积为 2√39 .【解答】解:连接OG ,∵将△ADE 沿DE 翻折,恰好使点A 落在BC 边的中点F 处,∴AD =DF =4,BF =CF =2,∵矩形ABCD 中,∠DCF =90°,∴∠FDC =30°,∴∠DFC =60°,∵⊙O 与CD 相切于点G ,∴OG ⊥CD ,∵BC ⊥CD ,∴OG ∥BC ,∴△DOG ∽△DFC , ∴DO DF =OG FC , 设OG =OF =x ,则4−x 4=x 2,解得:x =43,即⊙O 的半径是43. 连接OQ ,作OH ⊥FQ ,∵∠DFC =60°,OF =OQ ,∴△OFQ 为等边△;同理△OGQ 为等边△;∴∠GOQ =∠FOQ =60°,OH =√32OQ =2√33,S 扇形OGQ =S 扇形OQF , ∴S 阴影=(S 矩形OGCH ﹣S 扇形OGQ ﹣S △OQH )+(S 扇形OQF ﹣S △OFQ )=S 矩形OGCH −32S △OFQ =43×2√33−32(12×43×2√33)=2√39. 故答案为:2√39.三、解答题81.(2020北京)如图,AB 为∵O 的直径,C 为BA 延长线上一点,CD 是∵O 的切线,D 为切点,OF∵AD 于点E ,交CD 于点F.(1)求证:∵ADC=∵AOF ;(2)若sinC=13,BD=8,求EF 的长.【解析】(1)证明:连接OD ,∵CD 是∵O 的切线,∴OD ⊥CD ,∴∠ADC+∠ODA=90° ∵OF ⊥AD ,∴∠AOF+∠DAO=90°,∵∠ODA=∠DAO ,∴∠ADC=∠AOF.(2)设半径为r ,在Rt △OCD 中,31sin =C ,∴31=OC OD ,∴r OC r OD 3,==. ∵OA=r ,∴AC=OC -OA=2r∵AB 为∵O 的直径,∴∠ADB=90°,∴OF ∥BD ∴21==AB OA BD OE ,∴OE=4, ∵43==BC OC BD OF ,∴6=OF ,∴2=-=OE OF EF 82.(2020安徽)(10分)如图,AB 是半圆O 的直径,C ,D 是半圆O 上不同于A ,B 的两点,AD BC =,AC 与BD 相交于点F .BE 是半圆O 所在圆的切线,与AC 的延长线相交于点E .(1)求证:CBA DAB ∆≅∆;(2)若BE BF =,求证:AC 平分DAB ∠.【解答】(1)证明:AB 是半圆O 的直径,90ACB ADB ∴∠=∠=︒,在Rt CBA ∆与Rt DAB ∆中,BC AD BA AB =⎧⎨=⎩,Rt CBA Rt DAB(HL)∴∆≅∆;(2)解:BE BF =,由(1)知BC EF ⊥,E BFE ∴∠=∠, BE 是半圆O 所在圆的切线,90ABE ∴∠=︒,90E BAE ∴∠+∠=︒,由(1)知90D ∠=︒,90DAF AFD ∴∠+∠=︒,AFD BFE ∠=∠,AFD E ∴∠=∠,90DAF AFD ∴∠=︒-∠,90BAF E ∠=︒-∠,DAF BAF ∴∠=∠,AC ∴平分DAB ∠.83.(2020成都)(10分)如图,在ABC ∆的边BC 上取一点O ,以O 为圆心,OC 为半径画O ,O 与边AB 相切于点D ,AC AD =,连接OA 交O 于点E ,连接CE ,并延长交线段AB 于点F .(1)求证:AC 是O 的切线;(2)若10AB =,4tan 3B =,求O 的半径; (3)若F 是AB 的中点,试探究BD CE +与AF 的数量关系并说明理由.【解答】解:(1)如图,连接OD ,O 与边AB 相切于点D ,OD AB ∴⊥,即90ADO ∠=︒,AO AO =,AC AD =,OC OD =,()ACO ADO SSS ∴∆≅∆,90ADO ACO ∴∠=∠=︒,又OC 是半径,AC ∴是O 的切线;(2)4tan 3AC B BC==, ∴设4AC x =,3BC x =,222AC BC AB +=,22169100x x ∴+=,2x ∴=,6BC ∴=,8AC AD ==,10AB =,2BD ∴=,222OB OD BD =+,22(6)4OC OC ∴-=+,83OC ∴=, 故O 的半径为83; (3)连接OD ,DE ,由(1)可知:ACO ADO ∆≅∆,90ACO ADO ∴∠=∠=︒,AOC AOD ∠=∠,又CO DO =,OE OE =,()COE DOE SAS ∴∆≅∆,OCE OED ∴∠=∠,OC OE OD ==,OCE OEC OED ODE ∴∠=∠=∠=∠,1801802DEF OEC OED OCE ∴∠=︒-∠-∠=︒-∠,点F 是AB 中点,90ACB ∠=︒,CF BF AF ∴==,FCB FBC ∴∠=∠,1801802DFE BCF CBF OCE ∴∠=︒-∠-∠=︒-∠,DEF DFE ∴∠=∠,DE DF CE ∴==,AF BF DF BD CE BD ∴==+=+.84.(2020广州)(本小题满分14分)如图11,⊙O 为等边△ABC 的外接圆,半径为2,点D 在劣弧AB ︵上运动(不与点A ,B重合),连接DA ,DB ,DC .(1)求证:DC 是∠ADB 的平分线;(2)四边形ADBC 的面积S 是线段DC 的长x 的函数吗?如果是,求出函数解析式;如果不是,请说明理由;(3)若点M ,N 分别在线段CA ,CB 上运动(不含端点),经过探究发现,点D 运动到每一个确定的位置,△DMN 的周长有最小值t ,随着点D 的运动,t 的值会发生变化,求所有t值中的最大图11O C B D A。
中考数学真题分类汇编第一期专题30圆的有关性质试题含解析
圆的有关性质一、选择题1.(xx•山东枣庄•3分)如图,AB是⊙O的直径,弦CD交AB于点P,AP=2,BP=6,∠APC=30°,则CD的长为()A. B.2 C.2D.8【分析】作OH⊥CD于H,连结OC,如图,根据垂径定理由OH⊥CD得到HC=HD,再利用AP=2,BP=6可计算出半径OA=4,则OP=OA﹣AP=2,接着在Rt△OPH中根据含30度的直角三角形的性质计算出OH=OP=1,然后在Rt△OHC中利用勾股定理计算出CH=,所以CD=2CH=2.【解答】解:作OH⊥CD于H,连结OC,如图,∵OH⊥CD,∴HC=HD,∵AP=2,BP=6,∴AB=8,∴OA=4,∴OP=OA﹣AP=2,在Rt△OPH中,∵∠OPH=30°,∴∠POH=60°,∴OH=OP=1,在Rt△OHC中,∵OC=4,OH=1,∴CH==,∴CD=2CH=2.故选:C.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理以及含30度的直角三角形的性质.2.(xx•四川凉州•3分)如图,⊙O是△ABC的外接圆,已知∠ABO=50°,则∠ACB的大小为()A.40° B.30° C.45° D.50°【分析】首先根据等腰三角形的性质及三角形内角和定理求出∠AOB的度数,再利用圆周角与圆心角的关系求出∠ACB的度数.【解答】解:△AOB中,OA=OB,∠ABO=50°,∴∠AOB=180°﹣2∠ABO=80°,∴∠ACB=∠AOB=40°,故选:A.【点评】本题主要考查了圆周角定理的应用,涉及到的知识点还有:等腰三角形的性质以及三角形内角和定理.3. (xx•山东菏泽•3分)如图,在⊙O中,OC⊥AB,∠ADC=32°,则∠OBA的度数是()A.64° B.58° C.32° D.26°【考点】M5:圆周角定理;KD:全等三角形的判定与性质.【分析】根据垂径定理,可得=,∠OEB=90°,根据圆周角定理,可得∠3,根据直角三角形的性质,可得答案.【解答】解:如图,由OC⊥AB,得=,∠OEB=90°.∴∠2=∠3.∵∠2=2∠1=2×32°=64°.∴∠3=64°,在Rt△OBE中,∠OEB=90°,∴∠B=90°﹣∠3=90°﹣64°=26°,故选:D.【点评】本题考查了圆周角定理,利用垂径定理得出=,∠OEB=90°是解题关键,又利用了圆周角定理.4. (xx•江苏盐城•3分)如图,为的直径,是的弦,,则的度数为()A.B.C. D.7.【答案】C【考点】圆周角定理【解析】【解答】解:∵,∠ADC与∠B所对的弧相同,∴∠B=∠ADC=35°,∵AB是⊙O的直径,∴∠ACB=90°,∴∠CAB=90°-∠B=55°,故答案为:C【分析】由同弧所对的圆周角相等可知∠B=∠ADC=35°;而由圆周角的推论不难得知∠ACB=90°,则由∠CAB=90°-∠B即可求得。
2020-2021初中数学圆的真题汇编及解析(1)
2020-2021初中数学圆的真题汇编及解析(1)一、选择题1.如图,抛物线y =ax 2﹣6ax+5a (a >0)与x 轴交于A 、B 两点,顶点为C 点.以C 点为圆心,半径为2画圆,点P 在⊙C 上,连接OP ,若OP 的最小值为3,则C 点坐标是( )A .522(,22-B .(4,﹣5)C .(3,﹣5)D .(3,﹣4)【答案】D【解析】【分析】首先根据二次函数的解析式求出点A 、B 、C 三点的坐标,再由当点O 、P 、C 三点共线时,OP 取最小值为3,列出关于a 的方程,即可求解.【详解】∵2650y ax ax a a +-=(>) 与x 轴交于A 、B 两点, ∴A (1,0)、B (5,0),∵226534y ax ax a a x a =+=---() , ∴顶点34C a (,-), 当点O 、P 、C 三点共线时,OP 取最小值为3,∴OC =OP+2=5, 29165(0)a a +=> ,∴1a = ,∴C (3,﹣4),故选:D .【点睛】本题考查了二次函数的图象和性质,解题的关键是明确圆外一点到圆上的最短距离即该点与圆心的距离减去半径长.2.在Rt △ABC 中,∠ACB=90°.AC=8,BC=3,点D 是BC 边上动点,连接AD 交以CD 为直径的圆于点E ,则线段BE 长度的最小值为( )A.1 B.32C.3D.52【答案】A【解析】【分析】根据直径所对的圆周角为直角可知∠CED=90°,则∠AEC=90°,设以AC为直径的圆的圆心为O,若BE最短,则OB最短,根据直角三角形斜边上的中线等于斜边的一半可得OE=12AC=4,在Rt△OBC中,根据勾股定理可求得OB=5,即可得解.【详解】解:连接CE,∵E点在以CD为直径的圆上,∴∠CED=90°,∴∠AEC=180°-∠CED=90°,∴E点也在以AC为直径的圆上,设以AC为直径的圆的圆心为O,若BE最短,则OB最短,∵AC=8,∴OC=12AC=4,∵BC=3,∠ACB=90°,∴OB=22OC BC=5,∵OE=OC=4,∴BE=OB-OE=5-4=1.故选A.【点睛】本题考查了直径所对的圆周角为直角,直角三角形的性质和勾股定理.3.将直尺、有60°角的直角三角板和光盘如图摆放,A为60°角与直尺的交点,B为光盘与直尺的交点,AB=4,则光盘表示的圆的直径是()A.4 B.83C.6 D.43【答案】B【解析】【分析】设三角板与圆的切点为C,连接OA、OB,根据切线长定理可得AB=AC=3,∠OAB=60°,然后根据三角函数,即可得出答案.【详解】设三角板与圆的切点为C,连接OA、OB,由切线长定理知,AB=AC=3,AO平分∠BAC,∴∠OAB=60°,在Rt△ABO中,OB=AB tan∠OAB=43,∴光盘的直径为83.故选:B.【点睛】本题主要考查了切线的性质,解题的关键是熟练应用切线长定理和锐角三角函数.4.如图,AB是⊙O的直径,EF,EB是⊙O的弦,且EF=EB,EF与AB交于点C,连接OF,若∠AOF=40°,则∠F的度数是()A.20°B.35°C.40°D.55°【答案】B【解析】【分析】连接FB,由邻补角定义可得∠FOB=140°,由圆周角定理求得∠FEB=70°,根据等腰三角形的性质分别求出∠OFB、∠EFB的度数,继而根据∠EFO=∠EBF-∠OFB即可求得答案.【详解】连接FB,则∠FOB=180°-∠AOF=180°-40°=140°,∴∠FEB=12∠FOB=70°,∵FO=BO,∴∠OFB=∠OBF=(180°-∠FOB)÷2=20°,∵EF=EB,∴∠EFB=∠EBF=(180°-∠FEB)÷2=55°,∴∠EFO=∠EBF-∠OFB=55°-20°=35°,故选B.【点睛】本题考查了圆周角定理、等腰三角形的性质等知识,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.5.如图,Oe的外切正六边形ABCDEF的边长为2,则图中阴影部分的面积为()A32πB3 32πC .23π-D .33π-【答案】A【解析】【分析】【详解】 解:∵六边形ABCDEF 是正六边形,∴∠AOB =60°,∴△OAB 是等边三角形,OA =OB =AB =2,设点G 为AB 与⊙O 的切点,连接OG ,则OG ⊥AB ,∴OG =OA •sin 60°=2×3=3, ∴S 阴影=S △OAB ﹣S 扇形OMN =12×2×3﹣260(3)360π⨯=32π-.故选A .6.已知锐角∠AOB 如图,(1)在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作»PQ,交射线OB 于点D ,连接CD ; (2)分别以点C ,D 为圆心,CD 长为半径作弧,交»PQ于点M ,N ; (3)连接OM ,MN .根据以上作图过程及所作图形,下列结论中错误的是( )A .∠COM=∠CODB .若OM=MN ,则∠AOB=20°C .MN ∥CD D .MN=3CD【答案】D【解析】【分析】由作图知CM=CD=DN,再利用圆周角定理、圆心角定理逐一判断可得.【详解】解:由作图知CM=CD=DN,∴∠COM=∠COD,故A选项正确;∵OM=ON=MN,∴△OMN是等边三角形,∴∠MON=60°,∵CM=CD=DN,∴∠MOA=∠AOB=∠BON=13∠MON=20°,故B选项正确;∵∠MOA=∠AOB=∠BON=20°,∴∠OCD=∠OCM=80°,∴∠MCD=160°,又∠CMN=12∠AON=20°,∴∠MCD+∠CMN=180°,∴MN∥CD,故C选项正确;∵MC+CD+DN>MN,且CM=CD=DN,∴3CD>MN,故D选项错误;故选:D.【点睛】本题主要考查作图-复杂作图,解题的关键是掌握圆心角定理和圆周角定理等知识点.7.如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则图中阴影部分的面积是()A .224π--B .224π-+ C .142π+ D .142π- 【答案】B【解析】【分析】先根据正方形的边长,求得CB 1=OB 1=AC-AB 1=2-1,进而得到211(21)2OB C S =-V ,再根据S △AB1C1=12,以及扇形的面积公式即可得出图中阴影部分的面积. 【详解】连结DC 1,∵∠CAC 1=∠DCA =∠COB 1=∠DOC 1=45°,∴∠AC 1B 1=45°,∵∠ADC =90°,∴A ,D ,C 1在一条直线上,∵四边形ABCD 是正方形,∴AC 2OCB 1=45°,∴CB 1=OB 1∵AB 1=1,∴CB 1=OB 1=AC ﹣AB 12﹣1,∴211111(21)22OB C S OB CB ∆=⋅⋅=, ∵1111111111222AB C S AB B C =⋅=⨯⨯=V , 2245(2)11(21)22224ππ⨯⨯--=-+ 故选B .【点睛】本题考查了旋转的性质,正方形性质、勾股定理以及扇形面积的计算等知识点的综合应用,主要考查学生运用性质进行计算的能力.解题时注意:旋转前、后的图形全等.8.如图,用半径为12cm ,面积272cm π的扇形无重叠地围成一个圆锥,则这个圆锥的高为( )A .12cmB .6cmC .6√2 cmD .63 cm【答案】D【解析】【分析】先根据扇形的面积公式计算出扇形的圆心角,再利用周长公式计算出底面圆的周长,得出半径.再构建直角三角形,解直角三角形即可.【详解】 72π=212360n π⨯ 解得n=180°,∴扇形的弧长=18012180π⨯=12πcm . 围成一个圆锥后如图所示:因为扇形弧长=圆锥底面周长即12π=2πr解得r=6cm ,即OB=6cm根据勾股定理得22126=63-,故选D .【点睛】本题综合考查了弧长公式,扇形弧长=用它围成的圆锥底面周长,及勾股定理等知识,所以学生学过的知识一定要结合起来.9.从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是( )A .B .C .D .【答案】B【解析】【分析】 根据圆周角定理(直径所对的圆周角是直角)求解,即可求得答案.【详解】∵直径所对的圆周角等于直角,∴从直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是B .故选B .【点睛】本题考查了圆周角定理.此题比较简单,注意掌握数形结合思想的应用.10.如图,ABC ∆是一块绿化带,将阴影部分修建为花圃.已知15AB =,9AC =,12BC =,阴影部分是ABC ∆的内切圆,一只自由飞翔的小鸟将随机落在这块绿化带上,则小鸟落在花圃上的概率为( ).A .16 B .6π C .8π D .5π 【答案】B【解析】【分析】由AB=5,BC=4,AC=3,得到AB 2=BC 2+AC 2,根据勾股定理的逆定理得到△ABC 为直角三角形,于是得到△ABC 的内切圆半径=4+3-52=1,求得直角三角形的面积和圆的面积,即可得到结论.【详解】解:∵AB=5,BC=4,AC=3,∴AB 2=BC 2+AC 2,∴△ABC 为直角三角形,∴△ABC 的内切圆半径=4+3-52=1, ∴S △ABC =12AC•BC=12×4×3=6, S 圆=π,∴小鸟落在花圃上的概率=6 , 故选B .【点睛】本题考查几何概率,直角三角形内切圆的半径等于两直角边的和与斜边差的一半及勾股定理的逆定理,解题关键是熟练掌握公式.11.如图,在⊙O 中,OC ⊥AB ,∠ADC =26°,则∠COB 的度数是( )A .52°B .64°C .48°D .42°【答案】A【解析】【分析】由OC ⊥AB ,利用垂径定理可得出,再结合圆周角定理及同弧对应的圆心角等于圆周角的2倍,即可求出∠COB 的度数.【详解】解:∵OC ⊥AB ,∴,∴∠COB =2∠ADC =52°.故选:A .【点睛】考查了圆周角定理、垂径定理以及圆心角、弧、弦的关系,利用垂径定理找出是解题的关键.12.如图,圆O 是△ABC 的外接圆,∠A =68°,则∠OBC 的大小是( )A .22°B .26°C .32°D .68°【答案】A【解析】 试题分析:根据同弧所对的圆心角等于圆周角度数的两倍,则∠BOC=2∠A=136°,则根据三角形内角和定理可得:∠OBC+∠OCB=44°,根据OB=OC 可得:∠OBC=∠OCB=22°. 考点:圆周角的计算13.如图,在边长为8的菱形ABCD 中,∠DAB =60°,以点D 为圆心,菱形的高DF 为半径画弧,交AD 于点E ,交CD 于点G ,则图中阴影部分的面积是 ( )A .183π-B .183πC .32316πD .1839π-【答案】C【解析】【分析】 由菱形的性质得出AD=AB=8,∠ADC=120°,由三角函数求出菱形的高DF ,图中阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积,根据面积公式计算即可.【详解】解:∵四边形ABCD 是菱形,∠DAB=60°,∴AD=AB=8,∠ADC=180°-60°=120°,∵DF 是菱形的高,∴DF ⊥AB ,∴DF=AD •sin60°=383= ∴图中阴影部分的面积=菱形ABCD 的面积-扇形DEFG 的面积 =2120(43)84332316ππ⨯⨯=.【点睛】本题考查了菱形的性质、三角函数、菱形和扇形面积的计算;由三角函数求出菱形的高是解决问题的关键.14.如图,四边形ABCD 内接于圆O ,DA DC =,50CBE ∠=︒,AOD ∠的大小为( )A .130°B .100°C .20°D .10°【答案】A【解析】【分析】 先求出∠ABC 的大小,根据内接四边形角度关系,得到∠ADC 的大小,从而得出∠C 的大小,最后利用圆周角与圆心角的关系得∠AOD 的大小.【详解】∵∠CBE=50°∴∠ABC=130°∵四边形ABCD 是内接四边形∴∠ADC=50°∵AD=DC∴在△ADC 中,∠C=∠DAC=65°∴∠AOD=2∠C=130°故选:A【点睛】本题考查圆的性质,主要是内接四边形对角互补和同弧对应圆心角是圆周角2倍,解题中,我们要充分利用圆的性质进行角度转换,以便得到我们需要的角度.15.如图,已知圆O 的半径为10,AB ⊥CD ,垂足为P ,且AB =CD =16,则OP 的长为( )A .6B .6C .8D .8【解析】【分析】作OM⊥AB于M,ON⊥CD于N,连接OP,OB,OD,首先利用勾股定理求得OM的长,然后判定四边形OMPN是正方形,求得正方形的对角线的长即可求得OP的长.【详解】作OM⊥AB于M,ON⊥CD于N,连接OP,OB,OD,∵AB=CD=16,∴BM=DN=8,∴OM=ON==6,∵AB⊥CD,∴∠DPB=90°,∵OM⊥AB于M,ON⊥CD于N,∴∠OMP=∠ONP=90°∴四边形MONP是矩形,∵OM=ON,∴四边形MONP是正方形,∴OP=.故选B.【点睛】本题考查的是垂径定理,正方形的判定与性质及勾股定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.16.如图,若干全等正五边形排成环状.图中所示的是前3个正五边形,则要完成这一圆环还需..()个这样的正五边形A.6 B.7 C.8 D.9【答案】B【分析】【详解】如图,∵多边形是正五边形,∴内角是15×(5-2)×180°=108°,∴∠O=180°-(180°-108°)-(180°-108°)=36°,36°度圆心角所对的弧长为圆周长的1 10,即10个正五边形能围城这一个圆环,所以要完成这一圆环还需7个正五边形.故选B.17.若正六边形的半径长为4,则它的边长等于()A.4 B.2 C.23D.43【答案】A【解析】试题分析:正六边形的中心角为360°÷6=60°,那么外接圆的半径和正六边形的边长将组成一个等边三角形,故正六边形的半径等于4,则正六边形的边长是4.故选A.考点:正多边形和圆.18.如图,已知⊙O上三点A,B,C,半径OC=1,∠ABC=30°,切线PA交OC延长线于点P,则PA的长为()A.2 B3C2D.1 2【答案】B【解析】【分析】连接OA,由圆周角定理可求出∠AOC=60°,再根据∠AOC的正切即可求出PA的值.连接OA,∵∠ABC=30°,∴∠AOC=60°,∵PA是圆的切线,∴∠PAO=90°,∵tan∠AOC =PA OA,∴PA= tan60°×1=3.故选B.【点睛】本题考查了圆周角定理、切线的性质及锐角三角函数的知识,根据圆周角定理可求出∠AOC=60°是解答本题的关键.19.如图,AB是⊙O的直径,弦CD⊥AB于点M,若CD=8 cm,MB=2 cm,则直径AB的长为()A.9 cm B.10 cm C.11 cm D.12 cm【答案】B【解析】【分析】由CD⊥AB,可得DM=4.设半径OD=Rcm,则可求得OM的长,连接OD,在直角三角形DMO中,由勾股定理可求得OD的长,继而求得答案.【详解】解:连接OD,设⊙O半径OD为R,∵AB 是⊙O 的直径,弦CD ⊥AB 于点M ,∴DM=12CD=4cm ,OM=R-2, 在RT △OMD 中, OD²=DM²+OM²即R²=4²+(R-2)²,解得:R=5,∴直径AB 的长为:2×5=10cm .故选B .【点睛】本题考查了垂径定理以及勾股定理.注意掌握辅助线的作法及数形结合思想的应用.20.如图,在ABC ∆中,5AB =,3AC =,4BC =,将ABC ∆绕一逆时针方向旋转40︒得到ADE ∆,点B 经过的路径为弧BD ,则图中阴影部分的面积为( )A .1463π- B .33π+ C .3338π- D .259π 【答案】D【解析】【分析】 由旋转的性质可得△ACB ≌△AED ,∠DAB=40°,可得AD=AB=5,S △ACB =S △AED ,根据图形可得S 阴影=S △AED +S 扇形ADB -S △ACB =S 扇形ADB ,再根据扇形面积公式可求阴影部分面积.【详解】∵将△ABC 绕A 逆时针方向旋转40°得到△ADE ,∴△ACB ≌△AED ,∠DAB=40°,∴AD=AB=5,S △ACB =S △AED ,∵S 阴影=S △AED +S 扇形ADB -S △ACB =S 扇形ADB ,∴S 阴影=4025360π⨯=259π, 故选D.【点睛】本题考查了旋转的性质,扇形面积公式,熟练掌握旋转的性质:①对应点到旋转中心的距离相等;②对应点与旋转中心所连线段的夹角等于旋转角;③旋转前、后的图形全等.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆的有关性质
一.选择题
1.(2020•黑龙江省哈尔滨市•3分)如图,AB为⊙O的切线,点A为切点,OB交⊙O于点
C,点D在⊙O上,连接A D.CD,OA,若∠ADC=35°,则∠ABO的度数为()
A.25°B.20°C.30°D.35°
【分析】根据切线的性质和圆周角定理即可得到结论.
【解答】解:∵AB为圆O的切线,
∴AB⊥OA,即∠OAB=90°,
∵∠ADC=35°,
∴∠AOB=2∠ADC=70°,
∴∠ABO=90°﹣70°=20°.
故选:B.
【点评】此题考查了切线的性质,以及圆周角定理,熟练掌握切线的性质是解本题的关键.
2.(2020•黑龙江省牡丹江市•3分)如图,四边形ABCD内接于⊙O,连接B D.若,
∠BDC=50°,则∠ADC的度数是()
A.125°B.130°C.135°D.140°
【分析】连接OA,OB,OC,根据圆周角定理得出∠BOC=100°,再根据得到∠AOC,从而得到∠ABC,最后利用圆内接四边形的性质得到结果.
【解答】解:连接OA,OB,OC,
∵∠BDC=50°,
∴∠BOC =2∠BDC =100°, ∵,
∴∠BOC =∠AOC =100°,
∴∠ABC =∠AOC =50°,
∴∠ADC =180°﹣∠ABC =130°.
故选:B .
【点评】本题考查了圆周角定理,弧、弦、圆心角的关系,圆内接四边形的性质,关键在于画出半径,构造圆心角.
3.
(2020•广东省广州市•3分)往直径为52cm 的圆柱形容器内装入一些水以后,截面如图所示,若水面宽48AB cm ,则水的最大深度为( )
A. 8cm
B. 10cm
C. 16cm
D. 20cm
【答案】C
【解析】
【分析】 过点O 作OD ⊥AB 于D ,交⊙O 于E ,连接OA ,根据垂径定理即可求得AD 的长,又由⊙O 的直径为52cm ,求得OA 的长,然后根据勾股定理,即可求得OD 的长,进而求得油的最大深度DE 的长.
【详解】解:过点O 作OD ⊥AB 于D ,交⊙O 于E ,连接OA ,
由垂径定理得:11482422
AD AB cm ==⨯=, ∵⊙O 的直径为52cm ,
∴26OA OE cm ==,
在Rt AOD ∆中,由勾股定理得:2222=2624=10O m O A D A D c -=-,
∴261016DE OE OD cm =-=-=,
∴油的最大深度为16cm ,
故选:C .
【点睛】本题主要考查了垂径定理的知识.此题难度不大,解题的关键是注意辅助线的作法,构造直角三角形,利用勾股定理解决.
4 (2020年内蒙古通辽市3分)7.如图,,PA PB 分别与
O 相切于,A B 两点,72P ∠=︒,
则C ∠=( )
A. 108︒
B. 72︒
C. 54︒
D. 36︒
【答案】C
【解析】
【分析】 连接O A.OB ,根据切线的性质定理,结合四边形AOBP 的内角和为360°,即可推出∠AOB 的度数,然后根据圆周角定理,即可推出∠C 的度数.
【详解】解:连接O A.OB ,
∵直线P A.PB分别与⊙O相切于点A.B,
∴OA⊥P A,OB⊥PB,
∵∠P=72°,
∴∠AOB=108°,
∵C是⊙O上一点,
∴∠ACB=54°.
故选:C.
【点睛】本题主要考查切线的性质、四边形的内角和、圆周角定理,关键在于熟练运用切线的性质,通过作辅助线构建四边形,最后通过圆周角定理即可推出结果.
5. (2020•江苏省常州市•2分)如图,AB是⊙O的弦,点C是优弧AB上的动点(C不与
A.B重合),CH⊥AB,垂足为H,点M是BC的中点.若⊙O的半径是3,则MH长的
最大值是()
A.3 B.4 C.5 D.6
【分析】根据直角三角形斜边中线的性质以及直径是圆中最大的弦,即可求得MH的最大值是3.
【解答】解:∵CH⊥AB,垂足为H,
∴∠CHB=90°,
∵点M是BC的中点.
∴MH=BC,
∵BC的最大值是直径的长,⊙O的半径是3,
∴MH的最大值为3,
故选:A.
【点评】本题考查了直角三角形斜边中线的性质,明确BC的最大值为⊙O的直径的长是解题的关键.
6.(2020•河北省•2分)有一题目:“已知:点O为△ABC的外心,∠BOC=130°,求∠A.”
嘉嘉的解答为:画△ABC以及它的外接圆O,连接OB,O C.如图,由∠BOC=2∠A=130°,得∠A=65°.而淇淇说:“嘉嘉考虑的不周全,∠A还应有另一个不同的值.”下列判断正确的是()
A.淇淇说的对,且∠A的另一个值是115°
B.淇淇说的不对,∠A就得65°
C.嘉嘉求的结果不对,∠A应得50°
D.两人都不对,∠A应有3个不同值
【分析】直接利用圆内接四边形的性质结合圆周角定理得出答案.
【解答】解:如图所示:∠A还应有另一个不同的值∠A′与∠A互补.
故∠A′=180°﹣65°=115°.
故选:A.
【点评】此题主要考查了三角形的外接圆,正确分类讨论是解题关键.
∠为7 (2020•湖南省张家界·3分)如图,四边形ABCD为O的内接四边形,已知BCD
∠的度数为()
120︒,则BOD
A. 100︒
B. 110︒
C. 120︒
D. 130︒【答案】C
【解析】
【分析】
根据圆内接四边形的性质求出∠A,根据圆周角定理计算,得到答案.
【详解】解:∵四边形ABCD是⊙O 的内接四边形,∴∠A=180°−∠BCD=60°,由圆周角定理得,∠BOD=2∠A=120°,故选:C.【点睛】本题考查的是圆内接四边形的性质,掌握圆内接四边形的对角互补是解题的关键.
8 (2020•江苏省淮安市•3分)如图,点A.B.C在⊙O上,∠ACB=54°,则∠ABO的度数是
()
A.54°B.27°C.36°D.108°
【分析】根据圆周角定理求出∠AOB,根据等腰三角形的性质求出∠ABO=∠BAO,根据三角形内角和定理求出即可.
【解答】解:∵∠ACB=54°,
∴圆心角∠AOB=2∠ACB=108°,
∵OB=OA,
∴∠ABO=∠BAO =(180°﹣∠AOB)=36°,
故选:C.
【点评】本题考查了圆周角定理,圆心角、弧、弦之间的关系,等腰三角形的性质和三角形的内角和定理等知识点,能求出圆心角∠AOB的度数是解此题的关键.
9. (2020•江苏省南京市•2分)如图,在平面直角坐标系中,点P在第一象限,⊙P与x轴、
y轴都相切,且经过矩形AOBC的顶点C,与BC相交于点D.若⊙P的半径为5,点A 的坐标是(0,8).则点D的坐标是()
A.(9,2)B.(9,3)C.(10,2)D.(10,3)
【分析】设⊙O与x、y轴相切的切点分别是F、E点,连接PE.PF、PD,延长EP与CD 交于点G,证明四边形PEOF为正方形,求得CG,再根据垂径定理求得CD,进而得PG、DB,便可得D点坐标.
【解答】解:设⊙O与x、y轴相切的切点分别是F、E点,连接PE.PF、PD,延长EP 与CD交于点G,
则PE⊥y轴,PF⊥x轴,
∵∠EOF=90°,
∴四边形PEOF是矩形,
∵PE=PF,PE∥OF,
∴四边形PEOF为正方形,
∴OE=OF=PE=OF=5,
∵A(0,8),
∴OA=8,
∴AE=8﹣5=3,
∵四边形OACB为矩形,
∴BC=OA=8,BC∥OA,AC∥OB,
∴EG∥AC,。