工程力学静定结构的内力分析B详解
403建筑结构与建筑设备【讲义】 (11)静定结构的内力分析
第五节静定结构的内力分析四、静定平面桁架静定桁架是由若干根直杆在其两端用铰连接而成的静定结构。
在结点荷载作用下,桁架各杆均为只受轴力的二力杆。
静定桁架架内力分析的一般步骤是先求支座反力,再计算杆件内力。
计算杆件内力(轴力)的基本方法是结点法和截面法。
1 .节点法和截面法截取析架的结点为隔离体,利用各结点的静力平衡条件来计算各杆件内力的方法,称为结点法。
对每一结点,可列出两个独立的投影平衡方程进行解算。
桁架计算中的截面法与其他结构计算的截面法原理相同。
截面法截取的隔离体上的各力(包括荷载、反力和杆件轴力)通常组成一个平面任意力系,因此只要未知力不多于三个,就可直接由三个平衡方程求出各未知力。
截面法中的平衡方程可以是力矩方程,也可以是投影方程。
【例 3 一18 】求图3 一47 (a )所示桁架 1 、2 杆的内力。
该桁架是从一个基本铰接三角形ACF 开始,依次增加二元体FGC 、FDC 、GHD 、GED 、HIE 、H 刀E 和IJB 所组成,这种桁架称为简单桁架。
对于简单桁架,在求出支座反力后,如果采用结点法,则按照撤除二元体的顺序依次选取结点(本例可按J , I , B , H , E , G , D , C 顺序取),即可顺利求出所有杆件的内力。
本例只需求两根指定杆件的内力,为简化计算,可以联合应用结点法和截面法。
利用结点法,由结点I 可直接求出腹杆IE 的内力,再由结点 E 可求得1 杆的内力。
有了 1 杆的内力,在该杆所在节间截开,利用截面法可求得 2 杆的内力。
( 1 )求支座反力由整体结构的∑M A=0和∑M B=0 ,可得由∑Y=0校核计算无误。
(2 )求2 杆内力取出结点I (图 3 -47b ),根据∑Y=0,有再取结点E (图3 -47c ),由∑Y=0得(3 )求1 杆内力作截面m-m,并取左半部分为隔离体(图3 -47 d),根据∑Y=0。
有结点法和截面法是析架内力计算的通用方法。
3静定结构的内力分析习题解答
第3章 静定结构的力分析习题解答习题3.1 是非判断题(1) 在使用力图特征绘制某受弯杆段的弯矩图时,必须先求出该杆段两端的端弯矩。
( )(2) 区段叠加法仅适用于弯矩图的绘制,不适用于剪力图的绘制。
( ) (3) 多跨静定梁在附属部分受竖向荷载作用时,必会引起基本部分的力。
( ) (4) 习题3.1(4)图所示多跨静定梁中,CDE 和EF 部分均为附属部分。
( )习题3.1(4)图(5) 三铰拱的水平推力不仅与三个铰的位置有关,还与拱轴线的形状有关。
( ) (6) 所谓合理拱轴线,是指在任意荷载作用下都能使拱处于无弯矩状态的轴线。
( ) (7) 改变荷载值的大小,三铰拱的合理拱轴线形状也将发生改变。
( ) (8) 利用结点法求解桁架结构时,可从任意结点开始。
( )【解】(1)正确;(2)错误; (3)正确;(4)正确;EF 为第二层次附属部分,CDE 为第一层次附属部分;(5)错误。
从公式0H /C F M f 可知,三铰拱的水平推力与拱轴线的形状无关;(6)错误。
荷载发生改变时,合理拱轴线将发生变化; (7)错误。
合理拱轴线与荷载大小无关;(8)错误。
一般从仅包含两个未知轴力的结点开始。
习题3.2 填空(1)习题3.2(1)图所示受荷的多跨静定梁,其定向联系C 所传递的弯矩M C 的大小为______;截面B 的弯矩大小为______,____侧受拉。
P习题3.2(1)图(2) 习题3.2(2)图所示风载作用下的悬臂刚架,其梁端弯矩M AB =______kN·m ,____侧受拉;左柱B 截面弯矩M B =______kN·m ,____侧受拉。
习题3.2(2)图 (3) 习题3.2(3)图所示三铰拱的水平推力F H 等于 。
习题3.2(3)图 (4) 习题3.2(4)图所示桁架中有 根零杆。
习题3.2(4)图【解】(1)M C = 0;M C = F P l,上侧受拉。
静定结构的内力计算 教程
拆成单个杆,求出杆两端的弯矩,按与单跨梁相同的方法画弯矩图 (1)无荷载分布段(q=0), FQ图为水平线,M图为斜直线。 (2)均布荷载段(q=常数), FQ图为斜直线,M图为抛物线,且凸向与荷 载指向相同。 (3)集中力作用处,FQ图有突变,且突变量等于力值; M图有尖点,且指 向与荷载相同。 (4)集中力偶作用处, M图有突变,且突变量等于力偶值; FQ图无变化。
工程力学
第十四章
静定结构的内力计算
b、求D点的内力 先求计算参数:
xD 3m
dy 4 f 4 4 tg D 2 ( L 2 x) 2 (12 2 3) 0.667 dx L 12 MD D 3342' Cos D 0.832
4 4 yD 2 (12 3) 3 3m 12
工程力学
第十四章
静定结构的内力计算
3、杆端内力的计算 先求出刚架的支座反力,再利用截面法求出各杆杆端内力 (1)在待求内力的截面截开,取任一部分为隔离体。 (2)画隔离体的受力图。 (3)利用隔离体的平衡条件,求出截面上的剪力、轴力和弯矩。 (4)利用结点的平衡条件校核刚结点杆端内力值。 4、刚架弯矩图的绘制
i i
与右图简支梁的支座反力:
Pb l Pa l
F
0 AY
i i
F
0 BY
i i
FAY F
0 AY
0 FBY FBY
工程力学
第十四章
静定结构的内力计算
分析推力H 式:
FAY l1 P 1 (l1 a1 ) H f
上式中的分子
FAY l1 P 1 (l1 a1 )
MEC=0kN•m CE杆上为均布荷载,弯矩图为抛物线 。 利用叠加法求出中点截面弯矩MCE中=30+60=90kN•m
建筑力学之 静定结构的内力分析知识详解
第二个脚标表示该截面所属杆件的另一端。例如 则表M示BA AB杆B端截面的弯矩。
表M示AB AB杆A端截面的弯矩,
❖ (3)内力图绘制
❖ 静定刚架内力图有弯矩图、剪力图、轴力图。刚架的内力图由各杆的内力图组合 而成,而各杆的内力图,只需求出杆端截面的内力后,即可按照梁内力图的绘制 方法画出。
❖ 6.平面刚架计算步骤
第十一章 静定结构的内力分析
❖ 第一节 楼梯斜梁和多跨静定梁 ❖ 1. 楼梯斜梁 ❖ 楼梯斜梁承受的荷载主要有两种,一种是沿
斜梁水平投影长度分布的荷载,如楼梯上人群 的重量等;另一种是沿倾斜的梁轴方向分布的 竖向荷载,如梁的自重等。 ❖ 一般在计算时,为计算简便可将沿梁轴方 向分布的竖向荷载按等值转换为沿水平方向分 布的竖向荷载,如图11-1 (a),沿梁轴线方向分 布 则的 由荷 于载 是等′值转转换换为,沿所水q 以平有方:向分布的荷q 载 ,
❖ (2)杆端内力的表示:如:FNAB 、 、 、 FNBA FQAB FQBA 、M AB 、M BA 等。 ❖ 注意:刚结点处不同方向有不同的杆端内力。
❖ 为了明确表示刚架上不同截面的内力,特别是为了区别汇交于同一结点的不同杆
端截面的内力,在内力符号右下角采用两个脚标;第一个脚标表示内力所属截面,
❖ 详解见教材
图11-21
❖ (6)结点法与截面法的联合应用 ❖ 欲求图11-23所示a杆的内力,如果只用结点法计算,不论取哪个结
点为隔离体,都有三个以上的未知力无法直接求解;如果只用截面法 计算,也需要解联立方程。 ❖ 为简化计算,可以先作Ⅰ-Ⅰ截面,如图所示,取右半部分为隔离 体,由于被截的四杆中,有三杆平行,故可先求1B杆的内力,然后以 B结点为隔离体,可较方便地求出3B杆的内力,再以3结点为隔离体, 即可求得a杆的内力。
《工程力学》课题十二:静定结构的内力计算
只需求出与杆轴线垂直的反力。
1.悬臂刚架
可以不求反力,由自由端开始直接 求作内力图。
L
q ½qL²↓↓↓↓↓↓↓↓↓
L
qL² qL²
2.简支刚架弯矩图
简支型刚架绘制弯矩图时,往往
只须求出一个与杆件垂直的支座
反力,然后由支座作起。
q
l
D
qa2/2
C
l/2
l/2
q
↓↓↓↓↓↓↓↓↓↓↓↓
ql2/2
qL2/2
(3)绘制内力图(弯矩图 剪力图 轴力图)
由已求得各杆端力,分别按各杆件作内力图。
弯矩图可由已知杆端弯矩,按直杆段的区段叠加法作杆
件的弯矩图。
连接两个杆端的刚结点,若 结点上无外力偶作用,则两 个杆端的弯矩值相等,方向 相反.
M图(KN·m)
拆成单个杆,求出杆两端的所 有内力,按与单跨梁相同的方法 画内力图.
铰拱的合理拱轴线的纵
只限于三铰平拱受 竖向荷载作用
坐标与相应简支梁弯矩 图的竖标成正比。
试求图示对称三铰拱在均布荷载作用下 的合理拱轴线。
MC0=ql2/8 H=ql2/8f M0(x)=qlx/2-qx2 /2 =qx(l-x)/2
y=4fx(l-x)/l2
抛物线
拱的合理拱轴线的形状与相应的简支梁的弯矩 图相似。
三铰拱在竖向集中荷载作用下的的无荷载区段上, 合理拱轴是一条直线,并在集中荷载作用点出现转折; 在均布荷载作用区段上,合理拱轴是一条抛物线。
(2)计算杆端力 取AB杆B截面以下部分, 计算该杆B端杆端力:
MBA = 160kN·m (右侧受拉) 同理:取BD杆B截面以右部 分,计算该杆B端杆端力: MBD = 160kN·m (下侧受拉)
第五章 静定结构的内力分析
MB
2 2
MC
C
解:1.计算外力偶矩
M A 9549
m T 1592N· 637N· m
b) T c)
M B 9549
x
637N· m
x
2.求各段扭矩 AB段:T1= MA=1592N· m BC段:T2= MA- MB=1592-955=637N· m
30 955N m 300 20 M C 9549 637N m 300
压缩与弯曲的组合
弯曲与扭转的组合
在进行结构设计时,为保证结构安全正常工
作,要求各构件必须具有足够的强度和刚度。解
决构件的强度和刚度问题,首先需要确定危险截
面的内力,内力计算是结构设计的基础。
5—1 轴向拉压杆
沿杆件轴线作用一对相反的外力,杆件将发生沿轴线方向
的伸长或缩短,这种变形称为轴向拉伸或压缩。
建筑力学
第5章 静定结构的内力分析
杆件结构——由杆件组成的结构。
杆件——长度远大于其横截面的宽度和高度的构件。
几何特点:横截面是与杆件长度方向垂直的截面,而轴线 是各横截面形心的连线。细而长,即l>>h,l>>b。
杆件结构
杆又可分为直杆和曲杆。
受外力作用后,其几何形状和尺寸一般都要发生改 变,这种改变称为变形。作用在构件上的荷载是各种 各样的,因此,杆件的变形形式就呈现出多样性,并 且有时比较复杂,但分解来看,变形的基本形式却只 有四种:
3.求截面2-2的内力
Fy 0 : FAy F FQ 2 0, 5 1 得FQ 2 FAy F F F F 4 4 M 2 0 : 2Fl M 2 0,
工程力学中静定结构的内力计算
a
a
B XB X
YB
∑X=0 XC=XB=25kN ∑Y=0 YC=60-55=5kN ∑X=0 XA=25-40= -15kN
a
5kN
25kN
C
2m
y
25kN Fs 图
C
60kN
55kN
A
20kN· m
15k B N A 5kN
4m
25kN
B 4m
C
25kN 55kN
X
C
P2 P1 k y H A VA a3 b3 B VB H x 三铰拱与相应之简 支梁反力比较: VA =VA ° P3 B VB ° VB =VB ° HA=HB=H= MC°/f k C
P3
a2
a1 b1
b2
H=0
A VA°
P1
k1
P2 C
t
Mk
P1
y
n
k
Nk
∑Mk(F)=0, MK=[VAxk - P1 (xk- a1 )]-Hyk
FVb ×16 – 20 × 4 – 5 ×8 ×12=0
FVa=25KN FVb=35KN FHa=FHb
ΣMc=0
P=20Kn
FHa×4+20 ×4 – 25 ×8=0
FHc
FVc
FHa=30KN
FHa
4m 4m
FVa=25KN
4m
Σ Mo=0 . Mad=0 ΣХ=0. FQad+30=0
桁架的名称
上弦杆
桁高
斜杆 竖杆 下弦杆 跨度
1、按桁架的外形分为:
桁架的分类
a、三角形桁架
b、矩形桁架
工程力学第十三章静定结构的内力分析
静定结构的特点
静定结构没有多余约束,因此其内力分布完全由外 力决定。
静定结构的内力分布可以通过平衡方程进行求解, 不需要引入其他方程。
静定结构在受到外力作用时,其内力分布是唯一的 ,不会出现不确定的情况。
静定结构的应用场景
02
01
03
静定结构在工程中广泛应用于桥梁、建筑、机械等领 域。
由于其具有稳定的承载能力和可靠性,静定结构在承 受较大载荷的场合中特别适用。
内力分析的结果可以用来评估结构的薄弱环节,预测结构可 能出现的破坏形式,从而采取相应的加固措施,提高结构的 安全性。
工程结构的优化设计
内力分析的结果可以用来指导工程结构的优化设计,通过对结构进行优化设计, 可以减小结构的重量、提高结构的承载能力、改善结构的稳定性。
内力分析的结果可以用来优化结构的布局和尺寸,使结构更加经济合理,降低工 程成本。
内力。
在使用叠加法时,需要注意叠加 的单元体必须符合力的平衡条件 和变形协调条件,以确保计算结
果的准确性。
04
静定结构的内力分析实例
简单杆件的内力分析
简述:简单杆件的内力分析是静定结构内力分析的基础,主要通过截面 法进行计算。
总结词:简单明了
详细描述:在简单杆件的内力分析中,我们通常采用截面法,通过在杆 件上施加虚拟的集中力,然后根据力的平衡条件计算出杆件的内力。这 种方法简单明了,易于掌握。
总结词:综合分析
详细描述:在组合结构的内力分析中,我们需要综合考虑各种因素,如不同材料的力学性能、 构件之间的连接方式、整体结构的稳定性等。这种分析方法通常比较复杂,需要借助专业的 计算和分析软件进行。
05
内力分析的工程应用
工程结构的安全性评估
结构力学-静定结构的内力分析
计算多跨梁的原则:先附属,后基本。
多跨梁
单跨梁
单跨梁内力图
多跨梁内力28 图
[例1] 作多跨静定梁的弯矩图和剪力图
40KN/m
120KN
A
D
B
C
3m
8m
2m
6m
解: (1)作层次图
40KN/m
C
A B
120KN D
29
(2)求反力
40KN/m A
B 8m
C 2m
120KN D
3m 6m
C
120KN D
A
mC 0
FAH
FBH
FAV
l 2 FP1 f
l 2 a1
FA0V
a2
C
FP2
f
B FBH
FBV
l
FP2
C
B
FH
M
0 C
f
FB0V 55
三、 静定拱的内力计算:
1. 静定拱的内力有: M、 FQ 、FN 。
弯矩:使拱内侧受拉为正。
145KN 8m
60KN
60KN
B 235KN
3m
2m
6m
60KN
32
[例2] 作多跨静定梁的弯矩图和剪力图
q
A
B
C
qa
D
E
2qa2 F
a/2 a/2
a
a
a/2 a/2
q
AB
C 7qa/ 8
3qa/8 D
qa D
2qa2
E
F
3qa/8
6qa/8
11qa3/38
作弯矩图: 3qa2
qa2
8
8
结构力学(2.1.2)--静定结构内力分析习题及参考答案
Fp
Fp
4×d
(d)
3-7 试求图示抛物线( y 4 fx(l x) / l 2 ) 三铰拱距左支座 5m 的截面内力。
4m 4m 3d
4m
5 kNF P 1
d
10 kN 1 F3(Pf×)d F2P
2
NN N
习题 3-6 图
2
d
N
15 kN
1
d2/02kN/md d/2
40 kN·m
y
A
B 20 kN
8×1 m
习题 3-5 图
杆件的内力。
80 kN
1 N
2 N
4m 2m
4m
2m
(a)
2m 2m 2×d
20 kN
3.6 试 用 较 简单的 方法求 图示桁 架指定
4
3
1
N 2
NN
Fp
Fp
Fp Fp 8×d
Fp
Fp N
Fp N
(b)
3×2 m d
60 kN
1
N
2
N
4×2 m (c)
Fp 1
2m
6m
6m
2m
(b)
习题 3-16 图
l
3m
4m 4m
3-17 试作图示组合结构的弯矩图和轴力图。
20 kN/m
B
C
A 4m 4m 4m 4m
(a)
习题 3-17 图
20 kNA 20 kN/m
BCD源自4m4m4m(b)
3-1 略
参考答案
3-2 (a) FNAB 25kN (b) FNAB 2.5FP
A
3m
(a) C
建筑力学第11章静定结构的内力计算
11.4.2 静定平面桁架的内力计算 (1)结点法 结点法是以桁架的结点为研究对象,适用于计 算简单桁架。当截取桁架中某一结点为隔离体后, 得到一平面汇交力系,根据平面汇交力系的平衡条 件可求得各杆内力。又因为根据平面汇交力系的平 衡条件,对于每一结点只能列出两个平衡方程,因 此每次所选研究对象(结点)上未知力的个数不应 多于两个。
13
图 11.9
14
图 11.10
15
图 11.11 静定多跨梁与简支梁的受力比较
16
11.2 静定平面刚架 11.2.1 刚架的特征 刚架是由若干根梁和柱主要用刚结点组成的结 构。当刚架各杆轴线和外力作用线都处于同一平面 内时称为平面刚架,如图 11.12(b)所示。 在刚架中,它的几何不变性主要依靠结点 刚性来维持,无需斜向支撑联系,因而可使结构内 部具有较大的净空便于使用。如图 11.12(a)所 示桁架是一几何不变体系,如果把 C 结点改为刚 结点,并去掉斜杆,则该结构即为静定平面刚架, 如图 11.12( b)所示。
6
图 11.3
7
图 11.4
8
(3)斜梁的内力图 在建筑工程中,常会遇到杆轴倾斜的斜梁,如 图11.5所示的楼梯梁等。 当斜梁承受竖向均布荷载时,按荷载分布情况 的不同,可有两种表示方式。一种如图 11.6 所示 ,斜梁上的均布荷载 q按照沿水平方向分布的方式 表示,如楼梯受到的人群荷载的情况就是这样。另 一种如图 11.7所示,斜梁上的均布荷载 q′按照沿 杆轴线方向分布的方式表示,如楼梯梁的自重就是 这种情况。
静定结构的内力计算—静定平面刚架的内力计算(工程力学课件)
简支刚架
悬臂刚架
三铰刚架
三、静定平面刚架内力分析步骤
方法:
➢ 求支座反力 ➢ 拆成单个直杆,求出每个杆两端的内力
及各控制截面的内力 ➢ 按与单跨梁相同的方法画内力图.
求反力,分段,定点,连线
关于分段:
E D
(1)分成AC、CB两段 (2)AC分成AD、DC两段
CB分成CE、EB两段
【例 4】画刚架的弯矩图 注意画图时的分段!
只有两杆汇交的刚结点,若结点上无外力偶作 用,则两杆端弯矩必大小相等,且同侧受拉。
【例 5】画刚架的弯矩图
A
C B
D
三根杆连接的刚结点 处有力偶!
E
刚节点 力矩平衡
静定平面刚架的内力计算
一、平面刚架的特点
由梁和柱组成,梁和柱用刚结点相连接。
1 8
ql2
l
1 ql2 8
梁
刚架
弯矩分布均匀 可利用空间大
刚结点特征:
受力特征——刚结点能承 受并能传递弯矩,内力分 布均匀。
变形特征——变形前后各杆 端之间的夹角保持不变。
1 ql2 8
A A α
α
几何特三个约束,依靠刚结点可用
较少的杆件便能保持其几何不
变性;具有较大的净空。
二、静定平面刚架分类
(1)简支刚架——用三根链杆或一个铰和一根链杆与基础 相连组成的刚架;
(2)悬臂刚架——用固定端与地基相连,如车站站台; (3)三铰刚架——三个刚片(包括基础)用三个铰两两相连。 (4)组合刚架——主从刚架。在上述基本部分上,据几何不
【例1】画图示简支刚架的弯矩图 MCB=24 MBC=0
MCA=24 MAC=0
结构力学第4章静定刚架的内力计算
GDCB部分: 见图(c)右。计算如下:
FX 0
FCx 1kN (←)
MC 0
FBy
1 (q 6 3 8 6 1 4 4
FP
2)
30kN(↑)
MB 0
FCy
1 4
(q
4
2
q
2
1
8
2
1
4
FP
2) 2kN(↑)
2)作内力图:
结构力学
结构力学教研室
青岛理工大学工程管理系
第四章
静定刚架的内力分析
§4.1 概 述
组成刚架的杆件主要产生弯曲变形, 可承受弯矩。
刚架的构造特点: 具有刚结点
(a)
(b)
(c)
刚结点的特点:
能传递力矩 (弯矩)
静定刚架有如下几种最简形式, 较复杂的刚架一般是由若干简 单刚架按基本组成规则构成的。
由 M A 0 得:
1 L L qL
FBy
q L
2
4
8
(↑)
(a)
由 M B 0 得:
FAy
1 q L
L (L 24
L) 2
3qL 8
(↑)
(b)
如取截面I-I以右部分,由 MC 0
得:
FBx
1 L
FBy
L 2
qL(←)
16
再由整体的平衡方程 FX 0
(右侧受拉)
结点C:
MCD
FNCD FQCD MCB
FQCB
3静定结构的内力分析习题解答
第3章静定结构的内力分析习题解答习题3.1是非判断题(1)在使用内力图特征绘制某受弯杆段的弯矩图时,必须先求出该杆段两端的端弯矩。
()(2)区段叠加法仅适用于弯矩图的绘制,不适用于剪力图的绘制。
()(3)多跨静定梁在附属部分受竖向荷载作用时,必会引起基本部分的内力。
()(4)习题3.1(4)图所示多跨静定梁中,CDE和EF部分均为附属部分。
()ABCDEF习题3.1(4)图(5)三铰拱的水平推力不仅与三个铰的位置有关,还与拱轴线的形状有关。
()(6)所谓合理拱轴线,是指在任意荷载作用下都能使拱处于无弯矩状态的轴线。
()(7)改变荷载值的大小,三铰拱的合理拱轴线形状也将发生改变。
()(8)利用结点法求解桁架结构时,可从任意结点开始。
()【解】(1)正确;(2)错误;(3)正确;(4)正确;EF为第二层次附属部分,CDE为第一层次附属部分;(5)错误。
从公式F H M C/f可知,三铰拱的水平推力与拱轴线的形状无关;(6)错误。
荷载发生改变时,合理拱轴线将发生变化;(7)错误。
合理拱轴线与荷载大小无关;(8)错误。
一般从仅包含两个未知轴力的结点开始。
习题3.2填空(1)习题3.2(1)图所示受荷的多跨静定梁,其定向联系C所传递的弯矩M C的大小为______;截面B的弯矩大小为______,____侧受拉。
F P FPF PF PAB DEClllll习题3.2(1)图(2)习题3.2(2)图所示风载作用下的悬臂刚架,其梁端弯矩M AB=______kN·m,____侧受拉;左柱B截面弯矩M B=______kN·m,____侧受拉。
CBm/Nk m4/Nk6A D m 4 m 46m习题3.2(2)图(3)习题3.2(3)图所示三铰拱的水平推力F H等于。
FPaaa习题3.2(3)图(4)习题3.2(4)图所示桁架中有根零杆。
F P F P习题3.2(4)图【解】(1)M C=0;M C=F P l,上侧受拉。
静定结构的内力分析习题解答
3静定结构的内力分析习题解答(总22页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第3章 静定结构的内力分析习题解答习题 是非判断题(1) 在使用内力图特征绘制某受弯杆段的弯矩图时,必须先求出该杆段两端的端弯矩。
( )(2) 区段叠加法仅适用于弯矩图的绘制,不适用于剪力图的绘制。
( ) (3) 多跨静定梁在附属部分受竖向荷载作用时,必会引起基本部分的内力。
( )(4) 习题(4)图所示多跨静定梁中,CDE 和EF 部分均为附属部分。
( )习题(4)图(5) 三铰拱的水平推力不仅与三个铰的位置有关,还与拱轴线的形状有关。
( )(6) 所谓合理拱轴线,是指在任意荷载作用下都能使拱处于无弯矩状态的轴线。
( )(7) 改变荷载值的大小,三铰拱的合理拱轴线形状也将发生改变。
( ) (8) 利用结点法求解桁架结构时,可从任意结点开始。
( ) 【解】(1)正确; (2)错误; (3)正确;(4)正确;EF 为第二层次附属部分,CDE 为第一层次附属部分;(5)错误。
从公式0H /C F M f 可知,三铰拱的水平推力与拱轴线的形状无关;(6)错误。
荷载发生改变时,合理拱轴线将发生变化; (7)错误。
合理拱轴线与荷载大小无关;(8)错误。
一般从仅包含两个未知轴力的结点开始。
习题 填空(1)习题(1)图所示受荷的多跨静定梁,其定向联系C 所传递的弯矩M C 的大小为______;截面B 的弯矩大小为______,____侧受拉。
P习题(1)图(2) 习题(2)图所示风载作用下的悬臂刚架,其梁端弯矩M AB =______kN ·m ,____侧受拉;左柱B 截面弯矩M B =______kN ·m ,____侧受拉。
习题(2)图(3) 习题(3)图所示三铰拱的水平推力F H等于。
习题(3)图(4) 习题(4)图所示桁架中有根零杆。
习题(4)图【解】(1)M C = 0;M C = F P l,上侧受拉。
静定结构的内力分析 (2)
取计算截面左侧为隔离体,如图17.2(c)所示,则由静
∑X=0: NX+HA=0,NX=-HA=-4kN
图17.2
17.1.1.2 内力图的绘制
(1) 荷载集度q(x)、剪力Q和弯矩M之间的微
设荷载垂直于梁轴线,并向下为正,x轴平行于 梁轴线,向右为正。从梁内截出一小微段,长为dx,
常见的静定平面杆系结构主要有:
(1) 静定梁包括单跨静定梁(简支梁、悬臂梁、 外伸梁)和多跨静定梁,分别见图17.1(a)、(b)、(c) 和图17.1(d) (2) 静定平面刚架包括简支刚架、悬臂刚架、三 铰刚架和组合刚架,如图17.1(e)、(f)、(g)、(h)所示 (3) 三铰拱式结构如图17.1(i) (4) 静定平面桁架包括简支桁架、悬臂桁架、三 铰拱式桁架,如图17.1(j)、(k)、(l)
q′l′=ql
即 q=q′l′/l=q′/cosα 下面以承受沿水平向分布的均布荷载的斜梁为 例进行内力分析,如图17.9(b)
HA=0,
VA=VB=1/2ql
则距A支座距离为x的截面上的内力可由取隔离 体求出。如图17.9(c)所示,荷载qx、YA,在梁轴方向 (t方向)的分力分别为qxsinα、YAsinα;在梁法线 方向(n方向)的分力分别为:qxcosα、YAcosα。则
(2)
当荷载种类不同或荷载数量不止一个时,常常 采用叠加法绘制结构的内力图。 叠加法的基本原理是:结构上全部荷载产生的 内力与每一荷载单独作用所产生的内力的代数和相
(3) 绘制弯矩图步骤
① ② 求控制截面的弯矩值,控制截面包括杆的两 端、集中力作用处(求剪力时要取两侧各一个截 面)、力偶作用处两侧、均布荷载的起点、终点和 ③ 若二控制截面间无外力作用,则连以直线。 若有外力作用,则连直线(基线)后叠加上简支梁
《结构力学》静定结构的内力分析(上)
解:(1)先计算支座反力 (2)求控制截面弯矩值
RA 17 kN
RB 7kN
M D 17 2 81 26 kN m
M F 7 2 16 30 kN m
取GB部分为隔离体, 可计算得:
MGr 71 7 kN m
M
l G
7 1 16
23kN m
M m
(3)积分关系 由d Q = – q·d x
q(x)
MA
MB
QB
QA
xBq(x) dx
xA
由d M = Q·d x
QA
QB
M B
MA
xBQ(x) dx
xA
几种典型弯矩图和剪力图
q
P
m
l /2
P 2
l /2
P 2
Pl 4
1、集中荷载作用点 M图有一夹角,荷载向 下夹角亦向下; Q 图有一突变,荷载 向下突变亦向下。
主要任务 :要求灵活运用隔离体的平衡条件,熟练掌握静定 梁内力图的作法。 分析方法:按构造特点将结构拆成杆单元,把结构的受力分析 问题转化为杆件的受力分析问题。
一、截面上内力符号的规定
轴力:截面上应力沿杆轴切线方
向的合力,使杆产生伸长变形为
N
N 正,画轴力图要注明正负号;
剪力:截面上应力沿杆轴法线
结论:截面上内力求解简单方法
1、轴力等于该截面任一侧所有外力沿该截面轴线方向投影的 代数和。外力背离截面投影取正,指向该截面投影为负。
2、剪力等于该截面任一侧所有外力沿该截面切线方向投影的 代数和。如外力使隔离体对该截面有顺时针转动趋势,其投影取 正,反之为负。
3、弯矩等于该截面任一侧所有外力对该截面形心之矩代数和。 如外力矩产生的弯矩标在拉伸变形侧。
结构力学——3静定结构的内力分析
M图(kN·m) Mk
Mmax=32.4kn·N
qx2
MK=ME+QE x- 2 =26+8×1.6- 51
62
2
=32.4kN·m
返10回
§3—2 多跨静定梁
1.多跨静定梁的概念 若干根梁用铰相联,并用若干支座与基础
相联而组成的结构。
2.多跨静定梁的特点: (1)几何组成上: 可分为基本部分和附属部分。
(5)校核: 内力图作出后应进行校核。
M图: 通常检查刚结点处是否满足力矩的平衡条件。
例如取结点C为隔离体(图a),有:
∑MC=48-192+144=0 满足这一平衡条件。
48kN·m
C
192kN·m
Q(N)图:可取刚架任何一部分为隔
离体,检查∑X=0 和 ∑Y=0 是否满足。 144kN·m (a)
静定刚架常常可少求或不求反力绘制弯矩图。
例如:1. 悬臂部分及简支梁部分,弯矩图可先绘出。
2. 充分利用弯矩图的形状特征(直线、零值)。
3.刚结点处的力矩平衡条件。
4. 用叠加法作弯矩图。
5. 平行于杆轴的力及外力偶产生的弯矩为常数。 6. 与杆轴重合的力不产生弯矩等。
以例说明如下
返22回
E
20
20
75
45
0
例 3—7 绘制刚架的弯矩图。 解:
由刚架整体平衡条件 ∑X=0
得 FBX=5kN(←) 5kN 此时不需再求竖向反力便可
绘出弯矩图。 有:
40 30
MA=0 , MEC=0 MCE=20kN·m(外)
MCD=20kN·m(外)
MB=0
MDB=30kN·m(外)
静定结构的内力分析—静定平面刚架(建筑力学)
1.刚架的概念及特点
(1)概念:多个杆件组成,包含刚结点 (2)特点:通过刚结点,不同杆件之间不但可以传递力 还可以传递弯矩
①力学计算复杂; ②结构内力分布均匀,节省材料; ③杆件数目较少,节省空间。
静定平面刚架的类型
2.刚架的类型
悬臂刚架(图a):部分杆件一端刚结点,一端悬臂 简支刚架(图b):其支座类似于简支梁
分别绘制BE的轴力图、剪力图及弯矩图如图所示。 (4)DE杆件内力图
取DE为隔离体,受力分析如图所示。 直接绘制DE的轴力图、剪力图及弯矩图如图所示。
YD’ MD’
XD’
YE’ DE受力图 ME’ XE’
ME XE
YE
3.5kN
—
1.5kN
+
XB
YB BE受力图
轴力图
1.5kN
—
剪力图 轴力图
8.5kN +
例题分析
求作图示刚架内力图。
解:(1)求约束反力(略) (2)AD杆件内力图 取AD为隔离体,受力分析如图所示。
X 0, X A X D 0, 得 X D 1.5kN() Y 0, YA YD 0, 得 YD 8.5kN() MD 0, X A 5 M D 0, 得 M D 7.5kNm(左)
分别绘制AD的轴力图、剪力图及弯矩图如图所示。
MD XD
YD
XA
YA AD受力图
8.5kN
—
1.5kN
—
7.5kNm
轴力图
剪力图
弯矩图
例题分析
(3)BE杆件内力图 取BE为隔离体,受力分析如图所示。
X 0, X B X E 0,得 X E 1.5kN() Y 0, YB YE 0, 得 YE 3.5kN() MD 0, X B 5 M E 0, 得 M E 4.5kNm(右)
结构力学2-静定结构内力分析知识重点及习题解析
(2)为求解超静定结构作准备。无论是位移法还是力法都要用到力的平衡条件。 (3)为求解移动荷载乃至动力荷载作用下结构的内力与位移作准备。例如影响线 和结构动力分析。 根据结构的形式及受力特点,静定结构内力分析可以分为: (1)梁与刚架的内力分析。梁与刚架由受弯杆件组成,杆件内力一般包含轴力、 剪力和弯矩,内力分析的结果是画出各杆的 N 图、Q 图及 M 图。通常做法是“逐杆绘制, 分段叠加”,并要求能做到快速准确地画出内力图。 (2)桁架结构的内力分析。桁架由只受轴力的杆件组成,因此内力分析的结果是 给出各杆件轴力。基本分析方法是结点法、截面法以及二者的联合应用。根据特殊结点 准确而快速地判断零杆,并要善于识别结点单杆和截面单杆。 (3)三铰拱的内力分析。拱是在竖向荷载作用下具有水平支座反力的结构,主要 受压,一般同时具有轴力、剪力和弯矩。对于三铰平拱可以由相应的简支梁进行快速分 析,且弯矩为 M=M0-FHy。 (4)组合结构的内力分析。组合结构由链杆和梁式杆件组成,链杆部分只受轴力, 而梁式杆除受轴力外,还受弯矩和剪力作用。因此求解的首要问题是识别链杆和梁式杆, 正确选取隔离体进行分析,为简化分析,一般尽最避免截断梁式杆。 虽然静定结构的结构形式干在万别,但其内力分析万变不离其宗,基本过程是“选 隔离体→列平衡方程→解方程求未知力”,熟练应用这一基本过程是解决复杂问题关键。 因此过程的关键一步在于选隔离体,也就是“如何拆”原结构的问题,这是问题的切入点。 值得注意的是拆原结构要以相应的内力或支座反力代替,因此要充分掌握上述各类结构
《结构力学》 静定结构内力分析知识重点及习题解析
一、知识重点 在任意荷载作用下,结构的全部反力和内力都可以由静力平衡条件确定,这样的结
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y = 0 YA 6qa q 4a = 0
mA = 0
YA = 10qa
2qa2 q 4a 2a 6qa 2a 2q 4a 2a M A = 0
M A = 14qa2
2qa2
2qa2
q
(2)计算各杆端截面力,绘制各杆M图
2qa2
C 6qa
E
3a
1)杆CD
QDC = 0
XD
YD
l /2
l /2
FRC
XD YD
注意: 三铰刚架结构中,支座反力的计算是内力计算的关键
所在。通常情况下,支座反力是两两偶联的,需要通
过解联立方程组来计算支座反力,因此寻找建立相互
独立的支座反力的静力平衡方程,可以大大降低计算
反力的复杂程度和难度。
如右图(a)是一个多跨刚 架,具有四个支座反力,根
N BE
=
4qa
3 5
=
2.4qa
y=0
QBE q 4a cos = 0
QBE
=
4qa
4 5
=
3.2qa
mB = 0
M BE q 4a 2a = 0
M BE = 8qa2
4qa2
2qa2
14 qa 2
M图
2qa2
C
6qa 2
D D
2qa 2
(3)绘制结构M图 8qa 2
NBD = 0 B
QBD = 20kN M BD = 160kN m(下拉)80
D
A 2m 2m
20
160
B 160
40 M图
D
M BA
NBA
QBA
B
20kN/m 4m
160 40
20 60
40
A
80
A
M图 (kN·m)
20
Q图(kN) 80
20kN/m 4m
B 160
160
D
40
40
B 20
A
P
据几何组成分析:C以右是 基本部分、以左是附属部分, 分析顺序应从附属部分到基 本部分。
q
XC C
P
YC
D XD
(b)
q
C
Q
D (a) C
XC YC
Q
B
A
q
B
A
XA
YB
(c)
YA
四、刚架的内力分析及内力图的绘制
①分段:根据荷载不连续点、结点分段。 ②定形:根据每段内的荷载情况,定出内力图的形状。 ③求值:由截面法或内力算式,求出各控制截面的内力值。
④画图:画M图时,将两端弯矩竖标画在受拉侧,连以直
线,再叠加上横向荷载产生的简支梁的弯矩图。Q,N 图要标 +,-号;竖标大致成比例。
例1. 试计算图(a)所示简支刚架的支座反力,并绘制M、Q和N图。
[解] (1)支座反力 HA = 80kN, VA = 20kN, VB = 60kN。
(2)求杆端力并画杆单元弯矩图。
下图所示两跨刚架可先建立投影方程 Y =0计算RC ,再对 RC 和 RB的交点 O取矩,建立力矩方程M O =0 ,计算R A,最后建立投影方程 X = 0 计算RB 。
y x
0
RA A
C
RC
B
. RB O
如图(a)三铰刚架,具有四个支座反力,可以利用三个整体平衡
条件和中间铰结点C 处弯矩等于零的局部平衡条件,一共四个平衡方
X =0
QBA 20 4 80 = 0
QBA = 0
Y = 0 MB =0
NBA 20 = 0 M BA 20 4 2 80 4 = 0
NBA = 20kN M BA = 160 kN m (右侧受拉)
40 kN
D BC
M BA
NBA
QBA
B
160 kN·m B
B 160
20 kN/m 4m
程就可以求出这四个支座反力。
C
C
q
f
(a)
A l /2
B l /2
q
X
A
A l /2
YA
f (b)
l /2 B
XB
YB
MB = 0
YA l q
f
f 2
=0
MA =0
YB
l
q
f
f 2
=
0
YA
=
qf 2 2l
YB
=
qf 2 2l
X =0
XA q f XB =0 X A = X B qf
O
C
20 kN/m 4m
20 kN/m 4m
VB = 60 40
H A = 80
VA = 20
A 2m 2m (a)
A
80
20
(b)
A
A
(c)
(d) M图
20kN/m 4m
40kN
NBD M BD
160kN·m
40kN
B 2m
2m D
B
D
60
QBD
2m 2m
40kN D
BC
60
X =0
Y = 0
MD =0
(2)结构整体性好、刚度大;
(a)
(b)
(3)内力分布均匀,受力合理。
二、常见的静定刚架类型 1、悬臂刚架
2、简支刚架
3、三铰刚架
4、主从刚架
三、 静定刚架支座反力的计算 刚架分析的步骤一般是先求出支座反力,再求出各杆控制截
面的内力,然后再绘制各杆的弯矩图和刚架的内力图。
在支座反力的计算过程中,应尽可能建立独立方程。
q f
XA A l /2
l /2 B
XB
YA
YB
(b)
X A = X B qf
MC = 0
XB
=
qf 4
XB
f
YB
l 2
=0
于是
X
A
=
3 4
qf
XC C
YC f
l /2 B
XB
YB (c)
对O点取矩即得:
MO = 0
XA 2f
qf
3f 2
=0
X
A
=
3 4
qf
O
O′
O
q
C
D
C
B
q
f
O,
O
A
B A
2qa 2
M图
4a 3a 3a
2qa2
q
C 6qa
E
D
B
2q A
2a 2a
4a
4)杆AB
NBA
M BA
B QBA
2qa 14qa2
A 8qa
10qa
3)杆BE q
M BE
NBE
QBE 4a
8qa 2
M图
NBA = 10qa QBA = 0 M BA = 2qa2
x=0
NBE q 4a sin = 0
§3-3 静定刚架
一、平面刚架结构特点:
刚架是由梁和柱以刚性结点相连组成的,其优点是将梁柱形
成一个刚性整体,使结构具有较大的刚度,内力分布也比较均
匀合理,便于形成大空间。
下图是常见的几种刚架:图(a)是车站雨蓬,
图(b)是多层多跨房屋,
图(c)是具有部分铰结点的刚架。
(c)
刚架结构优点:
(1)内部有效使用空间大;
C
D
B
2q A
4a
NDC = 0
D
QDC
M DC = 2qa2
M DC
N DC
M图
2a 2a
4a
2)杆DB
结点D
0 2qa2
NDB = 0
0 D
NDB QDB = 0 QDB M DB M DB = 2qa2
6qa
2qa 2
6qa 2
M BD B
N BD
QBD
10qa2
NBD = 0 QBD = 6qa M BD = 10qa2
0
N BD
M 图 (kN·m)
NBA
20 60
+ 20
40kN D
BC 60
A 2m 2m
20
80
Q图(kN)
N图(kN)
例2. 试计算下图所示悬臂刚架的支座反力,并绘制M、Q和N图。
q 2qa2
C 6qa
E
D
B
2q
2a 2a
A XA M A 4a
YA
4a
3a
解:(1)计算支座反力
x=0
2q 4a X A = 0