光伏电池板热斑效应
光伏热斑效应_概述及解释说明
光伏热斑效应概述及解释说明1. 引言1.1 概述光伏热斑效应是指在光伏发电过程中,由于光照强度不均匀或材料表面特性等因素的影响,产生局部温度升高的现象。
这种现象对光伏发电系统的性能和寿命有着重要的影响。
因此,深入了解和解决光伏热斑效应问题具有重要的实际意义。
1.2 文章结构本文将首先概述光伏热斑效应的定义和原理,并分析其产生的主要影响因素。
其次,我们将探讨一些解决光伏热斑效应问题的方法,并讨论各种方案的优劣与适用性。
最后,在结论部分,我们将总结已经取得的研究成果并展望未来在该领域可能面临的挑战。
1.3 目的本文旨在提供一个综合而清晰地概述光伏热斑效应的文章。
通过对相关知识点进行介绍和讲解,读者可以更好地理解光伏热斑效应及其相关原理,进而为解决该问题提供一定参考。
同时,通过分析已有的研究成果和存在的问题,我们可以为未来的研究方向提出展望,并希望能够对光伏产业的发展和应用提供一定启示。
2. 光伏热斑效应概述:2.1 光伏效应简介:光伏效应是指当光辐射照射到半导体材料上时,产生的电荷对电流的响应。
光伏效应是太阳能电池转换太阳能为电能的基础原理,也是光伏热斑效应产生的前提条件之一。
2.2 热斑效应简介:热斑效应是指在高浓度光照射下,光伏组件表面形成的局部区域温度升高现象。
当太阳能辐射聚焦在一个小区域上时,该区域会受到更高的温度影响,并且可能降低整个光伏系统的性能和寿命。
2.3 光伏热斑效应定义与原理解释:光伏热斑效应是指在高浓度太阳能辐射条件下,由于光线聚焦导致局部区域温度增加,进而引发出现局部失效或性能降低现象。
当太阳能集中在一个小区域上时,这个小区域将吸收更多的能量并产生显著的局部温升,而其他部分的温度保持相对稳定。
这会导致光伏组件中电流产生不均匀分布,降低整个系统的效率。
光伏热斑效应产生的原理主要涉及两个方面。
首先是热载流子效应,高浓度光照射下,热载流子(由高能量光激发生成的载流子)在表面局部区域堆积并增加物质界面处的复合速率。
组件热斑效应
组件热斑效应众所周知为了使组件达到最高的功率输出,光伏组件中的单体电池须具有相似的特性,对于组串及阵列也是如此。
但在实际使用过程中,可能出现电池裂纹或不匹配、内部连接失效、局部被遮光或弄脏等情况,导致一个或一组电池的特性与整体不谐调。
失谐电池不但对组件输出没有贡献,而且会消耗其他电池产生的能量,导致局部过热。
这种现象称为热斑效应。
当组件被短路时,内部功率消耗最大,热斑效应也最严重。
热斑效应不仅会严重影响组件的性能和使用寿命,还有可能引发燃烧及火灾,给电站带来财产损失和人员伤害,因此有效的判断热斑效应的发生及严重性是电站长期的工作。
下左图是电站现场发生的组件背板灼烧现象。
对于热斑效应的判断,切记勿用手去触摸组件,因为当热斑发生时,组件的局部温度非常高,极有可能造成灼伤。
运维人员应选择相应的测试仪器去对组件整体温度进行测试判断,并提早发现组件是否已经存在局部温度异常。
此时选用最方便最快捷的测试仪器即是红外热像仪。
红外热像仪可以全方位拍摄整个组件甚至阵列的温度分布情况,及时发现热斑所在。
并通过软件全面了解组件当前的发热情况,对于明显有热斑的组件可以清楚判断,同时可对组件中尚不明显的热点进行分析判断。
如上右图所示。
从图中可看出组件靠近地面的部位均存在一定程度的热斑效应,这是热斑效应发生概率较高的部位,原因是:(1)这部分组件最容易被遮挡,被遮挡的时间也最长;(2)灰尘覆盖最严重,有时候清洗的不干净时,这部分囤积的灰尘也越多。
(3)靠近地面,通风较差,散热不佳。
因此发生热斑效应的概率较高。
当然引起热斑效应的原因并不止这些,组件本身的性能差别,是否存在隐裂,是否有损伤等等也会造成热斑效应。
HT测试仪器建议在运维过程中,对于已经存在热斑效应的组件,需要对其进行I-V曲线测试判断其功率下降的比例,对于热斑效应较严重的组件可考虑更换组件,避免对整个组串造成过大影响。
对于尚未存在热斑效应的组件,最好进行抽查,对部分组件的I-V曲线进行测试,这样可以提前发现造成组件功率下降的原因,并及时改进。
光伏组件中旁路二极管之关键作用资料讲解
光伏组件中旁路二极管之关键作用光伏组件中旁路二极管之关键作用一、热斑效应一串联支路中被遮蔽的太阳电池组件,将被当作负载消耗其他有光照的太阳电池组件所产生的能量。
被遮蔽的太阳电池组件此时会发热,这就是热斑效应。
这种效应能严重的破坏太阳电池。
有光照的太阳电池所产生的部分能量,都可能被遮蔽的电池所消耗。
为了防止太阳电池由于热斑效应而遭受破坏,最好在太阳电池组件的正负极间并联一个旁路二极管,以避免光照组件所产生的能量被受遮蔽的组件所消耗。
二、Bypassdiode的作用:当电池片出现热斑效应不能发电时,起旁路作用,让其它电池片所产生的电流从二极管流出,使太阳能发电系统继续发电,不会因为某一片电池片出现问题而产生发电电路不通的情况。
三、Bypassdiode选择原则:1、耐压容量为最大反向工作电压的两倍;2、电流容量为最大反向工作电流的两倍;3、结温温度应高于实际结温温度;4、热阻小;5、压降小;四、实际结温温度测量方法:把组件放在75度烘箱中至热稳定,在二极管中通组件的实际短路电流,热稳定后(例如1h),测量二极管的表面温度,根据以下公式计算实际结温:Tj=Tcase+R*U*I其中R为热阻系数,由二极管厂家给出,Tcase是二极管表面温度(用热电偶测出),U是二极管两端压降(实测值),I为组件短路电流。
计算出的Tj不能超过二极管规格书上的结温范围。
五、旁路二极管对电路影响示意图:当电池片正常工作时,旁路二极管反向截止,对电路不产生任何作用;若与旁路二极管并联的电池片组存在一个非正常工作的电池片时,整个线路电流将由最小电流电池片决定,而电流大小由电池片遮蔽面积决定,若反偏压高于电池片最小电压时,旁路二极管导通,此时,非正常工作电池片被短路。
六、每个旁路二极管并联电池片数目的计算1、旁路二极管电流容量最小应为:I=4.73×2=8.46A2、选用10SQ030型二极管最大返偏电压为:VRRM=30vIAV=10AVF=0.55VTJ=-55-200℃3、耐压容量为30Ⅴ的旁路二极管最多可保护125×125电池片数目为:N=30/(2×0.513)≈29.24即最多可保护29片125×125电池片;4、旁路二极管截止状态时存在反向电流,即暗电流,一般小于0.2微安;原则上每个电池片应并联一个旁路二极管,以便更好保护并减少在非正常状态下无效电池片数目,但因为旁路二极管价格成本的影响和暗电流损耗以及工作状态下压降的存在,对于硅电池,每十五个电池片可并联一个旁路二极管为最佳。
太阳能光伏组件热斑效应的检测与控制措施研究
太阳能光伏组件热斑效应的检测与控制措施研究在光伏组件长期运行过程中,会出现一些影响光伏组件性能的质量问题,如“热斑效应”、“EV A黄变”、“隐裂”等,直接影响到光伏组件的发电效率和使用寿命,从光伏组件性能的统計数据来分析,其中“热斑效应”对光伏组件性能影响最大,已成为导致光伏组件损坏、发生火灾、发电功率下降的主要因素,对光伏发电项目经济效益,光伏电站安全运行等都带来了严重影响。
因此,为了控制“热斑效应”的危害,我们通过仿真实验、研究分析其形成原因,制定有效的控制措施,保证光伏光伏组件发电项目的安全、高效运行。
标签:光伏组件;热斑效应;控制措施1 引言能源是推动当今社会前进的动力,传统的煤炭、石油、天然气等化石能源及新兴的核能、风能、太阳能、地热能源等共同推动着社会的进步,现当人们拼命消耗能源,发展经济时,我们也面临着一个新的困境,一是传统能源数量逐渐减少,二是在使用这些传统能源时,这些能源所产生的排放物对环境造成的危害问题也变得日益突出。
在这个时候,人们都希望有一种无污染、无排放、可再生的能源,希望可以通过这种能源来替代原有的类的能源供给结构,以保障今后的可持续发展。
这时太阳能获得了人们的关注,这主要因为太阳能资源丰富,取之不尽、用之不竭、无污染且能为人类自由开发利用的天然资源。
太阳能光伏发电就是利用太阳能组件直接将太阳能转变成电能,运用的是光生伏特效应原理,根据此原理,太阳能组件吸收太阳辐射能量,将太阳光能转化为电能,最后通过一系列的转变处理,将此电能转换成我们可以直接利用的电能的过程。
光伏发电系统中的主要设备包括光伏组件、汇流箱、逆变器、升压变压器、电力电缆及监控系统等,而在这些设备里,光伏组件是光伏发电系统中最核心的设备,光伏组件光电转换率的高低和使用寿命直接决定了太阳能光伏发电阵列发电量和经济效益的多少,因此提高光伏组件的光电转换效率和使用寿命是太阳能光伏发电项目成功的关键。
在光伏组件长期运行过程中,会出现一些影响光伏组件性能的质量问题,如“热斑”、“EV A黄变”、“隐裂”等,直接影响到光伏组件的发电效率和使用寿命,从光伏组件性能的统计数据来分析,其中“热斑效应”对光伏组件性能影响最大,已成为导致光伏组件损坏、发生火灾、发电功率下降的主要因素,对光伏发电项目经济效益,光伏电站安全运行等都带来了严重影响。
光伏发电站主要设备设施危险、有害因素辨识与分析
光伏发电站主要设备设施危险、有害因素辨识与分析一、光伏发电系统1.热斑效应太阳电池组件安装在地域开阔、阳光充足的地带。
在长期使用中难免落上飞鸟、尘土、落叶等遮挡物,这些遮挡物在太阳电池组件上就形成了阴影,由于局部阴影的存在,太阳电池组件中某些电池单片的电流、电压发生了变化。
其结果使太阳电池组件局部电流与电压之积增大,从而在这些电池组件上产生了局部温升。
太阳电池组件中某些电池单片本身缺陷也可能使组件在工作时局部发热,这种现象叫“热斑效应”。
在一定条件下一串联支路中被遮蔽的太阳电池组件,将被当作负载消耗其他有光照的太阳电池组件所产生的能量。
被遮蔽的太阳电池组件此时会发热,这种效应能严重的破坏太阳电池。
2.逆变器故障(1)逆变器质量不过关,运行过程中将导致逆变器损坏。
(2)逆变器主要元件绝缘栅双极型晶体管若失效,将导致逆变器损坏,其失效原因如下。
1)器件持续短路,大电流产生的功耗将引起温升,由于芯片的热容量小,其温度迅速上升,若芯片温度超过硅本征温度,器件将失去阻断能力,栅极控制就无法保护,从而导致绝缘栅双极型晶体管失效。
2)绝缘栅双极型晶体管为PNPN4层结构,因体内存在一个寄生晶闸管,当集电极电流增大到一定程度时,则能使寄生晶闸管导通,门极失去控制作用,形成自锁现象,这就是所谓的静态擎住效应。
发生擎住效应后,集电极电流增大,产生过高功耗,导致器件失效。
3)瞬态过电流绝缘栅双极型晶体管在运行过程中所承受的大幅值过电流除短路、直通等故障外,还有续流二极管的反向恢复电流、缓冲电容器的放电电流及噪声干扰造成的尖峰电流。
若不采取措施,瞬态过电流将增加IGBT的负担,可能会导致绝缘栅双极型晶体管失效。
4)过电压造成集电极发射极击穿或造成栅极发射极击穿。
(3)逆变器由于功率较大,发热亦大。
若逆变器散热设备损坏或安装不当,内部热量不能及时散出,轻则影响元器件寿命,重则有产生火灾的危险。
(4)逆变器接入的直流电压标有正负极,若光伏电池与逆变器相连输电线接错,将导致逆变器故障。
太阳能光伏组件热斑效应的检测与控制措施研究
太阳能光伏组件热斑效应的检测与控制措施研究摘要:随着社会的不断发展,人类与生态环境之间的矛盾也越来越突出,已经严重威胁到人类的生存和发展。
在这种情况下,我国制定了生态环保政策,积极使用清洁能源,减少对生态环境的破坏。
太阳能以高效的利用率以及清洁、可再生等因素,成为应用最为广泛的一种清洁能源。
目前而言,我国的太阳能技术也取得了显著的发展,但是,太阳能光伏组件在长期的运行过程中,会出现一些影响光伏组件性能的质量问题,比如“热斑效应”,不仅影响光伏组件的工作效率,同时也对光伏组件的使用寿命造成了严重的影响。
基于此,需要相关的技术人员深入分析“热斑效应”的形成原因以及控制措施,保证太阳能光伏组件的高效运行。
关键词:太阳能;光伏组件;热斑效应;控制措施引言:能源是推动社会发展的重要动力,传统的能源是以石油、煤炭以及天然气为代表,新型能源则是以核能、风能、太阳能以及地热能为代表,共同组建了当今社会的能源体系。
但是,随着我国节能环保政策的不断深入,逐步压缩了对传统能源开采,积极发展新型清洁能源,以此来降低生态环境破坏带来的影响。
在这种情况下,太阳能成为了人们关注的重点,因为太阳能取之不尽、用之不竭,而且,太阳能的转化效率也比较高,是最为理想的一种新能源。
在太阳能系统当中,光伏组件就是其中的核心,光伏组件在长期的运行过程汇总,会出现一些影响光伏组件性能的质量问题,其中以“热斑效应”为代表,不仅影响光伏组件的使用效率,还严重地威胁到了光伏组件的使用寿命。
基于此,我们需要对光伏组件的数据进行详细的分析,分析一下出现“热斑效应”的根本原因,以及带来的影响,并且还需要进行深入的分析,制定科学合理的控制措施,以此来保证光伏组件的工作效率和工作质量,提高光伏组件的使用寿命。
一、“热斑效应”的概念在光伏组件当中,如果一串联支路出现了被遮挡、裂缝、气泡、起皮等情况,内部的连接构件也有可能出现失效的情况。
出现这种之后,通过这一串联支路的电阻就会增加,串联支路就会出现严重的发热情况,进而严重地消耗光伏组件所产生的能量,不仅如此,随着消耗能源的不断增多,串联支路的发热情况也会越来越严重,这种情况被称之为“热斑效应”。
光伏 热斑常用检测方法
光伏热斑常用检测方法光伏热斑是指光伏电池组件中出现的局部温度升高区域。
由于光伏热斑会导致光伏组件的性能下降甚至破坏,因此及时检测和定位光伏热斑对于光伏发电系统的运行和维护非常重要。
本文将介绍一些常用的光伏热斑检测方法。
一、红外热像法红外热像法是目前最常用的光伏热斑检测方法之一。
通过使用红外热像仪,可以实时地获取光伏组件的温度分布图像。
在正常工作状态下,光伏组件表面的温度基本均匀,如果存在热斑,则在红外热像图上会显示出明显的高温区域。
利用红外热像法可以快速、准确地检测和定位光伏热斑,提高维护效率。
二、电流热检测法电流热检测法是一种基于电流热效应的光伏热斑检测方法。
通过在光伏组件表面布置一系列温度传感器,可以实时地测量光伏组件不同位置的温度变化。
当出现热斑时,由于热斑的存在导致局部温度升高,从而引起传感器的温度变化。
通过对传感器温度的监测和分析,可以检测和定位光伏热斑。
三、电阻热检测法电阻热检测法是一种基于电阻热效应的光伏热斑检测方法。
通过在光伏组件表面布置一系列细微电阻,可以实时地测量光伏组件不同位置的电阻变化。
当出现热斑时,由于热斑的存在导致局部温度升高,从而引起电阻的变化。
通过对电阻的监测和分析,可以检测和定位光伏热斑。
四、电压热检测法电压热检测法是一种基于电压热效应的光伏热斑检测方法。
通过在光伏组件表面布置一系列细微电压传感器,可以实时地测量光伏组件不同位置的电压变化。
当出现热斑时,由于热斑的存在导致局部温度升高,从而引起电压的变化。
通过对电压的监测和分析,可以检测和定位光伏热斑。
五、光谱热检测法光谱热检测法是一种基于光谱热效应的光伏热斑检测方法。
通过在光伏组件表面布置一系列光谱传感器,可以实时地测量光伏组件不同位置的光谱变化。
当出现热斑时,由于热斑的存在导致局部温度升高,从而引起光谱的变化。
通过对光谱的监测和分析,可以检测和定位光伏热斑。
总结:通过红外热像法、电流热检测法、电阻热检测法、电压热检测法和光谱热检测法等多种方法,可以对光伏热斑进行快速、准确的检测和定位。
热斑效应原理简介及模拟实验
热斑效应原理简介及模拟实验杨江海,龚露,蒋忠伟,孙小菩(东莞南玻光伏科技有限公司,东莞,523141)摘要:热斑效应在太阳电池的实际应用中非常普遍,而且热斑效应严重影响太阳电池的性能和寿命,并有很大的危险性。
研究热斑效应的影响因素,降低热斑效应危害性至关重要。
本文首先介绍了组件产生热斑效应的原因,模拟了组件发生热斑效应时遮挡电池片和对应二极管的电压电流曲线以及组件的I-V曲线,并对其进行了解释。
最后,通过等效电路在理论上分析了影响组件热斑效应大小的关键因素。
关键词:光伏,组件,热斑效应,二极管引言随着太阳能电池的广泛应用,一些影响光伏组件发电性能及其寿命的不利因素也随之出现,热斑效应就是其中之一。
目前,大部分人认为发生在光伏组件上的热斑是由于光伏组件被局部遮阴引起的,而根据实际观察,正常组件在毫无遮挡的环境下,热斑现象也十分普遍。
由于发生热斑效应严重的地方局部温度可能较高,有的甚至超过150℃,导致组件局部区域烧毁或形成暗斑、焊点融化、封装材料老化、玻璃炸裂、焊带腐蚀等永久性破坏,给组件的安全性和可靠性造成极大地的隐患[1~5]。
因此,有必要开展一些基础性实验,详细了解热斑效应产生的原因、热斑效应时热斑电池片的电压电流特性以及电池那些性能参数会影响组件热变效应。
1、热斑形成的原因热斑效应是指光伏组件处于工作状态时,组件中某个单体电池或几个单体电池由于遮光或本身原因导致电流降低,当工作电流超过该单体电池或几个单体电池时,则该部分电池被置于反向偏置状态,在电路中的功能由电源变为负载,消耗能量,从而在组件内部形成局部过热现象。
因此,造成组件产生热斑效应有先天性的电池间微小差异原因(硅片质量,电池工艺导致电池EQE曲线不一致即不同光照强度下电池电性能出现差异)和后天性的遮蔽等原因。
为减轻、避免热斑效应,组件在制备过程中会在相邻串之间反向偏置并联一旁路二极管[6~7],如图1所示。
在正常情况下,旁路二极管处于反向偏置状态,当组件中某一片单体电池或几片单体电池被遮蔽时,如果组件工作电流大于遮挡片电流时则该片电池将处于反向偏置状态,当该电池片两端的反向电压大于该串电池电压加上二极管启动电压之和时,该旁路二极管启动,故障串被隔离出组件。
光伏电池热斑效应分析(教学课件PPT)
I rev
IR
I sh
IR
UR
Irev Rs Rsh
I rev
IR
I sh
IR
UR
Irev Rs Rsh
I rev
IR Rsh Rsh Rs
UR Rsh Rs
I rev
IR
UR Rsh Rs
如果不考虑电池作为二 极管消耗的功率,遮挡 电池片消耗的总功率可 写成:
整体实训步骤说明:
步骤1:完成受遮挡单体电池输出功率特 性测试。(遮挡其中一个电池) 步骤2:完成3个没有遮挡电池方阵输出 功率特性测试。 步骤3:4个电池并联输出功率特性测试。 (遮挡其中一个电池) 步骤4:在受遮挡的电池支路上连接旁路 二极管,测试4个电池并联输出功率特性 测试。(遮挡其中一个电池)
其他正常组件 受遮挡组件
为什么调节负载:调节负载改变电池输出电流。
综合功率曲线
整体实训步骤说明:
步骤1:完成受遮挡单体电池 输出功率特性测试。 步骤2:完成3个没有遮挡电 池方阵输出功率特性测试。 步骤3:4个电池串联(注意 受遮挡的电池组件遮挡程度 不能变)输出功率特性测试。 步骤4:在受遮挡的电池旁路 上并联旁路二极管,测试4个 电池串联输出功率特性测试。
旁路,当该组件的某一部分有故障时,可以做到只旁路组件的1/3,其余部分仍然
可以正常工作。
+
-+
-
2.当调整负载使电池组工 作在b点,电池1和电池2 都有正的功率输出;
3.当电池组工作在c点,此时电池1 仍然工作在正功率输出,而受遮挡 的电池2已经工作在开路状态,没 有功率输出,但也还没有成为电池 1的负载; 4.当电池组工作在开路状态d点, 此时电池1仍然有正的功率输出, 而电池2上的电流已经反向,电池2 成为电池1的负载,此时电池1的功 率全部加到了电池2上,如果这种 状态持续时间很长或电池1的功率 很大,也会在被遮挡的电池2上造 成热斑损伤。
光伏组件热斑效应.
• 在一定的条件下,一串联支路中被遮藏的 太阳能电池组件将被当作负载消耗其他被 光照的太阳能电池组件所产生的能量,被 遮挡的太阳能电池组件此时将会发热,这 就是“热斑效应”。 • 这种效应会严重地破坏太阳能电组件。有 光照的电池组件所产生的部分能量或所有 能量,都可能被遮蔽的组件所消耗。
• (5)应当注意到,从c点到d点的工作区间, 电池组件2都处于接收功率的状态。 • 并联电池组处于开路或接近开路状态在实 际工作中也有可能, • 脉宽调制控制器要求只有一个输入端,当 系统功率较大,太阳能电池组件会采用多 组并联,在蓄电池接近充满时,脉冲宽度 变窄,开关晶体管处于临近截止状态,太 阳能电池组件的工作点向开路方向移动, 如果没有在各并联支路上加装阻断二极管, 发生热斑效应的概率就会很大。
• 为防止太阳能电池组 件由于热斑效应而被 破坏,需要在太阳能 电池组件的正负极间 并联一个旁路二极管, 以避免串联回路中光 照组件所产生的能量 披遮蔽的组件所消耗。 • 同样,对于每一个并 联支路,需要串接一 只二极管,以避免并 联回路中光照组什所 产生的能量被遮蔽的 组件所吸收,串接二 极管在独立光伏发电 系统中可同时起到防 止蓄电池在夜间反充 电的功能。
• 假定太阳能电池组件的串联回路中某一块被部分 遮挡,调节负载电阻R,可使太阳能电池组件的工 作状态由开路到短路。
• 从d、c、b、a四种工作状态进行分析: • (1)调整太阳能电池组的输出阻抗,使其工作在开路(d 点),此时工作电流为0,组开路电压UGd等于电池组件1 和电池组件2的开路电压之和。 • (2)当调整阻抗使电池组工作在c点,电池组件l郓电池组件2 都有正的功率输出。 • (3)当电池组工作在b点,此时电池组件1仍然工作在正功率 输出,而受遮挡的电池组件2已经工作在短路状态,没有 功率输出,但也还没有成为功率的接收体,还投有成为电 池组件1的负载。 • (4)当电弛组工作在短路状态(a点).此时电池组件1仍然 有正的功率输出,而电池组件2上的电压已经反向,电池 组件2成为电池组件1的负载,不考虑回路中串联电阻的话, 此时电池组件l的功率全部加到了电池组件2 t, • 如果这种状态持续时间很长或电j组件1的功率很大,就会 在被遮挡的电池组件2上造成热斑损伤。
光伏组件的热斑效应和试验方法
光伏电池是将太阳光辐射能量直接转换成电能的器件。
单个硅晶体光伏电池能得到的最大电压约为0.6V,最大电流约为30mA/cm2。
因此光伏电池很少单个使用,而是串联或并联起来,以获得所期望的电压或电流。
光伏组件正是由多个光伏电池连接和封装而成的产品,是光伏发电系统中电池方阵的基本单元。
为了达到较高转换效率,光伏组件中的单体电池须具有相似的特性。
在实际使用过程中,可能出现电池裂纹或不匹配、内部连接失效、局部被遮光或弄脏等情况,导致一个或一组电池的特性与整体不谐调。
失谐电池不但对组件输出没有贡献,而且会消耗其他电池产生的能量,导致局部过热。
这种现象称为热斑效应。
当组件被短路时,内部功率消耗最大,热斑效应也最严重。
一、热斑效应原理当然,并不是所有的电池都可以通过调整遮光比例达到最佳阻抗匹配。
完全遮光情况下,不同特性的Y电池I-V曲线如图3所示。
斜率越低,表明电池的并联电阻越大。
考虑(S-1)个电池串的最大输出功率点所限定的“试验界限”,根据I-V曲线与“试验界限”的交点,把电池分为电压限制型(A类)和电流限制型(B类)。
A类电池并联电阻较大,可以通过减少遮光面积,达到最佳阻抗比配;B类电池的并联电阻较小,完全遮光已是Y电池消耗功率最大的状态。
二、热斑耐久试验热斑效应可导致电池局部烧毁形成暗斑、焊点熔化、封装材料老化等永久性损坏,是影响光伏组件输出功率和使用寿命的重要因素,甚至可能导致安全隐患。
因此,IEC 61215:2005《地面用晶体硅光伏组件设计鉴定和定性》专门设置了热斑耐久试验,以考核光伏组件经受热斑加热效应的能力。
热斑耐久试验过程包括最坏情况的确定、5小时热斑试验以及试验后的诊断测量,分为以下4个步骤。
1、选定最差电池由于受到检测时间和成本的限制,热斑耐久试验不能针对组件中的每一个电池进行。
因此,正式试验之前先比较和选择热斑加热效应最显著的电池。
具体方法是,在一定光照条件下,将组件短路,依次遮挡每个电池,被遮光后稳定温度最高者为最差电池片。
基于无人机及机器视觉的光伏电站“热斑效应”检测系统研究
基于无人机及机器视觉的光伏电站“热斑效应”检测系统研究【摘要】本研究旨在探讨基于无人机及机器视觉技术的光伏电站“热斑效应”检测系统。
在介绍了研究的背景和意义。
在分别介绍了光伏电站热斑效应、无人机在光伏电站中的应用以及机器视觉在光伏电站中的应用。
接着详细设计了基于无人机及机器视觉的热斑效应检测系统,并进行了实验结果分析。
在总结了研究成果,并展望了未来的发展方向。
通过本研究,我们可以更好地了解光伏电站的热斑效应,提高光伏电站的效率和安全性,为未来的绿色能源发展提供技术支持。
【关键词】光伏电站、热斑效应、无人机、机器视觉、检测系统、实验结果分析、研究成果、展望未来1. 引言1.1 研究背景光伏电站作为清洁能源的重要组成部分,受到了广泛的关注和应用。
由于光伏电池组件工作时会产生一定的热量,长期高温会导致光伏电站出现“热斑效应”,即局部组件温度过高导致效率下降,甚至损坏光伏设备的现象。
研究表明,光伏电站的“热斑效应”会使光伏板每年的发电量损失高达5%-10%,给光伏电站的长期运行和维护带来了挑战。
为了有效监测和管理光伏电站中的“热斑效应”,提高光伏电站的发电效率和使用寿命,研究者们开始将无人机和机器视觉技术引入到光伏电站的监测系统中,通过实时采集光伏电站的数据,快速识别和定位“热斑”,实现对光伏设备的及时监测和预警。
本研究旨在探索基于无人机及机器视觉的光伏电站“热斑效应”检测系统,为光伏电站的运行和维护提供科学依据和技术支持。
1.2 研究意义光伏电站作为清洁能源的重要组成部分,其运行效率和安全性直接影响着能源生产和环境保护。
而光伏电站中的“热斑效应”是一个普遍存在且严重影响光伏电站性能的问题。
热斑效应是指光伏电池组件在运行过程中因为局部故障或污染等原因导致热量异常集中,从而导致发电效率下降,甚至可能引发安全隐患。
建立一套高效准确的热斑效应检测系统对于提高光伏电站运行效率,延长设备寿命具有重要的现实意义。
基于无人机及机器视觉的热斑效应检测系统能够实现对光伏电站的全方位、高效率监测,通过实时收集、分析和识别热斑数据,及时发现和定位问题,提前预警,实现快速故障处理和维护,从而确保光伏电站的安全高效运行。
光伏组件热斑效应简析
光伏组件热斑效应简析一、什么是光伏组件的热斑效应在一定的条件下,光伏组件中缺陷区域(被遮挡、裂纹、气泡、脱层、脏污、内部连接失效等)被当做负载消耗其它区域所产生的能量,导致局部过热,这种现象称为光伏组件的“热斑效应”。
二、光伏组件热斑效应的危害热斑效应可导致电池局部烧毁形成暗斑、焊点熔化、封装材料老化等永久性损坏,是影响光伏组件输出功率和使用寿命的重要因素,甚至可能导致安全隐患。
三、光伏组件热斑检测1、检测工具热成像仪:红外热像仪是利用红外探测器和光学成像物镜接受被测目标的红外辐射能量分布图形反映到红外探测器的光敏元件上,从而获得红外热像图,这种热像图与物体表面的热分布场相对应。
通俗地讲红外热像仪就是将物体发出的不可见红外能量转变为可见的热图像,热图像的上面的不同颜色代表被测物体的不同温度。
2、检测方法在一定的辐照度下,用热成像仪对运行中的光伏组件进行热斑检测,检测前尽量保证光伏组件表面无脏污及异物遮挡,同时还要注意勿使身体及检测仪遮挡光伏组件;检测仪器距离光伏组件不能太近,避免热(红外)相机捕捉到组件发射的太阳光点而造成误判断。
热斑检测最好在春末、夏季、秋初的上午11时---下午16时之间的时间段内进行,由于区域原因而导致辐照度、环境温度等的不同,热斑检测的最佳时间段也会相应不同。
3、热斑判断一般情况下认为:光伏组件在正常工作时的温度为30℃时,局部温度高于周边温度6.5℃时,可认为组件局部为热斑区域。
不过这也不是绝对的,因为热斑检测会受到辐照度、组件输出功率、环境温度及组件工作温度、热斑形成原因等因素的影响,因而判断热斑效应最好是以热成像仪图像上的数据分析为准。
(以下图片为组件局部的热斑成像)(1)异物长时间遮挡的热斑成像(2)组件烧损处的热斑成像(3)组件裂纹处的热斑成像(4)其他原因造成的热斑成像注:相同或不同原因导致的热斑形状都不是固定的四、解决热斑效应问题的方法1、在组件上加装旁路二极管。
光伏热斑效应分析
热斑效应的分析在一定条件下,一串联支路中被遮蔽的太阳电池组件,将被当作负载消耗其他有光照的太阳电池组件所产生的能量。
被遮蔽的太阳电池组件此时会发热,这就是热斑效应。
这种效应能严重的破坏太阳电池。
有光照的太阳电池所产生的部分能量,都可能被遮蔽的电池所消耗。
为了防止太阳电池由于热斑效应而遭受破坏,最好在太阳电池组件的正负极间并联一个旁路二极管,以避免光照组件所产生的能量被受遮蔽的组件所消耗。
孤岛效应:太阳能发电系统与市电系统并联供电时,当市电发生故障系统未能及时检知并切离市电系统,而产生独立供电现象。
一旦发生孤岛运转现象时,会造成人员受伤与设备之损坏,故系统设计须具备该效应侦测保护功能。
改善的方法就是采用“反孤岛检测”。
太阳电池组件热斑效应介绍及检测方法:太阳电池组件通常安装在地域开阔、阳光充足的地带。
在长期使用中难免落上飞鸟、尘土、落叶等遮挡物,这些遮挡物在太阳电池组件上就形成了阴影,在大型太阳电池组件方针中行间距不适合也能互相形成阴影。
由于局部阴影的存在,太阳电池组件中某些电池单片的电流、电压发生了变化。
其结果使太阳电池组件局部电流与电压之积增大,从而在这些电池组件上产生了局部温升。
太阳电池组件中某些电池单片本身缺陷也可能使组件在工作时局部发热,这种现象叫“热斑效应”。
在实际使用太阳电池中,若热斑效应产生的温度超过了一定极限将会使电池组件上的焊点熔化并毁坏栅线,从而导致整个太阳电池组件的报废。
据国外权威统计,热斑效应使太阳电池组件的实际使用寿命至少减少10%。
热斑现象是不可避免的,尽管太阳电池组件安装时都要考虑阴影的影响,并加配保护装置以减少热斑的影响。
为表明太阳电池能够在规定的条件下长期使用,需通过合理的时间和过程对太阳电池组件进行检测,确定其承受热斑加热效应的能力。
确定太阳电池组件承受热斑加热能力的检测试验叫“热斑耐久试验”。
热斑耐久试验过程需严格遵循国际标准IEC 61215-2005,试验内容大致如下:1. 装置(1)辐照源1,稳态太阳模拟器或自然光,辐照度不低于700W/㎡,不均匀度不超过±2%,瞬时不稳定度在±5%以内。
光伏电池的发电原理及热斑效应
一、光伏电池的基本原理
由一片单晶硅片构成的太阳能电池称为单体。单 体电池的电压电流很小(0.45~ 0.50V、20~25mA/cm 2), 一般不能单独作电源使用,需将它们串、并联封装后, 构成光伏电池组件(模块Module)使用,一个组件上光 伏电池的标准数量是36~40个. 当应用场合需要较高的电压和电流,可把多个组 件再经过串并联安装在支架上,构成了光伏电池阵列 (Array),满足负载所需的功率要求.
板。 (5)一个适当的温度探测器。
四、热斑耐久实验
2. 程序 在太阳电池组件试验前应安装厂商推荐的热斑保护装 置。
(1) 将不遮光的组件在辐照源 1下照射,测试其 I-V 特 性和最大功率点。
(2)使组件短路,组件在稳定的辐照源1照射下,用适 当的温度探测器测定最热的电池单片。 (3)完全挡住选定的电池单片,用辐照源2照射组件。 在此过程中组件的温度应该在50℃±10℃。 (4)保持此状态经过5小时的曝晒。 (5)再次测定组件的I-V特性和最大功率点。
光伏电池的发电原理及热斑效应
一、光伏电池的基本原理
太阳能是一种辐射能,它必须借助于能量转换器才能 转换成电能, 能将光能转换成电能的能量转换器之一,就 是光伏电池。
光伏电池的物理基础是由两种不同半导体材料构成的 大面积PN结,以及非平衡少数载流子在PN结内电场作用下 形成的漂移电流。
一、光伏电池的基本原理
三、热斑效应
组件热斑产生的原因 造成热斑效应的根源是有个别坏电池的混入、电极焊片 虚焊、电池由裂纹演变为破碎、个别电池特性变坏、电池局 部受到阴影遮挡等。由于局部阴影的存在,太阳电池组件中 某些电池单片的电流、电压发生了变化。其结果使太阳电池 组件局部电流与电压之积增大,从而在这些电池组件上产生 了局部温升。
光伏电池的发电原理及热斑效应
6 、在无阴影遮挡条件下工作时,在太阳辐照度为 500W/m2以上,风速不大于 2m/s 的条件下,同一光伏组件外 表面(电池正上方区域)温度差异应小于20℃。装机容量大 于50kWp 的光伏电站,应配备红外线热像仪,检测光伏组件 外表面温度差异。
二、组件输出功率下降原因
老化衰减 老化衰减是指在长期使用中出现的极缓慢的功率下降, 产生的主要原因与电池缓慢衰减有关,也与封装材料的性能 退化有关。其中紫外光的照射时导致组件主材性能退化的主 要原因。紫外线的长期照射,使得EVA及背板(TPE结构)发 生老化黄变现象,导致组件透光率下降,进而引起功率下降。
三、热斑效应
组件热斑产生的原因 造成热斑效应的根源是有个别坏电池的混入、电极焊片 虚焊、电池由裂纹演变为破碎、个别电池特性变坏、电池局 部受到阴影遮挡等。由于局部阴影的存在,太阳电池组件中 某些电池单片的电流、电压发生了变化。其结果使太阳电池 组件局部电流与电压之积增大,从而在这些电池组件上产生 了局部温升。
三、热斑效应
解决热斑效应的方法
解决热斑效应问题的通常做法,是在组件上加装旁路二极管。通常 情况 下,旁路二极管处于反偏压,不影响组件正常工作。当一个电池 被遮挡时,其他电池促其反偏成为大电阻,此时二极管导通,总电池中 超过被遮电池光生电 流的部分被二极管分流,从而避免被遮电池过热 损坏。光伏组件中一般不会给 每个电池配一个旁路二极管,而是若干 个电池为一组配一个。此时被遮挡电池 只影响其所在电池组的发电能 力。
二、组件输出功率下降原因
组件功率衰减是指光伏组件随着时间的增长,组件输出 功率逐渐下降的现象。 导致组件输出功率下降的原因有三大类: 第一类为组件的光致衰减 第二类为组件老化衰减 第三类为外界环境因素导致的破坏性影响,引起组件功 率衰减甚至组件损坏。
光伏组件一二三:参数、热斑效应和PID效应、运营后检测
光伏组件一二三:参数、热斑效应和PID效应、运营后检测毫无疑问,光伏组件是光伏电站最重要的设备之一,今天来说说常用的多晶硅光伏组件,包含:光伏组件的关键参数、热斑效应和PID效应、运营后检测。
一、光伏组件技术规格书中的关键参数1、功率我们常说,采用255Wp光伏组件。
下表的“p”为peak的缩写,代表其峰值功率为255W。
所有的技术规格书中都会标注“标准测试条件”的。
下图为广东太阳库的光伏组件技术规格书一部分(250W,下同)。
只有在标准测试条件(辐照度为1000W/m2,电池温度25℃)时,光伏组件的输出功率才是“标称功率”(250W),辐照度和温度变化时,功率肯定会变化。
另外,功率误差为正负3%,说明组件的实际功率是242.5~257.5W都是增长的。
不过,这个组件的功率偏差为正偏差3%。
在非标准条件下,光伏组件的输出功率一般不是标称功率,如下图。
辐照度为800W/m2,电池温度20℃时,250W的组件输出功率只有183W,为标况下的73.2%。
2、效率理论上,尺寸、标称功率相同的组件,效率肯定是相同的。
光伏组件是由电池片组成,一块光伏组件通常由60片(6×10)或72片(6×10)电池片组成,面积分别为1.638 m2(0.992m×1.652m)和3.895 m2(0.992m×1.956m)。
辐照度为1000W/m2时,1.638 m2组件上接收的功率为1638W,当输出为250W时,效率为15.3%,255W时为15.6%。
3、电压与温度系数电压分开路电压和MPPT电压,温度系数分电压温度系数和功率温度系数。
在进行串并联方案设计时,要用开路电压、工作电压、温度系数、当地极端温度(最好是昼间)进行最大开路电压和MPPT电压范围的计算,与逆变器进行匹配。
二、影响光伏组件的两个效应1、热斑效应一串联支路中被遮蔽的太阳电池组件,将被当作负载消耗其他有光照的太阳电池组件所产生的能量,被遮蔽的太阳电池组件此时会发热,这就是热斑效应。