一元一次方程的解法基础知识讲解

合集下载

一元一次方程 基础知识整理

一元一次方程  基础知识整理

一元一次方程1.定义:方程与一元一次方程含有未知数的叫方程,方程必须具备两个条件:第一是等式,第二是含有未知数。

方程中只含有一个未知数,且未知数的次数都是1的整式方程叫做一元一次方程。

2.方程的解与解方程使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!解方程就是求出使方程中左右两边均相等的未知数的值,是过程。

3.等式的性质(1):等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;(2):等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.解方程的过程就是把方程逐步化为x=a(常数)的形式,等式的性质是重要的转化依据。

4.解方程(1)合并同类项与移项:合并时牢记:同类项的系数相加,字母连同指数不变,系数为负数时要注意符号。

(2)移项(移项要变号):移项就是把等式一边的某项变号后移到另一边。

一般把方程转化为含有未知数的在方程的左边,常数在方程的右边。

注意与加法交换律不一样。

移项是把某些项从方程的一边移到另一边,移动要变号,而加法交换律只是加数之间交换位置,改变的只是顺序不改变符号。

(3)去括号与去分母:去括号法则与整式去括号法则相同:括号外的因数是整数时,去括号后原括号内各项的符号与原来的符号相同。

括号外的因数是负数时,去括号内后,原括号内各项的符号与原来的符号相反。

去分数:先把分式化成整式再计算。

应注意各项都要乘以各分母的最小公倍数,不要漏乘分母的项,如果分子是一个多项式,去分母时要将分子作为一个整体加上括号。

当分母是小数时,要先利用分母的基本性质把小数转化成整数,然后再去分母。

(4)一元一次方程解法的一般步骤:化简方程----------分数基本性质去分母----------同乘(不漏乘)最简公分母去括号----------注意符号变化移项----------变号合并同类项--------合并后注意符号系数化为1---------未知数细数是几就除以几5.列方程(1)读题分析法:…………多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套-----”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法: …………多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得列方程的依据,最后利用量与量之间的关系(可把未知数看做已知量),填入有关的代数式是获得方程的基础.6.列方程解决实际问题一般步骤:审设列解验答(1)配套问题等量关系:加工或者生产的总量相等或成比例。

一元一次方程的解法与应用技巧

一元一次方程的解法与应用技巧

一元一次方程的解法与应用技巧一元一次方程作为中学数学中最基础、最常见的方程类型,求解一元一次方程是我们学习数学过程中的重要环节。

本文将介绍一元一次方程的解法以及一些应用技巧。

一、一元一次方程的解法解一元一次方程的常用方法有“等式法”、“代入法”和“消元法”。

下面将分别对这三种方法进行详细介绍。

1. 等式法等式法是通过对等式两边进行相同的运算,使得方程两边的值相等,从而求得方程的解。

以下是等式法的步骤:步骤一:将方程化简为标准形式ax + b = 0,其中a和b为已知系数。

步骤二:对方程两边进行相同的运算,使得方程两边的值相等。

可以进行加减乘除等运算,以消去方程中的未知数。

步骤三:通过运算得到解x,并验证解是否满足原方程。

若满足,则解正确;若不满足,则需要重新检查计算过程。

2. 代入法代入法是通过已知的解来求解方程。

以下是代入法的步骤:步骤一:找到一个已知解x。

步骤二:将已知解代入方程中,得到一个含有未知数的等式。

步骤三:通过求解这个含有未知数的等式,得到另一个解。

步骤四:验证这个解是否满足原方程。

3. 消元法消元法是通过将方程中的变量消去,从而求得方程的解。

以下是消元法的步骤:步骤一:将方程化简为标准形式ax + by = c,其中a、b和c为已知系数。

步骤二:通过消元的方式,将方程中的一项系数变为0,从而消去该变量。

步骤三:解得另一个变量的值。

步骤四:求解第一个变量,并验证解是否满足原方程。

二、一元一次方程的应用技巧一元一次方程在实际生活中的应用非常广泛,掌握一些常见的应用技巧可以更好地解决实际问题。

1. 几何问题在几何问题中,一元一次方程经常用于求解线段长度、角度等问题。

通过建立适当的方程模型,可以利用一元一次方程求解几何问题。

2. 速度问题在速度问题中,一元一次方程常用于求解物体的速度、时间、距离等问题。

通过使用速度公式、时间公式等方法,可以建立一元一次方程来求解速度问题。

3. 比例问题在比例问题中,一元一次方程常被用于求解比例值。

一元一次方程知识点及经典例题

一元一次方程知识点及经典例题

一、知识要点梳理知识点一:一元一次方程及解的概念 1、 一元一次方程:一元一次方程的标准形式是:ax+b=0(其中x 是未知数,a,b 是已知数,且a≠0)。

要点诠释:一元一次方程须满足下列三个条件: (1) 只含有一个未知数; (2) 未知数的次数是1次; (3) 整式方程. 2、方程的解:判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等. 知识点二:一元一次方程的解法1、方程的同解原理(也叫等式的基本性质)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

如果,那么;(c 为一个数或一个式子)。

等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。

如果,那么;如果,那么要点诠释:分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。

即:(其中m≠0)特别须注意:分数的基本的性质主要是用于将方程中的小数系数(特别是分母中的小数)化为整数,如方程:-=1.6,将其化为: -=1.6。

方程的右边没有变化,这要与“去分母”区别开。

2、解一元一次方程的一般步骤:解一元一次方程的一般步骤变形步骤 具 体 方 法 变 形 根 据注 意 事 项去分母方程两边都乘以各个分母的最小公倍数等式性质21.不能漏乘不含分母的项;2.分数线起到括号作用,去掉分母后,如果分子是多项式,则要加括号去括号先去小括号,再去中括号,最后去大括号 乘法分配律、去括号法则 1.分配律应满足分配到每一项 2.注意符号,特别是去掉括号移 项 把含有未知数的项移到方程的一边,不含有未知数的项移到另一边等式性质11.移项要变号;2.一般把含有未知数的项移到方程左边,其余项移到右边合并同 类 项 把方程中的同类项分别合并,化成“b ax =”的形式(0≠a )合并同类项法则合并同类项时,把同类项的系数相加,字母与字母的指数不变未知数的系数化成“1”方程两边同除以未知数的系数a ,得a b x = 等式性质2 分子、分母不能颠倒要点诠释:理解方程ax=b 在不同条件下解的各种情况,并能进行简单应用:①a≠0时,方程有唯一解;②a=0,b=0时,方程有无数个解;③a=0,b≠0时,方程无解。

一元一次方程的认识与解法

一元一次方程的认识与解法

一元一次方程的认识与解法一元一次方程是数学中常见且重要的概念之一,它在实际生活中有着广泛的应用。

本文将介绍一元一次方程的定义、特征以及常见的解法方法。

一、一元一次方程的定义和特征一元一次方程是指只含有一个未知数(通常用x表示)且该未知数的最高幂次为1的方程。

它的一般形式可以表示为:ax + b = 0其中,a和b为已知数,且a不等于0。

一元一次方程的特征在于它只包含一个未知数,通过解方程可以确定该未知数的值。

一元一次方程的解可以是实数、有理数或无理数,具体解的形式取决于方程中的系数和常数。

二、一元一次方程的解法方法解一元一次方程的常见方法有以下几种:1. 同解法:通过移项和合并同类项的操作,将方程化简成形如x = c 的形式,其中c为一个常数。

这个常数就是方程的解,表示未知数x的值。

例如,对于方程2x + 5 = 11,我们可以先将5移项得到2x = 11 - 5,化简得2x = 6,再除以2得到x = 3。

因此,方程的解为x = 3。

2. 因式分解法:对于一元一次方程,如果可以通过因式分解的方式将方程化简,那么可以很轻松地求解方程。

例如,对于方程3x - 6 = 0,我们可以将方程因式分解为3(x - 2) = 0,然后再分别求解x的值。

根据乘积为0的性质,得到x - 2 = 0,即x = 2。

因此,方程的解为x = 2。

3. 代入法:当一个一元一次方程较复杂,不易直接求解时,我们可以通过代入其他方程或数值来求解。

例如,对于方程2x + 3y = 10,已知y = 2,可以将y的值代入方程中得到2x + 3 × 2 = 10,化简得2x + 6 = 10,再移项得到2x = 4,最后除以2得到x = 2。

因此,方程的解为x = 2。

4. 图解法:将一元一次方程转化为直线的形式,通过绘制直线并确定与x轴的交点,可以确定方程的解。

例如,对于方程3x - 2 = 4,我们可以将方程转化为直线y = 3x -2,并绘制该直线与x轴的交点,交点的横坐标即为方程的解。

一元一次方程所有知识点

一元一次方程所有知识点

一元一次方程所有知识点一、一元一次方程的概念。

1. 定义。

- 只含有一个未知数(元),未知数的次数都是1,等号两边都是整式,这样的方程叫做一元一次方程。

- 例如:2x + 3=5x - 1是一元一次方程,它只含有一个未知数x,x的次数是1,等号两边2x + 3和5x-1都是整式。

- 一般形式:ax + b = 0(a≠0),其中a是未知数x的系数,b是常数项。

2. 方程的解。

- 使方程左右两边相等的未知数的值叫做方程的解。

- 例如:对于方程2x+3 = 7,当x = 2时,左边=2×2 + 3=4 + 3 = 7,右边=7,所以x = 2就是方程2x+3 = 7的解。

二、一元一次方程的解法。

1. 移项。

- 把方程中的某一项改变符号后,从方程的一边移到另一边,这种变形叫做移项。

- 例如:在方程2x+3 = 5x - 1中,为了求解x,我们将5x移到左边变为-5x,3移到右边变为-3,得到2x-5x=-1 - 3。

- 移项的依据是等式的基本性质1:等式两边加(或减)同一个数(或式子),结果仍相等。

2. 合并同类项。

- 将方程中含有相同字母且相同字母的指数也相同的项合并在一起。

- 例如:在2x-5x=-1 - 3中,2x-5x=-3x,-1-3 = -4,方程变为-3x=-4。

3. 系数化为1。

- 在方程ax = b(a≠0)的形式下,将方程两边同时除以a,得到x=(b)/(a)。

- 例如:对于方程-3x=-4,两边同时除以-3,得到x=(4)/(3)。

三、一元一次方程的应用。

1. 行程问题。

- 基本公式:路程=速度×时间。

- 相遇问题:两者路程之和等于总路程。

例如:甲、乙两人分别从A、B两地同时出发相向而行,甲的速度是v_1,乙的速度是v_2,经过t小时相遇,AB两地间的距离s=(v_1 + v_2)t。

- 追及问题:两者路程之差等于初始距离。

例如:甲、乙两人同向而行,甲的速度是v_1,乙的速度是v_2(v_1>v_2),开始时甲、乙相距s_0,经过t小时甲追上乙,则s_0=(v_1 - v_2)t。

一元一次方程的解法

一元一次方程的解法

一元一次方程的解法一元一次方程是数学中最基础也是最简单的方程类型之一。

它的形式通常为ax+b=0,其中a和b为已知的数字,而x则是待求的未知数。

解一元一次方程的过程可以通过逐步推导和运算来完成,下面将详细介绍几种常见的解法。

方法一:等式的左右两边同时加减法一元一次方程的基本思路是将未知数的系数和常数项分别归集到等式的一侧,然后通过加减法将未知数消去。

假设我们有一个一元一次方程:2x+3=7,我们可以按照如下步骤解决它:1. 将常数项3移到等式的右侧,得到:2x = 7 - 3;2. 进行加减法运算,化简为:2x = 4;3. 继续进行乘除法运算,得到:x = 4 / 2 = 2。

所以,方程的解为x = 2。

方法二:等式的左右两边同时乘除法除了使用加减法之外,我们也可以通过乘除法来解决一元一次方程。

下面以一个具体的例子来说明这种解法的步骤:假设我们有一个一元一次方程:3x - 5 = 4。

1. 将常数项-5移到等式的右侧,得到:3x = 4 + 5;2. 进行加减法运算,化简为:3x = 9;3. 继续进行乘除法运算,得到:x = 9 / 3 = 3。

因此,方程的解为x = 3。

方法三:倒数法在解决一元一次方程时,我们还可以使用倒数法来求解。

下面以一个例子来说明这种方法:假设我们有一个一元一次方程:4x - 7 = 9。

1. 首先,将常数项7移到等式的右边,得到:4x = 9 + 7;2. 进行加减法运算,化简为:4x = 16;3. 接下来,我们将等式两边同时除以系数4,得到:(4x)/4 = 16/4;4. 进行乘除法运算,化简为:x = 4。

所以,方程的解为x = 4。

方法四:系数互换法在解决一元一次方程时,我们也可以使用系数互换法来求解。

这种方法的基本思路是,将等式中的系数和常数项位置互换,然后通过除法求解。

接下来以一个例子来说明这种方法:假设我们有一个一元一次方程:2x + 5 = 11。

【数学知识点】一元一次方程的解法步骤

【数学知识点】一元一次方程的解法步骤

【数学知识点】一元一次方程的解法步骤初中数学中一元一次方程的解法有求根公式法、一般方法、图像法,接下来看一下具体内容。

求根公式法对于关于x的一元一次方程ax+b=0(a≠0),其求根公式为:x=-b/a.推导过程ax+b=0ax=-bx=-b/a.一般方法(1)去分母:去分母是指等式两边同时乘以分母的最小公倍数。

(2)去括号括号前是"+",把括号和它前面的"+"去掉后,原括号里各项的符号都不改变。

括号前是"-",把括号和它前面的"-"去掉后,原括号里各项的符号都要改变。

(改成与原来相反的符号,例:-(x-y)=-x+y。

(3)移项:把方程两边都加上(或减去)同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。

(4)合并同类项合并同类项就是利用乘法分配律,同类项的系数相加,所得的结果作为系数,字母和指数不变。

通过合并同类项把一元一次方程式化为最简单的形式:ax=b (a≠0)(5)系数化为1设方程经过恒等变形后最终成为ax=b型(a≠1且a≠0),那么过程ax=b→x=b/a叫做系数化为1。

这是解方程的一个通用步骤,就是解方程最后一个步骤。

即方程两边同时除以未知项的系数.最后得到x=a的形式。

图像法对于关于x的一元一次方程ax+b=0(a≠0),可以通过做出一次函数f(x)=ax+b来解决。

一元一次方程ax+b=0(a≠0)的根就是它所对应的一次函数f(x)=ax+b函数值为0时,自变量x的值,即一次函数图象与x轴交点的横坐标。

感谢您的阅读,祝您生活愉快。

一元一次方程的解法知识讲解

一元一次方程的解法知识讲解

一元一次方程的解法知识讲解解一元一次方程的方法有两种:平衡法和倒运算法。

1.平衡法平衡法的基本原则是在方程的两边逐步交换操作,使方程变为x=一个已知的数值的形式。

步骤:a)首先将方程转化为标准形式,即将b移到等号的另一边。

例如,方程为2x+3=1,可以变为2x=1-3b)然后再对方程进行化简,将x的系数移到方程左边,将常数项移到方程右边。

继续上面的例子,可以得到2x=-2c)接下来,将方程两边同时除以x的系数,即将方程左边的2x除以2,得到x=-1、这就是方程的解。

2.倒运算法倒运算法的基本思想是使用与方程中运算相反的运算,从而将方程变为x=一个已知的数值的形式。

步骤:a)用方程中的运算逆运算,去消去x的系数。

例如,对于方程2x+3=1,可以用减法逆运算去消去2x的系数,得到2x-2x+3=1-2x。

b)化简方程,将常数项移到方程的右边。

继续上面的例子,可以得到3=1-2x。

c)接下来,用减法逆运算去消去常数项的系数,得到3-1=-2x。

继续计算,可以得到2=-2x。

d)最后,将方程两边同时除以x的系数,即将方程左边的-2x除以-2,得到x=-1、这也是方程的解。

这两种解法可以互相验证,使用任意一种方法得到的解都可以代入方程进行验证。

除了这两种基本的解法,还可以使用图形解、代数解、矩阵解等方法来解一元一次方程。

这些方法更加灵活,可以用于更复杂的方程求解。

需要注意的是,一元一次方程可能有一个解、无解或无数解。

如果方程化简后得到的是一个恒等式,比如0=0,那么方程就是一个恒等方程,它对任何x都成立,即有无数解。

如果方程化简后得到一个矛盾的式子,比如1=0,那么方程无解。

如果方程化简后得到一个确定的式子,比如x=5,那么方程有一个解,即x=5总结一下,解一元一次方程的关键是将方程变为x=一个已知的数值的形式,可以使用平衡法或倒运算法进行计算。

解一元一次方程能够帮助我们解决各种实际问题,如计算成本、求解速度等。

一元一次方程的概念与解法讲义知识点经典例题练习

一元一次方程的概念与解法讲义知识点经典例题练习

一元一次方程的概念与解法【知识要点梳理】1.一元一次方程的有关概念(1)一元一次方程:只含有一个未知数,并且未知数的次数是1,系数不等于0,这样的方程叫做一元一次方程.(2)一元一次方程的一般形式是: 2.解一元一次方程的基本步骤:【典型例题探究】例1.下列方程是一元一次方程的有哪些? x+2y=9 x 2-3x=111=xx x 3121=-2x=1 3x –5 3+7=10 x 2+x=1例2. 老师在黑板上出了一道解方程的题421312+-=-x x ,小明马上举起了手,要求到黑板上去做,他是这样做的: )2(31)12(4+-=-x x ①63148--=-x x ② 46138+-=+x x ③ 111-=x ④111-=x ⑤ 老师说:小明解一元一次方程的一般步骤都掌握了,但解题时有一步做错了,请你 指出他错在第 步(填编号),并将正确的过程写出来.例3.解方程 (1)32243332=+--x x (2)1423(1)(64)5(3)25x x x --++=+ (3)22314615+=+---x x x x (4)83161.20.20.55x x x +-+-=-例4.方程的综合应用 (1)x 取何值时,代数式 63x +与 832x- 的值相等.(2)已知方程104x x =-的解与方程522x m +=的解相同,求m 的值.(3) 已知1x =-是关于x 的方程 327350x x kx -++= 的解,求221195k k --的值.(4) 当.38322倍的的值是为何值时,代数式x x x x ++-(5) 若对于任意的两个有理数m, n 都有m ※n=43nm +,解方程3x ※4=2.例5. 竞赛中的方程 (1) 解方程200920102009433221=⨯++⨯+⨯+⨯x x x x ΛΛ(2)(希望杯邀请赛)对于数a,b,c,d,规定一种运算dc b a =ad-bc,如2201--=220)2(1-=⨯--⨯;若85)3(40=--x ,求x 的值.*(3)(广西竞赛)解关于x 的方程3-=++++++++bca x a cb xc b a x【基础达标演练】1.若ax +b=0为一元一次方程,则__________2.当=m 时,关于字母x 的方程0112=--m x 是一元一次方程.3.若9a x b 7 与 – 7a3x –4b 7是同类项,则x=4.当=x ___时,代数式24+x 与93-x 的值互为相反数.5.(北京中考)已知2-=x 是方程042=-+m x 的根,则m 的值是( ) A. 8B. -8C. 0D. 26.如果关于x 的方程01231=+m x是一元一次方程,则m 的值为( )A .31B. 3C. -3D.不存在 7.下列方程中( )是一元一次方程. A .3x-065= B. 2x+y=4 C. x(x+2)=8 D. 11=+x x8.下列方程变形中,正确的是( )A.方程1223+=-x x ,移项,得;2123+-=-x xB.方程()1523--=-x x ,去括号,得;1523--=-x xC.方程2332=t ,未知数系数化为1,得;1=x D.方程15.02.01=--xx 化成.63=x 9.方程62123xx +=-去分母后可得( ) A. 3x -3 =1+2x , B. 3x -9 =1+2x , C. 3x -3 =2+2x , D. 3x -12=2+4x ; 10.若32,24,A x B x =-=+使A -B=8,x 的值是( ) A .6 B .2 C .14 D .18 11.下列各方程中变形属于移项的是( ) A .由24,2x x ==得B .由735,735x x x x -=++=+得C .由,58-=-x x 得85--=--x xD .由139-=+x x ,得913+=-x x12.下列方程的解法中,正确的是( ) A .214x =,移项得142,12x x =-∴= B .155x=,两边都除以5,得3=x C .23,32==x x 得 D .0.017x =,两边都乘以100,得x =70013. 解方程: (1)221131+=-x x (2)1-323x x -=+ (3)1122142=--+x x (4)x-3(314615+--x x )=2(x+2)(5)1111(3)3302222y ⎧⎫⎡⎤---=⎨⎬⎢⎥⎣⎦⎩⎭【能力提升训练】1.如果a 、b 互为相反数,(a ≠0),则ax +b =0的根为( )A .1B .-1C .-1或1D .任意数2. 如果()01122=+++-y x x ,则21xy -的值是 . 3. 已知08)1()1(22=++--x m x m 是关于x 的一元一次方程,则m= .4.在有理数范围内定义运算“*”,其规则为:a*b =2a-b ,试求(x*3)*2=1的解.5. 阅读短文:利用列方程可将循环小数化为分数,如求=?方法是:设x =0.5,即x =0.555……,将方程两边同乘以10,得10x =5.55……,即10x =5+0.555……,而x =0.55……, ∴x =95.试根据上述方法:(1)比较0.9与1的大小;(2)将0.25化为分数.。

一元一次方程的解法的解题技巧总结

一元一次方程的解法的解题技巧总结

一元一次方程的解法的解题技巧总结一元一次方程是初中数学中的基础知识之一,掌握解题技巧对学生提升数学水平至关重要。

本文将总结一元一次方程的解题技巧,并提供具体例子,帮助读者更好地理解和应用这些技巧。

一、一元一次方程的定义和解的含义一元一次方程是指只含有一个未知数,并且未知数的最高次数为1的方程。

一元一次方程的一般形式为ax + b = 0,其中a和b为已知数,x为未知数。

解一元一次方程的含义是求出能够使方程成立的未知数的值。

方程的解也可以看作是方程与x轴相交的点的横坐标。

二、一元一次方程的解题技巧1. 移项法移项法是解一元一次方程最常用的方法之一。

通过移动方程中的项,将含有未知数的项移到一个侧,而将常数项移到另一个侧,从而解出未知数的值。

例如,对于方程2x + 3 = 7,我们可以将3移到等号右侧,得到2x= 7 - 3,进一步化简得到2x = 4,最后除以2得到x = 2,即方程的解为x = 2。

2. 消元法消元法适用于同时含有两个方程的情况,通过将两个方程进行合并和消除某些项,最终求得未知数的值。

例如,对于方程组2x + y = 5和3x - y = 1,我们可以通过消去y的方式,将两个方程相加或相减。

相加得到5x = 6,最后除以5得到x =6/5,再代入其中一个方程求得y的值。

3. 代入法代入法适用于含有多个方程,但其中一个方程已经解出未知数的情况。

通过将已得到的未知数的值代入另一个方程,解出另一个未知数的值。

例如,对于方程组3x + 2y = 10和2x - y = 1,我们可以通过解出其中一个方程中的未知数,然后代入另一个方程。

假设我们已经解得x = 2,将其代入第二个方程,得到2(2) - y = 1,化简得到y = 3,即方程组的解为x = 2,y = 3。

4. 等式性质利用等式性质也是解一元一次方程的常用技巧之一。

根据等式性质,两边同时加减、乘除相同的数,等式仍然成立。

例如,对于方程3x - 2 = 4x + 1,我们可以将2移动到等号右侧,得到3x = 4x + 3,进一步化简得到x = -3,即方程的解为x = -3。

一元一次方程的解法(知识解读+真题演练+课后巩固)(原卷版)

一元一次方程的解法(知识解读+真题演练+课后巩固)(原卷版)

第02讲 一元一次方程的解法1.会通过去分母解一元一次方程;2.归纳一元一次方程解法的一般步骤,体会解方程中化归和程序化的思想方法;3.体会建立方程模型解决问题的一般过程;4.体会方程思想,增强应用意识和应用能力.知识点1 解一元一次方程 解一元一次方程的步骤: 1. 去分母两边同乘最简公分母 2.去括号(1)先去小括号,再去 中括号,最后去大括号 (2)乘法分配律应满足分配到每一项 注意 :特别是去掉括号,符合变化 3.移项(1)定义: 把含有未知数的项移到方程的一边,不含有未知数的项移到另一边; (2)注意: ①移项要变符号 ; ②一般把含有未知数的项移到左边 ,其余项移到右边 . 4. 合并同类项(1)定义: 把方程中的同类项分别合并,化成“ ax = b ”的形式( a ≠ 0 ); (2)注意:合并同类项时,把同类项的系数相加,字母不变. 5. 系数化为 1(1)定义: 方程两边同除以未知数的系数 a ,得 abx =; (2)注意:分子、分母不能颠倒【题型1 解一元一次方程】【典例1】解一元一次方程:5x+3=3x﹣15.【变式1-1】解方程:5x﹣8=2x﹣3.【变式1-2】解方程:2x+2=3x﹣2.【典例2】解下列一元一次方程:(1)3(x+1)﹣2=2(x﹣3);(2).【变式2-1】解方程:(1)4x+5=3(x﹣1);(2)﹣=1.【变式2-2】解方程:(1)3x﹣5(2x﹣4)=7﹣4(x﹣1);(2).【变式2-3】解方程:(1)3x﹣7(x﹣1)=3﹣2(x+3)(2)=1.【题型2 一元一次方程的整数解问题】【典例3】是否存在整数k,使关于x的方程(k﹣4)x+6=1﹣5x有整数解?并求出解.【变式3-1】当整数k为何值时,方程9x﹣3=kx+14有正整数解?并求出正整数解.【变式3-2】若关于x的方程ax﹣3=0有正整数解,则整数a的值为()A.1或﹣1或3或﹣3B.1或3C.1D.3【题型3 根据两个一元一次方程的解之间的关系求参数】【典例4】若代数式与的值的和为5,则m的值为()A.18B.10C.﹣7D.7【变式4-1】若P=2a﹣2,Q=2a+3,且3P﹣Q=1,则a的值是()A.0.4B.2.5C.﹣0.4D.﹣2.5【变式4-2】若的值与x﹣7互为相反数,则x的值为()A.1B.C.3D.﹣3【变式4-3】若式子﹣2a+1的值比a﹣2的值大6,则a等于()A.1B.2C.﹣1D.﹣2【变式4-4】已知A=2x+1,B=5x﹣4,若A比B小1,则x的值为()A.2B.﹣2C.3D.﹣3【题型4 错解一元一次方程的问题】【典例5】一位同学在解方程5x﹣1=()x+3时,把“()”处的数字看错了,解得,这位同学把“()”处的数字看成了()A.3B.﹣C.﹣8D.8【变式5-1】某同学解方程2x﹣3=ax+3时,把x的系数a看错了,解得x=﹣2,他把x的系数看成了()A.5B.6C.7D.8【变式5-2】某同学解方程5y﹣1=口y+4时,把“口”处的系数看错了,解得y =﹣5,他把“口”处的系数看成了()A.5B.﹣5C.6D.﹣6【变式5-3】小明同学在解方程5x﹣1=mx+3时,把数字m看错了,解得x=﹣,则该同学把m看成了()A.3B.C.8D.﹣8【变式5-4】某同学解方程2x﹣3=ax+3时,把x的系数a看错了,解得x=﹣2,他把x的系数a看成了下列哪个数?()A.5B.6C.7D.8【题型5 一元一次方程的解与参数无关】【典例6】定义一种新运算:a⊙b=5a﹣b.(1)计算:(﹣6)⊙8=;(2)若(2x﹣1)⊙(x+1)=12,求x的值;(3)化简:(3xy﹣2x﹣3)⊙(﹣5xy+1),若化简后代数式的值与x的取值无关,求y的值.【变式6-1】(1)先化简,再求值:已知代数式A=(3a2b﹣ab2),B=(﹣ab2+3a2b),求5A﹣4B,并求出当a=﹣2,b=3时5A﹣4B的值.(2)对于任意四个有理数a,b,c,d,可以组成两个有理数对(a,b)与(c,d).规定:(a,b)★(c,d)=ad﹣bc,如:(1,2)★(3,4)=1×4﹣2×3=﹣2根据上述规定解决下列问题:①有理数对(5,﹣3)★(3,2)=.②若有理数对(﹣3,x)★(2,2x+1)=15,则x=.③若有理数对(2,x﹣1)★(k,2x+k)的值与x的取值无关,求k的值.【变式6-2】(1)已知多项式3x2+my﹣8与多项式﹣nx2+2y+7的差与x,y的值无关,求n m+mn的值.(2)解方程=1﹣.【题型6 一元一次方程的解在新定义中运用】【典例7】定义“※”运算为“a※b=ab+2a”,若(3※x)+(x※3)=14,则x等于()A.1B.2C.﹣1D.﹣2【变式7-1】新定义一种运算“☆”,规定a☆b=ab+a﹣b.若2☆x=x☆2,则x的值为.【变式7-2】规定一种新的运算:a*b=2﹣a﹣b,求*=1的解是.【变式7-3】已知a,b,c,d为有理数,现规定一种新的运算=ad﹣bc,那么当=18时,x的值是.1.(2022•百色)方程3x=2x+7的解是()A.x=4B.x=﹣4C.x=7D.x=﹣7 2.(2022•海南)若代数式x+1的值为6,则x等于()A.5B.﹣5C.7D.﹣7 3.(2021•温州)解方程﹣2(2x+1)=x,以下去括号正确的是()A.﹣4x+1=﹣x B.﹣4x+2=﹣x C.﹣4x﹣1=x D.﹣4x﹣2=x 4.(2023•陇西县校级模拟)定义aⓧb=2a+b,则方程3ⓧx=4ⓧ2的解为()A.x=4B.x=﹣4C.x=2D.x=﹣2 5.(2023•青山区一模)若的值与x﹣7互为相反数,则x的值为()A.1B.C.3D.﹣3 6.(2023•怀远县二模)方程=1去分母正确的是()A.2(3x﹣1)﹣3(2x+1)=6B.3(3x﹣1)﹣2(2x+1)=1C.9x﹣3﹣4x+2=6D.3(3x﹣1)﹣2(2x+1)=6 7.(2021•广元)解方程:+=4.8.(2021•桂林)解一元一次方程:4x﹣1=2x+5.9.(2021•西湖区校级自主招生)以下是圆圆解方程=1的解答过程.解:去分母,得3(x+1)﹣2(x﹣3)=1.去括号,得3x+1﹣2x+3=1.移项,合并同类项,得x=﹣3.圆圆的解答过程是否有错误?如果有错误,写出正确的解答过程.10.(2022秋•陵城区期末)解方程(1)18(x﹣1)﹣2x=﹣2(2x﹣1);(2).1.(2023春•榆树市期末)一元一次方程8x=2x﹣6的解是()A.x=1B.x=0C.x=﹣2D.x=﹣1 2.(2022秋•汾阳市期末)方程3x﹣2(x﹣3)=5去括号变形正确的是()A.3x﹣2x﹣3=5B.3x﹣2x﹣6=5C.3x﹣2x+3=5D.3x﹣2x+6=5 3.(2023•乐东县一模)代数式5x﹣7与13﹣2x互为相反数,则x的值是()A.B.2C.﹣2D.无法计算4.(2022秋•宜城市期末)定义“※”运算为“a※b=ab+2a”,若(3※x)+(x※3)=14,则x等于()A.1B.2C.﹣1D.﹣2 5.(2022秋•泸县期末)如果表示ad﹣bc,若=4,则x的值为()A.﹣2B.C.3D.6.(2022秋•潮安区期末)设a⊕b=3a﹣b,且x⊕(2⊕3)=1,则x等于()A.3B.8C.D.7.(2022秋•泰山区期末)王林同学在解关于x的方程3m+2x=4时,不小心将+2x看作了﹣2x,得到方程的解是x=1,那么原方程正确的解是()A.x=2B.x=﹣1C.x=D.x=5 8.(2022秋•碑林区校级期末)小亮在解方程3a+x=7时,由于粗心,错把+x 看成了﹣x,结果解得x=2,则a的值为()A.B.a=3C.a=﹣3D.9.(2022秋•六盘水期末)已知代数式6x﹣12与4+2x的值互为相反数,那么x 的值等于.10.(2022秋•嘉祥县期末)解下列方程:(1)2x﹣3(2x﹣3)=x+4;(2).。

人教版初一数学上册一元一次方程的解法(提高)知识讲解

人教版初一数学上册一元一次方程的解法(提高)知识讲解

一元一次方程的解法(提高)知识讲解【学习目标】1. 熟悉解一元一次方程的一般步骤,理解每步变形的依据;2. 掌握一元一次方程的解法,体会解法中蕴涵的化归思想;3. 进一步熟练掌握在列方程时确定等量关系的方法. 【要点梳理】要点诠释:(1)解方程时,表中有些变形步骤可能用不到,而且也不一定要按照自上而下的顺序,有些步骤可以合并简化.(2) 去括号一般按由内向外的顺序进行,也可以根据方程的特点按由外向内的顺序进行. (3)当方程中含有小数或分数形式的分母时,一般先利用分数的性质将分母变为整数后再去分母,注意去分母的依据是等式的性质,而分母化整的依据是分数的性质,两者不要混淆.要点二、解特殊的一元一次方程1.含绝对值的一元一次方程解此类方程关键要把绝对值化去,使之成为一般的一元一次方程,化去绝对值的依据是绝对值的意义.要点诠释:此类问题一般先把方程化为ax b c +=的形式,再分类讨论:(1)当0c <时,无解;(2)当0c =时,原方程化为:0ax b +=;(3)当0c >时,原方程可化为:ax b c +=或ax b c +=-. 2.含字母的一元一次方程此类方程一般先化为最简形式ax =b ,再分三种情况分类讨论: (1)当a ≠0时,b x a=;(2)当a =0,b =0时,x 为任意有理数;(3)当a =0,b ≠0时,方程无解. 【典型例题】类型一、解较简单的一元一次方程1.关于x的方程2x﹣4=3m和x+2=m有相同的解,则m的值是()A.10 B.-8 C.-10 D.8【答案】B.【解析】解:由2x﹣4=3m得:x=;由x+2=m得:x=m﹣2由题意知=m﹣2解之得:m=﹣8.【总结升华】根据题目给出的条件,列出方程组,便可求出未知数.举一反三:【变式】下列方程的解法对不对?如果不对,错在哪里?应当怎样改正?3x+2=7x+5解:移项得3x+7x=2+5,合并得10x=7.,系数化为1得710x=.【答案】以上的解法是错误的,其错误的原因是在移项时没有变号,也就是说将方程中右边的7x移到方程左边应变为-7x,方程左边的2移到方程右边应变为-2.正确解法:解:移项得3x-7x=5-2,合并得-4x=3,系数化为1得34x=-.类型二、去括号解一元一次方程2. 解方程:112 [(1)](1) 223x x x--=-.【答案与解析】解法1:先去小括号得:11122[]22233x x x-+=-.再去中括号得:1112224433x x x-+=-.移项,合并得:5111212x-=-.系数化为1,得:115x=.解法2:两边均乘以2,去中括号得:14(1)(1)23x x x--=-.去小括号,并移项合并得:51166x-=-,解得:115x=.解法3:原方程可化为:112 [(1)1(1)](1) 223x x x-+--=-.去中括号,得1112(1)(1)(1) 2243x x x-+--=-.移项、合并,得51(1)122x--=-.解得115x=.【总结升华】解含有括号的一元一次方程时,一般方法是由内到外或由外到内逐层去括号,但有时根据方程的结构特点,灵活恰当地去括号,以使计算简便.例如本题的方法3:方程左、右两边都含(x-1),因此将方程左边括号内的一项x变为(x-1)后,把(x-1)视为一个整体运算.3.解方程:111111110 2222x⎧⎫⎡⎤⎛⎫----=⎨⎬⎪⎢⎥⎝⎭⎣⎦⎩⎭.【答案与解析】解法1:(层层去括号)去小括号11111110 2242x⎧⎫⎡⎤----=⎨⎬⎢⎥⎣⎦⎩⎭.去中括号1111110 2842x⎧⎫----=⎨⎬⎩⎭.去大括号111110 16842x----=.移项、合并同类项,得115168x=,系数化为1,得x=30.解法2:(层层去分母)移项,得11111111 2222x⎧⎫⎡⎤⎛⎫---=⎨⎬⎪⎢⎥⎝⎭⎣⎦⎩⎭.两边都乘2,得1111112 222x⎡⎤⎛⎫---=⎪⎢⎥⎝⎭⎣⎦.移项,得111113 222x⎡⎤⎛⎫--=⎪⎢⎥⎝⎭⎣⎦.两边都乘2,得11116 22x⎛⎫--=⎪⎝⎭.移项,得111722x⎛⎫-=⎪⎝⎭,两边都乘2,得11142x-=.移项,得1152x=,系数化为1,得x=30.【总结升华】此题既可以按去括号的思路做,也可以按去分母的思路做.举一反三:【变式】解方程11111641 2345x⎧⎫⎡⎤⎛⎫--+=⎨⎬⎪⎢⎥⎝⎭⎣⎦⎩⎭.【答案】解:方程两边同乘2,得1111642 345x⎡⎤⎛⎫--+=⎪⎢⎥⎝⎭⎣⎦.移项、合并同类项,得111162 345x⎡⎤⎛⎫--=-⎪⎢⎥⎝⎭⎣⎦.两边同乘以3,得11166 45x⎛⎫--=-⎪⎝⎭.移项、合并同类项,得1110 45x⎛⎫-=⎪⎝⎭.两边同乘以4,得110 5x-=.移项,得115x=,系数化为1,得x=5.类型三、解含分母的一元一次方程4.(2016春•淅川县期中)解方程﹣=.【思路点拨】方程整理后,去分母,去括号,移项合并同类项,把x系数化为1,即可求出解.【答案与解析】解:原方程可化为6x﹣=,两边同乘以6,得36x﹣21x=5x﹣7,移项合并,得10x=-7解得:x=﹣0.7.【总结升华】此题考查了解一元一次方程,其步骤为:去分母,去括号,移项合并,把未知数系数化为1,求出解.举一反三:【变式】解方程0.40.90.30.210.50.3y y++-=.【答案】解:原方程可化为49321 53y y++-=.去分母,得3(4y+9)-5(3+2y)=15.去括号,得12y+27-15-10y=15.移项、合并同类项,得2y=3.系数化为1,得32y =. 类型四、解含绝对值的方程5.解方程:3|2x|-2=0 .【思路点拨】将绝对值里面的式子看作整体,先求出整体的值,再求x 的值. 【答案与解析】解:原方程可化为:223x = . 当x ≥0时,得223x =,解得:13x =, 当x <0时,得223x -=,解得:13x =-,所以原方程的解是x =13或x =13-.【总结升华】此类问题一般先把方程化为ax b c +=的形式,再根据(ax b +)的正负分类讨论,注意不要漏解.举一反三:【变式】(2014秋•故城县期末)已知关于x 的方程mx+2=2(m ﹣x )的解满足方程|x ﹣|=0,则m 的值为( )A. B. 2 C.D.3【答案】B解:∵|x﹣|=0,∴x=,把x 代入方程mx+2=2(m ﹣x )得:m+2=2(m ﹣), 解之得:m=2.类型五、解含字母系数的方程6. 解关于x 的方程:1mx nx -= 【答案与解析】解:原方程可化为:()1m n x -=当0m n -≠,即m n ≠时,方程有唯一解为:1x m n=-; 当0m n -=,即m n =时,方程无解.【总结升华】解含字母系数的方程时,先化为最简形式ax b =,再根据x 系数a 是否为零进行分类讨论.【高清课堂:一元一次方程的解法388407解含字母系数的方程】 举一反三:【变式】若关于x 的方程(k-4)x =6有正整数解,求自然数k 的值.【答案】解:∵原方程有解,∴40k-≠原方程的解为:64xk=-为正整数,∴4k-应为6的正约数,即4k-可为:1,2,3,6∴k为:5,6,7,10答:自然数k的值为:5,6,7,10.附录资料:方程的意义(基础)知识讲解【学习目标】1.正确理解方程的概念,并掌握方程、等式及算式的区别与联系;2. 正确理解一元一次方程的概念,并会判断方程是否是一元一次方程及一个数是否是方程的解;3. 理解并掌握等式的两个基本性质.【要点梳理】【高清课堂:从算式到方程一、方程的有关概念】要点一、方程的有关概念1.定义:含有未知数的等式叫做方程.要点诠释:判断一个式子是不是方程,只需看两点:一.是等式;二.是含有未知数.2.方程的解:使方程左右两边的值相等的未知数的值,叫做方程的解.要点诠释:判断一个数(或一组数)是否是某方程的解,只需看两点:①.它(或它们)是方程中未知数的值;②将它(或它们)分别代入方程的左边和右边,若左边等于右边,则它们是方程的解,否则不是.3.解方程:求方程的解的过程叫做解方程.4.方程的两个特征:(1).方程是等式;(2).方程中必须含有字母(或未知数).【高清课堂:从算式到方程二、一元一次方程的有关概念】要点二、一元一次方程的有关概念定义:只含有一个未知数(元),并且未知数的次数都是1,这样的方程叫做一元一次方程.要点诠释:“元”是指未知数,“次”是指未知数的次数,一元一次方程满足条件:①首先是一个方程;②其次是必须只含有一个未知数;③未知数的指数是1;④分母中不含有未知数.【高清课堂:从算式到方程三、解方程的依据——等式的性质】要点三、等式的性质1.等式的概念:用符号“=”来表示相等关系的式子叫做等式.2.等式的性质:等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等.即:如果,那么 (c为一个数或一个式子) .等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等.即:如果,那么;如果,那么.要点诠释:(1)根据等式的两条性质,对等式进行变形,等式两边必须同时进行完全相同的变形; (2) 等式性质1中,强调的是整式,如果在等式两边同加的不是整式,那么变形后的等式不一定成立,如x=0中,两边加上得x+,这个等式不成立;(3) 等式的性质2中等式两边都除以同一个数时,这个除数不能为零.【典型例题】类型一、方程的概念1.下列各式哪些是方程?①3x-2=7;②4+8=12;③3x-6;④2m-3n=0;⑤3x2-2x-1=0;⑥x+2≠3;⑦251x=+;⑧28553x x-=.【答案与解析】解:②虽是等式,但不含未知数;③不是等式;⑥表示不等关系,故②、③、⑥均不符合方程的概念.①、④、⑤、⑦、⑧符合方程的定义,所以方程有:①、④、⑤、⑦、⑧.【总结升华】方程的判断必须看两点,一个是等式,二是含有未知数.当然未知数的个数可以是一个,也可以是多个.举一反三:【变式】下列四个式子中,是方程的是()A. 3+2=5B. x=1C. 2x﹣3<0D. a2+2ab+b2 【答案】B.2.(2015春•孟津县期中)下列方程中,以x=2为解的方程是()A. 4x﹣1=3x+2B. 4x+8=3(x+1)+1C. 5(x+1)=4(x+2)﹣1D. x+4=3(2x﹣1)【答案】C.【总结升华】检验一个数是不是方程的解,根据方程解的概念,只需将所给字母的值分别代入方程的左右两边,若两边的值相等,则这个数就是此方程的解,否则不是.举一反三:【变式】下列方程中,解是x=3的是( )A.x+1=4 B.2x+1=3 C.2x-1=2 D.217 3x+=类型二、一元一次方程的相关概念3.(2016春•南江县期末)在下列方程中①x 2+2x=1,②﹣3x=9,③x=0,④3﹣=2,⑤=y+是一元一次方程的有( )个.A .1B .2C .3D .4【思路点拨】根据一元一次方程的定义:只含有一个未知数,并且未知数的最高次数是1次的整式方程,可以逐一判断. 【答案】B.【解析】解:①x 2+2x=1,是一元二次方程;②﹣3x=9,是分式方程;③x=0,是一元一次方程;④3﹣=2,是等式,不是方程;⑤=y+是一元一次方程;一元一次方程的有2个,故选:B . 【总结升华】本题考查了一元一次方程的定义,解决本题的关键是熟记一元一次方程的定义.举一反三:【变式】下列方程中是一元一次方程的是__________(只填序号). ①2x-1=4;②x =0;③ax =b ;④151x-=-. 【答案】①②.类型三、等式的性质4.用适当的数或整式填空,使所得的结果仍为等式,并说明根据等式的哪一条性质,以及怎样变形得到的. (1)如果41153x -=,那么453x =+________; (2)如果ax+by =-c ,那么ax =-c +________; (3)如果4334t -=,那么t =________. 【答案与解析】解: (1). 11;根据等式的性质1,等式两边都加上11; (2).(-by ); 根据等式的性质1,等式两边都加上-by ; (3).916-; 根据等式的性质2,等式两边都乘以34-. 【总结升华】先从不需填空的一边入手,比较这一边是怎样变形的,再根据等式的性质,对另一边也进行同样的变形.举一反三:【变式】下列说法正确的是( ).A .在等式ab =ac 两边都除以a ,可得b =c.B .在等式a =b 两边除以c 2+1,可得2211a bc c =++. C .在等式b ca a=两边都除以a ,可得b =c.D.在等式2x=2a-b两边都除以2,可得x=a-b.【答案】B.类型四、设未知数列方程5.根据问题设未知数并列出方程:一次考试共有25道选择题,做对一道得4分,做错或不做一道倒扣1分.若小明想考80分,他要做对多少道题?【答案与解析】解:设小明要做对x道题,则有(25-x)道做错或没做的题,依题意有:4x-(25-x)×1=80.可以采用列表法探究其解显然,当x=21时,4x-(25-x)×1=80.所以小明要做对21道题.【总结升华】根据题意设出合适的未知量,并根据等量关系列出含有未知量的等式.举一反三:【变式】根据下列条件列出方程.(l)x的5倍比x的相反数大10;(2)某数的34比它的倒数小4;(3)甲、乙两人从学校到公园,走这段路甲用20分钟,乙用30分钟,如果乙比甲早5分钟出发,问甲用多少时间追上乙?【答案】(1)5x-(-x)=10;(2)设某数为x,则1344xx-=;(3)设甲用x分钟追上乙,由题意得11(5)3020x x+=.。

一元一次方程的概念与解法

一元一次方程的概念与解法

一元一次方程的概念与解法【知识要点】1.一元一次方程的有关概念(1)一元一次方程:只含有一个未知数,并且未知数的次数是1,系数不等于0,这样的方程叫做一元一次方程.(2)一元一次方程的标准形式是:2.等式的基本性质(1)等式的两边都加上或减去或,所得的结果仍是等式.(2)等式的两边都乘以或都除以,所得的结果仍是等式. 3.解一元一次方程的基本步骤:【典型例题】例1.下列方程是一元一次方程的有哪些?x+2y=9 x 2-3x=1 11=xx x 3121=-2x=1 3x –5 3+7=10 x 2+x=1例2. 用适当的数或整式填空,使得结果仍是等式,并说明是根据等式的哪条性质,通过怎样变形得到的.(1)如果________;-8x 3,853==+那么x(2)如果-1_x_________3,123=--=那么x x ;(3)如果;__________x ,521==那么x(4)如果________.3x ,32==那么yx例3.解下列简易方程1.5223-=+x x 2.4.7-3x=113.x x +-=-32.0 4.)3(4)12(3-=+x x例4.解方程 1.32243332=+--x x 2.1423(1)(64)5(3)25x x x --++=+3.21101211364x x x -++-=- 4.22314615+=+---x x x x 5.003.002.003.0255.09.03.0=+---+x x x 6.83161.20.20.55x x x +-+-=-例6.x 取何值时,代数式 63x + 与 832x- 的值相等.例7.已知方程104x x =-的解与方程522x m +=的解相同,求m 的值.例8. 已知1x =-是关于x 的方程 327350x x kx -++= 的解,求221195k k --的值.例9.当.38322倍的的值是为何值时,代数式x x x x ++-例10. 若对于任意的两个有理数m, n 都有m ※n=43nm +,解方程3x ※4=2.系统讲解一元一次方程的应用【知识梳理】一、知识结构二、知识要点归纳1.列方程解决实际问题的一般步骤(1)找——找准等量关系,找出能够表示题意的等量关系.(2)设——设未知数,弄清题意和找准等量系后,用字母表示题目中的一个未知数.(3)列——列出方程,用含未知数的代数式表示出题目中的各种数量,依据找准的等量关系,列出方程.(4) 解——解方程.解出所列的方程,求出未知数的值.(5) 答_作出应答,检验方程的解是否符合实际,作出回答且注明单位.水速度=船速-水速2.分析应用题中等量关系的一般方法(1)译式法:将题目中的关键性语言或数量及各数量间的关系译成代数式,然后根据代数式之间的内在联系找出等量关系.(2)线示法:用同一直线的线段表示应用题中的数量关系,然后根据线段的长度的内在联系,找出等量关系.(3)列表法:将已知条件和所求的未知量纳入表格,从而找出各种量之间的关系.(4)图示法:利用图表示题中的数量关系,它可以使量之间的关系更为直观,更方便找出其中的等量关系.三、考查解析一元一次方程应用问题,关键是考查同学们用一元一次方程的模型解决实际问题的能力,大多数属于当基本题或中档题,学习中应抓住其核心问题——建模,从等量关系入手,而不是只让学生套题型,套步骤去解应用题.【典型例题】劳动力分配问题例1.某车间有100个工人,每人平均每天可以加工螺栓18个或螺母24个,要使每天加工的螺栓与螺母配套(一个螺栓要配两个螺母)应如何分配加工螺栓、螺母的工人?分析:等量关系为螺栓数:螺母数=1︰2.设加工螺栓人数为x,则加工螺栓的总数为18x个,加工螺母总数为24(100-x)个.解:设加工螺栓的人数为x人,依题意有24xx⨯(=-2,18)100解得 40=x (人).∴加工螺母的人数为 100-x =100-40=60(人) 答:应分配40人去加工螺栓.点评:此题重点是培养学生寻找等量关系的意识和能力. 等体积问例2.一个圆柱形水桶,底面半径为11cm ,高25cm ,将满桶的水倒入底面长30cm ,宽20cm 的长方体容器,问此长方体容器的高度至少要多少才不溢出水(π取3.14,结果精确到0.1cm )? 分析:从相等关系入手,即圆柱形容器积=长方体器容积. 解:设长方体容器的高为x cm ,依题意,有 30×20x =25π×112,解方程,得 ≈=24121πx 15.9cm , 答:长方体容器的高至少需要15.9cm.点评:“等积变换”是中学数学的常用方法,要让学生理解和把握这方法,并能在实际问题中灵活应用. 盈亏问题例3.某服装个体户同时卖出两套服装,每件都以135元出售,按成本计算,其中一件盈利25%,另一件亏本25%.(1)在这次买卖中,这位个体户是赔是赚还是正好保本? (2)若将题中的135元改成为任何正数a 元,情况如何? 分析:关键把握等量关系: 进价(1+盈利率)=售价,进价(1-亏本率)=售价.解:(1)设第一件进价为x 元,则135%)251(=+x , 解得 108=x ,设第一件进价为y 元,则135%)251(=-y , 解得 180=y ,而 181352)180108(1352)(=⨯-+=⨯-+y x .所以赔18元.(2)仿前一小题方法可得: a x =+%)251(及a y =-%)251(, 解得 a x 54=, a y 34=,而 0152234542)(>=-⎪⎭⎫ ⎝⎛+=-+aa a a a y x , 所以此时仍然是亏本.点评:解决该题的关键是把握住此类问题中的几个等量关系,同时理解好一些常用“词”:如:打八折,进价,售价,盈利10%,亏本20%等.拓广:在例3中,将题中的135元改为任何正数a 元,同时又将题中的25%改为m%(0<m <100)情况如何?工程量问题例4.甲、乙两水管往水池中注水,甲管单独打开用20小时可注满一池水,乙管单独打开用40小时可注满一池水.现在甲管单独打开8小时后,乙管才开始工作,问两管一起打开后需多少小时可注满水池?分析:利用等量关系,甲管工作量+乙管工作量=1,来解题,为了理清工作量的关系,可列表如下:(设两管一起开后x 小时可注满全池)解:设两管一起打开后x 小时可注满全池,依题意,得140208=++xx . 解得 8=x (小时),答:两管一起打开后8小时可注满水池.点评:“列表法”在分析等量关系中,有其特点,但重点还应是在培养学生寻找等量关系的意识和能力上,提高“建模”能力.行程问题例5.由甲地到乙地前32的路是高速公路,后31的路是普通公路,高速公路和普通公路交界处是丙地.A 车在高速公路上的行驶速度是100千米/时,在普通公路的行驶速度是60千米/时.B 车在高速公路上的行驶速度是110千米/时,在普通公路上的行驶速度是70千米/时.A 、B 两车分别从甲、乙两地同时出发相向行驶,在距离丙地44千米处相遇,求甲、乙两地之间的距离是多少?分析:本题在相遇过程中A 、B 两车同时出发相向而行至相遇如图3-5-1所示,相等关系是A 车行驶时间=B 车行驶时间.距丙地44千米处,有两种可能,(1)相遇处在高速公路上距丙地44千米,(2)相遇处在普通公路上,解题时要考虑到这两种情况,再根据实际取舍.解:设甲、乙两地相距x 千米,A 车从甲地到丙地,需要15010032xx=(小时),B 车从乙地到丙地,需要2107031x x=(小时), ∵210150x x > ∴A 、B 两车只能在高速公路上距丙地44千米处相遇.列方程得,1104470311004432+=-xx 解得441=x .答:甲、乙两地之间的距离是441千米.点评:“线示法”分析等量关系比较方便.但要注意分类讨论各种情况,以免挂一漏万.利息问题例6.大宝、小宝共利用假期打工1000元,大宝把他的工钱按一年期教育储蓄存入银行,年利率为1.98%,免收利息税,小宝把他的工钱买了月利率为2.15%的债券,但要交纳20%的利息税,一年后两人得到的收益恰好相等,问两人的压岁钱各是多少?分析:抓住这一问题的等量关系.1.利息(免税的)=存入钱数×年利率,2.利息(不免税的)=存入钱数×年利率×(1-税率),3..大宝的收益=小宝的收益.解:设大宝的工钱为x元,则小宝的工钱为(1000-x)元,由题意,得.1⨯98%⨯⨯x.=x-(80%100012%).215解得510x(元),1000-x=490(元).=答:大宝的工钱是510元,小宝的工钱是490元.【自我测试】一、基础测试1.在高速公路上,一辆长4米,速度为110千米/时的轿车准备超越一辆长12米,速度为100千米/时的卡车,则轿车从开始追及超越卡车,需要花费的时间约是()A.1.6秒B.4.32秒C.5.76秒D.345.6秒2.有一旅客携带30公斤行李从某机场乘飞机返回绵阳,按民航规定,旅客最多可免费携带20公斤行李,超重部分每公斤按飞机票价格的1.5%购行李票,已知该旅客现已购行李票60元,则它的飞机票价为()A.300元B.400元C.600元D.800元3.一年期定期储蓄年利率为2.25%,所得利息要交纳20%的利息税,已知某储户有一笔一年期定期储蓄到期纳税后得利息450元,问该储户存入多少本金?4.某商品的进货单价为280元,按25%的利润率确定售价.后因市场发生变化,决定按原定价格的八五折出售,问这时每售出一件这种商品,商店获利多少?5.用内径18毫米的圆柱形试管盛满水后,向一个底面是边长为22毫米的正方形,高是15毫米的空长方体容器内倒水,倒满容器后试管内水面下降约多少毫米?6.一艘船在甲、乙两地之间航行,顺水要3小时,逆水要3.5小时,已知船在静水中航行速度是每小时26千米,求水流速度.7.两人在环形跑道上同向急走,一圈为400米,甲的速度为平均每分钟80米,乙的速度是甲的1.25倍,如果乙在甲的前面100米,多少分钟后两人相遇?8.某人原计划骑车以12km/h的速度由A地去B地.这样可在规定时间内到达B地.但他因事将原计划出发的时间推迟了20min,只好以15km/h的速度前进,结果比规定时间早4min到达B地,求A、B 两地的距离?二、综合能力测试题1.某商店先在广州以每件15元的价格购进一种商品10件,后来又到深圳以每件12.5元的价购进同样商品40件,如果商店销售这些商品时,要获利12%的利润,那么这种商品的销售价应该是_______.2.有一卷铁丝,第一次用去了它的一半少1m,第二次用去了剩下的一半多1m,结果还剩下10m,这卷铁丝原长多少?3.有大中小三个正方形水池,它们的内池分别为6m、3m、2m,把两堆碎石分别沉浸在中、小水池的水里,两个水池的水面分别升高了6cm和4cm,如果将这两堆碎石都沉浸在大水池的水里,大水池的水面升高了多少厘米?4.有一火车以每分钟600m的速度要过完第一、第二座铁桥,过第二座铁桥比过第一座铁桥多用5分钟,又知第二座铁桥的长度比第一座铁桥长度的2倍短50m,试求各铁桥的长?5.某公司向银行贷款40万元用来生产某种新产品,已知该贷的年利率为1.5%(不计复利),每人新产品的成本是2.3元,售价4元,应纳税是销售额的10%,如果每年生产该种产品20万个,并把所得利润用来归还贷款,问需要几年才能一次性还清?(利润=销售额-成本-应纳税款)6.某班共40名学生,其中33人数学成绩不低于80分,32人英语成绩不低于80分,且班上每人在这两科中至少有一科不低于80分.求两科成绩都不低地80分的人数.。

初一数学书一元一次方讲解

初一数学书一元一次方讲解

一元一次方程的概念
一元一次方程是指只含有一个未知数,且未知数的次数是1的方程。

通常形式为ax + b = 0 (其中a和b是常数,a≠0)。

解一元一次方程的步骤
去分母:将方程两边同时乘以分母的最小公倍数,消除分母。

去括号:根据括号前是加号还是减号,决定去括号后各项的符号。

移项:将含有未知数的项移到等号的左边,常数项移到等号的右边。

合并同类项:将等号右边的常数项移到等号左边后,将左边的未知数系数化为1,得到方程的解。

一元一次方程的解法
直接开平方法:对于形如ax^2 = b (a > 0) 的方程,可以直接开平方求解。

配方法:将方程两边同时加上一次项系数一半的平方,使左边成为一个完全平方的形式,再求解。

公式法:对于任意实数a、b,都可以通过公式ax^2 + bx + c = 0 的解为x = [-b ±sqrt(b^2 - 4ac)] / (2a) 来求解。

因式分解法:将方程左边分解因式,右边化为0,然后求解。

待定系数法:先假设方程左边多项式的系数为未知数,然后根据题目条件列出关于这些系数的方程组,解之得到系数值。

一元一次方程的解法步骤

一元一次方程的解法步骤

一元一次方程的解法步骤一元一次方程是初中数学中最基础的内容之一,解一元一次方程的步骤相对简单易懂。

本文将介绍解一元一次方程的详细步骤,并附上一些例题进行演示。

一、解一元一次方程的基本步骤解一元一次方程的基本步骤如下:1. 观察方程,确定未知数。

一元一次方程中,只有一个未知数,通常用"x"表示。

2. 消去系数。

如果方程中有系数不是1的话,可以通过除以该系数来化简方程。

目的是将系数化为1,使方程简洁明了。

3. 通过移项化简方程。

将含有未知数项的项移动到等号的另一边。

如果未知数在等号左边,就移动到等号右边;反之亦然。

移项的目的是将未知数从等号两侧孤立开来。

4. 合并同类项。

将方程中同类项合并,简化计算过程。

5. 通过除法求解未知数。

将方程中的常数项除以系数,从而求解出未知数的值。

二、解一元一次方程的例题演示例题1:解方程2x - 3 = 7。

解题步骤如下:1. 确定未知数为"x"。

2. 方程中系数为2,不是1,因此可以除以2,消去系数,得到x - (3/2) = 7/2。

3. 将含有未知数项的项移动到等号的另一边,得到x = 7/2 + 3/2。

4. 合并同类项,得到x = 10/2。

5. 通过除法求解未知数,得到x = 5。

因此,方程2x - 3 = 7的解为x = 5。

例题2:解方程3(x - 4) + 5 = 7x - 1。

解题步骤如下:1. 确定未知数为"x"。

2. 方程中含有括号,首先要将括号展开,得到3x - 12 + 5 = 7x - 1。

3. 将含有未知数项的项移动到等号的另一边,得到3x - 7x = 1 - 5 + 12。

4. 合并同类项,得到-4x = 8。

5. 通过除法求解未知数,得到x = -2。

因此,方程3(x - 4) + 5 = 7x - 1的解为x = -2。

通过以上两个例题的演示,我们可以清晰地了解解一元一次方程的步骤。

一元一次方程的解法

一元一次方程的解法

一元一次方程的解法一、方程的概念与组成1.方程的定义:含有未知数的等式称为方程。

2.方程的组成:a.未知数:用字母表示的数,如x、y等。

b.常数:已知的数,如2、3、4等。

c.运算符号:加、减、乘、除等。

二、一元一次方程的定义与特点1.定义:含有一个未知数,并且未知数的最高次数为1的方程称为一元一次方程。

a.方程中只有一个未知数。

b.未知数的最高次数为1。

c.方程的两边都是整式。

2.移项:将方程中的未知数移到等式的一边,常数移到等式的另一边。

3.合并同类项:将方程中同类项合并,化简等式。

4.系数化为1:将方程中的未知数系数化为1,得到未知数的值。

四、解题步骤1.识别方程:判断方程是否为一元一次方程。

2.移项:将未知数移到等式的一边,常数移到等式的另一边。

3.合并同类项:化简等式,使未知数系数化为1。

4.求解:根据合并同类项后的等式,求得未知数的值。

5.检验:将求得的未知数值代入原方程,验证等式是否成立。

五、常见解题方法1.加减法解法:适用于方程两边都有未知数的情况。

2.乘除法解法:适用于方程中有未知数的乘除运算。

3.换元法:适用于方程中未知数的系数较大或较复杂时,通过设定新未知数简化方程。

六、解题注意事项1.保持等号对齐:在移项、合并同类项过程中,要注意保持等号对齐,避免出错。

2.符号变化:移项时,要注意符号的变化,负数移到等式另一边要变正,正数移到等式另一边要变负。

3.检验:求得未知数值后,要进行检验,确保解是正确的。

七、方程的应用1.实际问题:将实际问题转化为方程,通过求解方程得到问题的答案。

2.数学运算:在一元一次方程的基础上,进行加减乘除等运算,解决更复杂的数学问题。

通过以上知识点的学习,学生可以掌握一元一次方程的基本概念、解法步骤和应用方法,为后续数学学习打下基础。

习题及方法:1.习题:2x - 5 = 3a.移项:将常数移到等式右边,未知数移到等式左边。

2x = 3 + 5b.合并同类项:将等式右边的常数相加。

一元一次方程的解法

一元一次方程的解法

一元一次方程的解法一元一次方程是指只包含一个未知数,并且未知数的最高次数为1的方程。

解一元一次方程是高中数学中的基础内容,不仅在数学学科中有广泛的应用,也在生活中有着实际的意义。

本文将介绍一元一次方程的解法及其应用。

一、一元一次方程的定义一元一次方程也可称为一次方程,它的一般形式为ax + b = 0,其中a和b为已知实数,a≠0,x为未知数。

一元一次方程的解即为使该方程成立的实数x的值。

二、解一元一次方程常用的方法有两种:等式法和变量法。

1. 等式法等式法是通过变形,将方程两边的式子化为相等的形式,从而得到方程的解。

步骤如下:(1)将方程化为形如ax = b的形式,即将方程中的常数项移到方程的右侧。

(2)将方程两边同乘(或除以)相同的数(非零数),使方程的系数为1。

(3)得到方程的解。

示例:求解方程3x + 5 = 14。

解:将方程中的常数项移到方程的右侧,得到3x = 14 - 5,即3x = 9。

将方程两边同除以3,得到x = 3。

所以方程的解为x = 3。

2. 变量法变量法是通过引入一个新的变量,使得方程转化为等价的两个方程,从而得到方程的解。

步骤如下:(1)引入一个新的变量,用于表示方程中的未知数。

(2)通过变量的代入,得到方程的另一个等价形式。

(3)解得新方程的解,并通过代入求得原方程的解。

示例:求解方程2x + 3 = x + 7。

解:引入新变量y,将方程转化为2x + 3 = y + 7。

通过变量的代入,得到x = y - 4。

将x = y - 4代入原方程,得到2(y - 4) + 3 = y + 7,化简得到y = -3。

再将y = -3代入x = y - 4,得到x = -3 - 4,即x = -7。

所以方程的解为x = -7。

三、一元一次方程的应用1. 问题解决一元一次方程在问题解决中有广泛应用。

例如,解一元一次方程可以用于计算购买商品的总价、求解行程的时间等。

示例:某商场举办特价销售活动,一件原价为180元的商品打7折出售,求购买该商品的价格。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元一次方程的解法(基础)知识讲解
撰稿:孙景艳审稿:赵炜
【学习目标】
1.熟悉解一元一次方程的一般步骤,理解每步变形的依据;
2.掌握一元一次方程的解法,体会解法中蕴涵的化归思想;
3.进一步熟练掌握在列方程时确定等量关系的方法.
【要点梳理】
要点一、解一元一次方程的一般步骤
变形名称具体做法注意事项
去分母
在方程两边都乘以各分母的最小公倍
数(1)不要漏乘不含分母的项
(2)分子是一个整体的,去分母后应加上括号
去括号
先去小括号,再去中括号,最后去大
括号(1)不要漏乘括号里的项
(2)不要弄错符号
移项把含有未知数的项都移到方程的一
边,其他项都移到方程的另一边(记住
移项要变号)
(1)移项要变号
(2)不要丢项
合并同类

把方程化成ax=b(a≠0)的形式字母及其指数不变
系数化成
1在方程两边都除以未知数的系数a,得
到方程的解
b
x
a

不要把分子、分母写颠倒
要点诠释:
(1)解方程时,表中有些变形步骤可能用不到,而且也不一定要按照自上而下的顺序,有些步骤可以合并简化.
(2) 去括号一般按由内向外的顺序进行,也可以根据方程的特点按由外向内的顺序进行. (3)当方程中含有小数或分数形式的分母时,一般先利用分数的性质将分母变为整数后再去分母,注意去分母的依据是等式的性质,而分母化整的依据是分数的性质,两者不要混淆.
要点二、解特殊的一元一次方程
1.含绝对值的一元一次方程
解此类方程关键要把绝对值化去,使之成为一般的一元一次方程,化去绝对值的依据是绝对值的意义.
要点诠释:此类问题一般先把方程化为ax b c
+=的形式,再分类讨论:
(1)当0
c<时,无解;(2)当0
c=时,原方程化为:0
ax b
+=;(3)当0
c>时,原方程可化为:ax b c
+=或ax b c
+=-.
2.含字母的一元一次方程
此类方程一般先化为一元一次方程的最简形式ax=b,再分三种情况分类讨论:
(1)当a≠0时,
b
x
a
=;(2)当a=0,b=0时,x为任意有理数;(3)当a=0,b≠0
时,方程无解.
【典型例题】
类型一、解较简单的一元一次方程1.解下列方程
(1)
3
4
5
m m
-=- (2)-5x+6+7x=1+2x-3+8x
【答案与解析】
解:(1)移项,得
3
4
5
m m
-+=-.合并,得
2
4
5
m=-.系数化为1,得m=-10.
(2)移项,得-5x+7x-2x-8x=1-3-6.合并,得-8x=-8.系数化为1,得x=1.【总结升华】方法规律:解较简单的一元一次方程的一般步骤:
(1)移项:即通过移项把含有未知数的项放在等式的左边,把不含未知数的项(常数项)放在等式的右边.
(2)合并:即通过合并将方程化为ax =b(a ≠0)的形式.
(3)系数化为1:即根据等式性质2:方程两边都除以未知数系数a ,即得方程的解b x a =
. 举一反三:
【变式】下列方程变形正确的是( ).
A .由2x-3=-x-4,得2x+x =-4-3
B .由x+3=2-4x ,得5x =5
C .由2332
x -=,得x =-1 D .由3=x-2,得-x =-2-3
【答案】D
类型二、去括号解一元一次方程
【高清课堂:一元一次方程的解法388407去括号解一元一次方程】
2.解方程:
【思路点拨】方程中含有括号,应先去括号再移项、合并、系数化为1,从而解出方程.
【答案与解析】(1)去括号得:42107x x +=+
()()1221107x x +=+()()()
232123x x -+=-
移项合并得:65
x
-=
解得:
5
6 x=-
(2)去括号得:32226
x x
--=-
移项合并得:47
x
-=-
解得:
7
4 x=
【总结升华】去括号时,要注意括号前面的符号,括号前面是“+”号,不变号;括号前面是“-”,各项均变号.
举一反三:
【变式】(四川乐山)解方程: 5(x-5)+2x=-4.
【答案】解:去括号得:5x-25+2x=-4.
移项合并得: 7x=21.
解得: x=3.
类型三、解含分母的一元一次方程
3.解方程:434343
1 623
x x x
+++
++=.
【答案与解析】
解法1:去分母,得(4x+3)+3(4x+3)+2(4x+3)=6.
去括号,得4x+3+12x+9+8x+6=6.移项合并,得24x=-12,
系数化为1,得
1
2
x=-.
解法2:将“4x+3”看作整体,直接合并,得6(4x+3)=6,即4x+3=1,移项,得4x=-2,
系数化为1,得
1
2
x=-.
【总结升华】对于解法l:(1)去分母时,“1”不要漏乘分母的最小公倍数“6”;(2)注意适时添括号3(4x+3)防止出现3×4x+3.对于解法2:先将“4x+3”看作一个整体来解,最后求x.
举一反三:
【高清课堂:一元一次方程的解法388407 解含分母的一元一次方程】
【变式】
2251
1 346
x x x
-+-
-=-
【答案】解:去分母得:4(2)3(25)2(1)12
x x x
--+=--去括号得:486152212
x x x
---=--
合并同类项,得:49
x
-=
系数化为1,得
9
4
x=-.
类型四、解较复杂的一元一次方程
4.解方程:
0.170.2
1 0.70.03
x x
-
-=
【思路点拨】先将方程中的小数化成整数,再去分母,这样可避免小数运算带来的失误.
【答案与解析】原方程可以化成:101720
1 73
x x
-
-=.
去分母,得:30x-7(17-20x)=21.
去括号、移项、合并同类项,得:170x=140.
系数化成1,得:
14
17
x=.
【总结升华】解此题的第一步是利用分数基本性质把分母、分子同时扩大相同的倍数,以使分母化整,与去分母方程两边都乘以分母的最小公倍数要区分开.
5. 解方程:112 [(1)](1) 223
x x x
--=-
【答案与解析】
解法1:先去小括号得:11122
()
22233
x x x
-+=-
再去中括号得:
11122
24433
x x x
-+=-移项,合并得:
511
1212
x
-=-
系数化为1,得:
11
5
x=
解法2:两边均乘以2,去中括号得:
14
(1)(1)
23
x x x
--=-
去小括号,并移项合并得:
511
66
x
-=-,解得:
11
5
x=
解法3:原方程可化为:112 [(1)1(1)](1) 223
x x x
-+--=-
去中括号,得1112 (1)(1)(1) 2243
x x x
-+--=-
移项、合并,得
51
(1)
122
x
--=-
解得
11
5 x=
【总结升华】解含有括号的一元一次方程时,一般方法是由里到外或由外到内逐层去括号,但有时根据方程的结构特点,灵活恰当地去括号,以使计算简便.例如本题的方法3:方程左、右两边都含(x-1),因此将方程左边括号内的一项x变为(x-1)后,把(x-1)视为一个整体运算.
举一反三:
【变式】32
[(1)2]2 234
x
x
---=
【答案】
解:去中括号得:
3
(1)22 42
x
x
--⨯-=
去小括号,移项合并得:
3
6
4
x
-=,解得x=-8
类型五、解含绝对值的方程
6.解方程|x|-2=0
【答案与解析】
解:原方程可化为:2
x=
当x≥0时,得x=2,
当x<0时,得-x=2,即,x=-2.
所以原方程的解是x=2或x=-2.
=的形式,再根据ax的正负分类讨论,注意【总结升华】此类问题一般先把方程化为ax b
不要漏解.。

相关文档
最新文档