教学设计:选修4-5+第三讲+柯西不等式与排序不等式(4课时)
人教版高中选修4-5第三讲柯西不等式与排序不等式教学设计
人教版高中选修4-5第三讲柯西不等式与排序不等式教学设计一、教学目标1.理解柯西不等式和排序不等式的概念和基本性质。
2.能够应用柯西不等式和排序不等式解决实际问题。
3.培养学生的数学思维能力、解决问题的能力和团队协作精神。
二、教学内容1.柯西不等式的定义和证明。
2.柯西不等式及其应用。
3.排序不等式的定义和证明。
4.排序不等式及其应用。
三、教学重点和难点1.理解柯西不等式和排序不等式的定义和基本性质。
2.掌握柯西不等式的证明方法,理解其应用。
3.熟练掌握排序不等式的证明方法,能够应用排序不等式解决实际问题。
四、教学方法和手段1.教师引导学生自主发现和探究柯西不等式和排序不等式。
2.采用运用举例的方法,引导学生理解和记忆柯西不等式和排序不等式,提高学生举一反三的能力。
3.推崇探究式学习方法,鼓励学生主动探究,组织学生研究、合作探讨,提升学生的团队合作能力。
五、教学流程1.柯西不等式的引入通过真实生活中的例子,引出两个变量之间的关系,小组探究两正数之积的最大值、两负数之积的最大值、正数与负数之积的最小值。
教授柯西不等式的定义和证明。
2.柯西不等式的应用通过计算题目,引出使用柯西不等式求出积分值最大值的方法,题目的复杂程度逐渐加深,教授柯西不等式在解题中的应用。
3.排序不等式引入介绍排序不等式的定义和证明过程,并从生活中的例子引出排序不等式的应用场景。
4.排序不等式的应用通过计算题目,引导学生掌握人教版高中选修4-5第三讲柯西不等式与排序不等式的解题方法,解决实际问题。
六、教学评价1.通过出题考核,检测学生掌握柯西不等式和排序不等式的基础知识和应用能力。
2.通过实际应用问题,检验学生对柯西不等式和排序不等式的理解和应用能力。
七、小组探究设计在小组合作过程中,让学生组织实验、调查等自主探究柯西不等式和排序不等式。
小组探究产生的报告可作为课后作业,让学生进行总结和讨论。
最后,本课程旨在为学生提供基本数学知识和运用能力,建立实际生活场景与知识的联系。
高中数学第三讲柯西不等式与排序不等式第3节排序不等式创新应用教学案新人教A版选修4_5
——教学资料参考参考范本——高中数学第三讲柯西不等式与排序不等式第3节排序不等式创新应用教学案新人教A版选修4_5______年______月______日____________________部门[核心必知]1.三维形式的柯西不等式设a1,a2,a3,b1,b2,b3是实数,则(a+a+a)(b+b+b)≥(a1b1+a2b2+a3b3)2,当且仅当bi=0(i=1,2,3)或存在一个数k,使得ai=kbi(i=1,2,3)时,等号成立.2.一般形式的柯西不等式设a1,a2,a3,…,an,b1,b2,b3,…,bn是实数,则(a+a+…+a)(b+b+…+b)≥(a1b1+…+anbn)2,当且仅当bi =0(i=1,2,…,n)或存在一个数k,使得ai=kbi(i=1,2,…,n)时,等号成立.[问题思考]1.在一般形式的柯西不等式的右端中,表达式写成ai·bi(i=1,2,3,…,n),可以吗?提示:不可以,ai·bi的顺序要与左侧ai,bi的顺序一致.2.在一般形式的柯西不等式中,等号成立的条件记为ai=kbi(i=1,2,3,…,n),可以吗?提示:不可以.若bi=0而ai≠0,则k不存在.设a,b,c为正数,且不全相等.求证:++>.[精讲详析] 本题考查三维形式的柯西不等式的应用.解答本题需要构造两组数据,,;,,,然后利用柯西不等式解决.构造两组数,,c+a;,,,则由柯西不等式得(a+b+b+c+c+a)≥(1+1+1)2,①即2(a+b+c)≥9,于是++≥.由柯西不等式知,①中有等号成立⇔==⇔a+b=b+c=c+a⇔a=b=c.因题设,a,b,c不全相等,故①中等号不成立,于是++>.——————————————————柯西不等式的结构特征可以记为(a1+a2+…+an)·(b1+b2+…+bn)≥(++…+)2,其中ai,bi∈R+(i=1,2,…,n),在使用柯西不等式时(要注意从整体上把握柯西不等式的结构特征),准确地构造公式左侧的两个数组是解决问题的关键.1.设a,b,c为正数,求证:++≥a+b+c.证明:∵⎝ ⎛⎭⎪⎫a2b +b2c +c2a ()a+b+c=·[()2+()2+()2]≥⎝ ⎛⎭⎪⎫a b ·b +b c ·c +c a ·a 2=(a +b +c)2,即(a +b +c)≥(a+b +c)2, 又a ,b ,c∈R+, ∴a +b +c>0,∴++≥a +b +c ,当且仅当a =b =c 时等号成立。
高中数学 第三讲 柯西不等式与排序不等式 一 二维形式
一二维形式的柯西不等式对应学生用书P291.二维形式的柯西不等式(1)定理1:若a,b,c,d都是实数,则(a2+b2)(c2+d2)≥(ac+bd)2,当且仅当ad=bc时,等号成立.(2)二维形式的柯西不等式的推论:(a+b)(c+d)≥(ac+bd)2(a,b,c,d为非负实数);a2+b2·c2+d2≥|ac+bd|(a,b,c,d∈R);a2+b2·c2+d2≥|ac|+|bd|(a,b,c,d∈R).2.柯西不等式的向量形式定理2:设α,β是两个向量,则|α·β|≤|α|·|β|,当且仅当β是零向量,或存在实数k,使α=kβ时,等号成立.[注意] 柯西不等式的向量形式中α·β≤|α||β|,取等号“=”的条件是β=0或存在实数k,使α=kβ.3.二维形式的三角不等式(1)定理3:x21+y21+x22+y22≥x1-x22+y1-y22(x1,y1,x2,y2∈R).当且仅当三点P1,P2与O共线,并且P1,P2点在原点O异侧时,等号成立.(2)推论:对于任意的x1,x2,x3,y1,y2,y3∈R,有x 1-x32+y1-y32+x2-x32+y2-y32≥x1-x22+y1-y22.事实上,在平面直角坐标系中,设点P1,P2,P3的坐标分别为(x1,y1),(x2,y2),(x3,y3),根据△P1P2P3的边长关系有|P1P3|+|P2P3|≥|P1P2|,当且仅当三点P1,P2,P3共线,并且点P1,P2在P3点的异侧时,等号成立.对应学生用书P29[例1] 已知θ为锐角,a ,b ∈R +,求证:a 2cos 2θ+b 2sin 2θ≥(a +b )2. [思路点拨] 可结合柯西不等式,将左侧构造成乘积形式,利用“1=sin 2θ+cos 2θ.”然后用柯西不等式证明.[证明] ∵a 2cos 2θ+b 2sin 2θ=⎝⎛⎭⎪⎫a 2cos 2θ+b 2sin 2θ(cos 2θ+sin 2θ) ≥⎝⎛⎭⎪⎫a cos θ·cos θ+b sin θ·sin θ2=(a +b )2,∴(a +b )2≤a 2cos 2θ+b 2sin 2θ.利用柯西不等式证明不等式的关键在于利用已知条件和所证不等式,把已知条件利用添项、拆项、分解、组合、配方、变量代换等,将条件构造柯西不等式的基本形式,从而利用柯西不等式证明,但应注意等号成立的条件.1.已知a 2+b 2=1,x 2+y 2=1,求证:|ax +by |≤1. 证明:由柯西不等式得(ax +by )2≤(a 2+b 2)(x 2+y 2)=1, ∴|ax +by |≤1.2.已知a 1,a 2,b 1,b 2为正实数.求证:(a 1b 1+a 2b 2)⎝ ⎛⎭⎪⎫a 1b 1+a 2b 2≥(a 1+a 2)2.证明:(a 1b 1+a 2b 2)⎝ ⎛⎭⎪⎫a 1b 1+a 2b 2=[(a 1b 1)2+(a 2b 2)2]⎣⎢⎡⎦⎥⎤⎝⎛⎭⎪⎫a 1b 12+⎝⎛⎭⎪⎫a 2b 22≥⎝⎛⎭⎪⎫a 1b 1·a 1b 1+a 2b 2·a 2b 22=(a 1+a 2)2. 3.设a ,b ,c 为正数,求证:a 2+b 2+b 2+c 2+a 2+c 2≥ 2(a +b +c ). 证明:由柯西不等式:a 2+b 2·12+12≥a +b ,即2·a 2+b 2≥a +b . 同理:2·b 2+c 2≥b +c , 2·a 2+c 2≥a +c ,将上面三个同向不等式相加得:2()a 2+b 2+ a 2+c 2+ b 2+c 2≥2(a +b +c ) ∴ a 2+b 2+ a 2+c 2+ b 2+c 2≥ 2·(a +b +c ).[例2] 求函数y =3sin α+4cos α的最大值.[思路点拨] 函数的解析式是两部分的和,若能化为ac +bd 的形式就能用柯西不等式求其最大值.[解] 由柯西不等式得(3sin α+4cos α)2≤(32+42)(sin 2α+cos 2)=25, ∴3sin α+4cos α≤5.当且仅当sin α3=cos α>0即sin α=35,cos α=45时取等号,即函数的最大值为5.利用柯西不等式求最值①变形凑成柯西不等式的结构特征,是利用柯西不等式求解的先决条件;②有些最值问题从表面上看不能利用柯西不等式,但只要适当添加上常数项或和为常数的各项,就可以应用柯西不等式来解,这也是运用柯西不等式解题的技巧;③而有些最值问题的解决需要反复利用柯西不等式才能达到目的,但在运用过程中,每运用一次前后等号成立的条件必须一致,不能自相矛盾,否则就会出现错误.多次反复运用柯西不等式的方法也是常用技巧之一.4.已知2x 2+y 2=1,求2x +y 的最大值. 解:2x +y =2×2x +1×y ≤22+12×2x2+y 2=3×2x 2+y 2= 3.当且仅当x =y =33时取等号. ∴2x +y 的最大值为 3.5.已知2x +3y =1,求4x 2+9y 2的最小值. 解:∵(4x 2+9y 2)(22+22)≥(4x +6y )2=4, ∴4x 2+9y 2≥12.当且仅当2×2x =3y ×2,即2x =3y 时等号成立. 又2x +3y =1,得x =14,y =16,故当x =14,y =16时,4x 2+9y 2的最小值为12.6.求函数f (x )=x -6+12-x 的最大值及此时x 的值. 解:函数的定义域为[6,12],由柯西不等式得(x -6+12-x )2≤(12+12)[(x -6)2+(12-x )2]=2(x -6+12-x )=12, 即x -6+12-x ≤2 3. 故当x -6=12-x 时即x =9时函数f (x )取得最大值2 3.对应学生用书P311.已知a ,b ∈R +且a +b =1,则P =(ax +by )2与Q =ax 2+by 2的关系是( ) A .P ≤Q B .P <Q C .P ≥QD .P >Q解析:设m =(a x ,b y ),n =(a ,b ),则|ax +by |=|m·n |≤|m ||n |=ax2+by2·a2+b2=ax 2+by 2·a +b = ax 2+by 2,∴(ax +by )2≤ax 2+by 2.即P ≤Q . 答案:A2.若a ,b ∈R ,且a 2+b 2=10,则a -b 的取值范围是( ) A .[-25,2 5 ] B .[-210,210 ] C .[-10,10 ]D .(-5,5)解析:(a 2+b 2)[12+(-1)2]≥(a -b )2, ∵a 2+b 2=10,∴(a -b )2≤20. ∴-25≤a -b ≤2 5. 答案:A3.已知x +y =1,那么2x 2+3y 2的最小值是( ) A.56 B.65C.2536D.3625解析:(2x 2+3y 2)[(3)2+(2)2]≥(6x +6y )2=[6(x +y )]2=6,(当且仅当x =35,y =25时取等号)即2x 2+3y 2≥65.答案:B4.函数y =x -5+26-x 的最大值是( ) A. 3 B. 5 C .3D .5解析:根据柯西不等式,知y =1×x -5+2×6-x ≤12+22×x -52+6-x2=5(当且仅当x =265时取等号).答案:B5.设xy >0,则⎝⎛⎭⎪⎫x 2+4y 2·⎝⎛⎭⎪⎫y 2+1x2的最小值为________.解析:原式=⎣⎢⎡⎦⎥⎤x 2+⎝ ⎛⎭⎪⎫2y 2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1x 2+y 2≥⎝⎛⎭⎪⎫x ·1x +2y·y 2=9.(当且仅当xy =2时取等号)答案:96.设a =(-2,1,2),|b |=6,则a ·b 的最小值为________,此时b =________. 解析:根据柯西不等式的向量形式,有|a ·b |≤|a |·|b |, ∴|a ·b |≤-2+12+22×6=18,当且仅当存在实数k ,使a =k b 时,等号成立. ∴-18≤a ·b ≤18, ∴a ·b 的最小值为-18, 此时b =-2a =(4,-2,-4). 答案:-18 (4,-2,-4)7.设实数x ,y 满足3x 2+2y 2≤6,则P =2x +y 的最大值为________. 解析:由柯西不等式得(2x +y )2≤[(3x )2+(2y )2]·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫232+⎝ ⎛⎭⎪⎫122=(3x 2+2y 2)·⎝ ⎛⎭⎪⎫43+12≤6×116=11⎝⎛当且仅当x =411,⎭⎪⎫y =311时取等号, 于是2x +y ≤11. 答案:118.已知x ,y ∈R +,且x +y =2.求证:1x +1y≥2.证明:1x +1y =12(x +y )⎝ ⎛⎭⎪⎫1x +1y =12[ (x )2+(y )2]⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1x 2+⎝ ⎛⎭⎪⎫1y 2 ≥12⎝ ⎛⎭⎪⎫x · 1x +y ·1y 2=2, 当且仅当⎩⎪⎨⎪⎧xy=y x ,x +y =2,时等号成立,此时x =1,y =1.所以1x +1y≥2.9.解方程4x +3+2 1-2x =15. 解:15=⎝ ⎛⎭⎪⎫2·2x +32+2 1-2x 2≤[(2)2+22]·⎣⎢⎡⎦⎥⎤ ⎝⎛⎭⎪⎫2x +322+1-2x2=6⎝ ⎛⎭⎪⎫2x +32+1-2x =6×52=15. 其中等号成立的充要条件是2x +322=1-2x2, 解得x =-13.10.试求函数f (x )=3cos x +4 1+sin 2x 的最大值,并求出相应的x 的值. 解:设m =(3,4),n =(cos x ,1+sin 2x )则f (x )=3cos x +4 1+sin 2x =|m ·n |≤|m |·|n |=cos 2x +1+sin 2x ·32+42 =5 2当且仅当m ∥n 时,上式取“=”. 此时,3 1+sin 2x -4cos x =0. 解得sin x =75,cos x =325. 故当sin x =75,cos x =325时. f (x )=3cos x +4 1+sin 2x 取最大值5 2.。
人教版高中选修4-5第三讲柯西不等式与排序不等式课程设计
人教版高中选修4-5第三讲柯西不等式与排序不等式课程设计
一、课程目标
1.1 掌握柯西不等式的概念及其意义;
1.2 学会在实际问题中应用柯西不等式;
1.3 掌握排序不等式的概念及应用;
1.4 学会在实际问题中应用排序不等式。
二、教学内容
2.1 柯西不等式的概念与应用;
2.2 排序不等式的概念与应用;
2.3 利用柯西不等式、排序不等式解决实际问题。
三、教学重点与难点
3.1 教学重点:柯西不等式、排序不等式的概念及应用。
3.2 教学难点:如何在实际问题中应用柯西不等式、排序不等式。
四、教学过程设计
教学环节教学内容教学目标与要
求
教师活动与学生活动
1。
高中数学第三讲柯西不等式与排序不等式3.1二维形式的柯西不等式教案新人教A版选修4_5
3.1二维形式的柯西不等式一、教学目标1.认识柯西不等式的几种不同形式,理解其几何意义. 2.通过运用柯西不等式分析解决一些简单问题. 二、课时安排 1课时 三、教学重点认识柯西不等式的几种不同形式,理解其几何意义. 四、教学难点通过运用柯西不等式分析解决一些简单问题. 五、教学过程 (一)导入新课 复习基本不等式。
(二)讲授新课教材整理 二维形式的柯西不等式 当且仅当时,等号成立(三)重难点精讲题型一、二维柯西不等式的向量形式及应例1已知p ,q 均为正数,且p 3+q 3=2.求证:p +q ≤2.【精彩点拨】 为了利用柯西不等式的向量形式,可分别构造两个向量. 【自主解答】 设m =p 32,q 32,n =(p 12,q 12),则p 2+q 2=p 32p 12+q 32q 12=|m ·n |≤|m ||n | =p 3+q 3·p +q =2p +q . 又∵(p +q )2≤2(p 2+q 2),∴2()2p q +≤p 2+q 2≤2p +q ,∴2()2p q +≤2·p +q ,则(p +q )4≤8(p +q ).又p +q >0,∴(p +q )3≤8,故p +q ≤2. 规律总结:使用二维柯西不等式的向量形式证明不等式,关键是合理构造出两个向量.同时,要注意向量模的计算公式|a |=x 2+y 2对数学式子变形的影响.[再练一题]1.若本例的条件中,把“p 3+q 3=2”改为“p 2+q 2=2”,试判断结论是否仍然成立? 【解】 设m =(p ,q ),n =(1,1),则p +q =p ·1+q ·1=|m ·n |≤|m |·|n |=p 2+q 2·12+12. 又p 2+q 2=2. ∴p +q ≤2·2=2. 故仍有结论p +q ≤2成立. 题型二、运用柯西不等式求最值例2 若2x +3y =1,求4x 2+9y 2的最小值.【精彩点拨】 由2x +3y =1以及4x 2+9y 2的形式,联系柯西不等式,可以通过构造(12+12)作为一个因式而解决问题.【自主解答】 由柯西不等式得(4x 2+9y 2)(12+12)≥(2x +3y )2=1. ∴4x 2+9y 2≥12,当且仅当2x ×1=3y ×1, 即x =14,y =16时取等号.∴4x 2+9y 2的最小值为12.规律总结:1.利用柯西不等式求最值,不但要注意等号成立的条件,而且要善于配凑,保证出现常数结果.2.常用的配凑的技巧有:①巧拆常数;②重新安排某些项的次序;③适当添项;④适当改变结构,从而达到运用柯西不等式求最值的目的.[再练一题]2.若3x +4y =2,试求x 2+y 2的最小值及最小值点.【解】 由柯西不等式(x 2+y 2)(32+42)≥(3x +4y )2,得25(x 2+y 2)≥4. 所以x 2+y 2≥425,当且仅当x 3=y4时,“=”成立.为求最小值点,需解方程组⎩⎪⎨⎪⎧3x +4y =2,x 3=y4,∴⎩⎪⎨⎪⎧x =625,y =825.因此,当x =625,y =825时,x 2+y 2取得最小值,最小值为425,最小值点为⎝ ⎛⎭⎪⎫625,825.题型三、二维柯西不等式代数形式的应用 例3已知|3x +4y |=5,求证:x 2+y 2≥1.【精彩点拨】 探求已知条件与待证不等式之间的关系,设法构造柯西不等式进行证明. 【自主解答】 由柯西不等式可知(x 2+y 2)(32+42)≥(3x +4y )2,所以(x 2+y 2)≥(3x +4y )232+42.又因为|3x +4y |=5, 所以(3x +4y )232+42=1,即x 2+y 2≥1. 规律总结:1.利用二维形式的柯西不等式证明时,要抓住柯西不等式的结构特征,必要时,需要将数学表达式适当变形.2.变形往往要求具有很高的技巧,必须善于分析题目的特征,根据题设条件,综合地利用添、拆、分解、组合、配方、变量代换、数形结合等方法才能发现问题的本质,找到突破口.[再练一题]3.设a ,b ∈R +且a +b =2.求证:a 22-a +b 22-b≥2.【证明】 根据柯西不等式,有[(2-a )+(2-b )]⎝ ⎛⎭⎪⎫a22-a +b22-b =[(2-a )2+(2-b )2]⎝ ⎛⎭⎪⎫a2-a 2+⎝ ⎛⎭⎪⎫b2-b 2≥⎝⎛⎭⎪⎫2-a ·a2-a+2-b ·b2-b 2=(a +b )2=4. ∴a 22-a +b 22-b ≥4(2-a )+(2-b )=2, 当且仅当2-a ·b2-b=2-b ·a2-a, 即a =b =1时等号成立. ∴a 22-a +b 22-b≥2. (四)归纳小结二维柯西不等式—⎪⎪⎪⎪—代数形式—向量形式—三角形式—柯西不等式求最值(五)随堂检测1.设x ,y ∈R ,且2x +3y =13,则x 2+y 2的最小值为( ) A.13 B .169 C .13 D.0 【解析】 (2x +3y )2≤(22+32)(x 2+y 2), ∴x 2+y 2≥13. 【答案】 C2.已知a ,b ∈R +,且a +b =1,则(4a +1+4b +1)2的最大值是( ) A .2 6 B. 6 C .6 D.12 【解析】 (4a +1+4b +1)2=(1×4a +1+1×4b +1)2≤(12+12)(4a +1+4b +1)=2[4(a +b )+2] =2×(4×1+2)=12, 当且仅当4b +1=4a +1, 即a =b =12时等号成立.故选D.【答案】 D3.平面向量a ,b 中,若a =(4,-3),|b |=1,且a ·b =5,则向量b =________. 【解析】 |a |5,且 |b |=1, ∴a ·b =|a |·|b |,因此,b 与a 共线,且方向相同, ∴b =⎝ ⎛⎭⎪⎫45,-35.【答案】 ⎝ ⎛⎭⎪⎫45,-35六、板书设计七、作业布置同步练习:3.1二维形式的柯西不等式 八、教学反思。
高中数学第三讲柯西不等式与排序不等式3.3排序不等式教案新人教A版选修4_5
3.3排序不等式一、教学目标1.了解排序不等式的数学思想和背景.2.理解排序不等式的结构与基本原理,会用排序不等式解决简单的不等式问题.二、课时安排1课时三、教学重点1.了解排序不等式的数学思想和背景.2.理解排序不等式的结构与基本原理,会用排序不等式解决简单的不等式问题.四、教学难点1.了解排序不等式的数学思想和背景.2.理解排序不等式的结构与基本原理,会用排序不等式解决简单的不等式问题.五、教学过程(一)导入新课某班学生要开联欢会,需要买价格不同的礼品4件,5件和2件.现在选择商店中单价分别为3元,2元和1元的礼品,则至少要花________元,最多要花________元.【解析】取两组实数(2,4,5)和(1,2,3),则顺序和为2×1+4×2+5×3=25,反序和为2×3+4×2+5×1=19.所以最少花费为19元,最多花费为25元.【答案】19 25(二)讲授新课教材整理1 顺序和、乱序和、反序和的概念设a1≤a2≤a3≤…≤a n,b1≤b2≤b3≤…≤b n为两组实数,c1,c2,…,c n是b1,b2,…,b n的任一排列,则称a i与b i(i=1,2,…,n)的相同顺序相乘所得积的和为顺序和,和为乱序和,相反顺序相乘所得积的和称为反序和.教材整理2 排序不等式设a1≤a2≤…≤a n,b1≤b2≤…≤b n为两组实数,c1,c2,…,c n是b1,b2,…,b n的任一排列,则≤≤,当且仅当a1=a2=…=a n或b1=b2=…=b n时,反序和等于顺序和,此不等式简记为≤≤顺序和.(三)重难点精讲题型一、用排序不等式证明不等式(字母大小已定) 例1已知a ,b ,c 为正数,a ≥b ≥c ,求证: (1)1bc ≥1ca ≥1ab;(2)a 2b 2c 2+b 2c 2a 2+c 2a 2b 2≥1a 2+1b 2+1c2. 【精彩点拨】 由于题目条件中已明确a ≥b ≥c ,故可以直接构造两个数组. 【自主解答】 (1)∵a ≥b >0,于是1a ≤1b.又c >0,∴1c >0,从而1bc ≥1ca ,同理,∵b ≥c >0,于是1b ≤1c, ∴a >0,∴1a >0,于是得1ca ≥1ab,从而1bc ≥1ca ≥1ab.(2)由(1)知1bc ≥1ca ≥1ab>0且a ≥b ≥c >0,∴1b 2c2≥1c 2a2≥1a 2b2,a 2≥b 2≥c 2.由排序不等式,顺序和≥乱序和得a 2b 2c 2+b 2c 2a 2+c 2a 2b 2≥b 2b 2c 2+c 2c 2a 2+a 2a 2b 2=1c 2+1a 2+1b 2=1a 2+1b 2+1c 2, 故a 2b 2c 2+b 2c 2a 2+c 2a 2b 2≥1a 2+1b 2+1c2. 规律总结:利用排序不等式证明不等式的技巧在于仔细观察、分析所要证明的式子的结构,从而正确地构造出不等式中所需要的带有大小顺序的两个数组.[再练一题]1.本例题中条件不变,求证:a 5b 3c 3+b 5c 3a 3+c 5a 3b 3≥c 2a 3+a 2b 3+b 2c3.【证明】 ∵a ≥b ≥c ≥0, ∴a 5≥b 5≥c 5, 1c ≥1b ≥1a>0.∴1bc ≥1ac ≥1ba,∴1b 3c3≥1a 3c3≥1b 3a 3,由顺序和≥乱序和得a 5b 3c 3+b 5a 3c 3+c 5b 3a 3≥b 5b 3c 3+c 5a 3c 3+a 5b 3a 3 =b 2c 3+c 2a 3+a 2b3, ∴a 5b 3c 3+b 5a 3c 3+c 5b 3a 3≥c 2a 3+a 2b 3+b 2c3. 题型二、字母大小顺序不定的不等式证明例2设a ,b ,c 为正数,求证:a 2+b 22c +b 2+c 22a +c 2+a 22b ≤a 3bc +b 3ca +c 3ab.【精彩点拨】 (1)题目涉及到与排序有关的不等式;(2)题目中没有给出a ,b ,c 的大小顺序.解答本题时不妨先设定a ≤b ≤c ,再利用排序不等式加以证明.【自主解答】 不妨设0<a ≤b ≤c ,则a 3≤b 3≤c 3, 0<1bc ≤1ca ≤1ab,由排序原理:乱序和≤顺序和,得a 3·1ca +b 3·1ab +c 3·1bc ≤a 3·1bc +b 3·1ca +c 3·1ab ,a 3·1ab +b 3·1bc +c 3·1ca ≤a 3·1bc +b 3·1ca +c 3·1ab. 将上面两式相加得a 2+b 2c +b 2+c 2a +c 2+a 2b ≤2⎝ ⎛⎭⎪⎫a 3bc +b 3ca +c 3ab , 将不等式两边除以2,得a 2+b 22c +b 2+c 22a +c 2+a 22b ≤a 3bc +b 3ca +c 3ab.规律总结:在排序不等式的条件中需要限定各数值的大小关系,对于没有给出大小关系的情况:(1)要根据各字母在不等式中地位的对称性,限定一种大小关系.(2)若给出的字母不具有对称性,一定不能直接限定字母的大小顺序,而要根据具体环境分类讨论.[再练一题]2.设a 1,a 2,…,a n 为正数,求证:a 21a 2+a 22a 3+…+a 2n -1a n +a 2na 1≥a 1+a 2+…+a n .【证明】 不妨设0<a 1≤a 2≤…≤a n ,则a 21≤a 22≤…≤a 2n ,1a 1≥1a 2≥…≥1a n.由排序不等式知,乱序和不小于反序和,所以a 21a 2+a 22a 3+…+a 2n -1a n +a 2n a 1≥a 21·1a 1+a 22·1a 2+…+a 2n ·1a n ,即 a 21a 2+a 22a 3+…+a 2n -1a n +a 2n a 1≥a 1+a 2+…+a n . 题型三、利用排序不等式求最值例3 设A ,B ,C 表示△ABC 的三个内角,a ,b ,c 表示其对边,求aA +bB +cCa +b +c的最小值(A ,B ,C 用弧度制表示).【精彩点拨】 不妨设a ≥b ≥c >0,设法构造数组,利用排序不等式求解. 【自主解答】 不妨设a ≥b ≥c , 则A ≥B ≥C . 由排序不等式,得aA +bB +cC =aA +bB +cC , aA +bB +cC ≥bA +cB +aC , aA +bB +cC ≥cA +aB +bC ,将以上三式相加,得3(aA +bB +cC )≥(a +b +c )·(A +B +C )=π(a +b +c ), 当且仅当A =B =C =π3时,等号成立.∴aA +bB +cC a +b +c ≥π3,即aA +bB +cC a +b +c 的最小值为π3.规律总结:1.分析待求函数的结构特征,构造两个有序数组.2.运用排序原理求最值时,一定要验证等号是否成立,若等号不成立,则取不到最值. [再练一题]3.已知x ,y ,z 是正数,且x +y +z =1,求t =x 2y +y 2z +z 2x的最小值.【解】 不妨设x ≥y ≥z >0,则x 2≥y 2≥z 2,1z ≥1y ≥1x.由排序不等式,乱序和≥反序和.x 2y +y 2z +z 2x≥x 2·1x +y 2·1y +z 2·1z=x +y +z .又x +y +z =1,x 2y +y 2z +z 2x≥1,当且仅当x =y =z =13时,等号成立.故t =x 2y +y 2z +z 2x的最小值为1.题型四、利用排序不等式求解简单的实际问题例4 若某网吧的3台电脑同时出现了故障,对其维修分别需要45 min,25 min 和30 min ,每台电脑耽误1 min ,网吧就会损失0.05元.在只能逐台维修的条件下,按怎样的顺序维修,才能使经济损失降到最小?【精彩点拨】 这是一个实际问题,需要转化为数学问题.要使经济损失降到最小,即三台电脑维修的时间与等候的总时间之和最小,又知道若维修第一台用时间t 1 min 时,三台电脑等候维修的总时间为3t 1 min ,依此类推,等候的总时间为3t 1+2t 2+t 3 min ,求其最小值即可.【自主解答】 设t 1,t 2,t 3为25,30,45的任一排列, 由排序原理知3t 1+2t 2+t 3≥3×25+2×30+45=180(min), 所以按照维修时间由小到大的顺序维修,可使经济损失降到最小. 规律总结:1.首先理解题意,实际问题数学化,建立恰当模型.2.三台电脑的维修时间3t 1+2t 2+t 3就是问题的数学模型,从而转化为求最小值(运用排序原理).[再练一题]4.有5个人各拿一只水桶到水龙头接水,如果水龙头注满这5个人的水桶需要时间分别是4 min,8 min,6 min,10 min,5 min ,那么如何安排这5个人接水的顺序,才能使他们等待的总时间最少?【解】 根据排序不等式的反序和最小,可得最少时间为4×5+5×4+6×3+8×2+10×1=84(min).即按注满时间为4 min,5 min,6 min,8 min,10 min 依次等水,等待的总时间最少. (四)归纳小结排序不等式—⎪⎪⎪—反序和、乱序和、顺序和—排序原理—排序原理的应用(五)随堂检测1.已知x≥y,M=x4+y4,N=x3y+y3x,则M与N的大小关系是( )A.M>N B.M≥N C.M<N D.M≤N【解析】由排序不等式,知M≥N.【答案】 B2.设a,b,c为正数,P=a3+b3+c3,Q=a2b+b2c+c2a,则P与Q的大小关系是( ) A.P>Q B.P≥Q C.P<Q D.P≤Q【答案】 B3.已知两组数1,2,3和4,5,6,若c1,c2,c3是4,5,6的一个排列,则c1+2c2+3c3的最大值是________,最小值是________.【解析】由排序不等式,顺序和最大,反序和最小,∴最大值为1×4+2×5+3×6=32,最小值为1×6+2×5+3×4=28.【答案】32 28六、板书设计七、作业布置八、教学反思。
高中数学第三章柯西不等式与排序不等式3.3排序不等式教案新人教A版选修4_5
3.3 排序不等式课堂探究1.对排序不等式的证明的正确理解剖析:在排序不等式的证明中,用到了“探究——猜想——检验——证明”的思维方法,这是探索新知识、新问题常用到的基本方法,对于数组涉及的“排序”及“乘积”的问题,又使用了“一一搭配”这样的描述,这实质上也是使用最接近生活常识的处理问题的方法,所以可以结合像平时班级排队等一些常识的事例来理解.对于出现的“逐步调整比较法”,则要引起注意,研究数组这种带“顺序”的乘积的和的问题时,这种方法对理解相关问题时是比较简单易懂的.2.排序不等式的思想剖析:在解答数学问题时,常常涉及一些可以比较大小的量,它们之间并没有预先规定大小顺序,那么在解答问题时,我们可以利用排序不等式的思想方法,将它们按一定顺序排列起来,继而利用不等关系来解题.因此,对于排序不等式,我们要记住的是处理问题的这种思想及方法,同时要学会善于利用这种比较经典的结论来处理实际问题.题型一 构造数组利用排序不等式证明【例1】设a ,b ,c 都是正数,求证:bc a +ca b +ab c≥a +b +c . 分析:不等式的左边,可以分为数组ab ,ac ,bc 和1c ,1b ,1a ,排出顺序后,可利用排序不等式证明.证明:由题意不妨设a ≥b ≥c >0,由不等式的单调性,知ab ≥ac ≥bc ,1c ≥1b ≥1a. 由排序不等式,知ab ×1c +ac ×1b +bc ×1a≥ab ×1b +ac ×1a +bc ×1c, 即所证不等式bc a +ca b +ab c≥a +b +c 成立. 反思 要利用排序不等式解答相关问题,必须构造出相应的数组,并且要排列出大小顺序,因此比较出数组中的数之间的大小关系是解答问题的关键和基础.题型二 需要对不等式中所给字母的大小顺序作出假设的情况【例2】设a ,b ,c 为正数,求证:a 2+b 22c +b 2+c 22a +c 2+a 22b ≤a 3bc +b 3ca +c 3ab. 分析:解答本题时不妨先设定0<a ≤b ≤c ,再利用排序不等式加以证明.解:不妨设0<a ≤b ≤c ,则a 3≤b 3≤c 3.0<1bc ≤1ca ≤1ab, 由排序不等式:乱序和≤顺序和,得a 3·1ca +b 3·1ab +c 3·1bc ≤a 3·1bc +b 3·1ca +c 3·1ab,① a 3·1ab +b 3·1bc +c 3·1ca ≤a 3·1bc +b 3·1ca +c 3·1ab.② 将①②两式相加,得a 2+b 2c +b 2+c 2a +c 2+a 2b ≤2⎝ ⎛⎭⎪⎫a 3bc +b 3ca +c 3ab , 将不等式两边除以2,得a 2+b 22c +b 2+c 22a +c 2+a 22b ≤a 3bc +b 3ca +c 3ab. 反思 在排序不等式的条件中需要限定各数值的大小关系,对于没有给出大小关系的情况,要限定一种大小关系.精美句子1、善思则能“从无字句处读书”。
人教版高中数学选修4-5《第三讲柯西不等式与排序不等式一般形式的柯西不等式》
3 3 =3 ( x 0)
6
复习引入
设<m, n , 则m n | m | | n | cos | m n || m | | n | | cos || m | | n | | m n || m | | n | 当且仅当m // n时,等号成立. m (a, b, c), n (d , e, f ) m n ad be cf
2 2
1 1 2 (1 x 2 y ) 5 5
1 2 (当 x , y ) 5 5
4
复习引入 下面我们来做几个巩固练习: 1 2 3.设 x, y R ,且 x+2y=36,求 的最小值. x y
1 2 1 1 2 ( )( x 2 y) x y 36 x y 1 2 y 2x (1 4 ) 36 x y 1 2 y 2x (5 2 ) 36 x y
(a b c d ) (a b c d )(b c d a )
2 2 2 2 2 2 2 2 2 2 2 2
(ab bc cd da )
2 2 2 2
2
(ab bc cd da )
即 a b c d ab bc cd da
同样这个不等式也有着向量(n维向量)及几何背景, 其应用广泛。
9
一般形式的柯西不等式示例源自例 1 已知 a1 , a2 , , an 都是实数,求证: 1 2 2 2 2 (a1 a2 an ) ≤ a1 a2 an n 1 1 2 2 ( a a a ) (1 a 1 a 1 a ) 证明: 1 2 n 1 2 n n n 1 2 2 2 2 2 (1 1 12 )(a1 a2 an ) n
高中数学第3讲柯西不等式与排序不等式3排序不等式人教A版选修4_5
[自主解答] 不妨设 0<a≤b≤c,则 a3≤b3≤c3, 0<b1c≤c1a≤a1b, 由排序原理:乱序和≤顺序和,得 a3·c1a+b3·a1b+c3·b1c≤a3·b1c+b3·c1a+c3·a1b, a3·a1b+b3·b1c+c3·c1a≤a3·b1c+b3·c1a+c3·a1b.
将上面两式相加得 a2+c b2+b2+a c2+c2+b a2≤2bac3+cba3+acb3 , 将不等式两边除以 2, 得a2+2cb2+b22+ac2+c2+2ba2≤bac3+cba3+acb3 .
在排序不等式的条件中需要限定各数值的大小关系,对于没有给 出大小关系的情况:(1)要根据各字母在不等式中地位的对称性,限 定一种大小关系.(2)若给出的字母不具有对称性,一定不能直接限 定字母的大小顺序,而要根据具体环境分类讨论.
合作探究 提素养
用排序不等式证明不等式(字母大小已定) 【例 1】 已知 a,b,c 为正数,a≥b≥c,求证: (1)b1c≥c1a≥a1b; (2)ba2c22+cb2a22+ac2b2 2≥a12+b12+c12.
[精彩点拨] 由于题目条件中已明确 a≥b≥c,故可以直接构造 两个数组.
[自主解答] (1)∵a≥b>0,于是1a≤1b. 又 c>0,∴1c>0,从而b1c≥c1a, 同理,∵b≥c>0,于是1b≤1c, ∴a>0,∴1a>0,于是得c1a≥a1b, 从而b1c≥c1a≥a1b.
即按注满时间为 4 min,5 min,6 min,8 min,10 min 依次等水,等待 的总时间最少.
选修4-5第3讲柯西不等式与排序不等式
[证明 ] 因为 (12+ 12)
12
12
a+a + b+b
1
12
≥ a+a + b+ b
=
1+
1a+
1 b
2
=
1+a1b
2
≥ 25
因为 ab≤ 1 4
, 当且仅当
a= b= 12时取等号
,
12
1 2 25
所以 a+ a + b+b ≥ 2 .
利用排序不等式求最值 [学生用书 P230]
[ 典例引领 ] 设 a, b,c 为任意正数,求 a + b + c 的最小值.
第 3 讲 柯西不等式与排序不等式
,
[学生用书 P228])
1. 二维形式的柯西不等式
(1)定理 1(二维形式的柯西不等式 ) 若 a, b, c,d 都是实数,则 (a2+ b2)( c2+ d2)≥ (ac+ bd) 2,当且仅当 ad= bc 时,等号成 立. (2)( 二维变式 ) a2+ b2· c2+ d2≥ |ac+bd|, a2+ b2· c2+ d2≥ |ac|+ |bd|. (3)定理 2(柯西不等式的向量形式 ) 设 α, β 是两个向量,则 |α·|≤β|α|| ,β当|且仅当 β是零向量,或存在实数 k,使 α= kβ
(-
1)
2
+
(
-
2)
2
](
x2+
y2+
z2)
,
即 (2x- y- 2z)2≤ 9(x2+ y2+ z2),
将 2x-y- 2z= 6 代入其中 ,
得 36≤ 9(x2+ y2+z2), 即 x2+ y2+ z2≥ 4,
故 x2+ y2+ z2 的最小值为 4.
北师大版数学高二《 柯西不等式》教案 选修4-5
从而得到定理3(二维形式的三角不等式)
2引导学生利用柯西不等式证明定理3,即以经典不等式为依据得出定理3中的不等关系,这是柯西不等式的一个简单的应用。
3例3的解决也是柯西不等式的一个简单的应用,让学生体会柯西不等式的用处
4在解决问题的过程中,让学生体会用柯西不等式这个重要的数学结论去解决具体问题的方法。
新
课
讲
授
过
程
引 探
①观察:课本P34图3.1-4
在平面直角坐标系中,设点 的坐标分别为 ,根据 △ 的边长关系,你能发现 这四个实数蕴涵着何种大小关系吗?
通过观察分析推理后得出定理3
②以上是从几何的角度得出的结论,你能否利用柯西不等式,从代数的角度证明这个不等式?
③讲解例题(例3)
④练习P37 第7题 第6题
小
结
本节课实际上是柯西不等式的一些简单应用,柯西不等式是一个经典不等式,是一个重要的数学结论,在以后的证明某些不等式时有重要作用。
目的是让学生知道柯西不等式是一个重要的数学结论
布
置
作
业
课本P37 第8题
巩固提高
三、教学难点:
运用柯西不等式证明不等式
四、教学过程:
教学
环节
教学程序
设计意图
导
入
(复习
导入)
问题:上节课我们学习了二维形式的柯西不等式,你能简要的概括一下吗?
定理1(二维形式的柯西不等式)
若a,b,c,d都是实数,则
(a2+b2)(c2+d2)≥(ac+bd)2
当且仅当ad=bc时,等号成立.
本节课实际上是柯西不等式的一些简单应用,因此先让学生回顾柯西不等式以及变形后的两个等价形式:
选修4-5第三讲《柯西不等式与排序不等式》
13 时函数取最大值 6. 4
【思路分析】因为 1 cos 2 x 2cos x ,自然会联系到三角恒等式 sin x cos x 1 ,联想到柯西不等式的结构特 征, 而这个式子恰好具有柯西不等式的结构特征,所以可以利用柯西不等式来解决. 【解析】 y 2sin x 3 1 cos 2 x
反序和
对 应 关 系 (1,2,3) (25,30,45) (1,2,3) (25,45,30) (1,2,3) (30,25,45) (1,2,3) (30,45,25) (1,2,3) (45,25,30) (1,2,3) (45,30,25)
和
备
注
S1 a1b1 a2b2 a3b3 220 S 2 a1b1 a2b3 a3b2 205 S3 a1b2 a2b1 a3b3 215 S 4 a1b2 a2b3 a3b1 195 S5 a1b3 a2b1 a3b2 185 S 6 a1b3 a2b2 a3b1 180
S1 a1b1 a2b2 a3b3
顺序和
S 2 a1b1 a2 b3 a3b2
乱序和
S3 a1b2 a2 b1 a3b3
乱序和
S 4 a1b2 a2 b3 a3b1
乱序和
S5 a1b3 a2 b1 a3b2
乱序和
S 6 a1b3 a2 b2 a3b1
2sin x 3 2cos2 x
(sin 2 x cos 2 x)[22 (3 2) 2 ] 22.
当且仅当
sin x cos x
2
2 3 2
,即 tan x
高中数学第三讲柯西不等式与排序不等式三排序不等式教案(含解析)新人教A版选修4_5
三 排序不等式1.顺序和、乱序和、反序和设a 1≤a 2≤…≤a n ,b 1≤b 2≤…≤b n 为两组实数,c 1,c 2,…,c n 为b 1,b 2,…,b n 的任一排列,称a 1b 1+a 2b 2+…+a n b n 为这两个实数组的顺序积之和(简称顺序和),称a 1b n +a 2b n -1+…+a n b 1为这两个实数组的反序积之和(简称反序和).称a 1c 1+a 2c 2+…+a n c n 为这两个实数组的乱序积之和(简称乱序和).2.排序不等式(排序原理)定理:(排序原理,又称为排序不等式) 设a 1≤a 2≤…≤a n ,b 1≤b 2≤…≤b n 为两组实数,c 1,c 2,…,c n 为b 1,b 2,…,b n 的任一排列,则有a 1b n +a 2b n -1+…+a n b 1≤a 1c 1+a 2c 2+…+a n c n ≤a 1b 1+a 2b 2+…+a n b n ,等号成立(反序和等于顺序和)⇔a 1=a 2=…=a n 或b 1=b 2=…=b n .排序原理可简记作:反序和≤乱序和≤顺序和.[点睛] 排序不等式也可以理解为两实数序列同向单调时,所得两两乘积之和最大;反向单调(一增一减)时,所得两两乘积之和最小.用排序不等式证明不等式(所证不等式)中字母大小顺序已确定[例a 5b 3c 3+b 5c 3a 3+c 5a 3b 3≥1a +1b +1c. [思路点拨] 分析题目中已明确a ≥b ≥c ,所以解答本题时可直接构造两个数组,再用排序不等式证明即可.[证明] ∵a ≥b >0,于是1a ≤1b,又c >0,从而1bc ≥1ca,同理1ca ≥1ab ,从而1bc ≥1ca ≥1ab.又由于顺序和不小于乱序和,故可得a 5b 3c 3+b 5c 3a 3+c 5a 3b 3≥b 5b 3c 3+c 5c 3a 3+a 5a 3b 3=b 2c 3+c 2a 3+a 2b 3⎝⎛⎭⎪⎫∵a 2≥b 2≥c 2,1c 3≥1b 3≥1a 3≥c2c3+a2a3+b 2b3=1c+1a+1b=1a+1b+1c.∴原不等式成立.利用排序不等式证明不等式的技巧在于仔细观察、分析所要证明的式子的结构,从而正确地构造出不等式中所需要的带有大小顺序的两个数组.1.已知0<α<β<γ<π2,求证:sin αcos β+sin βcos γ+sin γ·cos α>12(sin 2α+sin 2β+sin 2γ).证明:∵0<α<β<γ<π2,且y=sin x在⎝⎛⎭⎪⎫0,π2为增函数,y=cos x在⎝⎛⎭⎪⎫0,π2为减函数,∴0<sin α<sin β<sin γ,cos α>cos β>cos γ>0.∴sin αcos β+sin βcos γ+sin γcos α>sin αcos α+sin βcos β+sin γcos γ=12(sin 2α+sin 2β+sin 2γ).2.设x≥1,求证:1+x+x2+…+x2n≥(2n+1)x n.证明:∵x≥1,∴1≤x≤x2≤…≤x n.由排序原理得12+x2+x4+ (x2)≥1·x n+x·x n-1+…+x n-1·x+x n·1即1+x2+x4+…+x2n≥(n+1)x n.①又因为x,x2,…,x n,1为1,x,x2,…,x n的一个排列,由排序原理得1·x+x·x2+…+x n-1·x n+x n·1≥1·x n+x·x n-1+…+x n-1·x+x n·1,即x+x3+…+x2n-1+x n≥(n+1)x n.②将①②相加得1+x+x2+…+x2n≥(2n+1)x n.用排序不等式证明不等式(对所证不等式中的字母大小顺序作出假设)a12bc+b12ca+c12ab≥a10+b10+c10.[思路点拨] 本题考查排序不等式的应用,解答本题需要搞清:题目中没有给出a ,b ,c 三个数的大小顺序,且a ,b ,c 在不等式中的“地位”是对等的,故可以设a ≥b ≥c ,再利用排序不等式加以证明.[证明] 由对称性,不妨设 a ≥b ≥c ,于是a 12≥b 12≥c 12,1bc ≥1ca ≥1ab,故由排序不等式:顺序和≥乱序和,得a 12bc +b 12ca +c 12ab ≥a 12ab +b 12bc +c 12ca =a 11b +b 11c +c 11a.① 又因为a 11≥b 11≥c 11,1a ≤1b ≤1c.再次由排序不等式:反序和≤乱序和,得a 11a +b 11b +c 11c ≤a 11b +b 11c +c 11a.② 所以由①②得a 12bc +b 12ca +c 12ab≥a 10+b 10+c 10.在排序不等式的条件中需要限定各数值的大小关系,对于没有给出大小关系的情况,要根据各字母在不等式中地位的对称性,限定一种大小关系.3.设a ,b ,c 都是正数,求证:bc a +ca b +abc≥a +b +c .证明:由题意不妨设a ≥b ≥c >0,由不等式的单调性,知ab ≥ac ≥bc ,1c ≥1b ≥1a .由排序不等式,知ab ×1c +ac ×1b+bc ×1a≥ab ×1b +ac ×1a +bc ×1c=a +c +b ,即bc a +ca b +abc≥a +b +c .4.设a 1,a 2,a 3为正数,求证:a 1a 2a 3+a 2a 3a 1+a 3a 1a 2≥a 1+a 2+a 3. 证明:不妨设 a 1≥a 2≥a 3>0,于是 1a 1≤1a 2≤1a 3,a 2a 3≤a 3a 1≤a 1a 2,由排序不等式:顺序和≥乱序和得a 1a 2a 3+a 3a 1a 2+a 2a 3a 1≥1a 2·a 2a 3+1a 3·a 3a 1+1a 1·a 1a 2 =a 3+a 1+a 2. 即a 1a 2a 3+a 2a 3a 1+a 3a 1a 2≥a 1+a 2+a 3.1.有两组数:1,2,3与10,15,20,它们的顺序和、反序和分别是( ) A .100,85 B .100,80 C .95,80D .95,85解析:选B 由顺序和与反序和的定义可知顺序和为100,反序和为80. 2.若0<a 1<a 2,0<b 1<b 2,且a 1+a 2=b 1+b 2=1,则下列代数式中值最大的是( ) A .a 1b 1+a 2b 2 B .a 1a 2+b 1b 2C .a 1b 2+a 2b 1 D.12解析:选A 因为0<a 1<a 2,0<b 1<b 2,所以由排序不等式可知a 1b 1+a 2b 2最大. 3.锐角三角形中,设P =a +b +c2,Q =a cos C +b cos B +c cos A ,则P ,Q 的大小关系为( )A .P ≥QB .P =QC .P ≤QD .不能确定 解析:选C 不妨设A ≥B ≥C ,则a ≥b ≥c ,cos A ≤cos B ≤cos C ,则由排序不等式有Q =a cos C +b cos B +c cos A ≥a cos B +b cos C +c cos A=R (2sin A cos B +2sin B cos C +2sin C cos A ) =R [sin(A +B )+sin(B +C )+sin(A +C )] =R (sin C +sin A +sin B )=P =a +b +c2.4.儿子过生日要老爸买价格不同的礼品1件、2件及3件,现在选择商店中单价为13元、20元和10元的礼品,至少要花( )A .76元B .20元C .84元D .96元解析:选A 设a 1=1(件),a 2=2(件),a 3=3(件),b 1=10(元),b 2=13(元),b 3=20(元),则由排序原理反序和最小知至少要花a 1b 3+a 2b 2+a 3b 1=1×20+2×13+3×10=76(元).5.已知两组数1,2,3和4,5,6,若c 1,c 2,c 3是4,5,6的一个排列,则1c 1+2c 2+3c 3的最大值是________,最小值是________.解析:由反序和≤乱序和≤顺序和知,顺序和最大,反序和最小,故最大值为32,最小值为28.答案:32 286.设正实数a 1,a 2,…,a n 的任一排列为 a 1′,a 2′,…,a n ′,则a 1a 1′+a 2a 2′+…+a na n ′的最小值为________.解析:不妨设0<a 1≤a 2≤a 3…≤a n , 则1a 1≥1a 2≥…≥1a n.其反序和为a 1a 1+a 2a 2+…+a n a n=n , 则由乱序和不小于反序和知a 1a 1′+a 2a 2′+…+a n a n ′≥a 1a 1+a 2a 2+…+a na n=n , ∴a 1a 1′+a 2a 2′+…+a na n ′的最小值为n . 答案:n7.设a 1,a 2,a 3,a 4是1,2,3,4的一个排序,则a 1+2a 2+3a 3+4a 4的取值范围是________. 解析:a 1+2a 2+3a 3+4a 4的最大值为12+22+32+42=30,最小值为1×4+2×3+3×2+4×1=20,∴a 1+2a 2+3a 3+4a 4的取值范围是[20,30]. 答案:[20,30]8.设a ,b ,c 是正实数,用排序不等式证明a a b b c c≥(abc )a +b +c3.证明:由所证不等式的对称性,不妨设a ≥b ≥c >0, 则lg a ≥lg b ≥lg c ,据排序不等式有:a lg a +b lg b +c lg c ≥b lg a +c lg b +a lg c , a lg a +b lg b +c lg c ≥c lg a +a lg b +b lg c ,以上两式相加,再两边同加a lg a +b lg b +c lg c ,整理得 3(a lg a +b lg b +c lg c )≥(a +b +c )(lg a +lg b +lg c ), 即lg(a a b b c c)≥a +b +c3·lg(abc ), 故a a b b c c≥(abc )a +b +c3.9.某学校举行投篮比赛,按规则每个班级派三人参赛,第一人投m 分钟,第二人投n 分钟,第三人投p 分钟,某班级三名运动员A ,B ,C 每分钟能投进的次数分别为a ,b ,c ,已知m >n >p ,a >b >c ,如何派三人上场能取得最佳成绩?解:∵m >n >p ,a >b >c , 且由排序不等式知顺序和为最大值, ∴最大值为ma +nb +pc ,此时分数最高, ∴三人上场顺序是A 第一,B 第二,C 第三. 10.已知0<a ≤b ≤c ,求证:c 2a +b +b 2a +c +a 2b +c ≥a 2a +b +b 2b +c +c 2c +a.证明:因为0<a ≤b ≤c ,所以0<a +b ≤c +a ≤b +c , 所以1a +b ≥1c +a ≥1b +c>0, 又0<a 2≤b 2≤c 2, 所以c 2a +b +b 2a +c +a 2b +c是顺序和,a 2a +b +b 2b +c +c 2c +a是乱序和,由排序不等式可知顺序和大于等于乱序和, 即不等式c 2a +b +b 2a +c +a 2b +c ≥a 2a +b +b 2b +c +c 2c +a成立.。
人教课标实验A版-选修4—5-第三讲 柯西不等式与排序不等式-“江南联赛”一等奖
第三讲柯西不等式与排序不等式一、本讲知识结构二、教学重点与难点:重点:1.认识柯西不等式的几种不同形式,理解其几何意义;2.用向量递归方法讨论排序不等式;3.通过运用这两种不等式分析解决一些简单问题,体会运用经典不等式的一般方法——发现具体问题与经典不等式之间的联系,经过适当变形,以经典不等式为依据得出具体问题中的不等关系.难点:1.一般形式的柯西不等式和排序不等式的证明思路;2.运用这两个经典不等式证明不等式.三、编写意图和教学建议:本讲的核心内容为两个经典不等式——柯西不等式和排序不等式.这两个不等式不仅形式优美,而且具有重要应用价值.本讲对柯西不等式的讨论篇幅较多,组成本讲的第一、二两部分,这是一个从特殊到一般的展开过程.教科书首先讨论了二维形式的柯西不等式,这是最简单的柯西不等式.在此基础上,教科书按照从特殊到一般的认识方式,继续讨论三维形式的柯西不等式,进而讨论一般形式的柯西不等式.这些讨论包括柯西不等式的数学含义(即所表示的不等关系)、几何意义(对二维和三维形式而言)、应用举例等.通过这些讨论,学生可以对柯西不等式形成一个较全面的认识.本讲的第三部分是排序不等式,但对它的讨论篇幅不多.教科书在讨论排序不等式时,展示了一个“探究——猜想——证明——应用”的研究过程,目的是引导学生通过自己的数学活动,初步认识排序不等式的数学意义、证明方法和简单应用.本讲的编写意图不是仅仅介绍两种经典不等式及其证明方法,而是更希望能通过分析和解决问题,讨论经典不等式的简单应用,提高学生运用重要数学结论进行推理论证的能力,即在理解重要数学结论的基础上,能够发现面临的具体问题与重要数学结论之间的内在联系,并善于利用这样的联系,应用重要数学结论及其所反映的数学思想方法解决具体问题.教学中,希望教师能把握重点,不仅使学生从形式上认识这两个经典不等式的基本特征,而且更要关注学习过程中从特殊到一般、数形结合等认识事物规律的方法,以培养能力为重要目标.此外,还要注意把握问题的难度,重在对经典不等式的基本的、简单的运用,强调解决这些问题的通性通法,而不过分追求证明中的个别变形技巧.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一课时 3.1 二维形式的柯西不等式(一)
教学要求:1、认识二维柯西不等式的几种形式,理解它们的几何意义;
2、并会证明二维柯西不等式及向量形式.
教学重点:会证明二维柯西不等式及三角不等式. 教学难点:理解几何意义. 教学过程:
一、复习准备:
1. 提问: 二元均值不等式有哪几种形式?
答案:
(0,0)2
a b
a b +≥>>及几种变式. 2. 练习:已知a 、b 、c 、d 为实数,求证22222()()()a b c d ac bd ++≥+
证法:(比较法)22222()()()a b c d ac bd ++-+=….=2()0ad bc -≥ 二、讲授新课:
1. 教学柯西不等式:
① 提出定理1:若a 、b 、c 、d 为实数,则22222()()()a b c d ac bd ++≥+. → 即二维形式的柯西不等式 → 什么时候取等号? ② 讨论:二维形式的柯西不等式的其它证明方法? 证法二:(综合法)222222222222()()a b c d a c a d b c b d ++=+++
222()()()ac bd ad bc ac bd =++-≥+. (要点:展开→配方) 证法三:(向量法)设向量(,)m a b =,(,)n c d =,则22||m a b =+,2||n c d =+∵ m n ac bd ∙=+,且||||cos ,m n m n m n =<>,则||||||m n m n ≤. ∴ ….. 证法四:(函数法)设22222()()2()f x a b x ac bd x c d =+-+++,则
22()()()f x ax c bx d =-+-≥0恒成立.
∴ 22222[2()]4()()ac bd a b c d ∆=-+-++≤0,即….. ③ 讨论:二维形式的柯西不等式的一些变式?
22||c d ac bd +≥+ 或 22||||c d ac bd +≥+
2
22c d ac bd +≥+.
④ 提出定理2:设,αβ是两个向量,则||||||αβαβ≤. 即柯西不等式的向量形式(由向量法提出 )
→ 讨论:上面时候等号成立?(β是零向量,或者,αβ共线)
⑤ 练习:已知a 、b 、c 、d 证法:(分析法)平方 → 应用柯西不等式 → 讨论:其几何意义?(构造三角形) 2. 教学三角不等式:
① 出示定理3:设1122,,,x y x y R ∈分析其几何意义 → 如何利用柯西不等式证明
→ 变式:若112233,,,,,x y x y x y R ∈,则结合以上几何意义,可得到怎样的三角不等式? 3. 小结:二维柯西不等式的代数形式、向量形式;三角不等式的两种形式(两点、三点) 三、巩固练习:
1. 练习:试写出三维形式的柯西不等式和三角不等式
2. 作业:教材P 37 4、5题. 第二课时
3.1 二维形式的柯西不等式(二)
教学要求:会利用二维柯西不等式及三角不等式解决问题,体会运用经典不等式的一般方法——发现具体问题与经典不等式之间的关系,经过适当变形,依据经典不等式得到不等关系. 教学重点:利用二维柯西不等式解决问题. 教学难点:如何变形,套用已知不等式的形式. 教学过程:
一、复习准备:
1. 提问:二维形式的柯西不等式、三角不等式? 几何意义?
答案:22222()()()a b c d ac bd ++≥+≥2. 讨论:如何将二维形式的柯西不等式、三角不等式,拓广到三维、四维?
3. 如何利用二维柯西不等式求函数y ?
要点:利用变式22||ac bd c d ++.
二、讲授新课:
1. 教学最大(小)值:
① 出示例1:求函数y =
分析:如何变形? → 构造柯西不等式的形式 → 板演
→ 变式:y → 推广:,,,,,)y a b c d e f R +=∈ ② 练习:已知321x y +=,求22x y +的最小值. 解答要点:(凑配法)2222222111
()(32)(32)131313
x y x y x y +=
++≥+=. 讨论:其它方法 (数形结合法)
2. 教学不等式的证明:
① 出示例2:若,x y R +∈,2x y +=,求证:11
2x y
+≥. 分析:如何变形后利用柯西不等式? (注意对比 → 构造)
要点:2222
111111()()]
22x y x y x y +=++=++≥… 讨论:其它证法(利用基本不等式)
② 练习:已知a 、b R +∈,求证:1
1()()4a b a b
++≥. 3. 练习:
① 已知,,,x y a b R +∈,且
1a b
x y
+=,则x y +的最小值. 要点:()()a b
x y x y x y
+=++=…. → 其它证法
② 若,,x y z R +∈,且1x y z ++=,求222x y z ++的最小值. (要点:利用三维柯西不等式)
变式:若,,x y z R +∈,且1x y z ++=.
3. 小结:比较柯西不等式的形式,将目标式进行变形,注意凑配、构造等技巧. 三、巩固练习:
1. 练习:教材P 37 8、9题
2. 作业:教材P 37 1、6、7题 第三课时
3.2 一般形式的柯西不等式
教学要求:认识一般形式的柯西不等式,会用函数思想方法证明一般形式的柯西不等式,并应用其解决一些不等式的问题.
教学重点:会证明一般形式的柯西不等式,并能应用. 教学难点:理解证明中的函数思想. 教学过程:
一、复习准备: 1. 练习:
2. 提问:二维形式的柯西不等式?如何将二维形式的柯西不等式拓广到三维?
答案:22222()()()a b c d ac bd ++≥+;2222222()()()a b c d e f ad be cf ++++≥++ 二、讲授新课:
1. 教学一般形式的柯西不等式:
① 提问:由平面向量的柯西不等式||||||αβαβ≤,如果得到空间向量的柯西不等式及代数形式?
② 猜想:n 维向量的坐标?n 维向量的柯西不等式及代数形式? 结论:设1212,,,,,,,n n a a a b b b R ∈,则 222222212121122()()()n n n n a a a b b b a b a b a b ++
+++≥+++
讨论:什么时候取等号?(当且仅当1212n n
a a a
b b b ===时取等号,假设0i b ≠)
联想:设1122n n B a b a b a b =+++,22212n A a a a =++,22212n C b b b =+++,则有20B AC -≥,
可联想到一些什么?
③ 讨论:如何构造二次函数证明n 维形式的柯西不等式? (注意分类)
要点:令2222121122)2()n n n f x a a a x a b a b a b x =++⋅⋅⋅++++⋅⋅⋅+()(222
12()n b b b +++⋅⋅⋅+ ,则
2221122()()())0n n f x a x b a x b a x b =++++⋅⋅⋅+≥+(.
又222120n a a a ++⋅⋅⋅+>,从而结合二次函数的图像可知,
[]2
2221122122()4()n n n a b a b a b a a a ∆=+++-++
22212()n b b b +++≤0
即有要证明的结论成立. (注意:分析什么时候等号成立.)
④ 变式:222212121
()n n a a a a a a n
++
≥++⋅⋅⋅+. (讨论如何证明)
2. 教学柯西不等式的应用:
① 出示例1:已知321x y z ++=,求222x y z ++的最小值.
分析:如何变形后构造柯西不等式? → 板演 → 变式:
② 练习:若,,x y z R +∈,且1111x y z ++=,求23y z
x ++的最小值.
③ 出示例2:若a >b >c ,求证:c
a c
b b a -≥-+-4
11. 要点:21111()(
)[()()]()(11)4a c a b b c a b b c a b b c
-+=-+-+≥+=---- 3. 小结:柯西不等式的一般形式及应用;等号成立的条件;根据结构特点构造证明.
三、巩固练习:
1. 练习:教材P414题
2. 作业:教材P415、6题。