五年级长方体和正方体的经典例题讲解

合集下载

人教版五年级数学下册长方体和正方体重点易错题解析40例

人教版五年级数学下册长方体和正方体重点易错题解析40例

人教版五年级数学下册长方体和正方体重点易错题解析(精选40例)【1】长方体的位置任意改变,体积不变。

(√)易错题解析:一个物体不论横着放、竖着放或还其他位置摆放,物体所占空间大小不变,即物体的体积和位置无关。

【2】有6个面,12条棱、8个顶点的物体就是长方体。

(×)错题解析:一个物体是长方体,必须中间的四条棱要垂直于上下底面,而有6个面,12条棱、8个顶点的物体有可能是6个面的斜棱柱,中间的四条棱与底面不垂直。

【3】长方体的三条棱分别叫做长方体的长、宽、高。

(×)错因解析:长方体相交于一个顶点处的三条棱分别叫做长方体的长、宽、高,而长方体中任意的三条棱有可能为三条相等的长(或宽,或高),也有可能有两条相等的长(或宽,或高)。

订正:长方体相交于一个顶点处的三条棱分别叫做长方体的长、宽、高。

【4】长方体的棱可以分成4组,每组3条棱,分别是长、宽、高。

(×)错因解析:长方体有12条棱,除相对的两个面都为正方形外,其中4条长,4条宽,4条高长度分别相等,因此长方体的棱可以分成3组,每组3条棱长度相等。

订正:长方体的棱可以分成3组,每组4条棱,分别是4条长、4条宽、4条高。

【5】在长方体中,只有相对的棱长度相等。

(×)错题解析:长方体中,长和宽、宽和高、长和高并不相对,但是当长方体相对两个面完全相同,如上、下面完全相同,此时长、宽、高三个数值中,有两个数值可能相等。

订正:在长方体中,不是相对的棱长度可能相等。

【6】一个长方体,不可能有8条棱的长度都相等。

(×)错题解析:在长方体中,周围的四个面是完全相同的长方形,此时如另一组相对的面是两个完全相同的正方形,此时这两个正方形的8条边长长度相等。

订正:一个长方体,可能有8条棱的长度都相等。

【7】长方体中最多有4个面完全相同。

(√)易错题解析:长方体相对的面如果是正方形,此时周围的四个面是形状和大小完全相同的长方形,如某些牙膏盒,某些装日光灯的包装盒,都是这样的长方体。

五年级奥数几何长方体和正方体经典例题详解

五年级奥数几何长方体和正方体经典例题详解

五年级奥数几何长方体和正方体经典例题详解有关五年级奥数几何长方体和正方体经典例题详解五年级奥数几何长方体和正方体经典例题详解1、一个零件形状大小如下图:算一算,它的体积是多少立方厘米,表面积是多少平方厘米?【思路导航】(1)可以把零件沿虚线分成两部分来求它的体积,左边的长方体体积是10×4×2=80(立方厘米),右边的长方体的体积是10×(6-2)×2=80(立方厘米),整个零件的体积是80+80=160(立方厘米)。

10×4×2+10×(6-2)×2=160(立方厘米)(2)求这个零件的表面积,看起来比较复杂,其实,朝上的两个面的面积和正好与朝下的一个面的面积相等;朝右的两个面的面积和正好与朝左的一个面的面积相等。

因此,此零件的表面积就是:(10×6+10×4+4×2×2)×2=232(平方厘米)练习(1)一个长5厘米、宽1厘米、高3厘米的长方体,被切去一块后(如下图),剩下部分的表面积和体积各是多少?练习(2)把一根长2米的长方体木料锯成1米长的两段,表面积增加2平方分米,求这根木料原来的体积。

练习(3)有一个长8厘米,宽1厘米,高3厘米的长方体木块,在它的左右两角各切掉一个正方体(如下图),求切掉正方体后的表面积和体积各是多少?2、有一个长方体形状的零件。

中间挖去一个正方体的孔(如下图)。

你能算出它的体积和表面积吗?(单位:厘米)【思路导航】(1)先求出长方体的体积,8×5×6=240(立方厘米),由于挖去一个孔,所以体积减少2×2×2=8(立方厘米),这个零件的体积是240-8=232(立方厘米)(2)长方体完整的表面积是(8×5+8×6+5×6)×2=236(平方厘米),但由于挖去一个孔,它的表面积减少了一个(2×2)平方厘米的面积,同时又增加了凹进去的5个(2×2)平方厘米的面,因此,这个零件的表面积是236+(2×2)×4=252(平方厘米).练习(1)有一个形状如下图的零件,求它的体积和表面积。

五年级数学长方体和正方体试题答案及解析

五年级数学长方体和正方体试题答案及解析

五年级数学长方体和正方体试题答案及解析1.一个长方体长12厘米,宽8厘米,高5厘米,这个长方体六个面中最大的面面积是平方厘米,最小的面面积是平方厘米,它的表面积是平方厘米。

【答案】96,40,392【解析】分析:由题意可知:最大的面,即上面(或下面),用12×8进行解答即可;最小的面,即侧面:用5×8计算即可;再据长方体的表面积公式即可求出其表面积。

解答:解:最大:12×8=96(平方厘米);最小:5×8=40(平方厘米);表面积:(12×8+12×5+8×5)×2,=(96+60+40)×2,=196×2,=392(平方厘米);【考点】长方体和正方体的表面积。

2.用4个相同的正方体可以摆出一个稍大一些的正方体..(判断对错)【答案】×.【解析】将若干个小正方体,摆成一个大正方体,那么这个正方体的每个棱长上至少有2个小正方体,由此即可计算得出小正方体的总个数.解答:解:根据小正方体拼组大正方体的特点可知:将若干个小正方形,摆成一个大正方体,那么这个正方体的每个棱长上至少有2个小正方体,所以组成的这个大正方体中,小正方体的个数至少有2×2×2=8(个).至少要用8个小正方体才能摆一个稍大一些的正方体.所以原题的说法错误.故答案为:×.点评:此题考查了小正方体拼组大正方体的方法的灵活应用:大正方体的每个棱长上小正方体的个数的三次方,就是组成这个大正方体的小正方体的个数总和.3.画一画.在方格纸里分别画出从正面、左面和上面看到的图形.【答案】【解析】从正面看到的有三层,最下面一层是3个正方形,第二层和第三层靠左侧分别是1个正方形:从左面看到有三层,最下面一层有2个正方形,第二层和第三层靠左侧分别是1个正方形:从上面看到的有两层,上面一层有4个正方形,下面靠左侧一个正方形:,由此即可解答.解答:解:答案如图,点评:此题考查了从不同的方向观察到的几何体的形状,做此类题时,应认真审题,根据看到的形状画出即可.4.加工一个长方体油箱要用多少铁皮,是求这个油箱的()A.表面积 B.体积 C.容积【答案】A【解析】根据油箱的特点,加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积.解:根据题干可得,要求油箱要用多少铁皮,是求这个长方体的表面积.故选:A.【点评】此题考查了长方体表面积的实际应用.5.一个长方体长5dm、宽4dm、高2dm,它的表面积是,体积是.【答案】76平方分米、40立方分米.【解析】根据长方体的表面积公式:S=(ab+ah+bh)×2,体积公式V=abh,代入数据解答即可.解:表面积:(5×4+5×2+4×2)×2=(20+10+8)×2=38×2=76(平方分米)体积:5×4×2=40(立方分米)答:这个长方体的表面积是76平方分米,体积是40立方分米.故答案为:76平方分米、40立方分米.【点评】此题主要考查长方体的表面积和体积的计算方法.6.1dm3的正方体可以分成个1cm3的小正方体.如果把这些小正方体排成一行,一共长.【答案】1000,1000厘米.【解析】(1)1立方分米=1000立方厘米,由此可以得出能够分成1000个1立方厘米的小正方体;(2)1立方厘米的小正方体的棱长是1厘米,把这些小正方体排成一排,总长度是1×1000=1000厘米.解:1立方分米=1000立方厘米,所以:1000÷1=1000(个),1立方厘米的小正方体的棱长是1厘米;则总长度是1×1000=1000(厘米),答:1立方分米的1个正方体可以分成1000个1立方厘米的小正方体,把这些小正方体排成一排,一共长1000厘米;故答案为:1000,1000厘米.【点评】(1)利用大正方体的体积除以小正方体的体积即可求出切割出的小正方体的总个数;(2)先求出小正方体的棱长,再乘以小正方体的总个数即可解决问题.7.焊接一个长7cm、宽2cm、高1cm的长方体框架,至少要用 cm的铁丝.【答案】40【解析】需要铁丝的长度等于这个长方体的棱长总和,长方体的棱长总和=(长+宽+高)×4,把数据代入公式解答.解:(7+2+1)×4,=10×4,=40(厘米),答:至少要用40厘米铁丝.故答案为:40.【点评】此题主要考查长方体的棱长总和公式的灵活运用.8.一个正方体木箱的表面积是72dm2,这个木箱占地面积是 dm2.【答案】12.【解析】根据正方体的特征:6个面是完全相同的正方形,正方体的表面积是指6个面的总面积.已知正方体的表面积是72平方分米,这个正方体木箱的占地面积就是它的底面积,用表面积除以6问题即可得到解决.解:72÷6=12(平方分米),答:这个木箱的占地面积是12平方分米.故答案为:12.【点评】此题考查的目的是使学生掌握正方体的特征,理解表面积的意义,根据正方体的表面积的计算方法解答问题.9.如图是由两个棱长都是2cm的正方体拼成的一个长方体,这个长方体的表面积是;体积是.【答案】40平方厘米,16立方厘米.【解析】根据题意“两个棱长都是2厘米的正方体拼成的一个长方体”,有两个面重合,这个长方体的表面积可以用两个正方体的表面积的和,减去重合的两个面的面积,这个长方体的体积等于两个正方体的体积之和.由此解答即可.解:长方体的表面积:2×2×6×2﹣2×2×2,=48﹣8,=40(平方厘米);也可以这样求:2×2×10=40(平方厘米);长方体的体积:23×2=8×2=16(立方厘米);故答案为:40平方厘米,16立方厘米.【点评】此题的解答关键是:弄清两个棱长都是2厘米的正方体拼成的一个长方体,这个长方体的表面积不等于两个正方体的表面积之和,因为有两个重合在一起,再根据公式解答即可.10.一个正方体的棱长总和是60厘米,它的表面积是()A.21600平方厘米B.150平方厘米C.125立方厘米【答案】B【解析】根据一个正方体的棱长总和是60厘米,可求出棱长的长度,进一步用棱长乘棱长乘6求得表面积.解:棱长:60÷12=5(厘米),表面积是:5×5×6=150(平方厘米);答:它的表面积是150平方厘米.故选:B.【点评】此题考查正方体表面积的计算方法.11.两个长方体的体积相等,它们的长、宽、高也一定相等..(判断对错)×【答案】×【解析】长方体的体积V=abh,可以假设出长方体的体积,进而就能确定出长、宽、高的值,是就可以进行判断.解:假设长方体的体积为24立方厘米,因为4×2×3=24,2×2×6=24,所以长方体的长、宽、高可以为4厘米、2厘米和3厘米,也可以为2厘米、2厘米、6厘米,所以两个长方体的体积相等,它们的长、宽、高不一定相等.故答案为:×.【点评】此题主要考查长方体的体积的计算方法,举实例证明,即可推翻题干的结论.12.用铁丝焊接成一个长14厘米,宽8厘米,高6厘米的长方体的框架,至少需要铁丝()厘米。

五年级长方体和正方体巧算表面积含参考答案

五年级长方体和正方体巧算表面积含参考答案

五年级长⽅体和正⽅体巧算表⾯积含参考答案长⽅体和正⽅体(巧算表⾯积)例题讲学例1 两个棱长是2厘⽶的⼩正⽅体可以拼成⼀个长⽅体,这个长⽅体的表⾯积是多少?【40】【思路点拨】先根据题意画图:从图上可以清楚地看出:两个正⽅体原先各有当把它们拼起来时就少了2个正⽅形的⾯。

这时,求长⽅体的表⾯积只相当于求(12-2=)10个正⽅形的⾯积;还可以这样想:当两个正⽅体拼成⼀个长⽅体时,求长⽅体的表⾯积,我们可以先分别求出这个长⽅体的长、宽、⾼,再求出它的表⾯积。

当物体拼合时表⾯积之和少了,可以根据⽤原来的⾯从⽽求出拼合后物体的⾯积数量,然后求出表⾯积。

2.还可以求出拼成后⼤物体的长、宽、⾼,再根据物体形状直接求表⾯积。

同步精练1. 把两个棱长是3厘⽶的⼩正⽅体拼成⼀个长⽅体,这个长⽅体的表⾯积是多少?2.把底⾯积是36平⽅厘⽶的两个正⽅体⽊块拼成⼀个长⽅体,长⽅体的表⾯积是多少?3.把三个完全相同的正⽅体拼成⼀个长⽅体,这个长⽅体的表⾯积是350平⽅厘⽶。

每个正⽅体的表⾯积是多少平⽅厘⽶?例2 把⼀个长、宽、⾼分别是7厘⽶、6厘⽶、5厘⽶的长⽅体截成两个长⽅体,使这两个长⽅体表⾯积之和最⼤,这时表⾯积之和是多少平⽅厘⽶?【(7x6+7x5+6x5)x2+7x6x2=298】【思路点拨】把长⽅体截成两个长⽅体后,两个长⽅体表⾯积之和等于原长⽅体表⾯积再加上两个截⾯的⾯积。

这个长⽅体⼏个⾯中,上、下⾯的⾯积最⼤,所以要看哪个⾯的⾯积最⼤,于是本题就按平⾏于上、下⾯的⽅式去截,才使表⾯积之和最⼤。

每⼀种截法都会产⽣不同的⾯,所以判断怎么样截是解决问题的关键。

同步精练1. 把⼀个长10厘⽶、宽8厘⽶、⾼6厘⽶的长⽅体⽊料截成两个完全⼀样的长⽅体,怎样截才能使截成之后,得到两个长⽅体的表⾯积之和最⼤?最⼤是多少?【536】2.把两个长3厘⽶、宽2厘⽶、⾼1厘⽶的长⽅体拼成⼀个表⾯积最⼤的长⽅体,这个长⽅体的表⾯积是多少平⽅厘⽶?【40】3.把两个长6厘⽶、宽4厘⽶、⾼3厘⽶的长⽅体拼成⼀个⼤长⽅体,这个⼤长⽅体的表⾯积的最⼤值与最⼩值相差多少?【192】-【168】=【24】例3 求出下⾯⽴体图形的表⾯积。

人教版五年级下长方体和正方体复习_课堂讲解+随堂练习

人教版五年级下长方体和正方体复习_课堂讲解+随堂练习

五年级下长方体和正方体——课堂讲解姓名:_____________一、知识导航(熟记!!!)长方体和正方体是我们较为熟悉的立体图形。

长方体共有六个面,八个顶点,十二条棱。

在六个面中,两个对面是全等的,即三组对面两两全等。

1、长方体的表面积= 2×(长×宽+长×高+宽×高)2、长方体的体积= 长×宽×高= 横截面×高正方体是棱长相等的长方体,它是一种特殊的长方体,它的六个面都是正方形。

1、正方体的表面积= 棱长×棱长×62、正方体的体积= 棱长×棱长×棱长二、经典例题例1.求出如图所示立体图形的表面积和体积。

(单位:厘米)同步演练1:在一个棱长是12分米的正方体上放一个棱长是5分米的小正方体(如图)。

求这个立体图形的表面积和体积。

例2.在一个长20分米、宽10分米的长方体玻璃缸中,有10分米深的水,放入一块棱长是4分米的正方体铁块,铁块全部浸没在水中,并且没有水溢出,这时水面升高了几厘米?同步演练2:在一个长50厘米、宽40厘米、高10厘米的长方体容器中,盛有5厘米深的水。

现将一块石头放入水中,水面升高到8厘米处,这块石头的体积是多少立方厘米?例3.有一个空的长方体容器(如图1)和另一个水深为24厘米的长方体容器(如图2)。

若把容器2中的水倒一部分到容器1中,使两个容器中的水的深度相同,求这时水的深度。

同步演练3:在一个长24分米、宽9分米、高8分米的水槽中注入4分米深的水,然后放入一个棱长为6分米的铁块。

问水位上升了多少分米?例4.一个正方体被切成24个小长方体(如图)。

这些小长方体的表面积总和为162平方厘米,求这个正方体的表面积。

同步演练4:一个正方体形状的木块,棱长为1米。

沿着水平方向将它锯成3片,每片又按任意尺寸锯成4条,每条又按任意尺寸锯成5小块,共得到大大小小的长方体60个(如图)。

小学五年级下册数学讲义第三章 长方体和正方体 人教新课标版(含解析)

小学五年级下册数学讲义第三章 长方体和正方体 人教新课标版(含解析)

人教版小学五年级数学下册同步复习与测试讲义第三章长方体和正方体【知识点归纳总结】1. 长方体的特征1.长方体有6个面.有三组相对的面完全相同.一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同.2.长方体有12条棱,相对的四条棱长度相等.按长度可分为三组,每一组有4条棱.3.长方体有8个顶点.每个顶点连接三条棱.三条棱分别叫做长方体的长,宽,高.4.长方体相邻的两条棱互相垂直.【经典例题】1.长方体中至少有()条棱的长度相等.A.2B.4C.6D.8【分析】根据长方体的特征,长方体的6个面多少长方形(特殊情况有两个相对的面是正方形),一般情况长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.据此解答.【解答】解:长方体的12条棱分为互相平行的3组,每组4条棱的长度相等.答:长方体中至少有4条棱的长度相等.故选:B.【点评】此题考查的目的是理解掌握长方体的特征及应用.2. 正方体的特征①8个顶点.②12条棱,每条棱长度相等.③相邻的两条棱互相垂直.【经典例题】2.在一个正方体中,最多能找到()组互相垂直的线段.A.12B.18C.24【分析】根据互相垂直的定义:在同一平面内,当两条直线相交成90度时,这两条直线互相垂直;据此进行解答.【解答】解:据分析解答如下:垂直:AB⊥AD AB⊥BC AB⊥AE AB⊥BF;BC⊥CD BC⊥BF BC⊥CG;CD⊥AD CD⊥DH CD⊥CG;AD⊥DH AD⊥AEBF⊥FG BF⊥FEAE⊥FE AE⊥EH;CG⊥FG CG⊥GH;DH⊥GH DH⊥HE;FG⊥GH GH⊥EHHE⊥EF EF⊥FG.故选:C.【点评】本题考查的是垂线的定义,熟知正方体的性质是解答此题的关键.3. 长方体和正方体的表面积长方体表面积:六个面积之和.公式:S=2ab+2ah+2bh.(a表示底面的长,b表示底面的宽,h表示高)正方体表面积:六个正方形面积之和.公式:S=6a2.(a表示棱长)【经典例题】3.如下图,用三个完全相同的正方体拼成一个长方体后,表面积减少了100dm2,原来每个正方体的表面积是150dm2,长方体的表面积是350dm2.【分析】三个正方体一拼成一个长方体减少了4个面,减少的面积就是100dm2,可以求出一个面的面积,即100dm2除以4等于25dm2,再根据正方体的表面积公式S=6a2进行计算,再用一个正方体的表面积乘以3减去100dm2可求长方体的表面积.【解答】解:100÷4=25(dm2)25×6=150(dm2)150×3﹣100=450﹣100=350(dm2)答:原来每个正方体的表面积是150dm2,长方体的表面积350dm2.故答案为:150,350.【点评】本题是一道关于立体图形的拼接问题,考查了学生长方体的表面积公式及正方体的表面积公式的灵活运用.4. 长方体、正方体表面积与体积计算的应用(1)长方体:底面是矩形的直平行六面体,叫做长方体.长方体的性质:六个面都是长方形,(有时有两个面是正方形);相对的面面积相等;12条棱相对的4条棱长相等;8个顶点;相交于一个顶点的三条棱的长度分别叫长、宽、高;两个面相交的边叫做棱;三条棱相交的点叫做顶点.长方体的表面积:等于它的六个面的面积之和.如果长方体的长、宽、高、表面积分别用a、b、h、S表示,那么:S表=2(ab+ah+bh)长方体的体积:等于长乘以宽再乘以高.如果把长方体的长、宽、高、体积分别用a、b、h、V表示,那么:V=abh(2)正方体:长宽高都相等的长方体,叫做正方体.正方体的性质:六个面都是正方形;六个面的面积相等;有12条棱,棱长都相等;有8个顶点;正方体可以看做特殊的长方体.正方体的表面积:六个面积之和.如果正方体的棱长、表面积分别用a、S表示,那么:S表=6a2正方体的体积:棱长乘以棱长再乘以棱长.如果把正方体的棱长、体积分别用a、V表示,那么:V=a3【经典例题】4.礼堂里有一根用作支撑的长方体柱子,底面是一个边长为0.4米的正方形,柱子高4.5米.油漆这根柱子,求总共油漆面积的算式是0.4×4.5×4.√.(判断对错)【分析】要油漆这根柱子,两个底面接触地面和楼层,只求出每根柱子的4个侧面即可,侧面的长就是高4.5米,宽是底面的边长0.4米,代入长方形面积公式“长×宽”,然后乘4个面,即可得解.【解答】解:0.4×4.5×4=1.8×4=7.2(平方米).答:油漆面积是7.2平方米.故答案为:√.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.5. 长方体和正方体的体积长方体体积公式:V=abh.(a表示底面的长,b表示底面的宽,h表示高)正方体体积公式:V=a3.(a表示棱长)【经典例题】5.计算下面图形的体积和表面积.【分析】(1)长方体的长、宽、高均已知,根据长方体的体积计算公式“V=abh”即可求出这个长方体的体积;根据长方体的表面积计算公式“S=2(ah+bh+ab)”即可求出这个长方体的表面积.(2)这个正方体的棱长已知,根据正方体的体积计算公式“V=a3”即可求出这个正方体的体积;根据正方体的表面积计算公式“S=6a2”即可求出这个正方体的表面积.【解答】解:(1)15×8×7=120×7=840(15×7+8×7+15×8)×2=(105+56+120)×2=281×2=562答:这个长方体的体积是840,表面积是562.(2)3×3×3=9×3=2732×6=9×6=54答:这个正方体的体积是27,表面积是54.【点评】解答此题的关键是记住并会运用长方体、正方体的体积、表面积计算公式.【同步测试】单元同步测试题一.选择题(共10小题)1.一个正方体的棱长总和是24cm,每条棱长()A.1cm B.2cm C.3cm2.如图是用边长1cm的小正方体拼成的长方体.下列图形()是这个长方体中的一个面.A.B.C.3.用一根72厘米的铁丝正好可以焊成一个长8厘米、宽()厘米、高4厘米的长方体框架.A.4B.5C.64.正方体有___个面,相对应的两个面______.()A.6个,大小不同,形状一样B.6,大小相同形状一样C.6,大小不同形状不同5.一种长方体盒装牛奶,从包装盒的外面量,长6厘米,宽3厘米,高12厘米.它标注的净含量可能是()毫升.A.200B.220C.2506.一个长方体的集装箱,从里面测量长12m、宽4m、高3m,如果要装一批棱长2m的正方体货箱,最多能装()个.A.12B.18C.367.一团橡皮泥,妙想第一次把它捏成长方体,第二次把它捏成正方体.捏成的两个物体体积()A.长方体大B.正方体大C.一样大D.无法确定8.一张长方形纸板长80厘米,宽10厘米,把它对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面.如果要为这个长方体纸箱配一个底面,这个底面的面积是()A.200平方厘米B.400平方厘米C.800平方厘米9.有两个表面积都是60平方厘米的正方体,把它们拼成一个长方体.这个长方体的表面积是()平方厘米.A.90B.100C.110D.12010.把一根长2m的长方体木材平均截成3段,表面积增加了100dm2,原来木材体积是()dm3.A.50B.100C.500D.1000二.填空题(共8小题)11.小军在一个无盖的长方体玻璃容器内摆了一些棱长1分米的小正方体(如图).做这个玻璃容器至少要用玻璃平方分米,它的容积是立方分米.(玻璃的厚度忽略不计)12.长方体和正方体都有个面,条棱.长方体最多有个面是正方形.13.粉笔盒的形状是,红领巾的形状是.14.在如图的长方体中,和a平行的棱有条,和a垂直的棱有条.15.手工课上,小辉把三块小正方体方木粘在一起,如图:表面积比原来减少16平方厘米,原来1个小正方体的表面积是平方厘米.16.把一根长48厘米的铁丝焊成一个宽2厘米,高1厘米的长方体框架,这个框架的长是厘米.17.一个长方体的上面是面积为25平方厘米的正方形,前面是面积为30平方厘米的长方形,这个长方体的表面积是平方厘米.18.有一个长12厘米,宽8厘米,高4厘米的长方体,把高增加3厘米,则体积增加立方厘米,表面积增加平方厘米.三.判断题(共5小题)19.长方体长和宽可以相等,长、宽、高也可以相等.(判断对错)20.长方体和正方体的表面积就是求它6个面的面积之和,也就是它所占空间的大小.(判断对错)21.加工一个油箱要用多少铁皮,是求这个油箱的体积.(判断对错)22.正方体是长、宽、高都相等的长方体.(判断对错)23.两个长方体体积相等,底面积不一定相等.(判断对错)四.操作题(共1小题)24.一个无盖纸盒的长、宽、高分别是4厘米、3厘米和2厘米.图中画出的是纸盒展开图的后面和右面,请在方格纸上画出另外3个面.这个纸盒的容积是立方厘米.五.应用题(共6小题)25.五(二)班要做一个长1.5米、宽0.6米、高0.8米的长方体书架,现要在书架各边都安上装饰木条,做这个书架要多少米的装饰木条?26.两个棱长和均为18厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?27.在长40厘米、宽30厘米的长方形铁皮的四个角上,分别剪去一个边长5厘米的正方形后,正好折成一个无盖的铁盒.如果每毫升汽油重0.75克,那么这个铁盒最多能装多少克汽油?28.用铁丝悍接一个正方体框架,一共用了180分米长的铁丝,这个正方体的棱长是多少分米?29.一个房间长8米,宽6米,高4米.除去门窗22平方米,房间的墙壁和房顶都贴上墙纸,这个房间至少需要多大面积的墙纸?30.明明家有一个长方体金鱼缸,长6分米,宽5分米,高4.5分米.他不小心把鱼缸的右侧面的玻璃打碎了,需要重配一块.(1)重新配上的这块玻璃的面积是多少平方分米?(2)玻璃配好后,他往鱼缸内倒入54升水,水深多少分米?参考答案与试题解析一.选择题(共10小题)1.【分析】正方体的棱长总和=棱长×12,用24除以12即可.【解答】解:24÷12=2(厘米),答:它的每条棱长是2厘米.故选:B.【点评】此题考查的目的是掌握正方体以及棱长总和公式.2.【分析】如图是用边长1cm的小正方体拼成的长方体,它的长是4cm,宽是3cm,高是2cm;据此解答.【解答】解:因为拼成的长方体的长是4cm,宽是3cm,高是2cm;所以只有选项C是这个长方体中的一个面.故选:C.【点评】此题考查了长方体面的认识,确定出长宽高是关键.3.【分析】用一根72厘米长的铁丝正好可以焊成长方体,这个长方体的棱长总和就是72厘米,长方体的棱长总和=(长+宽+高)×4,用棱长总和除以4减去长和高,即可求出宽.据此解答.【解答】解:72÷4﹣(8+4)=18﹣12=6(厘米)答:宽6厘米.故选:C.【点评】此题主要考查长方体的棱长总和公式的灵活运用.4.【分析】正方体有6个面,6个面都是完全相同的正方形;据此解答.【解答】解:正方体有6个面,相对应的两个面大小相同形状一样.故选:B.【点评】此题考查了对正方体特征的掌握.5.【分析】根据同一个容器的体积一定大于它的容积,首先根据长方体的体积公式:V=abh,把数据代入公式求出这个牛奶盒的体积,进而确定它的容积.【解答】解:6×3×12=18×12=216(立方厘米)216立方厘米=216毫升所以它标注的净含量一定小于216毫升.答:它标注的净含量可能是200毫升.故选:A.【点评】此题主要考查长方体的体积(容积)公式的灵活运用,关键是熟记公式.6.【分析】用长方体集装箱的每条棱的长除以正方体的棱长,然后用去尾法取整数,再相乘就是最多能装的个数.据此解答.【解答】解:12÷2=6,4÷2=2,3÷2≈1,6×2×1=12(个).答:最多能装12个.故选:A.【点评】本题的关键是让学生走出用长方体的体积除以正方体的体积就是能装个数的误区.7.【分析】根据体积的意义,物体所占空间的大小叫做物体的体积.由此可知:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.这两次捏成的物体的体积相比较一样大.【解答】解:一团橡皮泥,第一次捏成长方体,第二次捏成正方体.只是形状变了,但体积不变,所以这两次捏成的物体的体积相比较一样大.故选:C.【点评】此题考查的目的是理解掌握体积的意义.8.【分析】根据题意可知,把这张长80厘米,宽10厘米的纸板对折、再对折.打开后,围成一个高10厘米的长方体纸箱的侧面,也就是这个长方体纸箱的底面边长是2厘米,根据正方形的面积公式:S=a2,把数据代入公式解答.【解答】解:80÷4=20(厘米)20×20=400(平方厘米)答:这个底面的面积是400平方厘米.故选:B.【点评】此题考查的目的是理解掌握长方体的特征、长方体表面积的意义,以及正方形面积公式的灵活运用.9.【分析】两个表面积都是60平方厘米的正方体拼成一个长方体,长方体的表面积就比原来两个正方体减少了2个面,那么长方体的表面积等于正方体10个面的面积,所以先求出正方体一个面的面积,然后即可求出长方体的表面积.【解答】解:60÷6=10(平方厘米)10×10=100(平方厘米)答:这个长方体的表面积是100平方厘米.故选:B.【点评】此题解答关键是理解两个正方体拼成长方体后,表面积会减少2个面,由此即可解决问题.10.【分析】根据题意可知:把这根长方体木材平均截成3段,表面积增加的是4个截面的面积,由此可以求出长方体的底面积,再根据长方体的体积公式:V=sh,把数据代入公式解答.【解答】解:2米=20分米,100÷4×20=25×20=500(立方分米),答:原来木材的体积是500立方分米.故选:C.【点评】此题主要考查长方体的表面积公式、体积公式的灵活运用,关键是熟记公式,注意长度单位相邻单位之间的进率及换算.二.填空题(共8小题)11.【分析】通过观察图形可知,这个玻璃容器的长是4分米,宽是3分米,高是5分米,根据长方体的表面积公式:S=(ab+ah+bh)×2,由于玻璃容器无盖,所以只求它的5个面的总面积,根据长方体体积(容积)公式:V=abh,把数据代入公式解答.【解答】解:4×3+4×5×2+3×5×2=12+40+30=82(平方分米)4×3×5=60(立方分米)答:做这个玻璃容器至少要用玻璃82平方分米,它的容积是60立方分米.故答案为:82、60.【点评】此题主要考查长方体的表面积公式、体积(容积)公式在实际生活中的应用,关键是熟记公式.12.【分析】根据长方体和正方体的共同特征,长方体和正方体都有6个面、12条棱、8个顶点,长方体的6个面都是长方形(特殊情况下有两个相对的面是正方形),当长方体有两个相对的面是正方形时,其余四个面的面积相等,形状完全相同.【解答】解:根据分析可得:长方体和正方体都有6个面,12条棱.长方体最多有2个面是正方形.故答案为:6,12,2.【点评】此题主要考查了长方体的特征,要正确理解和掌握长方体的特征,平时注意基础知识的积累.13.【分析】长方体的特征:长方体有6个面,相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其他四个面都是长方形,并且这四个面完全相同,所以粉笔盒的形状是长方体;三角形的含义:由三条边首尾相连围城的图形,所以红领巾的形状是三角形;据此解答即可.【解答】解:粉笔盒的形状是长方体,红领巾的形状是三角形.故答案为:长方体,三角形.【点评】明确长方体和三角形的特征,是解答此题的关键.14.【分析】根据长方体的特征,长方体有12条棱分为三组,每组4条棱的长度相等且互相平行,据此解答.【解答】解:如图:和a平行的棱有3条,和a垂直的棱有4条.故答案为:3、4.【点评】此题考查的目的是理解掌握长方体的特征及应用.15.【分析】通过观察图形可知,把三个小正方体拼成一个长方体,表面积比原来减少了16平方厘米,表面积减少是小正方体4个面的面积,由此可以求出小正方体一个的面的面积,根据正方体的表面积公式:S=6a2,把数据代入公式解答.【解答】解:16÷4=4(平方厘米)4×6=24(平方厘米)答:原来1个小正方体的表面积是24平方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体、正方体表面积的意义,以及正方体表面积公式的灵活运用,关键是熟记公式.16.【分析】长方体所有的棱长之和就等于铁丝的长,再根据长方体的棱长和=(长+宽+高)×4,用棱长和除以4,求出长宽高的和,再减去宽和高,即可求出长方体的长,列式解答即可.【解答】解:48÷4﹣2﹣1=12﹣2﹣1=9(厘米)答:这个框架的长是9厘米.故答案为:9.【点评】此题考查了长方体棱长和公式的灵活运用,知道长方体所有的棱长之和就等于铁丝的长是解题的关键.17.【分析】一个上面是正方形的长方体,它的上面面积是25平方厘米,可求出这个正方形的边长是5厘米,用30除以5,可求出这个长方体的高,再根据长方体表面积公式S=2(ab+ah+bh)计算即可.【解答】解:因这个长方体的上面是正方形,且面积是25平方厘米,可知这个正方形的边长是5厘米.30÷5=6(厘米)5×5×2+5×6×4=50+120=170(平方厘米)答:这个长方体的表面积是170平方厘米.故答案为:170.【点评】本题的关键是求出这个长方体底面的边长和它的高.然后再根据表面积公式进行计算.18.【分析】根据长方体的体积公式:V=abh,表面积公式:S=(ab+ah+bh)×2,高增加3米,体积增加部分是以原来的长、宽为长、宽高是3厘米的长方体的体积,即(12×8×3)立方厘米,表面积增加部分是长12厘米、宽8厘米,高3厘米的长方体的4个侧面的面积,即(12×3×2+8×3×2)平方厘米.【解答】解:12×8×3=288(立方厘米)12×3×2+8×3×2=72+48=120(平方厘米)答:体积增加288立方厘米,表面积增加120平方厘米.故答案为:288、120.【点评】此题主要考查长方体的体积公式、表面积公式的灵活运用,关键是熟记公式.三.判断题(共5小题)19.【分析】长方体有6个面,有三组相对的面完全相同,一般情况下六个面都是长方形,特殊情况时有两个面是正方形,其它四个面都是长方形,并且这四个面完全相同.据此解答.【解答】解:由长方体的特征可知,长方体发的长、宽、高三个量中可以有两个量相等,不能三个量都相等;所以原题说法错误.故答案为:×.【点评】解答此题的关键:根据正方体和长方体的特征进行解答即可.20.【分析】根据长方体的表面积、体积的意义,长方体的6个面总面积叫做长方体的表面积;物体所占空间的大小叫做物体的体积.据此解答即可.【解答】解:长方体的6个面的面积之和叫做长方体的表面积;物体所占空间的大小叫做物体的体积.题干的说法是错误的.故答案为:×.【点评】此题考查的目的是理解掌握立体图形的表面积、体积的意义及应用.21.【分析】根据油箱的特点,加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积,由此判断.【解答】解:加工一个油箱要用多少铁皮,是求这个油箱的表面积,而不是体积;原题说法错误.故答案为:×.【点评】根据物体表面积、体积、容积的含义可知:加工一个长方体油箱要用多少铁皮,是求这个长方体的表面积;油箱所占空间的大小是指油箱的体积,油箱内能容纳油的体积是指油箱的容积.22.【分析】根据长方体和正方体的共同特征:它们都有6个面,12条棱,8个顶点.正方体可以看作长、宽、高都相等的长方体.【解答】解:长方体和正方体都有6个面,12条棱,8个顶点.因此正方体可以看作长、宽、高都相等的长方体.故答案为:√.【点评】此题主要考查长方体和正方体的特征,以及长方体和正方体之间的关系,长方体包括正方体,正方体是特殊的长方体.23.【分析】根据长方体的体积公式:V=sh,长方体的体积是由底面积和高两个条件决定的,由此可知:虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.据此判断.【解答】解:长方体的体积是由底面积和高两个条件决定的,虽然两个长方体的体积相等,但是这两个长方体的底面积不一定相等.所以,两个长方体体积相等,底面积不一定相等.这种说法是正确的.故答案为:√.【点评】此题考查的目的是理解掌握长方体的体积公式及应用.四.操作题(共1小题)24.【分析】根据长方体的特征,长方体相对面的面积相等,据此画出其他三个面.根据长方体的容积(体积)公式:V=abh,把数据代入公式解答.【解答】解:作图如下:4×3×2=24(立方厘米)答:这个纸盒的容积是24立方厘米.故答案为:24.【点评】此题考查的目的是理解掌握长方体展开图的特征,以及长方体的容积(体积)公式的灵活运用,关键是熟记公式.五.应用题(共6小题)25.【分析】根据长方体的特征,12条棱分为互相平行的3组,每组4条棱的长度相等.由题意可知,求做这个书架要多少米的装饰木条,也就是求这个长方体的棱长总和.长方体的棱长总和=(长+宽+高)×4,由此列式解答.【解答】解:(1.5+0.6+0.8)×4=2.9×4=11.6(米)答:做这个书架要11.6米的装饰木条.【点评】此题属于长方体的棱长总和的实际应用,根据长方体的棱长总和的计算方法解决问题.26.【分析】根据正方体的棱长总和=棱长×12,已知正方体的棱长总和是18厘米,由此可以求出正方体的棱长,根据正方体的表面积公式:S=6a2,把数据代入公式求出两个正方体的表面积和,拼成的长方体的表面积比两个正方体的表面积和减少了正方体的两个面的面积,据此解答即可.【解答】解:18÷12=1.5(厘米)1.5×1.5×6×2﹣1.5×1.5×2=2.25×6×2﹣2.25×2=13.5×2﹣4.5=27﹣4.5=22.5(平方厘米)答:这个长方体的表面积是22.5平方厘米.【点评】此题主要考查正方体的棱长总和公式、表面积公式的灵活运用,关键是熟记公式.27.【分析】求铁皮盒的容积,需知道长方体的长、宽、高,长方形铁皮的长与宽各减去2个正方形边长即长方体的长与宽,高是5厘米,根据长方体的体积=长×宽×高,代入公式列式解答求得铁皮盒的容积,再乘0.75就是铁盒最多能装多少克汽油.【解答】解:(40﹣5×2)×(30﹣5×2)×5=30×20×5=3000(立方厘米)=3000(毫升)3000×0.75=2250(克)答:这个铁盒最多能装2250克汽油.【点评】此题主要考查长方体的体积公式及其计算,关键要理解铁皮盒的长与宽.28.【分析】根据正方体的特征,正方体的12条棱的长度都相等,由此可知:用焊这个正方体需要铁丝的长度除以12即可求出正方体的棱长,据此列式解答.【解答】解:180÷12=15(分米)答:这个正方体的棱长是15分米.【点评】此题考查的目的是理解掌握正方体的特征,以及正方体棱长总和公式的灵活运用.29.【分析】长方体有6个面,在房间的墙壁和房顶都贴上墙纸,贴墙纸的面是上面,前后面和左右面,就是求这5个面的面积和是多少,然后再减去门窗的面积就是这个房间至少需要多大面积的墙纸.长方体的长、宽、高已知,用长×宽=上面的面积,用长×高×2=前、后面的面积,用宽×高×2=左、右面的面积,然后相加再减去门窗的面积即可解答.【解答】解:8×6+8×4×2+6×4×2﹣22=48+64+48﹣22=138(平方米)答:这个房间至少需要138平方米大面积的墙纸.【点评】解答有关长方体计算的实际问题,一定要搞清所求的是什么,再进一步选择合理的计算方法进行计算解答问题.30.【分析】(1)根据题意可知,打碎右侧玻璃的长是5分米,宽是4.5分米,可用长方形的面积公式:S =长×宽进行解答即可;(2)根据长方体体积公式:长方形体积=长×宽×高,因此可用鱼缸内的水的体积除以分别除以长方体的长、宽即可得到水深.【解答】解:(1)5×4.5=22.5(平方分米)答:重新配上的这块玻璃的面积是22.5平方分米;(2)54升=54立方分米54÷6÷5=1.8(分米)答:水深1.8分米.【点评】此题主要考查的是长方形面积公式和长方体体积公式的灵活应用,解答时分清右侧面长方形的长、宽,然后再利用长方形的面积公式解答.。

五年级长方体与正方体经典易错例题

五年级长方体与正方体经典易错例题

五年级长方体与正方体经典易错例题一、填空题。

1. 一个正方体的棱长总和是72分米,它的表面积是()平方分米,体积是()立方分米。

- 解析:正方体有12条棱且每条棱长度相等,已知棱长总和是72分米,那么每条棱的长度为72÷12 = 6分米。

正方体的表面积公式为6a^2(a为棱长),所以表面积为6×6^2=6×36 = 216平方分米;体积公式为a^3,体积为6^3=216立方分米。

2. 一个长方体的长是8厘米,宽是6厘米,高是5厘米,它的棱长总和是()厘米。

- 解析:长方体的棱长总和=(长 + 宽+高)×4,所以(8 + 6+5)×4=(14 + 5)×4 = 19×4=76厘米。

3. 一个长方体的长、宽、高分别扩大到原来的3倍,它的表面积扩大到原来的()倍,体积扩大到原来的()倍。

- 解析:设原长方体的长、宽、高分别为a、b、c,则原表面积S_1 = 2(ab+bc + ac),原体积V_1=abc。

长、宽、高扩大后的长、宽、高分别为3a、3b、3c,新表面积S_2=2(3a×3b + 3b×3c+3a×3c)=2×9(ab + bc+ac)=9×2(ab + bc + ac)=9S_1,所以表面积扩大到原来的9倍;新体积V_2 = 3a×3b×3c=27abc = 27V_1,所以体积扩大到原来的27倍。

4. 一个正方体的棱长是5厘米,把它切成两个完全一样的长方体,这两个长方体的表面积之和比原来正方体的表面积增加了()平方厘米。

- 解析:把正方体切成两个完全一样的长方体,增加的表面积是正方体两个面的面积。

正方体一个面的面积为5×5 = 25平方厘米,增加了25×2=50平方厘米。

二、判断题。

5. 长方体的6个面一定都是长方形。

()- 解析:错误。

长方体正方体典型例题讲解

长方体正方体典型例题讲解

分析:求占地面积,要注意是那个面和地面有接触。长0.5米,宽2厘米(单位不统一)。方木说明:横截面是正方形。
5x0.02x0.02=体积
棱长总和、表面积、体积综合应用
例2:
巩固练习
长方体和正方体的表面积和体积多互相结合来进行考察,在做这类题目的时候要注意实际情况相结合,具体问题具体分析。
注意单位的统一
05
注意底面积求体积的应用
06
正方体的高h=V正÷底面积
07
长方体的高h=V长÷底面积
08
注意实际情况的考虑
09
注意单位的统一
体积类型题目
例题1
有一个底面积是300平方厘米、高10厘米的长方体,里面盛有5厘米深的水。现在把一块石头浸没到水里,水面上升2厘米。这块石头的体积是多少立方厘米? 分析:这块石头的体积=水面上升的水的体积。只要求出这部分水的体积就是石头的体积。水面上升的高度也就是长方体高度。剩下的问题只需要按照长方体的体积公式来进行计算就可以了 列式:300x2=600立方厘米 注意:1、题目当中的条件告诉了底面积,注意用底面积求体积的公式的应用。 2、注意一些关键词:上升了、上升到的区别。增加了、增加到;减少了,减少到等词语的意思理解。
例1:天天游泳池,长25米,宽10米,深1.6米,在游泳池的四周和池底砌瓷砖,如果瓷砖的边长是1分米的正方形,那么至少需要这种瓷砖多少块?
01
分析:要求多少块需要知道这个用泳池多大的表面积,一块瓷砖的面积,然后计算总表面积中有几块瓷砖的面积就可以知道用多少块。
02
列式: [ 25x10+(1.6x10+25x1.6)x2 ]÷()
例题2
有一块棱长是80厘米的正方体的铁块,现在要把它溶铸成一个横截面积是20平方厘米的长方体,这个长方体的长是多少厘米? 分析:溶成不同的形状体积没变,所以只需要求出原来的体积,然后利用求体积的公式直接求出高就可以。 列式:80x80x80 ÷20= 注意:1、形状的改变体积不变。 2、注意底面积求体积公式的应用。 3、时刻注意单位的统一。

五年级长方体、正方体难题

五年级长方体、正方体难题

五年级长方体、正方体难题引言长方体和正方体是数学中的基本几何形体。

在五年级数学研究中,学生们通常会遇到一些关于长方体和正方体的难题。

本文将介绍一些常见的难题,并给出解答。

难题一:计算长方体的体积问题描述:已知一个长方体的长为5cm,宽为3cm,高为4cm,求其体积。

解答:长方体的体积可以通过公式V = 长 ×宽 ×高来计算。

根据给定的数值,将其代入公式,可得V = 5cm × 3cm × 4cm = 60cm³。

所以该长方体的体积为60立方厘米。

难题二:计算正方体的表面积问题描述:已知一个正方体的边长为6cm,求其表面积。

解答:正方体的表面积可以通过公式A = 6 ×边长²来计算。

将给定的边长代入公式,可得A = 6 × 6cm² = 36cm²。

所以该正方体的表面积为36平方厘米。

难题三:长方体和正方体的边长比较问题描述:已知一个长方体的长为10cm,宽为8cm,高为6cm,和一个正方体的边长为6cm,比较它们的体积大小。

解答:分别计算长方体和正方体的体积。

长方体的体积为V₁= 10cm × 8cm × 6cm = 480cm³,正方体的体积为V₂ = 6cm × 6cm ×6cm = 216cm³。

可见长方体的体积大于正方体的体积,即V₁ > V₂。

结论通过解答上述三个难题,我们了解了如何计算长方体和正方体的体积、表面积,并进行了比较。

掌握这些基本概念和计算方法,可以帮助五年级的学生更好地理解几何形体的特性,提升数学解题能力。

参考资料:- 《全日制义务教育九年一体化课程方案》- 《小学数学教师教学指导》。

五年级下长方体正方体表面积体积精讲例题

五年级下长方体正方体表面积体积精讲例题

正方体长方体重点题型精讲(一)文/振东常识1:长方体和正方体的熟悉留意:长方体至少可以有两个面是正方形,最多可以有6个面是正方形,但不会消失3个.4个.5个面是正方形演习:(1)断定和填空:长方体的六个面必定是长方形;( )正方体的六个面面积必定相等;( )一个长方体(非正方体)最多有四个面面积相等;( )订交于一个极点的三条棱相等的长方体必定是正方体.( )一个长方体中,可能有4个面是正方形.()正方体是特别的长方体.()有两个面是正方形的长方体必定是正方体.( )一个长方体中起码有4条棱长度相等,最多有8条棱长度相等.()(2)一个长方体(非正方体)最多有()个面是正方形,最多有()条棱长度相等.(3)一个长方体(非正方体)的底面是一个正方形,则它的4个正面是( )形.(4)正方体不但相对的面相等,并且所有相邻的面( ),它的六个面都是相等的( )形.(5)把长方体放在桌面上,最多可以看到( )个面.起码可以看到( )个面.常识2:棱长和公式变形长方体棱长和=(长+宽4 长+宽+高=棱长和÷4长方体棱长和=右面周长×2+长×4长方体棱长和=高×4长方体棱长和=前面周长×2+宽×4正方体棱长和=棱长×12 棱长=棱长和÷12例题:1.一只鱼缸,棱长和为280cm,个中,底面周长为50cm,右面周长为40cm,前面周长为50cm,鱼缸的长.宽.高各是若干?2.有一个礼盒须要用彩带捆扎,捆扎后果如图,打结部分须要10厘米彩带,一共须要多长的彩带?1. 80厘米,个中长是 10厘米,宽是 7厘米,高是()厘米.2.有一个长方体的鱼缸,长50厘米,宽30厘米,高30厘米,须要在用铝合金包裹玻璃衔接处,须要( )米的铝合金3.把两个棱长 1厘米的正方体拼成一个长方体,这个长方体的棱长总和是( )厘米.4.至少须要( )厘米长的铁丝,才干做一个底面周长是18厘米,高3厘米的长方体框架.常识3:长方体和正方体的概况积【常识点1】长方体概况积=(长×宽+长×高+宽×高)×2 =(a×b+a×c+b×c)×2=(前面面积+上面面积+右面面积)×2正方体概况积=棱长×棱长×6=a×a×6=6a2=随意率性一个面的面积×6留意:两个棱长和相等的长方体或一个长方体和一个正方体,概况积不必定相等!概况积相等的两个长方体或一个长方体和一个正方体,棱长和也不必定相等!【常识点2】长方体概况求法的变形:例2.一个教室长8米,宽5米,高4米.要粉刷教室的顶面和周围墙壁,除去门窗面积21.5平方米,粉刷面积是若干平方米?假如每平方米用油漆0.25千克,共要用油漆若干千克例3.一个长方体框架长8厘米,宽6厘米,高5厘米,做这个框架共要()厘米铁丝,是求长方体的().在概况贴上塑料板,共要()平方厘米的塑料板,是求();在里面能盛()升水,是求().【常识点3】棱长变更对概况积的影响:➢正方体正方体的棱长扩展n倍,其棱长和也扩展n倍,概况积扩展n2倍,体积扩展n3倍.➢长方体长方体的长宽高同时扩展n倍,其棱长和也扩展n倍,概况积扩展n2倍,体积扩展n3倍.(1)大正方体棱长是小正方体棱长的2倍,则大正方体概况积是小正方体概况积的()倍.(2)一个长方体的长.宽.高都扩展4倍,它的概况积就( ).(3)一个正方体的棱长为4厘米扩展为2倍后,其棱长和为( )厘米,概况积为( )平方厘米比本来扩展了( ).(5)一个长方体长扩展2倍,高扩展4倍,体积扩展( )倍.正方体长方体重点题型精讲(二)文/振东常识1:单位换算.体积和容积【常识点1】单位换算长度单位:mm.cm.dm.m 相邻两个单位进率为10 m dm cm mm 面积单位:mm 2.cm 2.dm 2.m 2 相邻两个单位进率为100m ×mdm ×dmcm ×cmmm ×mm体积单位:mm 3.cm 3.dm 3.m 3 相邻两个单位进率为1000m ×m ×mdm ×dm ×dmcm ×cm ×cmmm ×mm ×mm容积单位:ml.L 相邻两个单位进率为1000特此外:1ml=cm 3 1L=1dm 3 1方=1m ³不是统一类型的单位,数据不克不及比较大小没有可比性,统一类型的单位才有可比性.大单位化小单位乘以进率,小单位化大单位除以进率.立方分米=()立方厘米9立方米500立方分米=()立方米=( )立方分米 升=()毫升=()立方厘米2100毫升=( )立方厘米=( )立方米【常识点2】体积高等单位 进率×高等单位的数 低级单位低级单位的数÷进率长方体的体积=长×宽×高 V=abh长=体积÷宽÷高 a=V÷b÷h 宽=体积÷长÷高b=V÷a÷h 高=体积÷长÷宽h= V÷a÷b正方体的体积=棱长×棱长×棱长 V=a×a×a概念闯过关1.一个棱长为6厘米的正方体的体积和它的概况积相等.()2.两个棱长一样的正方体拼在一路,概况积削减了,体积没有增长.()3.长方体的体积必定比正方体体积大.()例题:(1)一个正方体棱长2厘米,体积是()立方厘米,假如这个正方体的棱长扩展2倍,它的体积是()立方厘米.(2)长方体的长为12厘米,高为8厘米,暗影部分的两个面的面积和是200平方厘米,这个长方体的体积是若干立方厘米?(3)一个长方形的底面是一个周长为16分米的正方形,它的概况积是96平方分米,这个长方体的体积是若干?【常识点3】容积经常应用的容积单位有升和毫升也可以写成L和ml.1升=1立方分米 1毫升=1立方厘米 1升=1000毫升容积和体积的差别不合点雷同点容积从容器内部测量容积指容器内部体积计量单位平日为L.ml盘算公式雷同V=shV=abh体积从容器外部测量体积指容器外部体积,或所容纳物体的体积计量单位平日为m.dm.cm.mm容积和体积的大小关系也就是说容积≤体积一般情形下视为容积等于体积,其前提前提是容器壁厚度疏忽不计.在斟酌容器壁厚度的情形下,容积是比体积小的.例.1.在一个关闭的水箱内装入水(如图1),水深为24厘米,假如把这个水箱立起来(如图2),水深若干厘米?假如在图1中放一个不规矩的石块,水面就会达到28厘米,石块的体积是若干?2.一个长方体玻璃缸,最多可装水120升.已知玻璃缸里面长6分米,宽4分米,现有水深3分米.假如在玻璃缸里放入了体积为15立方分米的玻璃球,里面的水会不会溢出?为什么?四、教室演习(15- 20分钟)1.求下面长方体.正方体的棱长总和,概况积和体积.这个长方体的棱长总和是( )厘米. 这个正方体的棱长总和是( )分米.概况积: 概况积:体积: 体积:2.24平方分米=( )平方米 3dm 3=( )L528毫升=( )立方厘米=( )立方分米 3.一个正方体的棱长总和是96厘米,则这个正方体的概况积是( )平方厘米,体积是( )立方厘米4.正方体的棱长扩展2倍,概况积就扩展( )倍,体积扩展( )倍.A. 2倍B. 4倍C. 8倍8厘米 4厘米 3厘米5分米 5分米 5分米7.一个长方体棱长和164cm,已知长方体的左面周长为40cm,长方体的长是若干cm?8.一个长方体棱长和164cm,已知长方体的正面周长为56cm,长方体的宽是若干cm?9.一个长方体的水池,从里面量长是7.5米,比高长2.1米,宽比高多1.4米,若水池里的水面距水池底0.82米,水池里蓄了若干升水?教师每日指点情形总结表。

五年级奥数长方体和正方体(二)姜璐

五年级奥数长方体和正方体(二)姜璐

• 练一练1有一块边长是5厘米的正方体铁块,浸没在一个长 方体容器里的水中,取出铁块后,水面下降了0.5厘米,这 长方体容器的底面积是多少平方厘米? • 5×5×5÷0.5, =125÷0.5, =250(平方厘米) 答:长方体容器的底面积是250平方厘米。
• 练一练2:有大中小三个长方形水池,它们的池口都是正方形 ,边长分别为6分米,3分米和2分米.现在把两堆碎石分别 沉入中小两个水池内.这两个水池的水面分别升高了6厘米和 4厘米.如果把这两堆碎石都沉入大池内,那么,大池的水面 将升高多少厘米?(结果保留整数) • 6分米=60厘米,3分米=30厘米,2分米=20厘米, 放中池里碎石的体积:30×30×6=5400(立方厘米), 放小池里碎石的体积:20×20×4=1600(立方厘米), 两堆碎石总体积:5400+1600=7000(立方厘米), 大水池的水面升高:7000÷(60×60)≈2(厘米), 答:大水池的水面升高了2厘米.
• 水箱的底面积是:40×30=1200(平方厘米) 水的体积是:1200×10=12000(立方厘米) 正方体铁块的底面积是:20×20=400(平方厘米) 水箱放入正方体铁块后,底面积变成了 1200-400=800(平方厘米) 现在水面高:12000÷800=15(厘米) 答:这时水面高15厘米。
• 练一练1:有两个长方体水缸,甲缸长3分米,宽和高都是 2分米;乙缸长4分米、宽2分米,里面的水深1.5分米。现 把乙缸中的水倒进甲缸,水在甲缸里深几分米? • 4×2×1.5÷(3×2) =12÷6, =2(分米) 答:水深2分米。
• 练一练:2:有一块边长2分米的正方体铁块,现把它煅造成 一根长方体,这长方体的截面是一个长4厘米、宽2厘米的 长方形,求它的长。 • 2×2×2÷(4×2)=1(厘米) 答:它的高是1厘米.

五年级奥数举一反三专题 第15周 长方体和正方体(三)

五年级奥数举一反三专题 第15周  长方体和正方体(三)

第十五周长方体和正方体(三)专题简析:解答有关长方体和正方体的拼、切问题,除了要切实掌握长方体、正方体的特征,熟悉计算方法,仔细分析每一步操作后表面几何体积的等比情况外,还必须知道:把一个长方体或正方体沿水平方向或垂直方向切割成两部分,新增加的表面积等于切面面积的两倍。

例题1 一个棱长为6厘米的正方体木块,如果把它锯成棱长为2厘米的正方体若干块,表面积增加多少厘米?分析把棱长为6厘米的正方体锯成棱长为2厘米的正方体,可以按下图中的线共锯6次,每锯一次就增加两个6×6=36平方厘米的面,锯6次共增加36×2×6=432平方厘米的面积。

因此,锯好后表面积增加432平方厘米。

练习一1,把27块棱长是1厘米的小正方体堆成一个大正方体,这个大正方体的表面积比原来所有的小正方体的表面积之和少多少平方厘米?2,有一个棱长是1米的正方体木块,如果把它锯成体积相等的8个小正方体,表面积增加多少平方米?3,把一个正方体的六个面都涂上红色,然后把它锯两次锯成4个同样的小长方体,没有涂颜色的面积是60平方厘米。

求涂上红色的面积一共是多少平方厘米?例题2 有一个正方体木块,把它分成两个长方体后,表面积增加了24平方厘米,这个正方体木块原来的表面积是多少平方厘米?分析把正方体分成两个长方体后,增加了两个面,每个面的面积是24÷2=12平方厘米,而正方体有6个这样的面。

所以原正方体的表面积是12×6=72平方厘米。

练习二1,把三个棱长都是2厘米的正方体拼成一个长方体,这个长方体的表面积是多少平方厘米?2,有一个正方体木块,长4分米、宽3分米、高6分米,现在把它锯成两个长方体,表面积最多增加多少平方分米?3,有三块完全一样的长方体积木,它们的长是8厘米、宽4厘米、高2厘米,现把三块积木拱成一个大的长方体,怎样搭表面积最大?最大是多少平方厘米?例题3 有一个正方体,棱长是3分米。

人教版五年级下册数学第六讲《长方体和正方体下》-含解析-(知识精讲+典型例题+同步练习+进门考)

人教版五年级下册数学第六讲《长方体和正方体下》-含解析-(知识精讲+典型例题+同步练习+进门考)

人教版五年级春季第六讲《长方体和正方体下》知识点1、表面积与体积的应用思考:观察下图,把一个正方体切一刀,表面积会(增加)(填增加或减少),增加(2)个截面提问:假如切两刀,会增加几个面呢?切三刀呢?这个正方体被切了2刀,增加了4个面。

这个正方体被切了3刀,增加了6个面。

总结:每切一刀,都会多两个截面,即“一刀多两面”思考:一个高为6厘米的大长方体被切成3个小长方体,表面积增加了160平方厘米,那么5个这样的大长方体的体积之和是多少立方厘米?分析:由图,共切了2刀,增加了4个面那么长方体的底面积是160÷4=40平方厘米。

则1长方体的体积为40×6=240立方厘米5个长方体的体积为240×5=1200立方厘米思考:观察下图,把两个正方体拼成一个长方体,要拼1次;面是增加了还是减少了?减少了,减少了2个面观察上图,把三个正方体拼成一个长方体,要拼_2_次;面是增加了还是减少了?减少了;减少了 4_个面;提问在这个过程中,你发现了什么规律?总结:把若干个相同的正方体(或长方体)拼在一起拼1次会减少2个面,即:一拼少两面。

思考把两个长为4厘米的长方体按照如图所示的方式拼成一个大长长方体,表面积减少了12平方厘米,那么这大长方体的体积是多少立方厘米?步骤 1、拼了_1_次;2、减少了_2_个面;3、每个面的面积是_12÷2=6_平方厘米4、这个大长方体的体积是 6x(4+4)=48 立方厘米。

总结:一拼少两面,用减少的表面积除以减少的面的个数来求一个面的面积,再利用底面积x高求体积。

练习:一个长为8厘米的大长方体从中间截断表面积增加了56 平方厘米,那么原大长方体的体积是 224 立方厘米复习:还记得如何求长方体和正方体的表面积吗?答案:长方体表面积-(长x宽+长x高+宽x高)x2正方体表面积-棱长x棱长x6思考有一张长40厘米、宽30厘米的长方形纸片,从四个角各剪去一个边长为5厘米的正方形,做成一个长方体无盖纸盒,该纸盒的体积是多少立方厘米?分析;观察上图,长方体纸盒的长是40-5x2=30 厘米宽是30-5x2=20_厘米,高_5_厘米体积是 30x20x5=3000 立方厘米。

长方体和正方体知识点+例题+习题

长方体和正方体知识点+例题+习题

长⽅体和正⽅体知识点+例题+习题第1节长⽅体和正⽅体的认识典型例题例1.⼀个长⽅体长8厘⽶,宽6厘⽶,⾼4厘⽶,它的棱长总和是多少厘⽶?分析:根据长⽅体的特征,它相对的棱(3组,每组4条)的长度相等,那么长⽅体的棱长和等于长、宽、⾼的4倍.解:(8+6+4)×4=18×4=72(厘⽶)答:它的棱长总和是72厘⽶.例2.⽤⼀根48厘⽶的铁丝焊接成⼀个最⼤的正⽅体框架,这个框架的每条边应该是多少厘⽶?分析:根据正⽅体的特征,它的12条棱长都相等,把48厘⽶平均分成12份,每份就是⼀条棱的长度.解:48÷12=4(厘⽶)答:这个框架的每条边应该是4厘⽶.例3.⽤棱长1厘⽶的⼩正⽅体摆成稍⼤⼀些的正⽅体,⾄少需要多少个⼩正⽅体?分析:题⽬要求⾄少要多少个棱长为1厘⽶的⼩正⽅体,那么拼成的棱长应尽量⼩,所以应该考虑棱长为2的⽴⽅体,体积是8⽴⽅厘⽶,所以要8个.解:2×2×2=8(个)答:⾄少需要8个⼩正⽅体.例4.将下⾯的硬纸板按照虚线折成⼀个⽴⽅体,哪个⾯与哪个⾯相对?分析:通过实验可以看到带有标号的⾯7与10,⾯8与11,⾯9与12是相对的⾯.例5.⼀个正⽅体的六个⾯上,分别写着“1”“2”“3”“4”“5”“6”.根据下⾯摆放的三种情况,判断出每个对⾯上的数字是⼏?分析:正⽅体有6个⾯,每⼀个⾯有⼀个相对的⾯,⽽与其余四个⾯相邻.解题时我们如果抓住这⼀特征,确定某⼀个⾯与哪四个⾯相邻,于是就不难判断出这⼀⾯相对的⾯上的数字是⼏了.即排除包括⾃⼰在内的五个数字,剩下的就是与某⼀⾯相对的⾯上数字了.先以“3”为例:从上⾯左图可以看出,“3”⾯与“2”⾯、“1”⾯相邻;从中图可以看出.“3”⾯⼜与“4”⾯、“5”⾯相邻.这就是说,“3”⾯与“1”⾯、“2”⾯、“4”⾯和“5”⾯这四个⾯相邻.那么,就可以很快知道,“3”⾯与“6”⾯相对.再来看“1”⾯:从上⾯左图可看出,“1”⾯与“2”⾯“3”⾯相邻;从右图可看出,“1”⾯⼜与“6”⾯“4”⾯相邻,这就是说,与“1”相邻的四个⾯,是“2”⾯、“3”⾯、“4”⾯和“6”⾯,那么,与“1”⾯相对的⾯就只能是“5”⾯了.最后看“4”⾯:从上⾯中图可以看出,“4”⾯与“3”⾯、“5”⾯相邻;从右图可以看出,“4”⾯⼜与“1”⾯“6”⾯相邻.这就是说,与“4”⾯相邻的四个⾯,是“1”⾯、“3”⾯、“5”⾯和“6”⾯,于是可知,与“4”⾯相对是⾯是“2”⾯.所以题⽬的结论是:这个正⽅体上相对的⾯,分别是“1”⾯和“5”⾯、“2”⾯和“4”⾯、“3”⾯和“6”⾯.解:这个正⽅体上相对的⾯,分别是“1”⾯和“5”⾯、“2”⾯和“4”⾯、“3”⾯和“6”⾯.习题精选⼀、填空.1.长⽅体有()个⾯,它们⼀般都是()形,也可能有()个⾯是正⽅形.2.长⽅体的上⾯和下⾯、前⾯和后⾯、左⾯和右⾯都叫做(),它们的⾯积().3.长⽅体的12条棱,每相对的()条棱算作⼀组,12条棱可以分成()组.4.正⽅体有()个⾯,每个⾯都是()形,⾯积都().5.⼀个正⽅体的棱长是6厘⽶,它的棱长总和是().6.⼀个长⽅体的长是1.5分⽶,宽是1.2分⽶,⾼是1分⽶,它的棱长和是()分⽶.7.⼀个长⽅体的棱长总和是80厘⽶,其中长是10厘⽶,宽是7厘⽶,⾼是()厘⽶.8.把两个棱长1厘⽶的正⽅体拼成⼀个长⽅体,这个长⽅体的棱长总和是()厘⽶.⼆、判断题.1.长⽅体和正⽅体都有6个⾯,12条棱,8个顶点.()2.长⽅体的6个⾯不可能有正⽅形.()3.长⽅体的12条棱中,长、宽、⾼各有4条.()4.正⽅体不仅相对的⾯的⾯积相等,⽽且所有相邻的⾯的⾯积也都相等.()5.长⽅体(不包括正⽅体)除了相对的⾯相等,也可能有两个相邻的⾯相等.()6.⼀个长⽅体长12厘⽶,宽8厘⽶,⾼7厘⽶,把它切成⼀个尽可能⼤的正⽅体,这个正⽅体的棱长是8厘⽶.()三、选择题.1.下列物体中,形状不是长⽅体的是()①⽕柴盒②红砖③茶杯④⽊箱2.长⽅体的12条棱中,⾼有()条.①4②6③8④123.下列三个图形中,能拼成正⽅体的是()4.把⼀个棱长3分⽶的正⽅体切成两个相等的长⽅体,增加的两个⾯的总⾯积是()平⽅分⽶.①18②9③36④以上答案都不对参考答案⼀、填空.1.6 长⽅形 22.相对⾯相等3.4 34.6 正⽅形相等5.72厘⽶6.14.87.38.16⼆、判断题.1.√ 2.× 3.√4.√ 5.√ 6.×三、选择题.1.③2.①3.①和③4.①第2节长⽅体和正⽅体的表⾯积例1.⼀种有盖的长⽅体铁⽪盒,长8厘⽶,宽5厘⽶,⾼3厘⽶.做25个这样的盒⼦⾄少需要多少平⽅⽶铁⽪?(不计接⼝⾯积)分析:根据长⽅体表⾯积的计算⽅法,先求出⼀个盒⼦需要的铁⽪数量,然后就可以求出25个这样的盒⼦需要的铁⽪数量.解:(8×5+8×3+5×3)×2×25=158×25=3950(平⽅厘⽶)=0.395(平⽅⽶)答:⾄少需要0.395平⽅⽶的铁⽪.例2.⼀个长⽅体,表⾯积是456平⽅厘⽶,它的底⾯是⼀个边长为4厘⽶的正⽅形,它的⾼是多少厘⽶?分析:题⽬中给出这个长⽅体底⾯是⼀个边长为4厘⽶的正⽅形,说明这个长⽅体是有两个相对的⾯是正⽅形的,其余4个⾯是⾯积相等的长⽅形,只要我们求出⼀个长⽅形⾯的⾯积,再⽤⾯积除以底⾯的边长,就算出了长⽅体的⾼了.这也是利⽤长⽅体的特征,逆解题⽬.解:456-4×4×2=424(平⽅厘⽶)424÷4=106(平⽅厘⽶)106÷4=26.5(厘⽶)答:它的⾼是26.5厘⽶.例3.⼀个教室长8⽶,宽6⽶,⾼3.5⽶,要粉刷教室的墙壁和天花板.门窗和⿊板的⾯积是22平⽅⽶,平均每平⽅⽶⽤涂料0.25千克,粉刷这个教室共需要涂料多少千克?分析:求需要涂料多少千克,必须先求出实际粉刷的⾯积.长⽅体的表⾯积去掉门窗、⿊板和地⾯的⾯积就是实际粉刷的⾯积.解:(1)粉刷的⾯积为:(8×6+8×3.5+6×3.5)×2-8×6-22=(48+28+21)×2-48-22=97×2-48-22=194-48-22=124(平⽅⽶)(2)需要涂料的重量为:0.25×124=31(千克)答:粉刷这个教室共需要涂料31千克.例4.将⼀个长12厘⽶,宽9厘⽶,⾼5厘⽶的长⽅体,切成两个长⽅体,两个长⽅体表⾯积的总和最多是多少平⽅厘⽶?最少是多少平⽅厘⽶?分析:切割长⽅体⼀次,原来的表⾯积增加两个⾯的⾯积,要使切开后的两个长⽅体表⾯积的总和最多(少),必须使横截⾯的⾯积最⼤(⼩).解:(12×9+12×5+9×5)×2+12×9×2=(108+60+45)×2+216=213×2+216=642(平⽅厘⽶)(12×9+12×5+9×5)×2+9×5×2=(108+60+45)×2+90=213×2+90=516(平⽅厘⽶)答:两个长⽅体表⾯积的总和最多是642平⽅厘⽶,最少是516平⽅厘⽶.例5.⼀个正⽅体,棱长的总和是96厘⽶.这个正⽅体的表⾯积是多少?分析:因为正⽅体的12根棱长都相等,所以可知,这个正⽅体的棱长是96÷12=8(厘⽶).⼜由于正⽅体有相等的6个⾯,每个都是正⽅形.解:8×8×6=384(平⽅厘⽶)答:这个正⽅体的表⾯积是384平⽅厘⽶.例6.做两个同样的正⽅体纸盒,⼀个有盖⼀个⽆盖,有盖纸盒⽤的纸板是⽆盖纸盒的多少倍?分析:有盖纸盒的表⾯积是它的⼀个⾯⾯积的6倍,⽆盖纸盒的表⾯积是它的⼀个⾯⾯积的5倍,⽽两个同样的正⽅体纸盒的⾯的⾯积是相等的,所以有盖纸盒⽤的纸板是⽆盖纸盒的6÷5=1.2倍.解:6÷5=1.2答:有盖纸盒⽤的纸板是⽆盖纸盒的1.2倍.习题精选⼀、填空题1.(1)下图上、下每个⾯的长()厘⽶,宽()厘⽶,⾯积是();(2)前、后每个⾯的长是()厘⽶,宽是()厘⽶,⾯积是();(3)左、右每个⾯的长是()厘⽶,宽是()厘⽶,⾯积是().(4)它的表⾯积是().2.(1)下图中上⾯的⾯积是(),前⾯的⾯积是(),右⾯的⾯积是();(2)计算它的表⾯积的算式是().⼆、计算题求下⾯各长⽅体的表⾯积:1.长6⽶,宽3⽶,⾼2⽶.2.长8分⽶,宽4.5分⽶,⾼2分⽶.3.长和宽都是6厘⽶,⾼3.4厘⽶.三、应⽤题1.做⼀个长⽅体的纸箱,长0.8⽶,宽0.6⽶,⾼0.4⽶.做这个纸箱⾄少需要纸板多少平⽅⽶?2.⼀个正⽅体的⽊箱,棱长5分⽶,在它的表⾯涂漆,涂漆的⾯积是多少?如果每平⽅分⽶⽤漆8克,涂这个⽊箱要⽤漆多少克?合多少千克?3.⼀个长⽅体的铁⽪盒,长25厘⽶,宽20厘⽶,⾼8厘⽶.做这个铁⽪盒⾄少要⽤多少平⽅厘⽶铁⽪?参考答案⼀、1.(1)下图上、下每个⾯的长( 9 )厘⽶,宽( 3 )厘⽶,⾯积是(27平⽅厘⽶);(2)前、后每个⾯的长是( 9 )厘⽶,宽是( 4 )厘⽶,⾯积是(36平⽅厘⽶);(3)左、右每个⾯的长是( 4 )厘⽶,宽是( 3 )厘⽶,⾯积是(12平⽅厘⽶).(4)它的表⾯积是:9×3+9×4+4×3)×2=150(平⽅厘⽶).2.(1)下图中上⾯的⾯积是(36平⽅分⽶),前⾯的⾯积是(48平⽅分⽶),右⾯的⾯积是(48平⽅分⽶);(2)计算它的表⾯积的算式是:6×6×2+6×8×4=264(平⽅分⽶).⼆、1.(6×3+6×2+3×2)×2=72(平⽅⽶)2.(8×4.5+8×2+4.5×2)×2=122(平⽅分⽶)3.6×6×2+6×3.4×4=153.6(平⽅厘⽶)三、1.(0.8×0.6+0.8×0.4+0.6×0.4)×2=2.08(平⽅⽶)答:⾄少需要纸板2.08平⽅⽶.2.5×5×6=150(平⽅分⽶)答:涂漆的⾯积是150平⽅分⽶.8×150=1200(克)=1.2(千克)答:要⽤漆1200克,合1.2千克.3.(25×20+25×8+20×8)×2=1720(平⽅厘⽶)答:⾄少要⽤1720平⽅厘⽶铁⽪.第3节长⽅体和正⽅体的体积(⼀)典型例题例1.把⼀个棱长6分⽶的正⽅体钢坯,锻造成⼀个宽3分⽶,⾼2分⽶的长⽅体钢件,这个钢件长多少分⽶?分析:把正⽅体钢坯锻造成长⽅体钢件,形状改变了,但是体积没有改变,即正⽅体的体积和长⽅体的体积相等.已知长⽅体的宽和⾼,⽤体积除以宽,要再除以⾼,就可以求出长.解:6×6×6÷3÷2=216÷3÷2=36(分⽶)答:这个钢件的长是36分⽶.例2.⼀个正⽅体的铁⽪油箱,从⾥⾯量得棱长为6分⽶,⾥⾯装满汽油.如果把这箱汽油全部倒⼊⼀个长10分⽶、宽8分⽶、⾼5分⽶的长⽅体铁⽪油箱中,那么,油⾯离箱⼝还有多少分⽶?分析:根据题意,可先求得正⽅体铁⽪油箱的汽油体积为:6×6×6=216(⽴⽅分⽶)⽽长⽅体油箱底⾯积是10×8=80(平⽅分⽶),所以,汽油在长⽅体铁⽪油箱⾥的⾼度是216÷80=2.7(分⽶).因此,油⾯离油箱⼝的⾼度就是:5-2.7=2.3(分⽶)答:油⾯离油箱⼝还有2.3分⽶.例3.⼀段⽅钢长3⽶,横截⾯是⼀个边长为0.4分⽶的正⽅形.如果1⽴⽅分⽶的钢重7.8千克,那么这段⽅钢有多重?分析:题⽬中的长度单位不统⼀,为计算的⽅便,可都化成以分⽶为单位来进⾏计算.解:3⽶=30分⽶0.4×0.4×30=4.8(⽴⽅分⽶)7.8×4.8=37.44(千克)答:这段⽅钢的重量是37.44千克.例4.有沙⼟12⽴⽅⽶,要铺在长5⽶,宽4⽶的房间⾥,可以铺多厚?分析:此题要把12⽴⽅⽶的沙⼟铺在房间⾥,也就是铺成⼀个长5⽶、宽4⽶、厚⽶的长⽅体,我们就可以⽤⽅程法求出所求问题了.这题是⼀道利⽤体积计算公式逆解的题.遇到此类题⽤⽅程法解即可.解:设可铺⽶厚.4×5×=12=0.6答:可以铺0.6⽶厚.例5.⼀个长⽅体的底⾯长6厘⽶,长是宽的1.2倍,宽⽐⾼少0.5厘⽶,这个长⽅体的体积是多少⽴⽅厘⽶?分析:这道题要求的是长⽅体的体积,求体积就必须知道长⽅形的长、宽、⾼.此题只直接给出了长,宽和⾼是间接给出的,因此应先⽤求⼀倍量的⽅法求出宽,再根据“求⽐⼀个数多⼏的数是多少”的题型算出⾼,最后⽤公式V=abh算出体积就可以了.解:6÷1.2=5(厘⽶)5+0.5=5.5(厘⽶)6×5×5.5=165(平⽅厘⽶)答:这个长⽅体的体积是165平⽅厘⽶.例6.在长为12厘⽶、宽为10厘⽶、8厘⽶深的玻璃缸中放⼊⼀⽯块并没⼊⽔中,这时⽔⾯上升2厘⽶.⽯块的体积是多少?分析:把⽯块浸没在装⽔的长⽅体玻璃缸中,⽯块占有⼀定的空间,从⽽使⽔的体积增⼤,它的具体表现就是⽔⾯上升,不管⽯块的形状如何,只要求出增加的体积就可以了(即⽯块的体积).解:12×10×2=240(⽴⽅厘⽶)答:⽯块的体积是240⽴⽅厘⽶.例7.把棱长6厘⽶的正⽅体铁块锻造成宽和⾼都是4厘⽶的长⽅体铁条,能锻造出多长?分析:我们不难看出,棱长6厘⽶的正⽅体和要锻造的长⽅体的体积相等,只不过形状不⼀样,这类题叫等积变形题.只要求出正⽅体的体积就是长⽅体的体积了.解:6×6×6÷4÷4=13.5(厘⽶)答:能锻造13.5厘⽶长.习题精选⼀、填空题1.物体所占空间的⼤⼩叫做物体的().2.计量体积要⽤()单位,常⽤的体积单位有()()和().3.棱长1厘⽶的正⽅体体积是(),棱长1分⽶的正⽅体体积是(),棱长1⽶的正⽅体体积是().4.长⽅体的体积=(),正⽅体的体积=().5.在括号⾥填上合适的计量单位.(1)⼀本数学解题题典封⾯的周长是80(),⾯积是375(),体积是1125().(2)⼀块橡⽪的体积是6(),⼀只卫⽣保健箱的体积是30(),⼀堆钢材的体积是4().⼆、判断题1.⼀块长⽅体⽊料,长6分⽶,宽4分⽶,厚3分⽶.容积是72升.()2.⼀个游泳池的容积是1000毫升.()3.⼀个正⽅体的棱长扩⼤2倍,体积就扩⼤8倍.()4.⼀个长⽅体的⽊箱,它的体积和容积⼀样⼤.()5.⼀只杯⼦能装⽔1升,杯⼦的容积就是1⽴⽅分⽶.()三、计算题看图计算下⾯长⽅体和正⽅体的体积.1.2.3.四、应⽤题1.⼀个长⽅体⽊箱,长7分⽶,宽4分⽶,⾼3.5分⽶.这个⽊箱的体积是多少?2.⼀块⽅砖的厚是5厘⽶,长和宽都是30厘⽶.求这块⽅砖的体积.3.⼀块正⽅体⽯料,棱长是0.8⽶.这块⽯料的体积是多少⽴⽅分⽶?五、提⾼题1.下图是由棱长为1厘⽶的⼩正⽅体拼摆⽽成的.这个拼摆⽽成的形体的表⾯积是多少平⽅厘⽶?体积是多少⽴⽅厘⽶?⾄少再摆上⼏个⼩正⽅体后就可以拼摆成⼀个正⽅体?2.⼀个长⽅体玻璃容器,长5分⽶,宽4分⽶,⾼6分⽶,向容器中倒⼊30升⽔,再把⼀块⽯头放⼊⽔中,这时量得容器内的⽔深20厘⽶,⽯头的体积是多少⽴⽅分⽶?参考答案⼀、1.物体所占空间的⼤⼩叫做物体的(体积).2.计量体积要⽤(体积)单位,常⽤的体积单位有(⽴⽅厘⽶)(⽴⽅分⽶)和(⽴⽅⽶).3.棱长1厘⽶的正⽅体体积是(1⽴⽅厘⽶),棱长1分⽶的正⽅体体积是(1⽴⽅分⽶),棱长1⽶的正⽅体体积是(1⽴⽅⽶).4.长⽅体的体积=(长×宽×⾼),正⽅体的体积=(棱长×棱长×棱长).5.在括号⾥填上合适的计量单位.(1)⼀本数学解题题典封⾯的周长是80(厘⽶),⾯积是375(平⽅厘⽶),体积是1125(⽴⽅厘⽶).(2)⼀块橡⽪的体积是6(⽴⽅厘⽶),⼀只卫⽣保健箱的体积是30(⽴⽅分⽶),⼀堆钢材的体积是4(⽴⽅⽶).⼆、1.⼀块长⽅体⽊料,长6分⽶,宽4分⽶,厚3分⽶.容积是72升.(× )2.⼀个游泳池的容积是1000毫升.(× )3.⼀个正⽅体的棱长扩⼤2倍,体积就扩⼤8倍.(√ )4.⼀个长⽅体的⽊箱,它的体积和容积⼀样⼤.(× )5.⼀只杯⼦能装⽔1升,杯⼦的容积就是1⽴⽅分⽶.(√ )三、1.48×5=240(⽴⽅厘⽶)2.0.36×0.6=0.216(⽴⽅⽶)3.9×8=72(⽴⽅分⽶)四、1.7×4×3.8=98(⽴⽅分⽶)答:这个⽊箱的体积是98⽴⽅分⽶.2.30×30×5=4500(⽴⽅厘⽶)答:这块⽅砖的体积是4500⽴⽅厘⽶.3.0.8×0.8×0.8=0.512(⽴⽅⽶)答:这块⽯料的体积是512⽴⽅分⽶.五、1.(1×1)×48=48(平⽅厘⽶)(1×1×1)×18=18(⽴⽅厘⽶)答:表⾯积是48平⽅厘⽶,体积是18⽴⽅厘⽶,⾄少再摆上9个⼩正⽅体就可以拼成⼀个正⽅体.2.5×4×[2-30÷(5×4)] =10(⽴⽅分⽶)或5×4×2-30=10(⽴⽅分⽶)答:⽯头的体积是10⽴⽅分⽶.2-3长⽅体和正⽅体的体积(⼆)典型例题例1.⼀个长⽅体沙坑的长是8⽶,宽是4.2⽶,深是0.6⽶,每⽴⽅⽶沙⼟重1.75吨,填平这个沙坑共要⽤沙⼟多少吨?分析:已知每⽴⽅⽶沙⼟重1.75吨,求共要⽤沙⼟多少吨,必须先求出共要沙⼟多少⽴⽅⽶,即先求出沙坑的容积.解: 1.75×(8×4.2×0.6)=1.75×20.16=35.28(吨)答:共要沙⼟35.28吨.例2.长⽅体货仓1个,长50⽶,宽30⽶,⾼5⽶,这个货仓可以容纳8⽴⽅⽶的正⽅体货箱多少个?分析:已知正⽅体货箱的体积是8⽴⽅⽶,可以知道正⽅体货箱的棱长为2⽶.货仓的长是50⽶,所以⼀排可以摆放50÷2=25个,宽是30⽶,可以摆放30÷2=15排,⾼是5⽶,可以摆放5÷2=2层 (1)⽶,所以⼀共可以摆放25×15×2=750个.(如图)解:50÷2=25(个)30÷2=15(排)5÷2=2层……1⽶25×15×2=750(个)答:可以容纳8⽴⽅⽶的正⽅体货箱750个.说明:如果此题先计算长⽅体货仓的体积(50×30×5=7500⽴⽅⽶),然后再除以⽴⽅体的体积8⽴⽅⽶(7500÷8=937.5个)是不对的.因为货仓的⾼是5⽶,⽴⽅体的棱长2⽶,只能摆放2层,上⾯的1⽶实际上是空的,没有摆放货箱.例3.⼀只底⾯是正⽅形的长⽅体铁箱,如果把它的侧⾯展开,正好得到⼀个边长是60厘⽶的正⽅形.(1)这只铁箱的容积是多少升?(2)如果铁箱内装半箱⽔,求与⽔接触的⾯的⾯积.分析:(1)根据侧⾯展开后是⼀个边长为60厘⽶的正⽅形,可以得出长⽅形的底⾯(正⽅形)的周长是60厘⽶,⾼也是60厘⽶.由底⾯(正⽅形)的周长可以求出底⾯的⾯积.从⽽求出容积.(2)与⽔接触的⾯的⾯积是原长⽅体的侧⾯积的⼀半加上⼀个底⾯积.⽽侧⾯积是边长60厘⽶的正⽅形的⾯积,底⾯积上⾯已经求出.解:(1)×60=225×60=13500(⽴⽅厘⽶)(2)60×60÷2+=1800+225=2025(平⽅厘⽶)答:这只铁箱的容积是13.5升,如果装半箱⽔,与⽔接触的⾯积是2.25平⽅厘⽶.例4.有⼀个空的长⽅体容器和⼀个⽔深24厘⽶的长⽅体容器,将容器的⽔倒⼀部分到,使两容器⽔的⾼度相同,这时两容器相同的⽔深为⼏厘⽶?分析1:容器的底⾯积是40×30,容器的底⾯积是30×20,40×30÷(30×20)=2,即的底⾯积是的底⾯积的2倍,中的⽔倒⼀部分到使、两容器⽔的⾼度相同,所以这个⽔深为24÷(2+1)=8厘⽶.解法1:24÷[40×30÷(30×20)+1 ]=24÷3=8(厘⽶)分析2:设这个相同的⽔深为厘⽶,则中倒出的⽔深为(24-)厘⽶,倒出的⽔为30×20×(24-)⽴⽅厘⽶,这些⽔就全部在中,中的⽔有40×30×⽴⽅厘⽶,故可得⽅程.解法2:设这个相同的⽔深为厘⽶.40×30×=30×20×(24-)24-=40×30×÷(30×20)24-=23=24=8答:这个相同的⽔深是8厘⽶.例5.⼀个正⽅体⽊头,棱长是6厘⽶,在6个⾯的中央各挖⼀个长、宽、⾼都是2厘⽶的洞孔,这时它的表⾯积、体积各是多少?分析:表⾯积等于正⽅体表⾯积加上6个洞孔的4个⾯的⾯积;体积等于正⽅体的体积减去6个洞孔的体积.解:表⾯积为:6×6×6+2×2×4×6=216+96=312(平⽅厘⽶)体积为:6×6×6-2×2×2×6=216-48=168(⽴⽅厘⽶)答:表⾯积为312平⽅厘⽶,体积为168⽴⽅厘⽶.例6.有⼀块宽为22厘⽶的长⽅形铁⽪,在四⾓上剪去边长为5厘⽶的正⽅形后(如图⼀),将它焊成⼀个⽆盖的长⽅体盒⼦(如图⼆),已知这个盒⼦的体积是2160⽴⽅厘⽶,求原来这块铁⽪的⾯积是多少平⽅厘⽶?分析:已知盒⼦的体积是2160⽴⽅厘⽶,⾼为5厘⽶,这个盒⼦的底⾯积就可以求出,⽽这个盒⼦的底⾯长⽅形的宽为22-5×2=12(厘⽶),所以这底⾯长⽅形的长也可以求出.解:长⽅体盒⼦的长为:2160÷5÷(22-5×2)=432÷12=36(厘⽶)铁⽪的⾯积为:(36+5×2)×22=46×22=1012(平⽅厘⽶)答:原来这块铁⽪的⾯积是1012平⽅厘⽶.习题精选⼀⼀、填空.1、40⽴⽅⽶=()⽴⽅分⽶4⽴⽅分⽶5⽴⽅厘⽶=()⽴⽅分⽶30⽴⽅分⽶=()⽴⽅⽶0.85升=()毫升2100毫升=()⽴⽅厘⽶=()⽴⽅分⽶0.3升=()毫升=()⽴⽅厘⽶2、⼀个正⽅体的棱长和是12分⽶,它的体积是()⽴⽅分⽶.3、⼀个长⽅体的体积是30⽴⽅厘⽶,长是5厘⽶,⾼是3厘⽶,宽是()厘⽶.4、⼀个长⽅体的底⾯积是0.2平⽅⽶,⾼是8分⽶,它的体积是()⽴⽅分⽶.5、表⾯积是54平⽅厘⽶的正⽅体,它的体积是()⽴⽅厘⽶.6、正⽅体的棱长缩⼩3倍,它的体积就缩⼩()倍.7、⼀个长⽅体框架长8厘⽶,宽6厘⽶,⾼4厘⽶,做这个框架共要()厘⽶铁丝,是求长⽅体(),在表⾯贴上塑料板,共要()塑料板是求(),在⾥⾯能盛()升⽔是求(),这个盒⼦有()⽴⽅⽶是求().8、长⽅体的长是6厘⽶,宽是4厘⽶,⾼是2厘⽶,它的棱长总和是()厘⽶,六个⾯种最⼤的⾯积是()平⽅厘⽶,表⾯积是()平⽅厘⽶,体积是()⽴⽅厘⽶.⼆、判断.1、体积单位⽐⾯积单位⼤,⾯积单位⽐长度单位⼤.()2、正⽅体和长⽅体的体积都可以⽤底⾯积乘⾼来进⾏计算.()3、表⾯积相等的两个长⽅体,它们的体积⼀定相等.()4、长⽅体的体积就是长⽅体的容积.()5、如果⼀个长⽅体能锯成四个完全⼀样的正⽅体,那么长⽅体前⾯的⾯积是底⾯积的4倍.()三、选择.1、正⽅体的棱长扩⼤2倍,则体积扩⼤()倍.①2 ②4 ③6 ④82、⼀根长⽅体⽊料,长1.5⽶,宽和厚都是2分⽶,把它锯成4段,表⾯积最少增加()平⽅分⽶.①8 ②16 ③24 ④323、⼀个长⽅体的长、宽、⾼都扩⼤2倍,它的体积扩⼤()倍.①2 ②4 ③6 ④84、表⾯积相等的长⽅体和正⽅体的体积相⽐,().①正⽅体体积⼤②长⽅体体积⼤③相等5、将⼀个正⽅体钢坯锻造成长⽅体,正⽅体和长⽅体().①体积相等,表⾯积不相等②体积和表⾯积都不相等.③表⾯积相等,体积不相等.6、⼀个菜窖能容纳6⽴⽅⽶⽩菜,这个菜窖的()是6⽴⽅⽶.①体积②容积③表⾯积参考答案⼀、填空.1、40000; 4.005; 850; 2100、2.1; 300、3002、13、24、16005、276、277、72、棱长和、208、表⾯积、0.192、容积、0.192、体积8、48、24、88、48⼆、判断.1、×2、√3、×4、×5、×三、选择.1、④2、③3、④4、①5、①6、②⼆⼀、填表.⼆、计算下图的体积(单位:分⽶).三、应⽤题.1、⼀块⽔泥砖长8厘⽶,宽6厘⽶,厚4厘⽶,它的体积是多少⽴⽅厘⽶?2、⼀个正⽅体⽊块,棱长6分⽶,已知每⽴⽅分⽶⽊重0.4千克,这个⽊块重多少千克?3、把⼀块棱长是20厘⽶的正⽅体钢坯,锻造成底⾯积是16平⽅厘⽶的长⽅体钢材,长⽅体钢材长多少厘⽶?参考答案⼀、填表.⼆、计算下图的体积.(单位:分⽶)1、8×4×5=160(⽴⽅分⽶)2、3×3×7=63(⽴⽅分⽶)3、2.5×2.5×2.5=15.625(⽴⽅分⽶)三、应⽤题.1、8×6×4=192(⽴⽅厘⽶)答:它的体积是192⽴⽅厘⽶.2、6×6×6=216(⽴⽅分⽶)0.4×216=86.4(千克)答:这个⽊块重86.4千克.3、20×20×20÷16=8000÷16=500(厘⽶)答:钢材长500厘⽶.。

人教版数学5年级下册 第3单元(长方体与正方体)易错题三(附详细解析)

人教版数学5年级下册 第3单元(长方体与正方体)易错题三(附详细解析)

第3单元长方体与正方体易错题易错点大集合易错点一:棱长和以及认识典例一个正方体的棱长扩大3倍,它的棱长之和就扩大()A.27倍B.9倍C.3倍跟踪训练1.粉笔盒的形状是,红领巾的形状是.2.一个长方体和一个正方体的棱长之和相等,已知正方体的棱长是4厘米,长方体的长是5厘米,宽是3厘米,它的高是厘米.3.正方体有个面,每个面都是形;正方体有条棱,每条棱的长度都.易错点二:表面积典例一个长方体的棱长总和是48分米,从一个顶点出发的三条棱长的和是分米,如果这三条棱的长度恰好是三个连续的自然数,这个长方体的表面积是平方分米。

跟踪训练1.一根长2米,横截面积是0.1平方米的木条,截成两段后表面积增加了()平方米。

A.0.2B.0.4C.0.12.一个正方体的棱长之和是48cm,它的表面积是()cm2。

A.16B.32C.64D.963.用铁皮制成长方体烟囱,求用了多少铁皮,就是求这个长方体()A.体积B.六个面的面积和C.四个面的面积和D.五个面的面积和易错点三:单位换算典例18018毫升=()A.180升18毫升B.1升8018毫升C.18升18毫升跟踪训练1.一瓶1L的饮料,如果每杯可以装0.25L,这瓶饮料可以装杯。

2.一辆汽车行驶1千米大约要耗油75毫升,这辆汽车从甲地到乙地行驶了80千米,大约耗油毫升,合升。

3.8000毫升=升6升=毫升420分=时1升20毫升=毫升易错点四:体积典例长方体和正方体的底面积相等,长方体的高是正方体的2倍,长方体的体积是正方体的()倍。

A.2B.4C.6D.8跟踪训练1.用一根长76厘米的钢筋,焊成一个长8厘米、宽5厘米的长方体框架,它的高应是厘米,体积是。

2.把一个棱长12分米的正方体,切成棱长4分米的小正方体,可以得到个小正方体,这些正方体的体积共是立方分米。

3.一个长方体的体积是240米3,它的底面积是24米2,这个长方体的高是米。

第3单元长方体与正方体易错题易错点大集合易错点一:棱长和以及认识典例一个正方体的棱长扩大3倍,它的棱长之和就扩大()A.27倍B.9倍C.3倍【解答】解:一个正方体棱长扩大3倍,它的棱长和扩大3倍。

《长方体和正方体》典型题讲解

《长方体和正方体》典型题讲解
判断题:
1.容积的计算方法和体积的计算方法相同。( √ )
2.计算鱼缸的容积就是计算它的体积。( × )
3.方体的体积都可以用底面积乘高来
计算。( √ )
填空题:
1.正方体的棱长扩大到原来的3倍,它的表面积会
扩大到原来的( 9 )倍,它的体积会扩大到 原来的( 27 )倍。
做一做: 一个长方体和一个正方体的棱长总和相等。
已知长方体的长、宽、高分别是6厘米、5厘 米、4厘米,那么正方体的棱长是多少厘米? 它们的体积相等吗?
C=(a+b+h) ×4
=(6+5+4) ×4 =15×4 =60(厘米) 60÷12=5(厘米)
V长=abh
=6×5×4 =120(立方厘米) V正=a.a.a
拓展训练:
如图,有一个长方体容器,长30cm,宽 20cm,高10cm,里面水深6cm。如果把这 个容器盖紧,再朝左竖起来。里面的水深应 该是多少?
10cm
6cm
30cm
20cm 20cm 10cm
结语:
长方体的长宽高都扩大到原来的n倍, 它的表面积会扩大到n的平方倍,体积会 扩大到n的立方倍。
3×2×2×2 =24(立方米)
答:水池溢出的水的体积是24立方米。
10.把两块棱长为1.5dm的正方体木块拼成一个长方体。这个 长方体的体积、表面积分别是多少?如果是用3块正方体拼 的图形呢?
体积 长:1.5 ×2=3(dm)
1.5
V=abh
1.5
=3 ×1.5 ×1.5
1.5 ×2
方法一:
= (立方分米)
一个长方体油箱,从里面量,底面是周长 为12dm的正方体,高5dm。这个油箱的容积是 多少?

五年级上册长方体正方体解决问题完整版

五年级上册长方体正方体解决问题完整版

五年级上册长方体正方体解决问题Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】1、有四个棱长为3分米的正方体,如果将它们拼成一个长方体,求这个长方体的表面积?2、将一个长方体的高增加2厘米后,就成了一个正方体,且表面积比原来增加了40平方厘米,求原来长方体的表面积?3、把三个长、宽、高分别是10厘米、8厘米、3厘米的长方体拼成一个较大的长方体,求这个长方体的表面积最小是多少平方厘米?4、一个长方体正好可以切割成3个完全一样的正方体,且没有剩余;三个正方体的表面积比原来增加了60平方厘米。

求原来长方体的表面积?5、一个长方体,如果从它的高锯掉3厘米的一段,正好可以得到一个正方体,但表面积比原来减少了72平方厘米。

求原来长方体的表面积?6、将一个长、宽、高分别是10分米、8分米、7分米的长方体木块锯成一个最大的正方体,求这个最大正方体的棱长是多少分米表面积比原来减少了多少平方分米1、有一个长方体容器,长4分米、宽3分米、水深是2分米。

把一个小石块浸入水中后,水面上升了0.8分米。

求这个小石块的体积?2、有一个长方体容器,从里面量长、宽、高分别是5分米、4分米、6分米;里面注入水,水深3分米。

如果把一个棱长为2分米的正方体铁块浸入水中,水面会上升多少分米?3、有一个长方体容器,从里面量长、宽、高分别是40厘米、30厘米、35厘米;里面注入水,水深10厘米。

如果把一个棱长为2分米的正方体铁块放入中,铁块顶面仍高于水面。

这时水面高是多少厘米?4、一个长方体,不同的三个面的面积分别是25平方厘米、18平方厘米、8平方厘米。

求这个长方体的体积是多少立方厘米?5、一个长方体,不同的三个面的面积分别是35平方分米、21平方分米、15平方分米;且长、宽、高都是质数。

求这个长方体的体积是多少立方分米?6、有三个正方体铁块,它们的表面积分别是24平方厘米、54平方厘米、294平方厘米,现将三个正方体铁块熔成一个大正方体。

五年级长方体正方体经典例题精选版

五年级长方体正方体经典例题精选版

五(下)数学第三单元——长方体和正方体【知识点梳理】一、长方体和正方体1.我们周围许多物体的形状都是长方体或正方体(正方体也叫立方体)。

※举例:长方体:砖块、箱子……/正方体:魔方、骰子……2. (1)长方体是由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形。

在一个长方体中,相对的2个面完全相同,相对的4条棱长度相等。

长方体有12条棱,8个顶点。

(2)相交于一个顶点的三条棱分别叫做长方体的长、宽、高。

3.正方体是由6个完全相同的正方形围成的立体图形。

正方体有6个面,12条棱,8个顶点,6个面都是正方形,面积都相等,12条棱长度都相等。

4. 正方体可以看成是长、宽、高都相等的长方体。

我们可以用上图来表示长方体和正方体的关系。

当长方体有两个相对的面是正方形时,其他的4个面是相等的长方形。

(在长方体中最多可以有4个相同的面)5)正方体的6个面都是相等的正方形,12条棱的长度都相等。

6)正方体是特殊的长方体。

二、表面积1.长方体或正方体6个面的总面积,叫做它的表面积。

※举例:表面积即为长、正方体展开图总面积。

2.日常生活和生产中,经常需要计算一些长方体或正方体的表面积。

※举例:粉刷房间、贴瓷砖、包装礼盒、油漆水管、制作玻璃鱼缸(求面的大小)……3.求长方体、正方体表面积的公式:S长方体=(长×宽+长×高+宽×高)×2 =2(a·b+a·h+b·h)S正方体=棱长×棱长×6 =6a24.注意:求几个面。

当计算长方体的表面积时,有时候需要计算的不需要是6个面,因此需要仔细理解题意,求出需要的面的面积和。

求5个面的面积是:无盖的盒子、箱子等;游泳池的四壁和底面、一个抽屉、一个火柴盒的内盒、一本影集的封套;求4个面的面积是:一根方柱的涂漆表面、一个盒子四周的商标纸、一个烟囱或通风管或排水管、一个火柴盒的外盒;三、体积1.物体所占空间的大小叫做物体的体积。

五年级长方体正方体表面积应用题

五年级长方体正方体表面积应用题

五年级长方体正方体表面积应用题一、题目。

1. 一个正方体的棱长为5厘米,求它的表面积。

解析:正方体的表面积公式为S = 6a^2(其中S表示表面积,a表示棱长)。

已知正方体棱长a = 5厘米,那么表面积S=6×5^2=6×25 = 150平方厘米。

2. 一个长方体,长8厘米,宽6厘米,高4厘米,求它的表面积。

解析:长方体的表面积公式为S=(ab + ah+bh)×2(其中a表示长,b表示宽,h 表示高)。

将a = 8厘米,b = 6厘米,h = 4厘米代入公式,可得S=(8×6 +8×4+6×4)×2=(48+32 + 24)×2=(80+24)×2 = 104×2=208平方厘米。

3. 一个正方体的表面积是216平方厘米,求它的棱长。

解析:设正方体的棱长为a,根据正方体表面积公式S = 6a^2,已知S = 216平方厘米,则6a^2=216,a^2=216÷6 = 36,所以a = 6厘米。

4. 一个长方体的长是10分米,宽是8分米,表面积是376平方分米,求高。

解析:设长方体的高为h分米。

根据长方体表面积公式S=(ab + ah+bh)×2,已知a = 10分米,b = 8分米,S = 376平方分米,则(10×8+10h + 8h)×2=376,先计算括号内80+(10 + 8)h=80 + 18h,那么(80+18h)×2 = 376,160+36h=376,36h=376 160=216,h = 6分米。

5. 一个正方体礼品盒,棱长1.2分米,如果包装这个礼品盒的用纸是其表面积的1.5倍,至少要用多少平方分米的包装纸?解析:首先求正方体的表面积S = 6a^2,a = 1.2分米,所以S=6×1.2^2=6×1.44 = 8.64平方分米。

《正方体与长方体》(讲义)五年级下册数学人教版

《正方体与长方体》(讲义)五年级下册数学人教版

五年级年级下册数学:《正方体与长方体》知识点+练习时间:___________ 学生:________ 授课老师:_______课堂安排:新课一、长方体特点:(1)有6个面,8个顶点,12条棱,相对的面的面积相等,相对的棱的长度相等。

(2)一个长方体最多有6个面是长方形,最少有4个面是长方形,最多有2个面是正方形。

二、正方体特点:(1)正方体有12条棱,它们的长度都相等。

(2)正方体有6个面,每个面都是正方形,每个面的面积都相等。

(3)正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。

相同点不同点面棱长方体都有6个面,12条棱,8个顶点。

6个面都是长方形。

(有可能有两个相对的面是正方形)。

相对的棱的长度都相等正方6个面都是正方形。

12条棱都相等。

体针对练习一【对应练习1】长、宽、高都相等的长方体叫________,它是特殊的________。

【对应练习2】用棱长为2cm的小正方体拼成一个大正方体,至少需要( )个这样的小正方体。

【对应练习3】正方体有()个面,每个面都(),都是()形,有()条棱,12条棱长度(),叫做正方体的棱长,有()个顶点,正方体是特殊的()。

【对应练习4】正方体是特殊的( ),是长、宽、高都( )的长方体。

三、长方体、正方体有关棱长计算公式:长方体的棱长总和=(长+宽+高)×4=长×4+宽×4+高×4L=(a+b+h)×4长=棱长总和÷4-宽-高a=L÷4-b-h宽=棱长总和÷4-长-高b=L÷4-a-h高=棱长总和÷4-长-宽h=L÷4-a-b正方体的棱长总和=棱长×12L=a×12正方体的棱长=棱长总和÷12a=L÷12针对练习二【典型题1】一个长方体的棱长总和是24厘米,从一个顶点出发的三条棱的和是( )厘米。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

长方体和正方体的经典例题讲解
知识点一考查:长方体和正方体的概念
题型一:1、右图是()体,它的上面是()形,长是(),宽是(),面积是(),它的后面是()形,长是(),宽是(),面积是()。

它的棱长和是( ),表面积是()。

2、长方体的表面积 = ;正方体的表面积= ;
长方体的体积= ;正方体的体积= ;
3、一瓶农夫矿泉水的容积是250( );一块橡皮擦的体积是8( )(填适合单位)知识点二考查:单位的换算
体积单位及容积单位有:、、、、
9立方分米=()升8600平方厘米=()平方分米980立方分米=()立方米
9.4立方米=()立方分米 0.5立方分米=()立方厘米=()毫升
知识点三考查:长方体和正方体的表面积的计算
长方体或正方体6个面的总面积,叫做它的表面积。

※举例:表面积即为长、正方体展开图总面积。

例题1、一盒饼干长20厘米,宽15厘米,高30厘米,现在要在它的四周贴上商标纸,这张商标纸的表面积是多少平方厘米?
例题2、一只无盖的长方体鱼缸,长0.4米,宽0.25米,深3分米,做这只鱼缸至少要用玻璃多少平方米?
基础练习:
1、一个长1米、宽8厘米、高5厘米的长方体木料,锯成长度都是50厘米的两段,表面积比原来增加多少平方厘米?
2、一个游泳池,长25米,宽10米,深2.4米,在游泳池的四周和池底砌瓷砖,如果瓷砖的边长是2分米的正方形,那么至少需要这种瓷砖多少块?
能力提升:1、一个零件形状大小如下图:算一算,它的体积是多少立方厘
米,表面积是多少平方厘米?
2、一个长5厘米、宽1厘米、高3厘米的长方体,被切去一块后(如图),剩
下部分的表面积和体积各是多少?
知识点四考查:长方体和正方体的体积的计算
长方体体积= =
正方体体积= =
例题1、把一块不规则的石块放入一个棱长是30厘米的正方体容器,水面上升了5厘米,求这块石块的体积。

基础练习1、建筑工地要挖一个长50m,宽30m,深50cm的长方体土能挖出多少方的土?(1m3=1方)
例题2、一块正方体的石头,棱长是6分米,每立方米的石头大约重3.5千克,这块石头重有多少千克?
例题3、把60升水倒入一个长6分米,宽2.5分米的长方体水箱内,正好倒满,这个水箱深多少分米?
基础练习:把一个棱长为0.4米的正方体钢坯锻造成一个长为0.8米,宽为0.2米的长方体钢坯,锻成的钢坯有多高?
知识点五考查:棱长总和、表面积、体积综合应用
例题1、一个正方体的铁皮油箱,棱长5分米,这个油箱可以盛油多少升,这个油箱要用多少铁皮?
例题2、一个带盖的长方体木箱,体积是0.576立方米,它的长是12分米,宽是8分米,做这样一个木箱至少要用木板多少平方米?
能力提升:1、有一个长方体形状的零件。

中间挖去一个正方体的孔
(如图)。

你能算出它的体积和表面积吗?(单位:厘米)
2、有一个形状如图的零件,求它的体积和表面积。

(单位:厘米)。

相关文档
最新文档