第12讲 盈亏问题
四年级数学第 12 讲 《盈亏问题》
名师堂四年级数学思维春季班方法讲义:第十二讲《盈亏问题》姓名【点燃思维】【例l】一个植树小组植树。
如果每人栽5棵,还剩14棵;如果每人栽7棵,就缺4棵。
这个植树小组有多少人?一共有多少棵树?练习1:(1)某校安排宿舍,如果每间6人,则16人没有床位;如果每间8人,则多出10个床位。
问宿舍多少间?学生多少人?(2)有一个班的同学去划船,他们算了一下,如果增加一条船,正好每条船坐6人;如果减少一条船,正好每条船坐9人。
问:这个班共有多少学生?【例2】学校将一批铅笔奖给三好学生。
如果每人奖9支,则缺45支;如果每人奖7支,则缺7支。
三好学生有多少人?铅笔有多少支?练习2:(1)王老师给美术兴趣小组的同学分发图画纸。
如果每人发5张,则少32张;如果每人发3张,则少2张。
美术兴趣小组有多少名同学?王老师一共有多少张图画纸?(2)老师将一些练习本发给班上的学生。
如果每人发10本,则有两个学生没分到;如果每人发8本,则正好发完。
有多少个学生?多少本练习本?【例3】有一些少先队员到山上去种一批树。
如果每人种16棵,还有24棵没种;如果每人种19棵,还有6棵没有种。
问有多少名少先队员?有多少棵树?练习3:(1)杨老师将一叠练习本分给第一小组的同学。
如果每人分7本,还多7本;如果每人分8本则正好分完。
请算一算,第一小组有几个学生?这叠练习本一共有多少本?(2)崔老师给美术兴趣小组的同学分若干支彩色笔。
如果每人分5支则多12支;如果每人分8支还多3支。
请问每人分多少支刚好把彩色笔分完?【例4】学校给一批新入学的学生分配宿舍。
如果每个房间住12人,则34人没有位置;如果每个房间住14人,则空出4个房间。
求学生宿舍有多少间?住宿学生有多少人?练习4:(1)育才小学学生乘汽车去春游。
如果每车坐65人,则有15人不能乘车;如果每车多坐5人,恰好多余了一辆车。
问一共有几辆汽车?有多少学生?(2)学校分配学生宿舍。
如果每个房间住6人,则少2间宿舍;如果每个房间住9人,则空出2个房间。
三年级盈亏问题如何通俗讲解
首先,我们需要理解什么是盈亏问题。
盈亏问题是一个关于分组的问题,其中每组的元素数量或数量有一定的差异。
例如,如果你有10个苹果,要分成3组,一组有4个,另一组有3个,还有一组有3个。
这样,前两组和最后一组的苹果数量是不同的,这就是盈亏问题的一种表现。
为了更好地理解盈亏问题,我们可以从以下几个方面进行讲解:1定义:盈亏问题是指一组物品分成若干组时,出现有的组物品多,有的组物品少的情况。
2特点:盈亏问题有两个特点,一是“均分”,二是“不均分”。
例如,将10个苹果分成3组,每组平均分配就是“均分”,而分成4、3、3组则是不均分。
3解决策略:解决盈亏问题需要找到一种方法,使得每组的数量都相等或相差最小。
这可以通过加减运算、代数运算等方法来实现。
4经典问题:盈亏问题有很多经典的例子,比如“分苹果”、“分铅笔”、“分糖果”等问题。
这些问题的解决都需要用到盈亏问题的解决策略。
5应用:盈亏问题在现实生活中也有很多应用,比如在工厂生产中分配原材料、在餐饮业中分配食材等。
解决这些问题需要考虑到资源的合理分配和成本的控制。
对于三年级的学生来说,盈亏问题可能是一个相对抽象的概念,因此需要采用简单易懂的方式进行讲解。
以下是几个通俗易懂的教学案例,可以帮助三年级学生理解盈亏问题:案例一:分苹果假设有10个苹果,要分给3个小朋友,每个小朋友至少分到一个苹果,问怎么分才公平?首先,我们可以让每个小朋友先分到一个苹果,这样还剩下7个苹果。
接下来,我们可以将7个苹果切成3份,每份2个苹果,再加上一个苹果,这样每个小朋友可以得到3 个苹果。
在这个问题中,我们通过盈亏平衡分析的方法,将剩余的苹果分成3份,每份2个,再加上一个苹果,使得每个小朋友都得到了公平的分配。
案例二:分铅笔假设有12支铅笔,要分给4个小朋友,每个小朋友至少分到3支铅笔,问怎么分才公平?首先,我们可以让每个小朋友先分到3支铅笔,这样还剩下6支铅笔。
接下来,我们可以将6支铅笔分成3份,每份2支铅笔,这样每个小朋友可以得到4支铅笔。
第12讲 盈亏问题
第12讲盈亏问题一、知识要点盈亏问题又叫盈不足问题,是指把一定数量的物品平均分给固定的对象,如果按某种标准分,则分配后会有剩余(盈);按另一种标准分,分配后又会有不足(亏),求物品的数量和分配对象的数量。
例如:把一代饼干分给小班的小朋友,每人分3块,多12块;如果每人分4块,少8块。
小朋友有多少人?饼干有多少块?这种一盈一亏的情况,就是我们通常说的标准的盈亏问题。
盈亏问题的基本数量关系是:(盈+亏)÷两次所分之差=人数;还有一些非标准的盈亏问题,它们被分为四类:1.两盈:两次分配都有多余;2.两不足:两次分配都不够;3.盈适足:一次分配有余,一次分配够分;4,不足适足:一次分配不够,一次分配正好。
一些非标准的盈亏问题都是由标准的盈亏问题演变过来的。
解题时我们可以记住:1.“两亏”问题的数量关系是:两次亏数的差÷两次分得的差=参与分配对象总数;2.“两盈”问题的数量关系是:两次盈数的差÷两次分得的差=参与分配对象总数;3.“一盈一亏”问题的数量关系是:盈与亏的和÷两次分得的差=参与分配对象总数。
二、精讲精练【例题1】某校乒乓球队有若干名学生,如果少一名女生,增加一名男生,则男生为总数的一半;如果少一名男生,增加一名女生,则男生为女生人数的一半。
乒乓球队共有多少名学生?练习1:1.学校买来了白粉笔和彩色粉笔若干盒,如果白粉笔减少10盒,彩色粉笔增加8盒,两种粉笔就同样多;如果再买10盒白粉笔,白粉笔的盒数就是彩色粉笔的5倍。
学校买来两种粉笔各多少盒?2.操场上有两堆货物,如果甲堆增加80吨,乙堆增加25吨,则两堆货物一样重;苦甲、乙两堆各运走5吨,剩下的乙堆正好是甲堆的3倍。
两堆货物一共有多少吨?3.五(1)班的优秀学生中,苦增加2名男生,减少1名女生,则男、女生人数同样多;苦减少1名男生,增加1名女生,则男生是女生的一半。
这些优秀学生中男、女生各多少人?【例题2】幼儿园老师拿出苹果发给小朋友。
第12讲 盈亏问题
【第十二讲】盈亏问题学前导航:盈亏问题的特点是问题中每一同类量都要出现两种不同的情况。
分配不足时,称之为“亏”,分配有余称之为“盈”;还有些实际问题,是把一定数量的物品平均分给一定数量的人时,如果每人少分,则物品就有余(也就是盈),如果每人多分,则物品就不足(也就是亏),这一类算法的应用题叫做“盈亏问题”。
盈亏问题的基本关系式:(盈+亏)÷两次分得之差=人数或单位数(盈-盈)÷两次分得之差=人数或单位数(亏-亏)÷两次分得之差=人数或单位数例1:三年级(1)班部分同学参加学校植树活动.如果每人植4棵树,还剩7棵;如果每人植5棵,则少2棵树。
参加植树的有几个人?共有多少棵树?练习:1.欢庆元旦,春田花花幼稚园把一堆糖果分给小朋友们,如果每人2块,将剩余12块;每人3块,将缺少2块,那么小朋友共有多少人?2.中秋节到了,王老师请同学们吃月饼。
如果每人6个就剩12个,每人7个便少11个。
那么一共有多少个月饼?多少位学生?例2:王校长去琴行买小提琴,若买7把,则所带的钱差110元;若买5把,则所带的钱还多30元,问小提琴多少钱一把?王校长一共带了多少钱?练习:1.小明去买苹果,想买3千克,付钱时发现还少3元,结果买了2千克,又剩下7元,小明一共带了多少钱?例3:一家旅店,若每个房间住6人,则16人没有床位;若每个房间住8人,则有一间房间是空出来的。
这家旅店有多少个房间?要住宿的人数有多少?练习:1.春田花花小学三年级合唱队的同学到会议室开会,若每条长椅上坐3人则多出9人,若每条长椅上坐4人则多一个长椅。
问:合唱队有多少人?有多少个长椅?2.在安排学生宿舍时,如果每间住5人,则有14人没有床位;如果每间住7人,则多出4个床位,问宿舍几间?住宿生几人?例4:小明从家里到学校,如果每分钟走50米,上课就要迟到3分钟;如果每分钟走60米,就可以比上课时间提前2分钟到校。
小强家到学校的路程是多少米?练习:1.小红从家去学校,如果每分钟走80米,结果比上课提前6分钟到校,如果每分钟走50米,则要迟到3分钟,那么小红家到学校的路程是多少米?2.学校规定上午8时到校,小尧去上学,如果每分种走60米,可提早10分钟到校;如果每分钟走50米,可提早8分钟到校,求小尧几时几分离家刚好8时到校?由家到学校的路程是多少?作业:1.开学了,有一批练习本发给学生,如果每人5本,则多70本,如果每人7本,则多10本,那么这个班有多少学生,多少练习本呢?2.学校为新生分配宿舍.每个房间住3人,则多出22人;每个房间多住5人,则空1个房间。
五年级数学拔高之盈亏问题含答案
第12讲盈亏问题一、知识要点盈亏问题又叫盈不足问题,是指把一定数量的物品平均分给固定的对象,如果按某种标准分,则分配后会有剩余(盈);按另一种标准分,分配后又会有不足(亏),求物品的数量和分配对象的数量。
例如:把一代饼干分给小班的小朋友,每人分3块,多12块;如果每人分4块,少8块。
小朋友有多少人?饼干有多少块?这种一盈一亏的情况,就是我们通常说的标准的盈亏问题。
盈亏问题的基本数量关系是:(盈+亏)÷两次所分之差=人数;还有一些非标准的盈亏问题,它们被分为四类:1.两盈:两次分配都有多余;2.两不足:两次分配都不够;3.盈适足:一次分配有余,一次分配够分;4,不足适足:一次分配不够,一次分配正好。
一些非标准的盈亏问题都是由标准的盈亏问题演变过来的。
解题时我们可以记住:1.“两亏”问题的数量关系是:两次亏数的差÷两次分得的差=参与分配对象总数;2.“两盈”问题的数量关系是:两次盈数的差÷两次分得的差=参与分配对象总数;3.“一盈一亏”问题的数量关系是:盈与亏的和÷两次分得的差=参与分配对象总数。
二、精讲精练【例题1】某校乒乓球队有若干名学生,如果少一名女生,增加一名男生,则男生为总数的一半;如果少一名男生,增加一名女生,则男生为女生人数的一半。
乒乓球队共有多少名学生?【思路导航】(1)由“少一个女生,增加一个男生,则男生为总人数的一半”可知:女生比男生多2人;(2)“少一个男生,增加一个女生”后,女生就比男生多2+2=4人,这时男生为女生人数的一半,即现在女生有4×2=8人。
原来女生有8-1=7人,男生有7-2=5人,共有7+5=12人。
练习1:1.学校买来了白粉笔和彩色粉笔若干盒,如果白粉笔减少10盒,彩色粉笔增加8盒,两种粉笔就同样多;如果再买10盒白粉笔,白粉笔的盒数就是彩色粉笔的5倍。
学校买来两种粉笔各多少盒?2.操场上有两堆货物,如果甲堆增加80吨,乙堆增加25吨,则两堆货物一样重;苦甲、乙两堆各运走5吨,剩下的乙堆正好是甲堆的3倍。
第十二讲 盈亏问题
注意本题的分配对象是时间 条件转化:“每分钟走40米,则要迟到2分钟”转化为“每分钟走40米,则少80米。”“每分钟 走50米,则早到4分钟”转化为“每分钟走50米,则可多出200米。” 一盈一亏问题用公式:(盈+亏)÷两次分配差=参与分配对象总数
笔记:一盈一亏问题用公式: (盈+亏)÷两次分配差=参与分配对象总数 注意将条件转换成盈或亏。
【随堂练习3】某校有若干个学生寄宿学校,若每一间宿舍住6人,则多 出34人;若每间宿舍住7人,则多出4间宿舍。问宿舍有多少间?寄宿学生 有多少人?
条件转化:“每间宿舍住7人,则多出4间宿舍”转化为“每间宿舍住7 人,则少(4×7=28)人。” 一盈一亏问题用公式:(盈+亏)÷两次分配差=参与分配对象总数
典型例题3
三(1)班学生去公园划船,如果每条船坐4人,则少1条船;如果每条船坐6 人,则多出4条船。公园里有多少条船?三(1)班学生有多少人?
【思路指示】为了帮助理解,我们可以将题目中的条件进行转化。将条 件“如果每条船坐4人,则少1条船"转化为“如果每条船坐4人,则多出 4人”;再将条件“如果每条船坐6人,则多出4多船”转化为“如果每条 船坐6人,则差6×4=24(人)”,这样两种分配方法就相差了 24+4=28(人),这是因为每条船多坐了6-4=2(人)。根据这一关系,可知船 有28÷2= 14(条),学生有4×(14+1)= 60(人)。列式如下: 船的条数:(6×4+4×1)÷(6-4)=14(条) 学生人数:4×(14+1)=60(人) 答:公园有14条船,三(1)班学生有60人。 【思路指示】为了帮助理解,我们可以将题目中的条件进行转化。
盈亏问题讲解
盈亏问题【知识要点】1.概念:所谓“盈”是物品有多余,所谓“亏”是指物品不足。
把一定数量的物品,平均分配给一定数量的人,每人少分,则物品有余;每人多分则物品不足。
已知所余(所盈)和不足(所亏)的数量,求物品数量和人数的应用题叫盈亏问题。
2.解答盈亏问题的关键:弄清楚盈、亏与两次分配差的关系。
数量关系:(1)一盈一亏类型:份数=(盈+亏)十两次分配差双盈类型:份数=(大盈-小盈)十两次分配差双亏类型:份数=(大亏-小亏)十两次分配差(2)总数量=每次分的数量X份数+盈总数量=每次分的数量X份数-亏【典型例题】例1、某校乒乓球队有若干名学生。
如果少一个女生,增加一个男生,则男生为总数的一半;如果少一个男生,增加一个女生,则男生为女生人数的一半,乒乓球队共有多少个学生例2、幼儿园老师给小朋友分梨子,如果每人分4个,则多9 个;如果每人分5 个,则少6 个。
问有多少个小朋友有多少个梨子例3、小红把自己的一些连环画借给她的几个同学。
若每人借5本,则差17本;若每人借3本,则差 3 本。
问小红的同学有几人她一共有多少本连环画例4、幼儿园教师把一箱饼干分给小班和中班的小朋友,平均每人分得6块, 如果只分给中班的小朋友,平均每人可以多分得4块。
如果只分给小班的小朋友,平均每人分得多少块例5、全班去划船,如果减少一条船,每条船正好坐9个同学;如果增加一条船,每条船正好坐6个同学。
这个班有多少个同学从前,一个农夫带了一只狗,一只兔子和一棵青菜,来到河边,他要把这三件东西带过河去。
那儿仅有一只很小的旧船,农夫最多只能带其中的一样东西上船,否则就有沉船的危险。
冈U开始,他带了菜上船,回头一看,调皮的狗正在欺侮胆小的兔子。
他连忙把菜放在岸上,带着狗上船,但贪嘴的兔子又要吃鲜嫩的青菜,农夫只好又回来。
他坐在岸边,看着这三件东西,静静地思索了一番,终于想出了一个渡河的办法。
同学们,你知道农夫是怎么做的吗随堂小测姓名 __________ 成绩________________1、老师将一批铅笔奖给三好学生,每人4支多10支;每人6支多2支。
(完整版)盈亏问题讲义
盈亏问题小朋友分铅笔,每人分3支,则多6支,每人分5支则少8支。
有多少小朋友,有多少铅笔?任务:分东西,分什么:铅笔【总量】分给谁:小朋友【份数】多,余,盈是多余的意思少,亏是不足的意思。
在分物品或者安排其他工作时,经常会遇到多余或者不足的情况。
遇到这类题目,我们可以根据多余以及不足的数量找出解题的线索。
这类应用题通常叫做盈亏问题。
解答盈亏问题的关键是弄清盈、亏与两次分配差的关系。
盈亏问题的数量关系是:(1)“一盈一亏”:(盈+亏)÷两次分配差=份数【标准盈亏】“两盈”:(大盈-小盈)÷两次分配差=份数“两亏”:(大亏-小亏)÷两次分配差=份数(2)每次分的数量×份数+盈=总数量每次分的数量×份数-亏=总数量1、标准盈亏问题(一盈一亏)例1、小朋友分糖果,每人3粒剩2粒,每人5粒少6粒,则共有糖果_________粒?思路点拨:列出已知条件:两个不变量两种分配方案先列对比图:每人3粒,多2粒;每人5粒,少6粒。
这属于“一盈一亏”问题。
由题意可知,小朋友的人数和糖果的粒数是不变的。
比较两种分配方案,结果相差2+6=8(粒),这是因为两种分配方案每人所分糖果相差5-3=2(粒)。
所以,小朋友的人数是8÷2=4(人),再求出糖果一共有多少粒。
(盈+亏)÷两次分配差=份数【标准盈亏】拓展:1)兔妈妈给兔子们分胡萝卜。
如果每只兔子分3个,则多17个,如果每只兔子分5个,还少13个。
问:有多少兔子?有多少胡萝卜?2)幼儿园老师给小朋友分果冻,如果每人分7个,则多15个果冻,如果每人分5个,则少3个果冻。
问:幼儿园有多少小朋友?有多少果冻?3)一些同学去划船,如果每条船坐4人,则有3个人没有位置。
如果每条船坐5人,则多出3个位置;一共有多少条船?一共有多少个同学?4)绿化队一次植树。
如果每人栽15棵树,则还剩下27棵没有人栽;如果每人栽18棵,就少3棵树苗。
三年级盈亏问题讲义
盈亏问题盈是多余的意思。
亏是缺乏的意思。
在分物品或者安排其他工作时,经常会遇到多余或者缺乏的情况。
遇到这类题目,我们可以根据多余以及缺乏的数量找出解题的线索。
这类应用题通常叫做盈亏问题。
解答盈亏问题的关键是弄清盈、亏与两次分配差的关系。
盈亏问题的数量关系是:〔1〕“一盈一亏〞:〔盈+亏〕÷两次分配差=份数“两盈〞:〔大盈-小盈〕÷两次分配差=份数“两亏〞:〔大亏-小亏〕÷两次分配差=份数2〕每次分的数量×份数+盈=总数量每次分的数量×份数-亏=总数量例1小朋友分糖果,每人3粒剩2粒,每人5粒少6粒,那么共有糖果_________粒?思路点拨:列出条件:每人3粒,多2粒;每人5粒,少6粒。
这属于“一盈一亏〞问题。
由题意可知,小朋友的人数和糖果的粒数是不变的。
比拟两种分配方案,结果相差2+6=8〔粒〕,这是因为两种分配方案每人所分糖果相差5-3=2〔粒〕。
所以,小朋友的人数是8÷2=4〔人〕,再求出糖果一共有多少粒。
例2羊爷爷买了一些鲜草馒头发给小羊们。
如果给每只小羊发4个鲜草馒头,还多17个;如果给每只小羊发6个鲜草馒头,并且给羊爷爷自己也发3个,还多4个。
那么共有__________只小羊,共买了__________个鲜草馒头。
思路点拨:列出条件:每只小羊发4个,余17个;每只小羊发6个,余(3+4)个。
这是两盈的问题。
由题意可知:小羊的只数和馒头的个数是不变的。
比拟两种分配方案,结果相差17-〔3+4〕=10〔个〕,这是因为两种分配方案每只小羊发到的馒头相差6-4=2〔个〕。
所以小羊有10÷2=5〔只〕。
例3 学校将一批铅笔奖给三好学生。
如果每人奖9支,那么缺45支;如果每人奖7支,那么缺7支。
三好学生有多少人?铅笔有多少支?思路点拨:列出条件:每人9支,少45支;每人7支,少7支。
这是两亏的问题。
由题意可知:三好学生人数和铅笔支数是不变的。
小学五年级奥数第12讲 盈亏问题(含答案分析)
第12讲盈亏问题一、知识要点盈亏问题又叫盈不足问题,是指把一定数量的物品平均分给固定的对象,如果按某种标准分,则分配后会有剩余(盈);按另一种标准分,分配后又会有不足(亏),求物品的数量和分配对象的数量。
例如:把一代饼干分给小班的小朋友,每人分3块,多12块;如果每人分4块,少8块。
小朋友有多少人?饼干有多少块?这种一盈一亏的情况,就是我们通常说的标准的盈亏问题。
盈亏问题的基本数量关系是:(盈+亏)÷两次所分之差=人数;还有一些非标准的盈亏问题,它们被分为四类:1.两盈:两次分配都有多余;2.两不足:两次分配都不够;3.盈适足:一次分配有余,一次分配够分;4,不足适足:一次分配不够,一次分配正好。
一些非标准的盈亏问题都是由标准的盈亏问题演变过来的。
解题时我们可以记住:1.“两亏”问题的数量关系是:两次亏数的差÷两次分得的差=参与分配对象总数;2.“两盈”问题的数量关系是:两次盈数的差÷两次分得的差=参与分配对象总数;3.“一盈一亏”问题的数量关系是:盈与亏的和÷两次分得的差=参与分配对象总数。
二、精讲精练【例题1】某校乒乓球队有若干名学生,如果少一名女生,增加一名男生,则男生为总数的一半;如果少一名男生,增加一名女生,则男生为女生人数的一半。
乒乓球队共有多少名学生?练习1:1.学校买来了白粉笔和彩色粉笔若干盒,如果白粉笔减少10盒,彩色粉笔增加8盒,两种粉笔就同样多;如果再买10盒白粉笔,白粉笔的盒数就是彩色粉笔的5倍。
学校买来两种粉笔各多少盒?2.操场上有两堆货物,如果甲堆增加80吨,乙堆增加25吨,则两堆货物一样重;苦甲、乙两堆各运走5吨,剩下的乙堆正好是甲堆的3倍。
两堆货物一共有多少吨?3.五(1)班的优秀学生中,苦增加2名男生,减少1名女生,则男、女生人数同样多;苦减少1名男生,增加1名女生,则男生是女生的一半。
这些优秀学生中男、女生各多少人?【例题2】幼儿园老师拿出苹果发给小朋友。
五年级奥数举一反三练习题精讲 第12周 盈亏问题
第12周盈亏问题专题简析:盈亏问题又叫盈不足问题,是指把一定数量的物品平均分给固定的对象,如果按某种标准分,则分配后会有剩余(盈);按另一种标准分,分配后又会有不足(亏),求物品的数量和分配对象的数量。
例如:把一代饼干分给小班的小朋友,每人分3块,多12块;如果每人分4块,少8块。
小朋友有多少人?饼干有多少块?这种一盈一亏的情况,就是我们通常说的标准的盈亏问题。
盈亏问题的基本数量关系是:(盈+亏)÷两次所分之差=人数;还有一些非标准的盈亏问题,它们被分为四类:1,两盈:两次分配都有多余;2,两不足:两次分配都不够;3,盈适足:一次分配有余,一次分配够分;4,不足适足:一次分配不够,一次分配正好。
一些非标准的盈亏问题都是由标准的盈亏问题演变过来的。
解题时我们可以记住:1,“两亏”问题的数量关系是:两次亏数的差÷两次分得的差=参与分配对象总数;2,“两盈”问题的数量关系是:两次盈数的差÷两次分得的差=参与分配对象总数;3,“一盈一亏”问题的数量关系是:盈与亏的和÷两次分得的差=参与分配对象总数。
例1 某校乒乓球队有若干名学生,如果少一名女生,增加一名男生,则男生为总数的一半;如果少一名男生,增加一名女生,则男生为女生人数的一半。
乒乓球队共有多少名学生?分析(1)由“少一个女生,增加一个男生,则男生为总人数的一半”可知:女生比男生多2人;(2)“少一个男生,增加一个女生”后,女生就比男生多2+2=4人,这时男生为女生人数的一半,即现在女生有4×2=8人。
原来女生有8-1=7人,男生有7-2=5人,共有7+5=12人。
练习一1,学校买来了白粉笔和彩色粉笔若干盒,如果白粉笔减少10盒,彩色粉笔增加8盒,两种粉笔就同样多;如果再买10盒白粉笔,白粉笔的盒数就是彩色粉笔的5倍。
学校买来两种粉笔各多少盒?2,操场上有两堆货物,如果甲堆增加80吨,乙堆增加25吨,则两堆货物一样重;苦甲、乙两堆各运走5吨,剩下的乙堆正好是甲堆的3倍。
(完整版)_盈亏问题讲解
盈亏问题【知识要点】1.概念:所谓“盈”是物品有多余,所谓“亏”是指物品不足。
把一定数量的物品,平均分配给一定数量的人,每人少分,则物品有余;每人多分则物品不足。
已知所余(所盈)和不足(所亏)的数量,求物品数量和人数的应用题叫盈亏问题。
2.解答盈亏问题的关键:弄清楚盈、亏与两次分配差的关系。
数量关系:(1)一盈一亏类型:份数=(盈+亏)÷两次分配差双盈类型:份数=(大盈-小盈)÷两次分配差双亏类型:份数=(大亏-小亏)÷两次分配差(2)总数量=每次分的数量×份数+盈总数量=每次分的数量×份数-亏【典型例题】例1、某校乒乓球队有若干名学生。
如果少一个女生,增加一个男生,则男生为总数的一半;如果少一个男生,增加一个女生,则男生为女生人数的一半,乒乓球队共有多少个学生?例2、幼儿园老师给小朋友分梨子,如果每人分4个,则多9个;如果每人分5个,则少6个。
问有多少个小朋友?有多少个梨子?例3、小红把自己的一些连环画借给她的几个同学。
若每人借5本,则差17本;若每人借3本,则差3本。
问小红的同学有几人?她一共有多少本连环画?例4、幼儿园教师把一箱饼干分给小班和中班的小朋友,平均每人分得6块,如果只分给中班的小朋友,平均每人可以多分得4块。
如果只分给小班的小朋友,平均每人分得多少块?例5、全班去划船,如果减少一条船,每条船正好坐9个同学;如果增加一条船,每条船正好坐6个同学。
这个班有多少个同学?随堂练习1、老师将一批铅笔奖给三好学生,每人4支多10支;每人6支多2支。
问:三好学生有多少人?铅笔有多少支?2、幼儿园老师将一筐苹果分给小朋友。
如果分给大班德尔学生每人5个余10个;如果分给小班的学生每人8个缺2个。
已知大班比小班多3个学生,这筐苹果有多少个?3、学校将一批铅笔奖给三好学生,每人9支缺15支;每人7支缺7支。
问三好学生有多少让人?铅笔有多少支?4、甲乙两组同学做红花,每人做8朵,正好送给五年级每个同学一朵。
小学五年级奥数讲义之精讲精练第12讲 盈亏问题含答案
第12讲盈亏问题一、知识要点盈亏问题又叫盈不足问题,是指把一定数量的物品平均分给固定的对象,如果按某种标准分,则分配后会有剩余(盈);按另一种标准分,分配后又会有不足(亏),求物品的数量和分配对象的数量。
例如:把一代饼干分给小班的小朋友,每人分3块,多12块;如果每人分4块,少8块。
小朋友有多少人?饼干有多少块?这种一盈一亏的情况,就是我们通常说的标准的盈亏问题。
盈亏问题的基本数量关系是:(盈+亏)÷两次所分之差=人数;还有一些非标准的盈亏问题,它们被分为四类:1.两盈:两次分配都有多余;2.两不足:两次分配都不够;3.盈适足:一次分配有余,一次分配够分;4,不足适足:一次分配不够,一次分配正好。
一些非标准的盈亏问题都是由标准的盈亏问题演变过来的。
解题时我们可以记住:1.“两亏”问题的数量关系是:两次亏数的差÷两次分得的差=参与分配对象总数;2.“两盈”问题的数量关系是:两次盈数的差÷两次分得的差=参与分配对象总数;3.“一盈一亏”问题的数量关系是:盈与亏的和÷两次分得的差=参与分配对象总数。
二、精讲精练【例题1】某校乒乓球队有若干名学生,如果少一名女生,增加一名男生,则男生为总数的一半;如果少一名男生,增加一名女生,则男生为女生人数的一半。
乒乓球队共有多少名学生?练习1:1.学校买来了白粉笔和彩色粉笔若干盒,如果白粉笔减少10盒,彩色粉笔增加8盒,两种粉笔就同样多;如果再买10盒白粉笔,白粉笔的盒数就是彩色粉笔的5倍。
学校买来两种粉笔各多少盒?2.操场上有两堆货物,如果甲堆增加80吨,乙堆增加25吨,则两堆货物一样重;苦甲、乙两堆各运走5吨,剩下的乙堆正好是甲堆的3倍。
两堆货物一共有多少吨?3.五(1)班的优秀学生中,苦增加2名男生,减少1名女生,则男、女生人数同样多;苦减少1名男生,增加1名女生,则男生是女生的一半。
这些优秀学生中男、女生各多少人?【例题2】幼儿园老师拿出苹果发给小朋友。
盈亏问题公式讲解
盈亏问题公式讲解
盈亏问题公式是经济学中一个非常重要的公式,可以用来描述在一个经济系统中,当商品价格发生变化时,生产者和消费者的盈亏情况。
该公式为:
盈亏 = (价格变化量×交易量) / 单位成本
其中,盈亏表示生产者或消费者的盈亏情况,价格变化量表示商品价格的变化量,交易量表示交易的数量,单位成本表示单位商品的成本。
接下来,我们将通过一个例子来推导盈亏问题公式。
假设一个农民生产了 100 公斤的小麦,单位成本为 10 元/公斤,市场价格为 12 元/公斤,现在市场价格下降到了 11 元/公斤,那么农民的盈亏情况如何计算呢?
根据盈亏问题公式,我们可以得到:
盈亏 = (11 - 12) × 100 / 10 = -100
这意味着农民在这次交易中亏损了 100 元。
注意,如果市场价格上升到了 13 元/公斤,那么农民的盈亏情况将变为:
盈亏 = (13 - 12) × 100 / 10 = 100
这意味着农民在这次交易中获得了 100 元的利润。
在实际应用中,盈亏问题公式可以帮助生产者和消费者更好地决策。
例如,当市场价格下降时,生产者可以减少生产量以避免亏损,而消费者可以增加购买量以获得更多的优惠。
相反,当市场价格上升时,生产者可以增加生产量以获得更多的利润,而消费者可以减少购
买量以节省开支。
盈亏问题讲义
盈亏问题教学目标1.特征:1、分配的一种事物,两套分配方案。
2、每个个体分配的量一样。
3、有盈数或亏数。
4、两大不变量:总数和份数。
2. 方法:画线段图3. 解题思路:两次分配的总数差÷每份差=份数题型:①一盈一亏:〔盈+亏〕÷〔两次分配差〕=份数。
②双盈:〔大盈-小盈〕÷〔两次分配差〕=份数。
③双亏:〔大亏-小亏〕÷〔两次分配差〕=份数。
④单亏或单盈:盈或〔亏〕÷〔两次分配差〕=份数。
例题精讲:例1、老猴子给小猴子分梨。
每只小猴子分6个梨,就多出12个梨;每只小猴子分8个梨,就少4个梨。
有几只小猴子和多少个梨?盈数是12 亏数是4两大不变量份数是猴子总数是梨练习1、三年级一班少先队员参加学校搬砖劳动。
如果每人搬4块砖,还剩7块;如果每人搬5块,则少2块砖。
这个班少先队有几个人?要搬的砖共有多少块?练习2、小朋友分苹果,如果每人分2个,就多余16个;如果每人分5个,就缺少14个。
小朋友有多少个?苹果有多少个?总结:〔盈数+亏数〕÷两次分配差=份数例2、妈妈买回一筐苹果,如果每天吃4个,要多出48个苹果;每天吃6个则还多8个,则妈妈买回的苹果有多少个?方案吃多少天?练习1、教师给小朋友们分糖,如果每人分5块糖还剩下17块,如果每人分7块还剩1块。
有多少个小朋友?教师有多少块糖?练习2、老猴子给小猴子分桃,每只小猴分10个桃,就多出9个桃,每只小猴分11个桃则多出2个桃,则一共有多少只小猴子?老猴子一共有多少个桃子?总结:〔大盈-小盈〕÷两次分配差=份数例3、教师给美术活动小组的同学分发画纸。
如果每人分3*,则缺2*;如果每人分5*,则缺32*。
美术活动小组有多少名同学?一共有多少*图画纸?练习1、学校将一批钢笔奖给三好学生,假设每人奖8支就缺11支;假设每人奖7支就缺7支。
问:这批钢笔有多少只?三好学生有多少人?练习2、幼儿园给获奖的小朋友发糖,如果每人发6块就少12块,如果每人发9块就少24块,总共有多少块糖呢?总结:〔大亏-小亏〕÷两次分配差=份数例4、*校学生参加劳动,分成假设干组,如果10人一组,正好分完,如果12人一组,差10人.参加劳动的有多少人?总结:亏数÷两次分配差=份数例5、学校有假设干间宿舍,每间住12人,则有10人没房间,如果每间住14人,则刚好住完。
四年级数学盈亏问题讲解
第十二讲盈亏问题及对应法[同步巩固演练]1、小华第一次买5支铅笔,第二次买9支同样的铅笔,第二次比第一次多花6角钱,每支铅笔多少钱?2、幼儿园大班的教师拿出一包糖分给小朋友,算了算,如果每人分4块,要多出48块糖,如果每人分6块,则又少8块糖,请你算一算,这包糖有多少块?这个班有多少个小朋友?3、一根长绳截出同样长短的绳子21根后,余41米,如果截出34根,则余2米,这根长绳长多少米?4、一个植树小组植树,如每人栽5棵,还剩12棵;如果每人栽7棵,就缺4棵,这个植树小组有多少人?一共要栽多少棵树?5、参加团体操的同学排队,如果每行站9人,则多37人,而每行站12人,则少20人,请问团体操要站几行?共有多少人参加?6、小芳去买圆珠笔,如果买5支余3元,如果买9支余2角,每支圆珠笔价值多少钱?7、买5个排球和3个篮球的需付100元,而买2个排球和3个篮球只需付67元,则排球和篮球的单价分别是多少元?8、小明在一座楼顶的平台上用长绳吊一重物来测量楼高,当他将绳子2折时,绳比楼高要长10米;当他将绳子4折时,则绳比楼高长出1米,楼高多少米?绳长多少米?9、某车间有3个生产班组,第一组有5人,共生产零件167个;第二组比第一组多2人,共生产零件206个;第三组和第二组工人一样多,生产的零件却比第二组多10个,这个车间平均每个工人生产零件多少个?10、幼儿园为小朋友买了桃,分配时,如果每个小朋友分5个,还剩32个;如果其中10个小朋友分4个,其余的小朋友分8个,就恰好分完,则幼儿园有小朋友多少人?共买了多少个桃?11、四年级同学参加植树活动,如果每班种10棵,还剩6棵树苗;如果剩下的每班再种2棵,就少4棵树苗,四年级一共植树多少棵?12、同学们到阶梯教室听科技报告,如每张长椅坐8人,则剩下50人没有座位;如果每张长椅上坐12人,则空出10个座位,如果每张长椅上坐7人,还剩下多少学生无座位?13、某商店从深圳运来一批水果,运费花了1000元,水果报损了100千克,若按2元1千克卖出,则要亏损300元,若按3元1千克卖出,则可盈利500元,问原来进货多少千克?水果进货的金额是多少元?14、小刚从家去学校,如果每分钟走80米,结果比上课时间提前6分钟到校,如果每分钟走50米,则要迟到3分钟,小刚的家到学校的路程有多远?[能力拓展平台]1、某校同学排队上操,如果每行站9人,则多37人,如果每行站12人,则少20人,一共有多少学生?2、小强由家里到学校,如果每分钟走50米,上课就要迟到3分钟,如果每分钟走60米,就可以比上课时间提前2分钟到校,小强到学校的路程是多少米?3、少先队员参加绿化植树,他们准备栽的苹果树苗是梨树苗的2倍,如果每人栽3棵树苗,还余2棵,如果每人栽7棵苹果树苗,要少6棵,问有多少少先队员?他们准备栽多少棵苹果树和梨树?4、学校进行大扫除,分配若干人擦玻璃,其中两人各擦4块,其余各擦5块,则余12块,若每人擦6块,则正好擦完,求擦玻璃的人数及玻璃的块数?5、少先队员去植树,如果每人挖5个树坑,还有3个树坑没人挖;如果其中2人各挖4个,其余的人各挖6个树坑,就恰好挖完所有树坑,少先队员一共要挖多少个树坑?6、5个大球与3个小球共重42克,5个小球与3个大球共重38克,问每个小球与大球各重多少千克?7、佳佳的奶奶买回一筐梨,分给全家人,如果佳佳和妹妹每人分4个梨,其余每人分2个梨,还多出4个梨;如果佳佳1人分6个梨,其余每人分4个梨,又差12个梨,佳佳家有多少人?这筐梨子有多少个?8、学校分配宿舍,如果每个房间住3人,则多出20人;如果每个房间住6人,余下2人可以每人各住一个房间。
北师大版 六年级下册 第12讲 盈亏问题(学生版)
教学辅导教案1、在8×8的正方形里有代号Ⅰ、Ⅱ、Ⅲ的矩形,要用若干块矩形(Ⅰ、Ⅱ、Ⅲ)在另一张8×8的正方形中拼出(2a+b)×(2b+a)的矩形怎么拼.用一张Ⅰ和一张Ⅱ拼出一个轴对称图形,能拼出几种拼几种,要求两个矩形至少有一条边在同一条直线上.2、如图,长方形纸片上有一个圆洞,怎样才能沿着直线把它剪成面积相同的两块?3、大正方形边长是小正方形的2倍,要将它们分成4个大小一样的部分.4、从一张正方形纸上剪下一个周长是18.84厘米的最大圆,求被剪掉的纸屑的面积。
5、如图,正方形中阴影部分面积是53平方厘米,那么正方形的面积是多少平方厘米?1、一种儿童玩具降价5元后,售价35元,降价( )A .14.3%B .12.5%C .16.7%2、下面是某公司购买粮油的发货票,请你运用所学知识将空格填满.3、一种商品先涨价101,再降价10%,现价与原价相比( ) A .贵 B .便宜 C .一样D .无法确定 4、根据如图提供的信息,可知每支网球拍与每支乒乓球拍的单价分别为( )。
A .75元,50元B .70元,45元C .70元,60元D .80元,40元5、一家商店将某种服装按成本价加价40%作为标价,又以8折(即按标价的80%)优惠卖出,结果每件服装仍可获利15元,问这种服装每件的成本价是多少元?一、商品销售相关概念1、进价:指商店从厂家购进商品时的价格,称为进价或成本价。
2、标价:商品销售时标出的价格,又称定价、原价。
3、售价:商店销售商品时的实际价格,又称为交易价。
(2)在此次活动中,他节省了多少钱?举一反三:王老师带领团员若干人到赤壁游览,现联系了两辆车的车主。
甲车主给出的优惠条件是:学生九折,老师不收费;乙车主给出的优惠条件是:包括老师在内,全部八折优惠。
如果每张车票的价格是40元,学生有20人,那么乘哪家车主的车比较划算?一、填空题1、一家商店把一件上衣标价为460元,经物价局工作人员核准,这件上衣降价了22元销售,仍可获利20%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第12讲盈亏问题
一、知识要点
盈亏问题又叫盈不足问题,是指把一定数量的物品平均分给固定的对象,如果按某种标准分,则分配后会有剩余(盈);按另一种标准分,分配后又会有不足(亏),求物品的数量和分配对象的数量。
例如:把一代饼干分给小班的小朋友,每人分3块,多12块;如果每人分4块,少8块。
小朋友有多少人?饼干有多少块?这种一盈一亏的情况,就是我们通常说的标准的盈亏问题。
盈亏问题的基本数量关系是:(盈+亏)÷两次所分之差=人数;还有一些非标准的盈亏问题,它们被分为四类:1.两盈:两次分配都有多余;2.两不足:两次分配都不够;3.盈适足:一次分配有余,一次分配够分;4,不足适足:一次分配不够,一次分配正好。
一些非标准的盈亏问题都是由标准的盈亏问题演变过来的。
解题时我们可以记住:
1.“两亏”问题的数量关系是:两次亏数的差÷两次分得的差=参与分配对象总数;
2.“两盈”问题的数量关系是:两次盈数的差÷两次分得的差=参与分配对象总数;
3.“一盈一亏”问题的数量关系是:盈与亏的和÷两次分得的差=参与分配对象总数。
二、精讲精练
【例题1】某校乒乓球队有若干名学生,如果少一名女生,增加一名男生,则男生为总数的一半;如果少一名男生,增加一名女生,则男生为女生人数的一半。
乒乓球队共有多少名学生?
练习1:1.学校买来了白粉笔和彩色粉笔若干盒,如果白粉笔减少10盒,彩色粉笔增加8盒,两种粉笔就同样多;如果再买10盒白粉笔,白粉笔的盒数就是彩色粉笔的5倍。
学校买来两种粉笔各多少盒?
2.操场上有两堆货物,如果甲堆增加80吨,乙堆增加25吨,则两堆货物一样重;苦甲、乙两堆各运走5吨,剩下的乙堆正好是甲堆的3倍。
两堆货物一共有多少吨?
3.五(1)班的优秀学生中,苦增加2名男生,减少1名女生,则男、女生人数同样多;苦减少1名男生,增加1名女生,则男生是女生的一半。
这些优秀学生中男、女生各多少人?
【例题2】幼儿园老师拿出苹果发给小朋友。
如果平均分给小朋友,则少4个;如果每个小朋友只发给4个,则老师自己也能留下4个。
有多少个小朋友?共有多少个苹果?
练习2:
1.给小朋友分梨,如果每人分4个,则多9个;如果每人分5个,则少6个。
有多少个小朋友?有多少个梨?
2.老把一些铅笔奖给三好学生。
每人5支则多4支,每人7支则少4支。
老师有多少支铅笔?奖给多少个三好学生?
3.有一个班的同学去划船,他们算了一下,如果增加一条船,正好每船坐6人;如果减少一条船,正好每条船上坐9人。
这个班一共有多少个同学?
【例题3】幼儿园老师将一筐苹果分给小朋友。
如果分给大班的学生每人5个余10个;如果分给小班的学生每人8个缺2个。
已知大班比小班多3人,这筐苹果有多少个?
练习3:
1.一些学生搬一批砖,每人搬4块,其中5人要搬两次;如果每人搬5块,就有两人没有砖可搬。
这些学生有多少人?这批砖有多少块?
2.老师给幼儿园小朋友分糖,每人3块还多10块;如果减少2个小朋友再分,每人4块还多7块。
原来有多少个小朋友?有多少块糖?
3.筑路队计划每天筑路720米,正好按期筑完。
实际每天多筑80米,这样,比原计划提前3天完成了筑路任务。
要筑的路有多长?
【例题4】幼儿园教师把一箱饼干分给小班和中班的小朋友,平均每人分得6块;如果只分给中班的小朋友,平均每人可以多分得4块。
如果只分给小班的小朋友,平均每人分得多少块?
练习4:
1.老师把一批书借给甲组同学,平均每人借4本。
如果只借给甲组的女同学,每人可借6本。
如果只借给甲组的男生,平均每人借到几本?
2.甲、乙两组同学做红花,每人做8朵,正好送给五年级每个同学一朵。
如果把这些红花让甲组同学单独做,每人要多做4朵。
如果把这些红花让乙组同学单独做,每人要做几朵?
3.老师把一袋糖分给小朋友。
如果只分给小班,每人可得12块;如果只分给中班和小班,每人只能分到4块。
如果这袋糖只分给中班,每人可分到几块?
【例题5】全班同学去划船,如果减少一条船,每条船正好坐9个同学;如果增加一条船,每条船正好坐6个同学。
这个班有多少个同学?
练习5:
1.老师把一篮苹果分给小班的同学,如果减少一个同学,每个同学正好分得5个;如果增加一个同学,正好每人分得4个。
这篮苹果一共有多少个?
2.五年级同学去划船,如果增加一只船,正好每只船上坐7人;如果减少一只船,正好每只船上价8人。
五年级共有多少人?
3.一个旅游团去旅馆住宿,6人一间,多2个房间;若4人一间又少2个房间。
旅游团共有多少人?。