高考真题第十一篇直线和圆的方程
直线和圆的方程 高中数学-例题课后习题详解-选必一复习参考题 2
复习参考题2一.选择题.1.直线3210x y +-=的一个方向向量是()A.()2,3- B.()2,3 C.()3,2- D.()3,2【答案】A【解析】【分析】根据直线的斜率先得到直线的一个方向向量,然后根据方向向量均共线,求解出结果.【详解】因为直线3210x y +-=的斜率为32-,所以直线的一个方向向量为31,2⎛⎫- ⎪⎝⎭,又因为()2,3-与31,2⎛⎫- ⎪⎝⎭共线,所以3210x y +-=的一个方向向量可以是()2,3-,故选:A.2.设直线l 的方程为x -y sin θ+2=0,则直线l 的倾斜角α的范围是()A.[0,π] B.,42ππ⎡⎤⎢⎥⎣⎦ C.3,44ππ⎡⎤⎢⎥⎣⎦ D.,42ππ⎡⎫⎪⎢⎣⎭3,24ππ⎛⎤⋃ ⎥⎝⎦【答案】C【解析】【分析】分sin 0θ=和sin 0θ≠两种情况讨论,当sin 0θ=时,2πα=;当sin 0θ≠时,结合sin θ的范围,可得斜率的取值范围,进而得到倾斜角α的范围.【详解】直线l 的方程为sin 20x y θ-+=,当sin 0θ=时直线方程为2x =-,倾斜角2πα=当sin 0θ≠时,直线方程化为12sin sin y x θθ=+,斜率in 1s k θ=,因为[)(]sin 1,00,1θ∈- ,所以(][),11,k ∈-∞-+∞ ,即(][)tan ,11,α Î-¥-+¥,又因为[)0,απ∈,所以3,,4224ππππα⎡⎫⎛⎤∈⎪ ⎢⎥⎣⎭⎝⎦综上可得3,44ππα⎡⎤∈⎢⎥⎣⎦故选:C3.与直线3450x y -+=关于x 轴对称的直线的方程为()A.3450x y +-=B.3450x y ++=C.3450x y -+= D.3450x y --=【答案】B【解析】【分析】把方程中y 换成y -,整理即得.【详解】直线3450x y -+=关于x 轴对称的直线的方程为34()50x y --+=,即3450x y ++=.故选:B .4.已知下列各组中的两个方程表示的直线平行,求a 的值:(1)23x y a +=,4630x y +-=;(2)210x ay +-=,(31)10a x ay ---=;(3)(1)2x a y a ++=-,2416ax y +=-.【答案】(1)32a ≠;(2)0a =或16a =;(3)1a =【解析】【分析】(1)根据平行得出23463a =≠可求;(2)可得0a =满足,0a ≠时,311121a a a ---=≠-;(3)可得0a =不满足,0a ≠时,1122416a a a +-=≠-.【详解】(1)若方程23x y a +=,4630x y +-=表示的直线平行,则23463a =≠,解得32a ≠;(2)当0a =时,方程210x ay +-=化为1x =,方程(31)10a x ay ---=化为1x =-,此时两直线平行,符合题意;当0a ≠时,要使直线平行,则满足311121a a a ---=≠-,解得16a =,这是0a =或16a =;(3)当0a =时,方程(1)2x a y a ++=-化为20x y +-=,方程2416ax y +=-化为4y =-,此时两直线不平行,不符合题意;当0a ≠时,要使直线平行,则满足1122416a a a +-=≠-,解得1a =,综上,1a =.5.已知下列各组中的两个方程表示的直线垂直.求a 的值(1)41ax y +=,(1)1a x y -+=-;(2)22x ay +=,21ax y +=;(3)(32)(14)80a x a y ++-+=,(52)(4)70a x a y -++-=.【答案】(1)2a =±;(2)0a =;(3)0a =或1a =.【解析】【分析】当直线以一般方程形式给出时,两直线垂直,可利用公式12120A A B B +=,求实数a 的取值.【详解】(1)因为两直线垂直,所以()41110a a -+⨯=,即24410a a --=,解得:2a =±;(2)由条件可知,220a a +=,得0a =;(3)由条件可知,()()()()32521440a a a a +-+-+=,即20a a -=,解得:0a =或1a =.6.求平行于直线20x y --=,且与它的距离为【答案】20,60x y x y -+=--=【解析】【分析】设该直线为0x y c -+=,利用平行线间的距离公式可得结果.【详解】因为所求直线平行于直线20x y --=,所以可设该直线为0x y c -+=,又因为所求直线与直线20x y --=的距离为,=可得24c +=,解得2,6c c ==-,所以平行于直线20x y --=,且与它的距离为20,60x y x y -+=--=.【点睛】本题主要考查直线平行的性质以及平行线间的距离公式,意在考查对所学知识的掌握与应用,属于基础题./7.已知平行四边形的两条边所在直线的方程分别是,,且它的对角线的交点是M (3,3),求这个平行四边形其它两边所在直线的方程.【答案】其他两边所在直线的方程是3x-y-16=0,x+y-11=0.【解析】【详解】试题分析:依题意,由方程组x+y−1=0,3x−y+4=0,可解得平行四边形ABCD 的顶点A 的坐标,再结合对角线的交点是M (3,3),可求得C 点坐标,利用点斜式即可求得其他两边所在直线的方程.试题解析:联立方程组x+y−1=0,3x−y+4=0,解得x=−34,y=74,所以平行四边形ABCD 的顶点A (−34,74),设C (x 0,y 0),由题意,点M (3,3)是线段AC 的中点,∴x 0−34=6,y 0+74=6,解得x 0=274,y 0=174,∴C (274,174),由已知,直线AD 的斜率k AD =3.∵直线BC ∥AD ,∴直线BC 的方程为3x-y-16=0,由已知,直线AB 的斜率k AB =-1,∵直线CD ∥AB ,∴直线CD 的方程为x+y-11="0,"因此,其他两边所在直线的方程是3x-y-16=0,x+y-11=0.考点:1.直线的一般式方程与直线的平行关系;2.直线的一般式方程.8.求下列各圆的方程:(1)圆心为()5,3M -且过点()8,1A --;(2)过()2,4A -,()1,3B ,()2,6C 三点;(3)圆心在直线350x y +-=上,且经过原点和点()3,1-.【答案】(1)()()225325x y ++-=(2)()2255x y +-=(3)2252539x y ⎛⎫-+= ⎪⎝⎭【解析】【分析】(1)根据圆心为()5,3M -且过点()8,1A --,求得半径即可;(2)设圆的方程为:()()222x a y b r -+-=,将()2,4A -,()1,3B ,()2,6C ,代入求解;(3)先求得以原点和点()3,1-为端点的线段的垂直平分线,再与350x y +-=联立,求得圆心即可.【小问1详解】解:因为圆心为()5,3M -且过点()8,1A --,所以圆的半径为5r ==,所以圆的方程为:()()225325x y ++-=;【小问2详解】设圆的方程为:()()222x a y b r -+-=,因为过()2,4A -,()1,3B ,()2,6C 三点,所以()()()()()()222222222241326a b r a b r a b r ⎧++-=⎪⎪-+-=⎨⎪-+-=⎪⎩,解得2055a b r =⎧⎪=⎨⎪=⎩,所以圆的方程为:()2255x y +-=;【小问3详解】以原点和点()3,1-为端点的线段的垂直平分线为:350x y --=,又圆心在直线350x y +-=上,由350350x y x y --=⎧⎨+-=⎩,解得530x y ⎧=⎪⎨⎪=⎩,所以圆心为5,03⎛⎫ ⎪⎝⎭,半径为53r =,所以圆的方程为:2252539x y ⎛⎫-+= ⎪⎝⎭.9.m 为何值时,方程222422210x y x my m m +-++-+=表示圆?并求半径最大时圆的方程.【答案】当()1,3m ∈-时,方程表示圆,当半径最大时,圆的方程为()()22214x y -++=.【解析】【分析】根据方程表示圆可得出关于实数m 的不等式,可解出实数m 的取值范围,求出圆的半径的表达式,利用二次函数的基本性质可求得圆的半径的最大值,求得此时m 的值,即可得出圆的方程.【详解】若方程222422210x y x my m m +-++-+=表示圆,则()()222244422148120m m m m m -+--+=-++>,整理得2230m m --<,解得13m -<<.设圆222422210x y x my m m +-++-+=的半径为r ,则22r ==,所以,当1m =时,圆222422210x y x my m m +-++-+=的半径取最大值,此时,圆的方程为224210x y x y +-++=,即()()22214x y -++=.10.判断圆2264120x y x y +-++=与圆22142140x y x y +--+=是否相切.【答案】是,两圆内切【解析】【分析】求出两圆圆心及半径,判断圆心距与半径和与差的关系来确定两圆的位置关系.【详解】2264120x y x y +-++=,即22(3)(2)1x y -++=,圆心为(3,2)-,半径为1;22142140x y x y +--+=,即22(7)(1)36x y -+-=,圆心为(7,1),半径为6;圆心距为5d ===,半径之和为7,之差为5,故两圆内切.11.若函数()y f x =在x a =及x b =之间的一段图象可以近似地看作线段,且a c b ≤≤,求证:[]()()()()c a f c f a f b f a b a-≈+--【答案】证明见详解.【解析】【分析】作图利用三角形相似,得比例CE AE BF AF=即可证明.【详解】证明:设()()()()()(),,,,,,A a f a B b f b C c f c 作AF BF ⊥如图所示:在AFB △中,有CE AE BF AF=,则()()()()f c f a c a f b f a b a --≈--所以[]()()()()c a f c f a f b f a b a-≈+--12.求点()2,1P --到直线:(13)(1)240l x y λλλ+++--=(λ为任意实数)的距离的最大值.13【解析】【分析】将直线方程变形为()()2340x y x y λ+-++-=,得直线系恒过点()1,1A ,由此得到P 到直线l 的最远距离为PA ,再利用两点间的距离公式计算可得.【详解】解:∵直线:(13)(1)240l x y λλλ+++--=,∴可将直线方程变形为()()2340x y x y λ+-++-=,∴20340x y x y +-=⎧⎨+-=⎩,解得11x y =⎧⎨=⎩,由此可得直线系恒过点()1,1A 则P 到直线l 的最近距离为A ,此时直线过P .P 到直线l 的最远距离为PA ,此时直线垂直于PA .∴max d PA ===.13.过点P (3,0)作一条直线,使它夹在两直线l 1:2x -y -2=0和l 2:x +y +3=0间的线段AB 恰好被点P 平分,求此直线的方程.【答案】8240x y --=【解析】【分析】根据题意,设出直线l 1上的一点P 1,求出P 1关于点P 的对称点P 2;由P 2在直线l 2上,求出点P 1,即得所求的直线方程.【详解】方法一:若直线AB 无斜率,则其方程为x =3,它与两直线的交点分别为(3,4),(3,-6),这两点的中点为(3,-1)不是点P ,不合题意.所以直线AB 必有斜率,设为k (k ≠2且k ≠-1),则直线AB 的方程为y =k (x -3).由3,220,y kx x y =-⎧⎨--=⎩解得y 1=42k k -,由3,30,y kx x y =-⎧⎨++=⎩解得y 2=61k k -+.据题意122y y +=0,即42k k -+61k k -+=0,解得k =0或8.当k =0时,它与两直线的交点分别为(1,0),(-3,0),这两点的中点并不是点P ,不符合题意,舍去.当k =8时,它与两直线的交点分别为(113,163),(73,-163),这两点的中点是点P ,符合题意.∴直线AB 的方程为y =8(x -3),即8x -y -24=0.方法二:()()()20000,3,3,06-3l M x x M P N x x --∴+在直线上任取一点点关于的对称点,在直线1l 上,把()006-3N x x +点,代入1l 方程220x y --=,解得073x =716,33M ⎛⎫∴- ⎪⎝⎭,16038733l k --∴==-,即直线1l 方程为:824y x =-.14.已知直线:280l x y --=和(2,0)A -,()2,4B 两点,若直线l 上存在点P 使得PA PB +最小,求点P 的坐标.【答案】(2,3)-【解析】【分析】先判断两点是在直线同侧还是异侧,再求A 关于直线的对称点得解【详解】因为(208)(288)0----->,所以,A B 在直线同侧,设点(2,0)A -关于直线280x y --=对称的点坐标为(,)A a b ',则280222a b b a -⎧--=⎪⎪⎨⎪=-⎪+⎩,即(2,8)A '-,可知PA PB A B +≥',即三点,,A P B '共线时,||||PA PB +最小,连接A B '交直线于点P ,点P 即为所求,A B ' 直线方程2x =,联立求得P 点坐标(2,3)-.15.求圆2210100x y x y +--=与圆2262400x y x y +-+-=的公共弦长.【答案】【解析】【分析】首先利用两圆相减,求公共弦所在直线方程,再利用弦长公式求解公共弦长.【详解】()()2222101005550x y x y x y +--=⇔-+-=,即圆心是()5,5,半径r =()()2222624003150x y x y x y +-+-=⇔-++=,圆心()3,1-,半径r =,=<+,两圆相交,两圆相减得3100x y +-=,此直线是两圆相交公共弦所在直线方程,()()2222101005550x y x y x y +--==-+-=,即圆心是()5,5,半径r =,圆心到直线3100x y +-=的距离d==所以公共弦长l ===.16.已知圆224x y +=与圆224440x y x y ++-+=关于直线l 对称,求直线l 的方程.【答案】20x y -+=【解析】【分析】求得两圆的圆心,可得过两圆心直线的斜率和中点坐标,根据对称性可得直线l 斜率,从而求得直线l 的方程.【详解】解:圆221:4C x y +=,圆心为1C ()0,0,半径12r =圆222:4440C x y x y ++-+=,经整理为()()22224x y ++-=,其圆心为2C ()2,2-,半径22r =;故12C C 中点为()1,1C -,而1220120C C k -==---,由对称性知121l C C k k ⋅=-,1l k ∴=:11l y x ∴-=+即直线l 的方程为20x y -+=.17.求与圆C :22(2)(6)1x y ++-=关于直线3−4+5=0对称的圆的方程.【答案】22(4)(2)1x y -++=.【解析】【分析】利用两圆圆心关于直线3450x y -+=对称求出对称圆的圆心即可得解.【详解】圆22:(2)(6)1C x y ++-=的圆心的坐标是()2,6-,半径长1r =.设所求圆C '的方程是22()()1x a y b -+-=,由圆C '与圆C 关于直线3450x y -+=对称知,直线3450x y -+=是两圆连心线的垂直平分线.所以有642326345022b a a b -⎧=-⎪⎪+⎨-+⎪⋅-⋅+=⎪⎩,解此方程组,得4,2a b ==-.所以与圆22:(2)(6)1C x y ++-=关于直线3450x y -+=对称的圆的方程是22(4)(2)1x y -++=.【点睛】关键点点睛:利用两圆圆心关于直线3450x y -+=对称求解是解题关键.18.求圆心在直线y =-2x 上,并且经过点A(2,-1),与直线x +y =1相切的圆的方程.【答案】圆的方程为:2(1)x -+22(y )+=2【解析】【详解】设圆心为S ,则k SA =1,∴SA 的方程为:y +1=x -2,即y =x -3,和y =-2x 联立解得x =1,y =-2,即圆心(1,-2)∴r故所求圆的方程为:2(1)x -+22(y )+=2\19.如果四边形一组对边的平方和等于另一组对边的平方和,那么它的对角线具有什么关系?为什么?【答案】对角线互相垂直【解析】【分析】设有四边形ABCD ,由条件得知2222A CB CD AD B ++= ,则由向量的运算规律得0BD AC ⋅= .【详解】解:如果四边形一组对边的平方和等于另一组对边的平方和,那么它的对角线互相垂直.证明如下:设有四边形ABCD ,由条件得知2222A CB CD AD B ++= 则()()2222AB AD AC AC AB AD+--+= ∴AD AC AB AC ⋅=⋅ ,()0AD AB AC -⋅= ∴0BD AC ⋅=.即BD AC ⊥20.求由曲线22x y x y +=+围成的图形的面积.【答案】2π+【解析】【分析】先看当0x ≥,0y ≥时整理曲线的方程,表示出图形占整个图形的14,而22111()()222x y -+-=,表示的图形为一个等腰直角三角形和一个半圆,进而利用三角形面积公式和圆的面积公式求得二者的面积,相加即可.【详解】解:当0x ≥,0y ≥时,22111()()222x y -+-=,表示的图形占整个图形的14,而22111()()222x y -+-=,表示的图形为一个等腰直角三角形和一个半圆∴1114112222S ππ⎛⎫=⨯⨯+⨯⨯=+ ⎪⎝⎭故围成的图形的面积为:2π+21.一条光线从点()2,3A -射出,经x 轴反射后,与圆22:(3)(2)1C x y -+-=相切,求反射后光线所在直线的方程【答案】3460x y --=或4310x y --=.【解析】【分析】设出反射光线斜率,得出反射光线方程,利用圆心到反射光线的距离为半径建立关系可求得斜率,得出方程.【详解】点()2,3A -关于x 轴的对称点为()2,3--,设反射光线的斜率为k ,则可得出反射光线为()32y k x +=+,即230kx y k -+-=,因为反射光线与圆相切,则圆心()3,2到反射光线的距离d r =1=,解得43k =或34,则反射直线的方程为3460x y --=或4310x y --=.22.已知圆22:(1)(2)25C x y -+-=,直线:(21)(1)740l m x m y m +++--=.(1)求证:直线l 恒过定点.(2)直线l 被圆C 截得的弦何时最长、何时最短?并求截得的弦长最短时m 的值以及最短弦长.【答案】(1)证明见解析;(2)当直线l 过圆心C 时,直线被圆截得的弦长最长.当直线l CP ⊥时,直线被圆截得的弦长最短,此时34m =-,最短弦长为【解析】【分析】(1)直线l 的方程可化为(27)(4)0x y m x y +-++-=,要使直线l 恒过定点,则与参数的变化无关,从而可得27040x y x y +-=⎧⎨+-=⎩,易得定点;(2)当直线l 过圆心C 时,直线被圆截得的弦长最长;当直线l CP ⊥时,直线被圆截得的弦长最短,即得解.【详解】(1)证明:直线l 的方程可化为(27)(4)0x y m x y +-++-=,联立27040x y x y +-=⎧⎨+-=⎩解得31x y =⎧⎨=⎩.所以直线恒过定点P (3,1).(2)当直线l 过圆心C 时,直线被圆截得的弦长最长.当直线l CP ⊥时,直线被圆截得的弦长最短,直线l 的斜率为21121,1312CP m k k m +-=-==-+-由211(112m m +-⋅-=-+解得34m =-此时直线l 的方程是250x y --=圆心(1,2)C 到直线250x y --=的距离为d ==,||||AP BP ==,所以最短弦长是||2||AB AP ==。
高考数学专题突破教师版-圆的方程(考点讲析)
22
2
②若 D 2 E 2 4F 0 ,则方程只表示一个点 ( D , E ) ; 22
③若 D 2 E 2 4F 0 ,则方程不表示任何图形.
4.点 A(x0,y0 ) 与⊙C 的位置关系
(1)|AC|<r⇔点 A 在圆内⇔ (x0-a)2+( y0-b)2 r 2 ;
(2)|AC|=r⇔点 A 在圆上⇔ (x0-a)2+( y0-b)2 r 2 ;
.
【解析】
AOB 120 , OA OB 2
PO
AO cos 60
4 ,即 x02
y02
16
6
又 PC x0 82 y02 且 PO PC
解得:
x0
5 2 1 2
5
1 2
2
x0
82
y02
16
且
0
x02 y02 16
4 x0 4
4
5
1 2
4 ,解得:
1 3
【典例 12】(江苏高考真题)在平面直角坐标系 xOy 中,圆 C 的方程为 x2 y2 8x 15 0 ,若直线 y kx 2
上至少存在一点,使得以该点为圆心,1 为半径的圆与圆 C 有公共点,则 k 的最大值为__________. 【答案】 4
3
【解析】 ∵圆 C 的方程为 x2+y2-8x+15=0,整理得:(x-4)2+y2=1,即圆 C 是以(4,0)为圆心,1 为半径的圆;又直 线 y=kx-2 上至少存在一点,使得以该点为圆心,1 为半径的圆与圆 C 有公共点,∴只需圆 C′:(x-4)2+y2=4
中,
.
故答案为 4
【典例 11】(2019·江苏高三)已知圆 O:x2+y2=4 和圆 O 外一点 P( x0 , y0 ),过点 P 作圆 O 的两条切线, 切点分别为 A,B,且∠AOB=120°.若点 C(8,0)和点 P 满足 PO= PC,则 的范围是_______.
直线与圆及其方程高考真题分类解析
直线与圆及其方程高考真题分类解析(文科全国卷)一、高考考点梳理(一)、直线的倾斜角与斜率1.直线的倾斜角①定义:在平面直角坐标系中,对于一条与x轴相交的直线L,把x轴(正方向)按逆时针方向绕着交点旋转到和直线L重合所成的角,叫作直线L的倾斜角,当直线L和x轴平行时,它的倾斜角为0.②范围:直线倾斜角的取值范围是[0,π).2.直线的斜率①定义:一条直线的倾斜角α的正切值叫作这条直线的斜率。
斜率常用小写字母k表示,即k=tanα,倾斜角是90°的直线斜率不存在.②过两点的直线的斜率公式经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率公式为:k=y2-y1x2-x1.(二) 、直线方程的五种形式(三) 、两条直线的平行与垂直1.两条直线平行:对于两条不重合的直线l1,l2,其斜率分别为k1,k2,则有l1∥l2⇔k1=k2. 特别地,当直线l1,l2的斜率都不存在时,l1与l2也平行.2.两条直线垂直:如果两条直线l1,l2斜率都存在,设为k1,k2,则l1⊥l2⇔k1·k2=-1. 特别地,当一条直线斜率为零,另一条直线斜率不存在时,两条直线也垂直. (四) 、两条直线的交点坐标1.直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的公共点的坐标与方程组⎩⎨⎧A 1x +B 1y +C 1=0,A 2x +B 2y +C 2=0的解一一对应. (1).相交⇔方程组有唯一解,交点坐标就是方程组的解; (2).平行⇔方程组无解; (3).重合⇔方程组有无数个解. (五) 、距离公式 1. 两点间的距离公式平面上任意两点A (x 1,y 1),B (x 2,y 2)间的距离公式为|AB |=(x 2-x 1)2+(y 2-y 1)2 2.点到直线的距离公式:平面上任意一点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离d =|Ax 0+By 0+C |A 2+B 2.3.两条平行直线间的距离公式:一般地,两条平行直线l 1:Ax +By +C 1=0,l 2:Ax +By +C 2=0间的距离。
【冲刺必刷】人教A版 高中数学2020届 高考复习专题--直线与圆的方程(含解析)
直线与圆的方程一、重点知识结构本章以直线和圆为载体,揭示了解析几何的基本概念和方法。
直线的倾斜角、斜率的概念及公式、直线方程的五种形式是本章的重点之一,而点斜式又是其它形式的基础;两条直线平行和垂直的充要条件、直线l1到l2的角以及两直线的夹角、点到直线的距离公式也是重点内容;用不等式(组)表示平面区域和线性规划作为新增内容,需要引起一定的注意;曲线与方程的关系体现了坐标法的基本思想,是解决解析几何两个基本问题的依据;圆的方程、直线(圆)与圆的位置关系、圆的切线问题和弦长问题等,因其易与平面几何知识结合,题目解法灵活,因而是一个不可忽视的要点。
二、高考要求1、掌握两条直线平行和垂直的条件,掌握两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系;3、会用二元一次不等式表示平面区域;4、了解简单的线性规划问题,了解线性规划的意义,并会简单的应用;5、了解解析几何的基本思想,了解用坐标法研究几何问题的方法;6、掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程的概念。
三、热点分析在近几年的高考试题中,两点间的距离公式,中点坐标公式,直线方程的点斜式、斜率公式及两条直线的位置关系是考查的热点。
但由于知识的相互渗透,综合考查直线与圆锥曲线的关系一直是高考命题的大热门,应当引起特别注意,本章的线性规划内容是新教材中增加的新内容,在高考中极有可能涉及,但难度不会大。
四、复习建议本章的复习首先要注重基础,对基本知识、基本题型要掌握好;求直线的方程主要用待定系数法,复习时应注意直线方程各种形式的适用条件;研究两条直线的位置关系时,应特别注意斜率存在和不存在的两种情形;曲线与方程的关系体现了坐标法的基本思想,随着高考对知识形成过程的考查逐步加强,对坐标法的要求也进一步加强,因此必须透彻理解。
既要掌握求曲线方程的常用方法和基本步骤,又能根据方程讨论曲线的性质;圆的方程、直线与圆的位置关系,圆的切线问题与弦长问题都是高考中的热点问题;求圆的方程或找圆心坐标和半径的常用方法是待定系数法及配方法,应熟练掌握,还应注意恰当运用平面几何知识以简化计算。
2023年高考数学真题题源解密(新高考全国卷)专题11 直线与圆(解析版)
专题11直线与圆目录一览2023真题展现考向一直线与圆相切考向二直线与圆相交真题考查解读近年真题对比考向一直线与圆相切考向二直线与圆的位置关系命题规律解密名校模拟探源易错易混速记/二级结论速记考向一直线与圆相切1.(2023•新高考Ⅰ•第6题)过点(0,﹣2)与圆x 2+y 2﹣4x ﹣1=0相切的两条直线的夹角为α,则sin α=()A .1B .154C .104D .64【答案】B解:圆x 2+y 2﹣4x ﹣1=0可化为(x ﹣2)2+y 2=5,则圆心C (2,0),半径为r =5;设P (0,﹣2),切线为PA 、PB ,则PC =22+22=22,△PAC中,sin �2=5cos �2==3所以sin α=2sin �2cos �2=2×5×3=154.故选:B .考向二直线与圆相交2.(2023•新高考Ⅱ•第15题)已知直线x ﹣my +1=0与⊙C :(x ﹣1)2+y 2=4交于A ,B 两点,写出满足“△ABC 面积为85”的m 的一个值.【答案】2(或﹣2或12或−12)解:由圆C :(x ﹣1)2+y 2=4,可得圆心坐标为C (1,0),半径为r =2,因为△ABC 的面积为85,可得S △ABC =12×2×2×sin ∠ACB =85,解得sin ∠ACB =45,设12∠ACB =θ所以∴2sin θcos θ=45,可得2푠푖푛휃 푠휃푠푖푛2휃+ 푠2휃=45,∴2푡푎푛휃푡푎푛2휃+1=45,∴tan θ=12或tan θ=2,∴cos θ=cos θ=∴圆心眼到直线x ﹣my +1=0的距离d===解得m =±12或m =±2.故答案为:2(或﹣2或12或−12).【命题意图】考查直线的倾斜角与斜率、直线方程、两直线平行与垂直、距离公式、圆的方程、直线与圆的位置关系、圆与圆的位置关系.【考查要点】常考查直线与圆的位置关系、动点与圆、圆与圆的关系。
2019-2020年高考数学总复习专题9.1直线方程和圆的方程试题含解析
2019-2020年高考数学总复习专题9.1直线方程和圆的方程试题含解析 【三年高考】 1.【xx 江苏高考,10】在平面直角坐标系中,以点为圆心且与直线)(012R m m y mx ∈=---相切的所有圆中,半径最大的圆的标准方程为【答案】【考点定位】直线与圆位置关系2.【xx 江苏,理9】在平面直角坐标系中,直线被圆截得的弦长为 .【答案】【解析】圆的圆心为,半径为,点到直线的距离为2222(1)33512d +⨯--==+,所求弦长为22925522455l r d =-=-=. 【考点】直线与圆相交的弦长问题.3.【xx 江苏,理12】在平面直角坐标系xOy 中,圆C 的方程为x 2+y 2-8x +15=0,若直线y =kx -2上至少存在一点,使得以该点为圆心,1为半径的圆与圆C 有公共点,则k 的最大值是__________.【答案】4. 【xx 高考新课标2理数改编】圆的圆心到直线的距离为1,则a = .【答案】【解析】试题分析:圆的方程可化为,所以圆心坐标为,由点到直线的距离公式得:考点:圆的方程、点到直线的距离公式.【名师点睛】直线与圆的位置关系的判断方法(1)几何法:由圆心到直线的距离d与半径长r的大小关系来判断.若d>r,则直线与圆相离;若d=r,则直线与圆相切;若d<r,则直线与圆相交.(2)代数法:联立直线与圆的方程,消元后得到关于x(或y)的一元二次方程,根据一元二次方程的解的个数(也就是方程组解的个数)来判断.如果Δ<0,方程无实数解,从而方程组也无实数解,那么直线与圆相离;如果Δ=0,方程有唯一实数解,从而方程组也有唯一一组实数解,那么直线与圆相切;如果Δ>0,方程有两个不同的实数解,从而方程组也有两组不同的实数解,那么直线与圆相交.提醒:直线与圆的位置关系的判断多用几何法.5. 【xx高考新课标3理数】已知直线:与圆交于两点,过分别做的垂线与轴交于两点,若,则__________________.【答案】4考点:直线与圆的位置关系.【技巧点拨】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法(即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系得非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.6.【xx高考山东文数改编】已知圆M:截直线所得线段的长度是,则圆M与圆N:的位置关系是.【答案】相交【解析】由()得(),所以圆的圆心为,半径为,因为圆截直线所得线段的长度是,所以=MN ==,,因为,所以圆与圆相交. 考点:1.直线与圆的位置关系;2.圆与圆的位置关系.【名师点睛】本题主要考查直线与圆的位置关系、圆与圆的位置关系问题,是高考常考知识内容.本题综合性较强,具有“无图考图”的显著特点,解答此类问题,注重“圆的特征直角三角形”是关键,本题能较好的考查考生分析问题解决问题的能力、基本计算能力等.7.【xx 高考北京文数改编】圆的圆心到直线的距离为 .【答案】【解析】试题分析:圆心坐标为,由点到直线的距离公式可知.考点:直线与圆的位置关系【名师点睛】点到直线(即)的距离公式记忆容易,对于知求,很方便.8.【xx 高考上海文科】已知平行直线012:,012:21=++=-+y x l y x l ,则的距离________.【答案】 【解析】试题分析:利用两平行线间距离公式得d 5=== 考点:两平行线间距离公式.【名师点睛】确定两平行线间距离,关键是注意应用公式的条件,即的系数应该分别相同,本题较为容易,主要考查考生的基本运算能力.9.【xx 高考浙江文数】已知,方程222(2)4850a x a y x y a +++++=表示圆,则圆心坐标是_____,半径是______.【答案】;5.【解析】试题分析:由题意,,时方程为,即,圆心为,半径为5,时方程为224448100x y x y ++++=,不表示圆.考点:圆的标准方程.【易错点睛】由方程222(2)4850a x a y x y a +++++=表示圆可得的方程,解得的值,一定要注意检验的值是否符合题意,否则很容易出现错误.10.【xx 高考天津文数】已知圆C 的圆心在x 轴的正半轴上,点在圆C 上,且圆心到直线 的距离为,则圆C 的方程为__________.【答案】【解析】 试题分析:设,则2|2|452,25355a a r =⇒==+=,故圆C 的方程为 考点:直线与圆位置关系【名师点睛】求圆的方程有两种方法:(1)代数法:即用“待定系数法”求圆的方程.①若已知条件与圆的圆心和半径有关,则设圆的标准方程,列出关于a ,b ,r 的方程组求解.②若已知条件没有明确给出圆的圆心或半径,则选择圆的一般方程,列出关于D ,E ,F 的方程组求解.(2)几何法:通过研究圆的性质,直线和圆的关系等求出圆心、半径,进而写出圆的标准方程.11.【xx 高考新课标2,理7】过三点,,的圆交y 轴于M ,N 两点,则________.【答案】412.【xx 高考陕西,理15】设曲线在点(0,1)处的切线与曲线上点处的切线垂直,则的坐标为 .【答案】【解析】因为,所以,所以曲线在点处的切线的斜率,设的坐标为(),则,因为,所以,所以曲线在点处的切线的斜率,因为,所以,即,解得,因为,所以,所以,即的坐标是,所以答案应填:.13.【xx 高考湖北,理14】如图,圆与轴相切于点,与轴正半轴交于两点(在的上方), 且.(Ⅰ)圆的标准..方程为 ; (Ⅱ)过点任作一条直线与圆相交于两点,下列三个结论:①; ②; ③.其中正确结论的序号是 . (写出所有正确结论的序号)【答案】(Ⅰ);(Ⅱ)①②③【解析】(Ⅰ)依题意,设(为圆的半径),因为,所以,所以圆心,故圆的标准方程为.(Ⅱ)联立方程组,解得或,因为在的上方,所以,,令直线的方程为,此时,,所以,,,,因为,,所以. 所以2221(21)22222NBMANA MB -==-=-+,222121222222NBMANA MB +=+=+=-+14.【xx 陕西高考理第12题】若圆的半径为1,其圆心与点关于直线对称,则圆的标准方程为_______.【答案】【解析】因为圆心与点关于直线对称,所以圆心坐标为.所以圆的标准方程为:,故答案为.【xx 年高考命题预测】纵观近几年各地高考试题,对直线方程和圆的方程这部分的考查,主要考查直线的方程、圆的方程,从题型来看,高考中一般以选择题和填空的形式考查,难度较低,部分省份会在解答题中,这部分内容作为一问,和作为进一步研究其他问题的基础出现,难度较高,虽然全国各地对这部分内容的教材不同,故对这部分内容的侧重点不同,但从直线方程和圆的方程的基础知识,解析几何的基本思想的考查角度来说,有共同之处,恰当地关注图形的几何特征,提高解题效率.对直线方程的考查.一般会和倾斜角、斜率、直线方向向量或者其他知识结合.平面内两条直线的位置关系的考查,属于简单题,主要以两条直线平行、垂直为主,以小题的形式出现.对圆的方程的考查,在高考中应一般在选择题、填空题中出现,关注确定圆的条件.预测xx年对这一部分考查不会有太大变化.【xx年高考考点定位】高考对直线的方程和圆的方程的考查有二种主要形式:一是考查直线的方程;二是考查平面内两条直线的位置关系;三是考查圆的方程.【考点1】直线的方程【备考知识梳理】1、直线的倾斜角和斜率(1)直线的的斜率为k,倾斜角为α,它们的关系为:k=tanα;(2)若A(x1,y1),B(x2,y2),则.2.直线的方程a.点斜式:;b.斜截式:;c.两点式:;d.截距式:;e.一般式:,其中A、B不同时为0.【规律方法技巧】1. 斜率的定义是,其中是切斜角,故可结合正切函数的图象研究切斜角的范围与斜率的取值范围以及斜率的变化趋势.2. 直线的方向向量也是体现直线倾斜程度的量,若是直线的方向向量,则().3.平行或者垂直的两条直线之间的斜率关系要倍加注意.3.直线的五种直线方程,应注意每个方程的适用范围,解答完后应检验不适合直线方程的情形是否也满足已知条件.【考点针对训练】1.已知直线过直线和的交点,且与直线垂直,则直线的方程为________【答案】【解析】由题意得:直线可设为,又过直线和的交点,所以直线的方程为2.过点引直线,使点,到它的距离相等,则这条直线的方程为.【答案】【解析】显然直符合题意,此直线过线段的中点,又,时方程为,化简为,因此所求直线方程为或.【考点2】两条直线的位置关系【备考知识梳理】(1)若l 1,l 2均存在斜率且不重合:①l 1//l 2 k 1=k 2;②l 1l 2 k 1k 2=-1;③(2)若0:,0:22221111=++=++C y B x A l C y B x A l 当时,平行或重合,代入检验;当时,相交;当时,.【规律方法技巧】1.与已知直线垂直及平行的直线系的设法与直线22(00)Ax By C A B ≠++=+垂直和平行的直线方程可设为:(1)垂直:;(2)平行:.2.转化思想在对称问题中的应用对称问题一般是将线与线的对称转化为点与点的对称,利用坐标转移法.【考点针对训练】1.若直线l 1:x +2y -4=0与l 2:mx +(2-m )y -3=0平行,则实数m 的值为 .【答案】【解析】由题意得:2.已知直线,直线()()2:2220l m x m y -+++=,且,则的值为____.【答案】-1或-2【解析】根据两直线平形当斜率存在时,需满足斜率相等,纵截距不等,所以当时,显然两直线平行,符合题意;当时,,,若平行需满足且,解得:,综上,答案为-1或-2.【考点3】几种距离【备考知识梳理】(1)两点间的距离:平面上的两点间的距离公式:(2)点到直线的距离:点到直线的距离.(3)两条平行线间的距离:两条平行线与间的距离.【规律方法技巧】1.点到直线的距离问题可直接代入点到直线的距离公式去求.注意直线方程为一般式.2.动点到两定点距离相等,一般不直接利用两点间距离公式处理,而是转化为动点在两定点所在线段的垂直平分线上,从而计算简便,如本例中|PA |=|PB |这一条件的转化处理.1.已知直线与直线平行,则它们之间的距离是 .【答案】2【解析】由题意,,所以直线方程为,即,.2.已知直线l 1:ax+2y+6=0,l 2:x+(a 1)y+a 21=0,若l 1⊥l 2,则a= ,若 l 1∥l 2,则a= ,此时l 1和l 2之间的距离为 .【答案】, 1,;【考点4】圆的方程【备考知识梳理】标准式:,其中点(a ,b )为圆心,r>0,r 为半径,圆的标准方程中有三个待定系数,使用该方程的最大优点是可以方便地看出圆的圆心坐标与半径的大小. 一般式:022=++++F Ey Dx y x ,其中为圆心为半径,,圆的一般方程中也有三个待定系数,即D 、E 、F .若已知条件中没有直接给出圆心的坐标(如题目为:已知一个圆经过三个点,求圆的方程),则往往使用圆的一般方程求圆方程.【规律方法技巧】1.二元二次方程是圆方程的充要条件“A=C ≠0且B=0”是一个一般的二元二次方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的必要条件.二元二次方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件为“A=C ≠0、B=0且”,它可根据圆的一般方程推导而得.2.确定一个圆的方程,需要三个独立条件.“选形式、定参数”是求圆的方程的基本方法:是指根据题设条件恰当选择圆的方程的形式,进而确定其中的三个参数.3.求圆的方程时,要注意应用圆的几何性质简化运算.(1)圆心在过切点且与切线垂直的直线上.(2)圆心在任一弦的中垂线上.(3)两圆内切或外切时,切点与两圆圆心三点共线.1.已知圆的圆心为抛物线的焦点,且与直线相切,则该圆的方程为_________________.【答案】【解析】抛物线的焦点为(1,0),所以圆的圆心为(1,0),圆心到直线的距离,所以所求圆的方程为.2.已知圆与直线及都相切,圆心在直线上,则圆的方程为______________________.【答案】【解析】直线与直线两条平行线的距离,圆的半径,由,得,由,得,直径的两个端点,,因此圆心坐标,圆的方程.【两年模拟详解析】1.【xx届江苏省如东高级中学高三2月摸底】在平面直角坐标系中,已知过点的直线与圆相切,且与直线垂直,则实数__________.【答案】2.【xx届湖南省长沙市长郡中学高三下第六次月考理科】若直线和直线将圆分成长度相等的四段弧,则.【答案】18【解析】试题分析:由题意得:圆心到两直线距离相等,且等于,因此或,即18考点:直线与圆位置关系3.【xx届江苏省扬州中学高三12月月考】已知动圆与直线相切于点,圆被轴所截得的弦长为,则满足条件的所有圆的半径之积是.【答案】【解析】试题分析:设圆心,半径为,根据圆被轴所截得的弦长为得:,又切点是,所以,且,所以解得或,从而或,,所以答案应填:.考点:1、直线与圆相切;2、直线与圆相交;3、圆的标准方程.4.【xx 届南京市、盐城市高三年级第二次模拟】在平面直角坐标系中,直线与直线相交于点,则当实数变化时,点到直线的距离的最大值为______.【答案】【解析】 由题意得,直线的斜率为,且经过点,直线的斜率为,且经过点,且直线所以点落在以为直径的圆上,其中圆心坐标,半径为,则圆心到直线的距离为,所以点到直线的最大距离为。
高三数学一轮总复习 专题十一 直线和圆的方程含解析 试题
本卷贰O 贰贰年贰月捌日编写; 出题人:令狐学复;欧阳化语;令狐理总。
专题十一、直线和圆的方程本卷贰O 贰贰年贰月捌日编写; 出题人:令狐学复;欧阳化语;令狐理总。
抓住4个高考重点重点1 直线的方程1.求直线的斜率及倾斜角的范围 2.求直线的方程[高考常考角度]角度1 设P 为曲线2:23C y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为[0,]4π,那么点P 横坐标的取值范围为〔 〕A. 1[1,]2-- B. [1,0]- C. [0,1] D. 1[,1]2解析:,此题考察直线的倾斜角与斜率以及导数几何意义的应用.切线的斜率tan [0,1]k α=∈,设切点为00(,)P x y ,于是0001|22[0,1][1,]2x x k y x x ='==+∈=>∈--,应选A角度 2 假设过点(4,0)A 的直线l 与曲线C :22(2)1x y -+=有公一共点,那么直线l 的斜率的取值范围为〔 〕A. [B. (C. [D.( 解析: 此题考察直线与曲线的位置关系,直线的斜率.方法一:设过(4,0)A 的直线l 的方程为(4)y k x =-,即40kx y k --=〔注:当k 不存在时,不满足题意〕.直线与圆C 23311k k ≤=>≤≤+,应选C . 方法二:如图,0(2,0),||||1,||230C CE CF AC CAE CAF ====>∠=∠=因此 33AE AF k k ==应选C角度3 直线l 过点(1,2)-且与直线2340x y -+=垂直,那么l 的方程是〔 〕A. 3210x y +-=B. 3270x y ++=C. 2350x y -+=D. 2380x y -+= 解析:此题主要考察直线的方程的求解和两直线垂直时斜率的关系. 方法一:由直线l 与直线2340x y -+=垂直,可知直线l 的斜率是32-,由点斜式可得直线l 的方程为32(1)2y x -=-+,即3210x y +-=,应选A方法二:由直线l 与直线2340x y -+=垂直,可设直线l 的方程为320x y m ++=,又直线l 过点(1,2)-,所以3(1)2201m m ⨯-+⨯+==>=-,故直线l 的方程为3210x y +-=,选A重点2 两条直线的位置关系3.点到直线的间隔 、两条平行线的间隔[高考常考角度]角度1 0a >,假设平面内三点23(1,),(2,),(3,)A a B a C a -一共线,那么a =_______解析:由,A B C 、、三点一共线,所以232210122131AB AC a a a a k k a a a ++==>==>--==>=-- 0,12a a >∴=角度2 经过圆2220x x y ++=的圆心C ,且与直线0x y +=垂直的直线方程是__________________解析:由圆方程222220(1)1x x y x y ++==>++=,圆心为(1,0),1r -= 所求直线的斜率为1k =,方程为1y x =+,即10x y -+=角度3圆C 过点(1,0),且圆心在x 轴的正半轴上,直线:1l y x =-被圆C 所截得的弦长为,那么过圆心且与直线l 垂直的直线的方程为 30x y +-= .解析:由题意,设所求的直线方程为0x y m ++=,设圆心坐标为(,0)a ,那么由题意知:2222(1)1,3r a a a +==-=>=-=,又因为圆心在x 轴的正半轴上,所以3a =, 故圆心坐标为(3,0),因为圆心(3,0)在所求的直线上,所以有300=>3m m ++==-, 故所求的直线方程为30x y +-=点评:此题考察了直线的方程、点到直线的间隔 、直线与圆的关系,考察了学生解决直线与圆问题的才能。
高考数学最新真题专题解析—直线与圆(新高考卷)
高考数学最新真题专题解析—直线与圆(新高考卷)【母题来源】2022年新高考I卷【母题题文】写出与圆x2+y2=1和(x−3)2+(y−4)2=16都相切的一条直线的方程【答案】x+1=07x−24y−25=03x+4y−5=0(填一条即可)【分析】本题考查了圆与圆的公切线问题,涉及圆与圆的位置关系、点到直线的距离等知识,属较难题.【解答】解:方法1:显然直线的斜率不为0,不妨设直线方程为x+by+c=0,于是√1+b2=1,√1+b2=4.故c2=1+b2 ①,|3+4b+c|=|4c|.于是3+4b+c=4c或3+4b+c=−4c,再结合 ①解得{b=0c=1或{b=−247c=−257或{b=43c=−53,所以直线方程有三条,分别为x+1=0,7x−24y−25=0,3x+4y−5=0.(填一条即可)方法2:设圆x2+y2=1的圆心O(0,0),半径为r1=1,圆(x−3)2+ (y−4)2=16的圆心C(3,4),半径r2=4,则|OC|=5=r1+r2,因此两圆外切,由图像可知,共有三条直线符合条件,显然 x +1=0 符合题意; 又由方程 (x −3)2+(y −4)2=16 和 x 2+y 2=1 相减可得方程 3x +4y −5=0 ,即为过两圆公共切点的切线方程,又易知两圆圆心所在直线 OC 的方程为 4x −3y =0 ,直线 OC 与直线 x +1=0 的交点为 (−1,−43) ,设过该点的直线为 y +43=k(x +1) ,则|k−43|√k 2+1=1 ,解得 k =724 ,从而该切线的方程为 7x −24y −25=0.( 填一条即可 ) 【母题来源】2022年新高考II 卷【母题题文】设点A(−2,3),B(0,a),直线AB 关于直线y =a 的对称直线为l ,已知l 与圆C:(x +3)2+(y +2)2=1有公共点,则a 的取值范围为 . 【答案】[13,32] 【分析】本题考查直线关于直线对称的直线求法,直线与圆的位置关系的应用,属于中档题. 【解答】解:因为k AB=a−32,所以AB关于直线y=a的对称直线为(3−a)x−2y+2a=0,所以√4+(3−a)2⩽1,整理可得6a2−11a+3⩽0,解得13≤a≤32.【命题意图】考察直线倾斜角与斜率,考察直线方程,考察直线平行与垂直,考察直线交点坐标,点到直线距离公式。
高考数学文科二轮专题攻略课件:第十一讲 直线与圆
考点聚焦 栏目索引
考点三 直线与圆、圆与圆的位置关系
1.直线与圆的位置关系的判断
高考导航
(1)几何法:把圆心到直线的距离d和半径r的大小加以比较:d<r⇔
相交;d=r⇔相切;d>r⇔相离.
(2)代数法:将圆的方程和直线的方程联立起来组成方程组,消元
后得到一元二次方程,利用判别式Δ来讨论位置关系:Δ>0⇔相交;
2,所以ab的最大值为2.
解法二:由两直线垂直,得a2+(b+2)(b-2)=0,即a2+b2=4.因为a2+b2=4
≥2ab,当且仅当a=b时等号成立,所以ab的最大值为2.
考点聚焦 栏目索引
考点二 圆的方程及应用
1.圆的标准方程
高考导航
当圆心为(a,b),半径为r(r>0)时,其标准方程为(x-a)2+(y-b)2=r2,特别
16 4E F 0,
E 4,
的方程为x2+y2-4x-4y=0,标准方程为(x-2)2+(y-2)2=8.
优解:设直线l的方程为 x + y =1(a>0,b>0),由直线l过点M(2,2),得 2 +
ab
a
2 =1,又S△OAB= 1 ab=8,所以a=4,b=4,所以△OAB是等腰直角三角形,
栏目索引 高考导航
第十一讲 直线与圆
考情分析 栏目索引 高考导航
总纲目录
总纲目录 栏目索引
考点一 直线的方程 考点二 圆的方程及应用
高考导航
考点三 直线与圆、圆与圆的位置关系
考点聚焦 栏目索引
考点一 直线的方程
1.直线方程的五种形式 (1)点斜式:y-y1=k(x-x1). (2)斜截式:y=kx+b.
直线与方程高考题
直线与圆专题复习一 、直线方程的几种形式 :1。
一般式:ax+by+c=0, a ≠0 2.点斜式:y —y1=k (x —x1) 3.斜截距式:y=k x + b 4。
两点式:121121x x x x y y y y --=--5.截距式:1=+bya x 6、点向式:2111v y y v x x -=- 7、点法式:0)()(11=-+-y y B x x A 二、圆的方程1、 圆的规范方程:()()222r b y a x =-+-2、 圆的一般方程:022=++++F Ey Dx y x 三、直线与直线关系、直线与圆的关系 1、 直线与直线平行的判断及其应用 2、直线与直线垂直的判断及其应用 3、直线与直线相交的判断及其应用 4、直线关于直线的对称直线的方程 5、圆与圆的位置关系及其判断及应用 6、直线与圆的位置关系及其应用 实战演练:1。
(安徽高考)直线过点(-1,2)且与直线23x y -+4=0垂直,则的方程是A .B 。
C 。
D.2.(上海高考)已知直线12:(3)(4)10,:2(3)230,l k x k y l k x y -+-+=--+=与平行,则K 得值是( )(A ) 1或3 (B )1或5 (C )3或5 (D)1或23.若直线m 被两平行线12:10:30l x y l x y -+=-+=与所截得的线段的长为22,则m 的倾斜角可以是: ①15②30③45④60⑤75其中正确答案的序号是。
(写出所有正确答案的序号) 4.若直线1x ya b+=通过点(cos sin )M αα,,则( )A .221a b +≤B .221a b +≥ C .22111a b +≤ D .22111a b+≥5、等腰三角形两腰所在直线的方程分别为20x y +-=与740x y --=,原点在等腰三角形的底边上,则底边所在直线的斜率为( )A .3B .2C .13-D .12-6、直线210x y -+=关于直线1x =对称的直线方程是( ) A.210x y +-=B.210x y +-= C.230x y +-=D.230x y +-=7、1l 、2l 、3l 是同一平面内的三条平行直线,1l 与2l 间的距离是1,2l 与3l 间的距离是2,正三角形ABC 的三顶点分别在1l 、2l 、3l 上,则△ABC 的边长是( )(A )23 (B )364(C)3174(D )22138、经过圆2220x x y ++=的圆心C ,且与直线0x y +=垂直的直线方程是9、(2008江苏高考)在平面直角坐标系中,设三角形ABC 的顶点坐标分别为(0,),(,0),(,0)A a B b C c , 点(0,)P p 在线段OA 上(异于端点),设,,,a b c p 均为非零实数,直线,BP CP 分别交,AC AB 于点E ,F,一同学已正确算出OE 的方程:11110x y b c p a ⎛⎫⎛⎫-+-= ⎪ ⎪⎝⎭⎝⎭,请你求OF 的方程:. 强化训练:1 .(2013年高考天津卷(文))已知过点P (2,2) 的直线与圆225(1)x y +=-相切, 且与直线10ax y -+=垂直,则a = ( )A .12-B .1C .2D .122 .(2013年高考陕西卷(文))已知点M (a ,b )在圆221:O x y +=外, 则直线ax + by = 1与圆O 的位置关系是( )A .相切B .相交C .相离D .不确定3 .(2013年高考广东卷(文))垂直于直线1y x =+且与圆221x y +=相切于第一象限的直线方程是 ( )A .20x y +-=B .10x y ++=C .10x y +-=D .20x y ++=4 .(2013年高考江西卷(文))若圆C 经过坐标原点和点(4,0),且与直线y=1相切,则圆C 的方程是_________。
直线和圆的方程十年高考题(含答案)
直线和圆的方程十年高考题(含答案)直线和圆的方程・考点阐释解析几何是用代数方法来研究几何问题的一门数学学科.在建立坐标系后,平面上的点与有序实数对之间建立起对应关系,从而使平面上某些曲线与某些方程之间建立对应关系;使平面图形的某些性质(形状、位置、大小)可以用相应的数、式表示出来;使平面上某些几何问题可以转化为相应的代数问题来研究.学习解析几何,要特别重视以下几方面:(1)熟练掌握图形、图形性质与方程、数式的相互转化和利用;(2)与代数、三角、平面几何密切联系和灵活运用.•试题类编一、选择题1.(2003北京春文12,理10)已知直线ax+by+c=0 (abcw 0)与圆x2+y2=1 相切,贝U三条边长分别为|a|, |b|, |c|的三角形( )A.是锐角三角形B.是直角三角形C.是钝角三角形D.不存在2.(2003北京春理,12)在直角坐标系xOy 中,已知△ AOB三边所在直线的方程分别为x=0, y=0, 2x+3y=30,贝U/XAOB 内部和边上整点(即横、纵坐标均为整数的点)的总数是()A.95B.91C.88D.753.(2002京皖春文,8)到两坐标轴距离相等的点的轨迹方程是()A.x —y=0B.x+y=0C.|x| —y=0D.|x|—|y|=04.(2002京皖春理,8)圆2x2 + 2y2=1与直线xsin e+y—1 = 0(0 GR, e# 万十kjt,kGZ)的位置关系是()A.相交B.相切C.相离D.不确定的5.(2002 全国文)若直线(1+a)x+y+1=0 与圆x2+y2—2x=0相切,则a的值为()B.2, —2C.1A.1 , —16. (2002全国理)圆(x —1) 2+ y 2=1 的圆心到直线y=^33x 的距离是()A.1B.‘C.122D.T 37. (2002北京,2)在平面直角坐标系中,已知两点 A (cos80° ,sin80° ) ,B(cos20° , sin20° ),则 |AB|的值是( )A.1B.—C.-D.12228. (2002北京文,6)若直线l: y=kx V3与直线2x + 3y —6=0的交点位于第一象限,则直 线l 的倾斜角的取值范围是()B.(6,2)D.[6,2]9.(2002北京理,6)给定四条曲线:①x=1.其中与直线x+y —京=0仅有一个交点的曲线是()十2X一4④1= 2L4 + 2XA.[6,3)A.①②③B.②③④C.①d④ D.①③④10.(2001 全国文,2)过点A (1, —1)、B (―1, 1)且圆心在直线x+y—2=0上的圆的方程是( )A. (x —3) 2+ (y+1) 2 = 4B. ( x + 3) 2+ (y—1) 2=4C. (x—1) 2+ (y—1) 2 = 4D. (x+1) 2+ (y+1) 2= 411.(2001上海春,14)若直线x=1的倾斜角为a ,则a ( )A.等于0B.等于zC.等于万D.不存在12.(2001天津理,6)设A、B是x轴上的两点,点P的横坐标为2且|PA|=|PB|,若直线PA的方程为x-y+1=0,则直线PB的方程是 ( )A.x+y— 5=0B.2x —y—1=0C.2y—x —4=0D.2x+y — 7=013.(2001京皖春,6)设动点P在直线x=1 上,O为坐标原点.以OP为直角边,点。
2021年高考数学 必过关题11 直线和圆
2021年高考数学 必过关题11 直线和圆一.填空题【考点一】直线方程1. (必修2第128页复习第19题改编)已知点,直线斜率存在且过点,若与线段相交,则l 的斜率k 的取值范围是 . 【答案】[解析] ,由斜率和倾斜角的关系可得.2. 课本原题(必修2第128页复习第16题)过点P (1,2)作直线l ,使直线l 与点M (2,3)和点N (4,-5)距离相等,则直线l 的方程为________________. 【答案】3x +2y -7=0或4x +y -6=0[解析] 法一:斜率不存在不满足题意,可设直线方程为, 所以,则有或,则或法二:直线l 为与MN 平行或经过MN 的中点的直线,当l 与MN 平行时,斜率为-4,故直线方程为y -2=-4(x -1),即4x +y -6=0;当l 经过MN 的中点时,MN 的中点为(3,-1),直线l 的斜率为-32,故直线方程为y -2=-32(x -1),即3x +2y -7=03.课本原题(必修2第128页复习第5题)已知直线过点,且与两坐标轴围成的三角形的面积为5,求直线的方程.改编:过点作直线l 分别交x 、y 正半轴于A 、B 两点, (1)当面积最小时,直线l 的方程为____________; (2)当最小时,直线l 的方程为____________. 【答案】(1) (2)[解析] 法一:由题意斜率存在,可设直线方程为令;令.所以1111(12)(2)(44)422AOB S k k k k∆=--=--≥,当且仅当时取等号,此时直线方程为.法二:由题意截距不为0,可设直线方程为, 过点,有,所以,解得, 所以,此时,即【考点二】圆的方程4.经过点,且与直线相切于点的圆的方程是______. 【答案】[解析] 法一:设圆心为,则有,解得, 又可得.法二:AB 中垂线方程为,过点B 且与直线l 垂直的直线方程为, 它们的交点即为圆心.Oy xNMD CB A【考点三】直线和圆的位置关系5.过定点(1,0)一定可以作两条直线与圆相切,则的取值范围为 . 【答案】[解析] 点(1,0)在圆外,还要注意构成圆的条件.6. 已知直线与圆心为的圆相交于两点,且为等边三角形,则实数________.【答案】 [解析]由题设圆心到直线的距离为, 所以,解得.7.若曲线y =1+4-x 2与直线y =k (x -2)+4有两个不同交点,则实数k 的取值范围是____.【答案】512<k ≤34[解析]半圆x 2+(y -1)2=4(y ≥1)与过P (2,4)点,斜率为k 的直线有两个交点,如图:A (-2,1),k PA =34,过P 与半圆相切时,k =512,∴512<k ≤34.【考点四】圆和圆的位置关系8.如果圆上总存在两个点到原点的距离为1,则实数的取值范围____________. 【答案】[解析]由题设圆与圆有两个交点,则. 【考点五】圆中的最值问题9.已知圆分别交x 轴正半轴及y 轴负半轴于M 、N 两点,点P 为圆C 上任意一点,则的最大值为__________. 【答案】[解析],设,则,法一:222222(1)(1)2PM PN x x y y x y ⋅=-++=-++-,可理解为点P 到距离的平方,则的最大值为,所以的最大值为. 法二:,令,可得.10. 在平面直角坐标系中,圆C 的方程为.若直线上存在点,使过所作的圆的两条切线相互垂直,则实数的取值范围是 . 【答案】[解析]由题设可得,直线上存在点,使得即可,则,则,可得. 二.解答题11.如图,平面直角坐标系中,和为两等腰直角三角形,,C (a ,0)(a >0).设和的外接圆圆心分别为,.(1)若⊙M 与直线CD 相切,求直线CD 的方程;(2)若直线AB 截⊙N 所得弦长为4,求⊙N 的标准方程; (3)是否存在这样的⊙N ,使得⊙N 上有且只有三个点到直线AB 的距离为,若存在,求此时⊙N 的标准方程;若不存在, 说明理由.[解析](1)圆心.∴圆方程为, 直线CD 方程为.∵⊙M 与直线CD 相切,∴圆心M 到直线CD 的距离d =, 化简得: (舍去负值).∴直线CD 的方程为. (2)直线AB 方程为:,圆心N . ∴圆心N 到直线AB 距离为.∵直线AB 截⊙N 的所得弦长为4,∴.∴a =±(舍去负值) . ∴⊙N 的标准方程为. (3)存在.由(2)知,圆心N 到直线AB 距离为(定值),且AB ⊥CD 始终成立,∴当且仅当圆N 半径,即a =4时,⊙N 上有且只有三个点到直线AB 的距离为. 此时, ⊙N 的标准方程为.12.课本原题(必修2第112页习题2.2第12题):已知点与两个定点的距离之比为,那么点M 的坐标应满足什么关系?画出满足条件的点M 所构成的曲线.改编1:(xx 高考江苏卷第13题)满足条件的三角形的面积的最大值为 . 解析:法一(原解法):本小题考查三角面积公式、余弦定理及函数思想。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考真题第十一篇直线和圆的方程2019年1.(2019北京理3)已知直线l 的参数方程为 (t 为参数),则点(1,0)到直线l 的距离是(A )(B ) (C ) (D ) 2.(2019江苏10)在平面直角坐标系中,P 是曲线上的一个动点, 则点P 到直线x +y =0的距离的最小值是 .3(2019江苏18)如图,一个湖的边界是圆心为O 的圆,湖的一侧有一条直线型公路l ,湖上有桥AB (AB 是圆O 的直径).规划在公路l 上选两个点P 、Q ,并修建两段直线型道路PB 、QA .规划要求:线段PB 、QA 上的所有点到点O 的距离均不小于圆....O 的半径.已知点A 、B 到直线l 的距离分别为AC 和BD (C 、D 为垂足),测得AB =10,AC =6,BD =12(单位:百米).(1)若道路PB 与桥AB 垂直,求道路PB 的长;(2)在规划要求下,P 和Q 中能否有一个点选在D 处?并说明理由;(3)在规划要求下,若道路PB 和QA 的长度均为d (单位:百米).求当d 最小时,P 、Q 两点间的距离.4.(2019浙江12)已知圆的圆心坐标是,半径长是.若直线与圆相切于点,则=_____,=______.2010-2018年x =1+3ty =2+4tìíî15254565xOy 4(0)y x x x=+>C (0,)m r 230x y -+=C (2,1)A --m r2010-2018年一、选择题1.(2018全国卷Ⅲ)直线20x y ++=分别与x 轴,y 轴交于A ,B 两点,点P 在圆22(2)2x y -+=上,则ABP ∆面积的取值范围是A .[2,6]B .[4,8]C.D.2.(2018天津)已知圆2220x y x +-=的圆心为C ,直线1,232⎧=-+⎪⎪⎨⎪=-⎪⎩x y (t 为参数)与该圆相交于A ,B 两点,则ABC △的面积为 .3.(2018北京)在平面直角坐标系中,记d 为点(cos ,sin )P θθ到直线20x my --=的距离,当θ,m 变化时,d 的最大值为 A .1B .2C .3D .44.(2017新课标Ⅲ)已知椭圆C :22221(0)x y a b a b+=>>的左、右顶点分别为1A ,2A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为ABCD .135.(2017新课标Ⅲ)在矩形ABCD 中,1AB =,2AD =,动点P 在以点C 为圆心且与BD相切的圆上.若AP AB AD λμ=+,则λμ+的最大值为 A .3 B. CD .26.(2015山东)一条光线从点(2,3)--射出,经y 轴反射后与圆22(3)(2)1x y ++-=相切,则反射光线所在直线的斜率为A .53-或35-B .32-或23- C .54-或45- D .43-或34- 7.(2015广东)平行于直线210x y ++=且与圆225x y +=相切的直线的方程是A .250x y ++=或250x y +-=B .20x y ++=或20x y +-=C .250x y -+=或250x y --=D .20x y -=或20x y --=8.(2015新课标2)过三点(1,3)A ,(4,2)B ,(1,7)C -的圆交于y 轴于M 、N 两点,则MN =A .26B .8C .46D .109.(2015重庆)已知直线l :10()x ay a R +-=∈是圆C :224210x y x y +--+=的对称轴,过点(4,)A a -作圆C 的一条切线,切点为B ,则AB =A .2B .C .6D .10.(2014新课标2)设点0(,1)M x ,若在圆22:=1O x y +上存在点N ,使得°45OMN ∠=,则0x 的取值范围是A .[]1,1-B .1122⎡⎤-⎢⎥⎣⎦, C .⎡⎣ D .22⎡-⎢⎣⎦, 11.(2014福建)已知直线l 过圆()2234x y +-=的圆心,且与直线10x y ++=垂直,则l 的方程是A .20x y +-=B .20x y -+=C .30x y +-=D .30x y -+= 12.(2014北京)已知圆()()22:341C x y -+-=和两点(),0A m -,()(),00B m m >,若圆C 上存在点P ,使得90APB ∠=,则m 的最大值为A .7B .6C .5D .413.(2014湖南)若圆221:1C x y +=与圆222:680C x y x y m +--+=外切,则m =A .21B .19C .9D .11-14.(2014安徽)过点P )(1,3--的直线l 与圆122=+y x 有公共点,则直线l 的倾斜角的取值范围是A .]60π,(B .]30π,(C .]60[π,D .]30[π,15.(2014浙江)已知圆22220x y x y a ++-+=截直线20x y ++=所得弦的长度为4,则实数a 的值是A .-2B .-4C .-6D .-816.(2014四川)设m R ∈,过定点A 的动直线0x my +=和过定点B 的动直线30mx y m --+=交于点(,)P x y ,则||||PA PB +的取值范围是A. B. C. D.17.(2014江西)在平面直角坐标系中,,A B 分别是x 轴和y 轴上的动点,若以AB 为直径的圆C 与直线240x y +-=相切,则圆C 面积的最小值为 A .45π B .34π C.(6π- D .54π18.(2013山东)过点(3,1)作圆的两条切线,切点分别为A ,B ,则直线AB 的方程为A .B .C .D .19.(2013重庆)已知圆,圆,分别是圆上的动点,为轴上的动点,则的最小值为 A . BC .D20.(2013安徽)直线被圆截得的弦长为A .1B .2C .4D .21.(2013新课标2)已知点;;,直线将△分割为面积相等的两部分,则的取值范围是()2211x y -+=230x y +-=230x y --=430x y --=430x y +-=()()221:231C x y -+-=()()222:349C x y -+-=,M N12,C C P x PM PN +416-250x y +-+=22240x y x y +--=()1,0A -()1,0B ()0,1C y ax b =+(0)a >ABCbA .B .C .D . 22.(2013陕西)已知点(,)M a b 在圆外, 则直线1ax by +=与圆O 的位置关系是A .相切B .相交C .相离D .不确定23.(2013天津)已知过点P (2,2) 的直线与圆相切, 且与直线垂直, 则A .B .1C .2D .24.(2013广东)垂直于直线且与圆相切于第一象限的直线方程是A .B .C .D .25.(2013新课标2)设抛物线的焦点为,直线过且与交于,两点.若,则的方程为A .或1y x =-+B .或C .或D .或 26.(2012浙江)设a R ∈,则“1a =”是“直线1l :210ax y +-=与直线2l :(1)40x a y +++=平行”的A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件27.(2012天津)设m ,n R ∈,若直线(1)+(1)2=0m x n y ++-与圆22(1)+(y 1)=1x --相切,则+m n 的取值范围是A.[1 B.(,1[1+3,+)-∞-∞ C.[2-D .(,2[2+22,+)-∞-∞(0,1)1122⎛⎫-⎪⎪⎝⎭1123⎛⎤- ⎥ ⎦⎝11,32⎡⎫⎪⎢⎣⎭221:O x y +=225(1)x y +=-10ax y -+=a =12-121y x =+221x y +=0x y +=10x y ++=10xy +-=0x y +=2:4C y x =F l F C A B ||3||AF BF =l 1yx =-(1)3y x =-(1)3yx =--1)yx =-1)yx =-(1)2yx =-(1)2y x =--28.(2012湖北)过点(1,1)P 的直线,将圆形区域{}22(,)|4x y x y +分为两部分,使得这两部分的面积之差最大,则该直线的方程为A .20x y +-=B .10y -=C .0x y -=D .340x y +-=29.(2012天津)在平面直角坐标系中,直线与圆相交于两点,则弦的长等于A .B .C D .30.(2011北京)已知点A (0,2),B (2,0).若点C 在函数y = x 的图像上,则使得ΔABC 的面积为2的点C 的个数为 A .4B .3C .2D .131.(2011江西)若曲线1C :2220x y x +-=与曲线2C :()0y y mx m --=有四个不同的交点,则实数m 的取值范围是 A .(3-3) B .(3-,0)(0,3)C .[D .(-∞, +∞) 32.(2010福建)以抛物线24y x =的焦点为圆心,且过坐标原点的圆的方程为A .22++2=0x y xB .22++=0x y x C .22+y =0x x - D .22+2=0x y x -33.(2010广东)若圆心在x O 位于y 轴左侧,且与直线20x y +=相切,则圆O 的方程是A .22(5x y +=B .22(5x y ++=C .22(5)5x y -+= D .22(5)5x y ++=二、填空题34.(2018江苏)在平面直角坐标系xOy 中,A 为直线:2l y x =上在第一象限内的点,(5,0)B ,以AB 为直径的圆C 与直线l 交于另一点D .若0AB CD ⋅=,则点A 的横坐标为 .35.(2017江苏)在平面直角坐标系xOy 中,(12,0)A -,(0,6)B ,点P 在圆O :2250x y +=xOy 3450x y +-=224x y +=,A B AB 1上,若20PA PB ⋅≤,则点P 的横坐标的取值范围是 .36.(2015湖北)如图,圆C 与x 轴相切于点(1,0)T ,与y 轴正半轴交于两点,A B (B 在A的上方),且2AB =.(Ⅰ)圆C 的标准..方程为 ; (Ⅰ)过点A 任作一条直线与圆22:1O x y +=相交于,M N 两点,下列三个结论:①NA MA NBMB=; ②2NB MA NAMB-=;③NB MA NAMB+=其中正确结论的序号是 . (写出所有正确结论的序号)37.(2014江苏)在平面直角坐标系中,直线被圆截得的弦长为 .38.(2014重庆)已知直线与圆心为的圆相交于两点,且为等边三角形,则实数_________.39.(2014湖北)直线1l :y x a =+和2l :y x b =+将单位圆22:1C x y +=分成长度相等的四段弧,则22a b +=________.40.(2014山东)圆心在直线20x y -=上的圆C 与y 轴的正半轴相切,圆C 截x 轴所得弦的长为C 的标准方程为 .41.(2014陕西)若圆C 的半径为1,其圆心与点)0,1(关于直线x y =对称,则圆C 的标准方程为____.42.(2014重庆)已知直线0=+-a y x 与圆心为C 的圆044222=--++y x y x 相交于B A ,两点,且BC AC ⊥,则实数a 的值为_________.xOy 032=-+y x 4)1()2(22=++-y x 02=-+y ax C ()()4122=-+-a y x B A ,ABC ∆=a43.(2014湖北)已知圆22:1O x y +=和点,若定点(,0)B b (2)b ≠-和常数λ满足:对圆O 上任意一点,都有||||MB MA λ=,则 (Ⅰ) ; (Ⅱ) .44.(2013浙江)直线23y x =+被圆22680x y x y +--=所截得的弦长等于__________.45.(2013湖北)已知圆:,直线:().设圆上到直线的距离等于1的点的个数为,则 .46.(2012北京)直线y x =被圆22(2)4x y +-=截得的弦长为 .47.(2011浙江)若直线250x y -+=与直线260x my +-=互相垂直,则实数m =__. 48.(2011辽宁)已知圆C 经过A (5,1),B (1,3)两点,圆心在x 轴上,则C 的方程为__. 49.(2010新课标)圆心在原点上与直线20x y +-=相切的圆的方程为 . 50.(2010新课标)过点A (4,1)的圆C 与直线0x y -=相切于点(2,1)B ,则圆C 的方程为 . 三、解答题51.(2016年全国I)设圆222150x y x ++-=的圆心为A ,直线l 过点(1,0)B 且与x 轴不重合,l 交圆A 于C ,D 两点,过B 作AC 的平行线交AD 于点E . (I )证明EA EB +为定值,并写出点E 的轨迹方程;(II )设点E 的轨迹为曲线1C ,直线l 交1C 于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.52.(2014江苏)如图,为了保护河上古桥,规划建一座新桥BC ,同时设立一个圆形保护区.规划要求:新桥BC 与河岸AB 垂直;保护区的边界为圆心M 在线段OA 上并与BC 相切的圆.且古桥两端O 和A 到该圆上任意一点的距离均不少于80m . 经测量,点A位于点O 正北方向60m 处, 点C 位于点O 正东方向170m 处(OC 为河岸),. (I )求新桥BC 的长;(II )当OM 多长时,圆形保护区的面积最大?(2,0)A -M b =λ=O 225x y +=l cos sin 1x y θθ+=π02θ<<O l k k =OA 34tan =∠BCO53.(2013江苏)如图,在平面直角坐标系中,点,直线.设圆C 的半径为1,圆心在上.(I)若圆心也在直线上,过点作圆的切线,求切线的方程;(II)若圆上存在点,使,求圆心的横坐标的取值范围.54.(2013新课标2)在平面直角坐标系中,已知圆在轴上截得线段长为,在轴上截得线段长为(I)求圆心的轨迹方程;(II)若点到直线的距离为,求圆的方程.55.(2011新课标)在平面直角坐标系xoy中,曲线261y x x=-+与坐标轴的交点都在圆C上.(I)求圆C的方程;(II)若圆C与直线0x y a-+=交于A,B两点,且,OA OB⊥求a的值.56.(2010北京)已知椭圆C的左、右焦点坐标分别是(,,xOy()03A,24l y x=-:lC1y x=-A CC M2MA MO=C axOy P x y PP y x=2P椭圆C交与不同的两点M,N,以线段MN为直径作圆P,圆心为P.直线y t(I)求椭圆C的方程;(II)若圆P与x轴相切,求圆心P的坐标;Q x y是圆P上的动点,当t变化时,求y的最大值.(Ⅲ)设(,)答案部分 2019年1.解析 由直线l 的参数方程消去t ,可得其普通方程为. 则点(1,0)到直线l 的距离是.故选D .2. 解析 解法一:由,得, 设斜率为的直线与曲线切于,由,解得. 所以曲线上,点到直线的距离最小,. 解法二:由题意可设点的坐标为,则点到直线的距离 ,当且仅当所以点到直线的距离的最小值为4. 3.解析 解法一:(1)过A 作,垂足为E .由已知条件得,四边形ACDE 为矩形,.' 因为PB ⊥AB ,所以. 4320x y -+=65d ==4(0)y x x x =+>241y x'=-1-4(0)y x x x=+>0004(,)x x x +20411x -=-000)x x =>4(0)y x x x=+>P 0x y +=4=P 4,x x x ⎛⎫+⎪⎝⎭()0x >P 0x y +=222224x d ⎛⎫+ ⎪==⨯⨯=x =P 0x y +=AE BD ⊥6, 8DE BE AC AE CD =====84cos sin 105PBD ABE ∠=∠==所以.因此道路PB 的长为15(百米).(2)①若P 在D 处,由(1)可得E 在圆上,则线段BE 上的点(除B ,E )到点O 的距离均小于圆O 的半径,所以P 选在D 处不满足规划要求. ②若Q 在D 处,联结AD ,由(1)知,从而,所以∠BAD 为锐角. 所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此,Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求; 当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设为l 上一点,且,由(1)知,B =15, 此时; 当∠OBP >90°时,在中,. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA ≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,.此时,线段QA 上所有点到点O 的距离均不小于圆O12154cos 5BD PB PBD ===∠10AD ==2227cos 0225AD AB BD BAD AD AB +-∠==>⋅1P 1PB AB ⊥1P 11113sin cos 1595PD PB PBD PB EBA =∠=∠=⨯=1PPB △115PB PB >=CQ ===的半径.综上,当PB ⊥AB ,点Q 位于点C 右侧,且CQ =时,d 最小,此时P ,Q 两点间的距离PQ =PD +CD +CQ =17+.因此,d 最小时,P ,Q 两点间的距离为17+(百米). 解法二:(1)如图,过O 作OH ⊥l ,垂足为H.以O 为坐标原点,直线OH 为y 轴,建立平面直角坐标系.因为BD =12,AC =6,所以OH =9,直线l 的方程为y =9,点A ,B 的纵坐标分别为3,−3. 因为AB 为圆O 的直径,AB =10,所以圆O 的方程为x 2+y 2=25.从而A (4,3),B (−4,−3),直线AB 的斜率为.因为PB ⊥AB ,所以直线PB 的斜率为, 直线PB 的方程为.所以P (−13,9),. 因此道路PB 的长为15(百米).(2)①若P 在D 处,取线段BD 上一点E (−4,0),则EO =4<5,所以P 选在D 处不满足规划要求.②若Q 在D 处,联结AD ,由(1)知D (−4,9),又A (4,3), 所以线段AD :. 在线段AD 上取点M (3,),因为,3443-42533y x =--15PB ==36(44)4y x x =-+-1545OM =<=所以线段AD 上存在点到点O 的距离小于圆O 的半径. 因此Q 选在D 处也不满足规划要求. 综上,P 和Q 均不能选在D 处. (3)先讨论点P 的位置.当∠OBP <90°时,线段PB 上存在点到点O 的距离小于圆O 的半径,点P 不符合规划要求; 当∠OBP ≥90°时,对线段PB 上任意一点F ,OF ≥OB ,即线段PB 上所有点到点O 的距离均不小于圆O 的半径,点P 符合规划要求.设为l 上一点,且,由(1)知,B =15,此时(−13,9); 当∠OBP >90°时,在中,. 由上可知,d ≥15. 再讨论点Q 的位置.由(2)知,要使得QA≥15,点Q 只有位于点C 的右侧,才能符合规划要求.当QA =15时,设Q(a ,9),由,得a =,所以Q (,9),此时,线段QA 上所有点到点O 的距离均不小于圆O 的半径.综上,当P (−13,9),Q (,9)时,d 最小,此时P ,Q 两点间的距离.因此,d 最小时,P ,Q 两点间的距离为. 4.解析:解法一:如图,由圆心与切点的连线与切线垂直,得,解得. 所以圆心为(0,-2),则半径.1P 1PB AB ⊥1P 1P 1PPB △115PB PB >=15(4)AQ a ==>4+4+4+4(13)17PQ =+-=+17+1122m +=-2m =-22(20)(12)5r =--+-+=解法二:由,得,所以2010-2018年1.A【解析】圆心(2,0)到直线的距离d==所以点P到直线的距离1d∈.根据直线的方程可知A,B两点的坐标分别为(2,0)A-,(0,2)B-,所以||AB=所以ABP∆的面积111||2S AB d==.因为1d∈,所以[2,6]S∈,即ABP∆面积的取值范围是[2,6].故选A.2.12【解析】直线的普通方程为20x y+-=,圆的标准方程为22(1)1x y-+=,圆心为(1,0)C,半径为1,点C到直线20x y+-=的距离2d==以||AB==11222ABCS∆==.3.C【解析】由题意可得d====(其中cosϕ=,sinϕ=,∵1sin()1θϕ--≤≤,d≤1=+∴当0m=时,d取得最大值3,故选C.4.A【解析】以线段12A A为直径的圆是222x y a+=,直线20bx ay ab-+=与圆相切,r==2m=-r==所以圆心到直线的距离d a ==,整理为223a b =,即()22222323a a c a c =-⇒=,即2223c a =,3c e a ==,故选A .5.A 【解析】如图建立直角坐标系,则(0,1)A ,(0,0)B ,(2,1)D ,(,)P x y所以圆的方程为224(2)5x y -+=, 所以(,1)AP x y =-,(0,1)AB =-,(2,0)AD =,由AP AB AD λμ=+,得21x y μλ=⎧⎨-=-⎩,所以λμ+=12xy -+,设12x z y =-+,即102xy z -+-=, 点(,)P x y 在圆上,所以圆心到直线102xy z -+-=的距离小于半径,≤,解得13z ≤≤,所以z 的最大值为3, 即λμ+的最大值为3,选A .6.D 【解析】(2,3)--关于y 轴对称点的坐标为(2,3)-,设反射光线所在直线为3(2)y k x +=-,即230kx y k ---=,则1d ==,|55|k +=43k =-或34-.x7.A 【解析】 设所求直线的方程为20x y c ++=(1)≠c ,=所以c =故所求直线的方程为250x y ++=或250x y +-=.8.C 【解析】设过,,A B C 三点的圆的方程为220x y Dx Ey F ++++=,则3100422007500D E F D E F D E F +++=⎧⎪+++=⎨⎪-++=⎩,解得2,4,20D E F =-==-, 所求圆的方程为2224200x y x y +-+-=,令0x,得24200y y +-=,设1(0,)M y ,2(0,)N y ,则124y y +=-,1220y y ⋅=-,所以12||||MN y y =-==9.C 【解析】圆标准方程为,圆心为,半径为,因此,,即,.选C .10.A 【解析】当点M 的坐标为(1,1)时,圆上存在点(1,0)N ,使得45OMN ∠=,所以01x =符合题意,排除B 、D ;当点M的坐标为时,OM =,过点M 作圆O 的一条切线MN ',连接ON ',则在Rt OMN '∆中,sin OMN '∠=<,则45OMN '∠<,故此时在圆O 上不存在点N ,使得°45OMN ∠=,即0x =合题意,排除C ,故选A .11.D 【解析】直线l 过点(0,3),斜率为1,所以直线l 的方程为30x y -+=.12.B 【解析】因为圆C 的圆心为(3,4),半径为1,||5OC =,所以以原点为圆心、以m为半径与圆C 有公共点的最大圆的半径为6,所以m 的最大值为6,故选B . 13.C 【解析】由题意得12(0,0),(3,4)C C,121,r r ==1212||15C C r r =+==,所以9m =.C 22(2)(1)4x y -+-=(2,1)C 2r =2110a +⨯-=1a =-(4,1)A --6AB ===14.D 【解析】设直线l 的倾斜角为θ,由题意可知min max 0,263ππθθ==⨯=.15.B 【解析】圆的标准方程为22(1)(1)2x y a ++-=-,则圆心(1,1)C -,半径r 满足22r a =-,则圆心C 到直线20x y ++=的距离d == 所以2422r a =+=-,故4a =-16.B 【解析】易知直线0x my +=过定点(0,0)A ,直线30mx y m --+=过定点(1,3)B ,且两条直线相互垂直,故点P 在以AB 为直径的圆上运动,故||||||cos ||sin PA PB AB PAB AB PAB +=∠+∠)4PAB π=∠+∈.故选B .17.A 【解析】由题意可知以线段AB 为直径的圆C 过原点O ,要使圆C 的面积最小,只需圆C 的半径或直径最小.又圆C 与直线240x y +-=相切,所以由平面几何知识,知圆的直径的最小值为点O 到直线240x y +-=的距离,此时2r =,得r =,圆C 的面积的最小值为245S r ππ==. 18.A 【解析】根据平面几何知识,直线AB 一定与点(3,1),(1,0)的连线垂直,这两点连线的斜率为12,故直线AB 的斜率一定是2-,只有选项A 中直线的斜率为2-. 19.A 【解析】圆C 1,C 2的圆心分别为C 1,C 2,由题意知|PM |≥|PC 1|-1,|PN |≥|PC 2|-3,∴|PM |+|PN |≥|PC 1|+|PC 2|-4,故所求值为|PC 1|+|PC 2|-4的最小值. 又C 1关于x 轴对称的点为C 3(2,-3),所以|PC 1|+|PC 2|-4的最小值为|C 3C 2|-444=, 故选A .20.C 【解析】圆心,圆心到直线的距离,半径,所以最后弦长为.21.B 【解析】(1)当过与的中点时,符合要求,此, (1,2)d=r=4=y ax b =+()1,0A -BC D 13b =(2)当位于②位置时,, 令得,∵,∴ (3) 当位于③位置时,, 令,即,化简得,∵, ∴,解得综上:,选B 22.B 【解析】点M(a , b )在圆221x y +=外,∴221a b +>.圆(0,0)O 到直线1ax by +=距离1d =<=圆的半径,故直线与圆相交.所以选B .23.C 【解析】设直线斜率为,则直线方程为,即,圆心.因为直线与直线垂直,所以, 即,选C . 24.A 【解析】∵圆心到直线的距离等于,排除B 、C ;相切于第一象限排除D ,选A.直接法可设所求的直线方程为:,再利用圆心到直线的距离等于y ax b =+1,0b A a ⎛⎫-⎪⎝⎭11,11b a b D a a -+⎛⎫⎪++⎝⎭1112A BD S ∆=212b a b=-0a >12b <y ax b =+21,11b b a A a a --⎛⎫⎪--⎝⎭21,11b a b D a a -+⎛⎫⎪++⎝⎭2212A CD S ∆=()111112112b b b a a --⎛⎫--= ⎪+-⎝⎭22241a b b -=-+0a >22410b b -+<1122b -<<+1122b -<<k 2(2)y k x -=-220kx y k -+-=(1,0)==12k =-10ax y -+=112k a =-=-2a =1r =()0y x k k =-+>,求得25.C 【解析】抛物线24y x =的焦点坐标为(1,0),准线方程为1x =-,设11(,)A x y ,22(,)B x y ,则因为|AF |=3|BF |,所以1213(1)x x +=+,所以1232x x =+,因为1||y =32||y ,1x =92x ,所以1x =3,2x =,当1x =3时,, 所以此时,若,则, 此时此时直线方程为。