数据结构中常用的逻辑结构和存储结构
计算机导论-第6章 数据结构
单击此处添课程名 ⑵线性结构。该结构的数据元素之间存在着一对一的关系。
⑶树型结构。该结构的数据元素之间存在着一对多的关系。
⑷图型结构。该结构的数据元素之间存在着多对多的关系, 图形结构也称作网状结构。
具有特殊的意义,称为栈顶。相应地,表尾 称为栈底。不含任何元素的栈称为空栈。
2. 栈的数学性质
假设一个栈S中的元素为an,an-1,..,a1,则 称a1为栈底元素,an为栈顶元 素。栈中的
元 时素 候按 ,单出a ,a栈击2,的..此,元an素-处1,都an添是的栈次课顶序程元进素栈名。。换在句任话何
第六章 数单据击结此构处添课程名
第6章 数据结构
• 数据结构是计算机软件和计算机应用专业的 核心课程之一,对于学习计算机专业的其他 课程,如操作系统、编译原理、数据库管理
系的统 。、 数软 据单件 结击工 构程主此、要处人研工究添智数能据课等表程都示是 与名十 存储分的有方益
法、抽象的逻辑结构及其上定义的各种基本 操作。数据的逻辑结构常常采用数学描述的 抽象符号和有关的理论。如使用串、表、数 组、图等结构和理论来表示数据在存储时的 逻辑结构,研究这些结构上定义的各种操作 。
本章内容
• 6.1 数据结构的概念 • 6.2 几种典型的数据结构 • 6.3 查找
• 6.4 单排序击此处添课程名
6.1 数据结构的概念
• 在系统地学习数据结构知识之前,先对一 些与数据结构相关的基本概念和术语赋予 确切的含义。
• 数 算机据单识(别D击at、a此)存是储处信和添息加的工课载处体理程,。名它它能是够计被算计机 程序加工的原料,应用程序处理各种各样 的数据。
全国计算机二级第1章数据结构与算法
考点1 算法的复杂度【考点精讲】1.算法的基本概念计算机算法为计算机解题的过程实际上是在实施某种算法。
算法的基本特征:可行性、确定性、有穷性、拥有足够的情报。
2.算法复杂度算法复杂度包括时间复杂度和空间复杂度。
名称描述时间复杂度是指执行算法所需要的计算工作量空间复杂度是指执行这个算法所需要的内存空间考点2 逻辑结构和存储结构【考点精讲】1.逻辑结构数据的逻辑结构是对数据元素之间的逻辑关系的描述,它可以用一个数据元素的集合和定义在此集合中的若干关系来表示。
数据的逻辑结构有两个要素:一是数据元素的集合,通常记为D;二是D上的关系,它反映了数据元素之间的前后件关系,通常记为R。
一个数据结构可以表示成B=(D,R)其中B表示数据结构。
为了反映D中各数据元素之间的前后件关系,一般用二元组来表示。
例如,如果把一年四季看作一个数据结构,则可表示成B =(D,R)D ={春季,夏季,秋季,冬季}R ={(春季,夏季),(夏季,秋季),(秋季,冬季)}2.存储结构数据的逻辑结构在计算机存储空间中的存放形式称为数据的存储结构(也称数据的物理结构)。
由于数据元素在计算机存储空间中的位置关系可能与逻辑关系不同,因此,为了表示存放在计算机存储空间中的各数据元素之间的逻辑关系(即前后件关系),在数据的存储结构中,不仅要存放各数据元素的信息,还需要存放各数据元素之间的前后件关系的信息。
一种数据的逻辑结构根据需要可以表示成多种存储结构,常用的存储结构有顺序、链接等存储结构。
顺序存储方式主要用于线性的数据结构,它把逻辑上相邻的数据元素存储在物理上相邻的存储单元里,结点之间的关系由存储单元的邻接关系来体现。
链式存储结构就是在每个结点中至少包含一个指针域,用指针来体现数据元素之间逻辑上的联系。
考点3 线性结构和非线性结构【考点精讲】根据数据结构中各数据元素之间前后件关系的复杂程度,一般将数据结构分为两大类型:线性结构与非线性结构。
如果一个非空的数据结构满足下列两个条件:(1)有且只有一个根结点;(2)每一个结点最多有一个前件,也最多有一个后件。
数据结构基础知识整理
数据结构基础知识整理*名词解释1、数据:是信息的载体,能够被计算机识别、存储和加工处理。
*2、数据元素:是数据的基本单位,也称为元素、结点、顶点、记录。
一个数据元素可以由若干个数据项组成,数据项是具有独立含义的最小标识单位。
*3、数据结构:指的是数据及数据之间的相互关系,即数据的组织形式,它包括数据的逻辑结构、数据的存储结构和数据的运算三个方面的内容。
*4、数据的逻辑结构:指数据元素之间的逻辑关系,即从逻辑关系上描述数据,它与数据的存储无关,是独立于计算机的。
*5、数据的存储结构:指数据元素及其关系在计算机存储器内的表示。
是数据的逻辑结构用计算机语言的实现,是依赖于计算机语言的。
*6、线性结构:其逻辑特征为,若结构是非空集,则有且仅有一个开始结点和一个终端结点,并且其余每个结点只有一个直接前趋和一个直接后继。
*7、非线性结构:其逻辑特征为一个结点可能有多个直接前趋和直接后继。
*8、算法:是任意一个良定义的计算过程,它以一个或多个值作为输入,并产生一个或多个值作为输出;即一个算法是一系列将输入转换为输出的计算步骤。
*9、算法的时间复杂度T(n):是该算法的时间耗费,它是该算法所求解问题规模n趋向无穷大时,我们把时间复杂度T(n)的数量级(阶)称为算法的渐近时间复杂度。
*10、最坏和平均时间复杂度:由于算法中语句的频度不仅与问题规模n有关,还与输入实例等因素有关;这时可用最坏情况下时间复杂度作为算法的时间复杂度。
而平均时间复杂度是指所有的输入实例均以等概率出现的情况下,算法的期望运行时间。
*11、数据的运算:指对数据施加的操作。
数据的运算是定义在数据的逻辑结构上的,而实现是要在存储结构上进行。
*12、线性表:由n(n≥0)个结点组成的有限序列。
其逻辑特征反映了结点间一对一的关系(一个结点对应一个直接后继,除终端结点外;或一个结点对应一个直接前趋,除开始结点外),这是一种线性结构。
*13、顺序表:顺序存储的线性表,它是一种随机存取结构。
数据结构的逻辑结构、存储结构及数据运算的含义及其相互关系
2007 C C C 语言的特点,简单的C 程序介绍,C 程序的上机步骤。
1 、算法的概念2、简单的算法举例3、算法的特性4、算法的表示(自然语言、流程图、N-S 图表示) 1 、 C 的数据类型、常量与变星、整型数据、实型数据、字符型数据、字符串常量。
2、 C 的运算符运算意义、优先级、结合方向。
3、算术运算符和算术表达式,各类数值型数据间的混合运算。
4、赋值运算符和赋值表达式。
5、逗号运算符和逗号表达式。
1 、程序的三种基本结构。
2、数据输入输出的概念及在C 语言中的实现。
字符数据的输入输出,格式输入与输出。
1 、关系运算符及其优先级,关系运算和关系表达式。
2、逻辑运算符及其优先级,逻辑运算符和逻辑表达式。
3、if语句。
if语句的三种形式,if语句的嵌套,条件运算符。
4、switch 语句. 1 、while 语句。
2、do/while 语句。
3、for 语句。
4、循环的嵌套。
5、break 语句和continue 语句。
1 、一维数组的定义和引用。
2、二维数组的定义和引用。
3、字符数组。
4、字符串与字符数组。
5、字符数组的输入输出。
6、字符串处理函数1 、函数的定义。
2、函数参数和函数的值,形式参数和实际参数。
3、函数的返回值。
4、函数调用的方式,函数的声明和函数原型。
5、函数的嵌套调用。
6、函数的递归调用。
7、数组作为函数参数。
8、局部变量、全局变量的作用域。
9、变量的存储类别,自动变星,静态变量。
1 、带参数的宏定义。
2、“文件包含”处理。
1 、地址和指针的概念。
2、变量的指针和指向变量的指针变量。
3、指针变量的定义和引用。
4、指针变量作为函数参数。
5、数组的指针和指向数组的指针变量。
6、指向数组元素的指针。
7、通过指针引用数组元素。
8、数组名作函数参数。
9、二维数组与指针。
1 0、指向字符串的指针变星。
字符串的指针表示形式,字符串指针作为函数参数。
11 、字符指针变量和字符数组的异同。
数据结构复习笔记
第一章概论1.数据:信息的载体,能被计算机识别、存储和加工处理;2.数据元素:数据的基本单位,可由若干个数据项组成,数据项是具有独立含义的最小标识单位;3.数据结构:数据之间的相互关系,即数据的组织形式;它包括:1数据的逻辑结构,从逻辑关系上描述数据,与数据存储无关,独立于计算机;2数据的存储结构,是逻辑结构用计算机语言的实现,依赖于计算机语言;3数据的运算,定义在逻辑结构上,每种逻辑结构都有一个运算集合;常用的运算:检索/插入/删除/更新/排序;4.数据的逻辑结构可以看作是从具体问题抽象出来的数学模型;数据的存储结构是逻辑结构用计算机语言的实现;5.数据类型:一个值的集合及在值上定义的一组操作的总称;分为:原子类型和结构类型;6.抽象数据类型:抽象数据的组织和与之相关的操作;优点:将数据和操作封装在一起实现了信息隐藏;7. 抽象数据类型ADT:是在概念层上描述问题;类:是在实现层上描述问题;在应用层上操作对象类的实例解决问题;8.数据的逻辑结构,简称为数据结构,有:1线性结构,若结构是非空集则仅有一个开始和终端结点,并且所有结点最多只有一个直接前趋和后继;2非线性结构,一个结点可能有多个直接前趋和后继;9.数据的存储结构有:1顺序存储,把逻辑相邻的结点存储在物理上相邻的存储单元内;2链接存储,结点间的逻辑关系由附加指针字段表示;3索引存储,存储结点信息的同时,建立附加索引表,有稠密索引和稀疏索引;4散列存储,按结点的关键字直接计算出存储地址;10.评价算法的好坏是:算法是正确的;执行算法所耗的时间;执行算法的存储空间辅助存储空间;易于理解、编码、调试;11.算法的时间复杂度Tn:是该算法的时间耗费,是求解问题规模n的函数;记为On;时间复杂度按数量级递增排列依次为:常数阶O1、对数阶Olog2n、线性阶On、线性对数阶Onlog2n、平方阶On^2、立方阶On^3、……k次方阶On^k、指数阶O2^n;13.算法的空间复杂度Sn:是该算法的空间耗费,是求解问题规模n的函数;12.算法衡量:是用时间复杂度和空间复杂度来衡量的,它们合称算法的复杂度;13. 算法中语句的频度不仅与问题规模有关,还与输入实例中各元素的取值相关;第二章线性表1.线性表:是由nn≥0个数据元素组成的有限序列;3.顺序表:把线性表的结点按逻辑次序存放在一组地址连续的存储单元里;4.顺序表结点的存储地址计算公式:Locai=Loca1+i-1C;1≤i≤n5.顺序表上的基本运算public interface List {链表:只有一个链域的链表称单链表;在结点中存储结点值和结点的后继结点的地址,data next data是数据域,next是指针域;1建立单链表;时间复杂度为On;加头结点的优点:1链表第一个位置的操作无需特殊处理;2将空表和非空表的处理统一; 2查找运算;时间复杂度为On;public class SLNode implements Node {private Object element;private SLNode next;public SLNodeObject ele, SLNode next{= ele;= next;}public SLNode getNext{return next;}public void setNextSLNode next{= next;}public Object getData {return element;}public void setDataObject obj {element = obj;}}public class ListSLinked implements List {private SLNode head; etData==ereturn p;else p = ;return null;}etData;.getNext;size--;return obj;}etNext;size--;return true;}return false;}环链表:是一种首尾相连的链表;特点是无需增加存储量,仅对表的链接方式修改使表的处理灵活方便;8.空循环链表仅由一个自成循环的头结点表示;9.很多时候表的操作是在表的首尾位置上进行,此时头指针表示的单循环链表就显的不够方便,改用尾指针rear来表示单循环链表;用头指针表示的单循环链表查找开始结点的时间是O1,查找尾结点的时间是On;用尾指针表示的单循环链表查找开始结点和尾结点的时间都是O1;10.在结点中增加一个指针域,prior|data|next;形成的链表中有两条不同方向的链称为双链表;public class DLNode implements Node {private Object element;private DLNode pre;private DLNode next;public DLNodeObject ele, DLNode pre, DLNode next{= ele;= pre;= next;}public DLNode getNext{return next;}public void setNextDLNode next{= next;}public DLNode getPre{return pre;}public void setPreDLNode pre{= pre;}public Object getData {return element;}public void setDataObject obj {element = obj;}}public class LinkedListDLNode implements LinkedList {private int size; etPrenode;node;size++;return node;}etNextnode;node;size++;return node;}etNext;.setPre;size--;return obj;}序表和链表的比较1基于空间的考虑:顺序表的存储空间是静态分配的,链表的存储空间是动态分配的;顺序表的存储密度比链表大;因此,在线性表长度变化不大,易于事先确定时,宜采用顺序表作为存储结构;2基于时间的考虑:顺序表是随机存取结构,若线性表的操作主要是查找,很少有插入、删除操作时,宜用顺序表结构;对频繁进行插入、删除操作的线性表宜采用链表;若操作主要发生在表的首尾时采用尾指针表示的单循环链表;12.存储密度=结点数据本身所占的存储量/整个结点结构所占的存储总量存储密度:顺序表=1,链表<1;第三章栈和队列1.栈是限制仅在表的一端进行插入和删除运算的线性表又称为后进先出表LIFO表;插入、删除端称为栈顶,另一端称栈底;表中无元素称空栈;2.栈的基本运算有:1initstacks,构造一个空栈;2stackemptys,判栈空;3stackfulls,判栈满;4pushs,x,进栈;5pops,退栈;6stacktops,取栈顶元素;3.顺序栈:栈的顺序存储结构称顺序栈;4.当栈满时,做进栈运算必定产生空间溢出,称“上溢”;当栈空时,做退栈运算必定产生空间溢出,称“下溢”;上溢是一种错误应设法避免,下溢常用作程序控制转移的条件;5.在顺序栈上的基本运算:public interface Stack {栈:栈的链式存储结构称链栈;栈顶指针是链表的头指针;7.链栈上的基本运算:public class StackSLinked implements Stack {private SLNode top; 列是一种运算受限的线性表,允许删除的一端称队首,允许插入的一端称队尾;队列又称为先进先出线性表,FIFO表;9.队列的基本运算:1initqueueq,置空队;2queueemptyq,判队空;3queuefullq,判队满;4enqueueq,x,入队;5dequeueq,出队;6queuefrontq,返回队头元素;10.顺序队列:队列的顺序存储结构称顺序队列;设置front和rear指针表示队头和队尾元素在向量空间的位置;11.顺序队列中存在“假上溢”现象,由于入队和出队操作使头尾指针只增不减导致被删元素的空间无法利用,队尾指针超过向量空间的上界而不能入队;12.为克服“假上溢”现象,将向量空间想象为首尾相连的循环向量,存储在其中的队列称循环队列;i=i+1%queuesize13.循环队列的边界条件处理:由于无法用front==rear来判断队列的“空”和“满”;解决的方法有:1另设一个布尔变量以区别队列的空和满;2少用一个元素,在入队前测试rear在循环意义下加1是否等于front;3使用一个记数器记录元素总数;14.循环队列的基本运算:public interface Queue {队列:队列的链式存储结构称链队列,链队列由一个头指针和一个尾指针唯一确定;16.链队列的基本运算:public class QueueSLinked implements Queue {private SLNode front;private SLNode rear;private int size;public QueueSLinked {front = new SLNode;rear = front;size = 0;}etData;}}第四章串1.串:是由零个或多个字符组成的有限序列;包含字符的个数称串的长度;2.空串:长度为零的串称空串;空白串:由一个或多个空格组成的串称空白串;子串:串中任意个连续字符组成的子序列称该串的子串;主串:包含子串的串称主串;子串的首字符在主串中首次出现的位置定义为子串在主串中的位置;3.空串是任意串的子串;任意串是自身的子串;串常量在程序中只能引用但不能改变其值;串变量取值可以改变;4.串的基本运算1intstrlenchars;求串长;2charstrcpycharto,charfrom;串复制;3charstrcatcharto,charfrom;串联接;4intstrcmpchars1,chars2;串比较;5charstrchrchars,charc;字符定位;5.串的存储结构:1串的顺序存储:串的顺序存储结构称顺序串;按存储分配不同分为:1静态存储分配的顺序串:直接用定长的字符数组定义,以“\0”表示串值终结;definemaxstrsize256typedefcharseqstringmaxstrsize;seqstrings;不设终结符,用串长表示;Typedefstruct{Charchmaxstrsize;Intlength;}seqstring;以上方式的缺点是:串值空间大小是静态的,难以适应插入、链接等操作;2动态存储分配的顺序串:简单定义:typedefcharstring;复杂定义:typedefstruct{charch;intlength;}hstring;2串的链式存储:串的链式存储结构称链串;链串由头指针唯一确定;类型定义:typedefstructnode{chardata;structnodenext;}linkstrnode;typedeflinkstrnodelinkstring;linkstrings;将结点数据域存放的字符个数定义为结点的大小;结点大小不为1的链串类型定义:definenodesize80typedefstructnode{chardatanodesize;structnodenext;}linkstrnode;6.串运算的实现1顺序串上的子串定位运算;1子串定位运算又称串的模式匹配或串匹配;主串称目标串;子串称模式串; 2朴素的串匹配算法;时间复杂度为On^2;比较的字符总次数为n-m+1m; Intnaivestrmatchseqstringt,seqstringp{inti,j,k;intm=;intn=;fori=0;i<=n-m;i++{j=0;k=i;whilej<m&&k==j{j++;k++;}ifj==mreturni;}return–1;}2链串上的子串定位运算;时间复杂度为On^2;比较的字符总次数为n-m+1m;LinkstrnodelilnkstrmatchlinkstringT,linkstringP {linkstrnodeshift,t,p;shift=T;t=shift;p=P;whilet&&p{ift->data==p->data{t=t->next;p=p->next;}else{shift=shift->next;t=shift;p=P;}}ifp==NULLreturnshift;elsereturnNULL;}第五章多维数组和广义表1.多维数组:一般用顺序存储的方式表示数组;2.常用方式有:1行优先顺序,将数组元素按行向量排列;2列优先顺序,将数组元素按列向量排列;3.计算地址的函数:LOCAij=LOCAc1c2+i-c1d2-c2+1+j-c2d4.矩阵的压缩存储:为多个非零元素分配一个存储空间;对零元素不分配存储空间;1对称矩阵:在一个n阶的方阵A中,元素满足Aij=Aji0<=i,j<=n-1;称为对称矩阵;元素的总数为:nn+1/2;设:I=i或j中大的一个数;J=i或j中小的一个数;则:k=II+1/2+J;地址计算:LOCAij=LOCsak=LOCsa0+kd=LOCsa0+II+1/2+Jd2三角矩阵:以主对角线划分,三角矩阵有上三角和下三角;上三角的主对角线下元素均为常数c;下三角的主对角线上元素均为常数c;元素总数为:nn+1/2+1;以行优先顺序存放的Aij与SAk的关系:上三角阵:k=i2n-i+1/2+j-i;下三角阵:k=ii+1/2+j;3对角矩阵:所有的非零元素集中在以主对角线为中心的带状区域,相邻两侧元素均为零;|i-j|>k-1/2以行优先顺序存放的Aij与SAk的关系:k=2i+j;5.稀疏矩阵:当矩阵A中有非零元素S个,且S远小于元素总数时,称为稀疏矩阵;对其压缩的方法有顺序存储和链式存储;1三元组表:将表示稀疏矩阵的非零元素的三元组行号、列号、值按行或列优先的顺序排列得到的一个结点均是三元组的线性表,将该表的线性存储结构称为三元组表;其类型定义:definemaxsize10000typedefintdatatype;typedefstruct{inti,j;datatypev;}trituplenode;typedefstruct{trituplenodedatamaxsize;intm,n,t;}tritupletable;2带行表的三元组表:在按行优先存储的三元组表中加入一个行表记录每行的非零元素在三元组表中的起始位置;类型定义:definemaxrow100typedefstruct{tritulpenodedatamaxsize;introwtabmaxrow;intm,n,t;}rtritulpetable;6.广义表:是线性表的推广,广义表是n个元素的有限序列,元素可以是原子或一个广义表,记为LS;7.若元素是广义表称它为LS的子表;若广义表非空,则第一个元素称表头,其余元素称表尾;8.表的深度是指表展开后所含括号的层数;9.把与树对应的广义表称为纯表,它限制了表中成分的共享和递归;10.允许结点共享的表称为再入表;11.允许递归的表称为递归表;12.相互关系:线性表∈纯表∈再入表∈递归表;13.广义表的特殊运算:1取表头headLS;2取表尾tailLS;第六章树1.树:是n个结点的有限集T,T为空时称空树,否则满足:1有且仅有一个特定的称为根的结点;2其余结点可分为m个互不相交的子集,每个子集本身是一棵树,并称为根的子树;2.树的表示方法:1树形表示法;2嵌套集合表示法;3凹入表表示法;4广义表表示法;3.一个结点拥有的子树数称为该结点的度;一棵树的度是指树中结点最大的度数;4.度为零的结点称叶子或终端结点;度不为零的结点称分支结点或非终端结点5.根结点称开始结点,根结点外的分支结点称内部结点;6.树中某结点的子树根称该结点的孩子;该结点称为孩子的双亲;7.树中存在一个结点序列K1,K2,…Kn,使Ki为Ki+1的双亲,则称该结点序列为K1到Kn的路径或道路;8.树中结点K到Ks间存在一条路径,则称K是Ks的祖先,Ks是K的子孙;9.结点的层数从根算起,若根的层数为1,则其余结点层数是其双亲结点层数加1;双亲在同一层的结点互为堂兄弟;树中结点最大层数称为树的高度或深度;10.树中每个结点的各个子树从左到右有次序的称有序树,否则称无序树;11.森林是m棵互不相交的树的集合;12.二叉树:是n个结点的有限集,它或为空集,或由一个根结点及两棵互不相交的、分别称为该根的左子树和右子树的二叉树组成;13.二叉树不是树的特殊情况,这是两种不同的数据结构;它与无序树和度为2的有序树不同;14.二叉树的性质:1二叉树第i层上的结点数最多为2^i-1;2深度为k的二叉树至多有2^k-1个结点;3在任意二叉树中,叶子数为n0,度为2的结点数为n2,则n0=n2+1;15.满二叉树是一棵深度为k的且有2^k-1个结点的二叉树;16.完全二叉树是至多在最下两层上结点的度数可以小于2,并且最下层的结点集中在该层最左的位置的二叉树;17.具有N个结点的完全二叉树的深度为log2N取整加1;18.二叉树的存储结构1顺序存储结构:把一棵有n个结点的完全二叉树,从树根起自上而下、从左到右对所有结点编号,然后依次存储在一个向量b0~n中,b1~n存放结点,b0存放结点总数;各个结点编号间的关系:1i=1是根结点;i>1则双亲结点是i/2取整;2左孩子是2i,右孩子是2i+1;要小于n3i>n/2取整的结点是叶子;4奇数没有右兄弟,左兄弟是i-1;5偶数没有左兄弟,右兄弟是i+1;2链式存储结构结点的结构为:lchild|data|rchild;相应的类型说明:typedefchardata;typedefstructnode{datatypedata;structnodelchild,rchild;}bintnode;typedefbintnodebintree;19.在二叉树中所有类型为bintnode的结点和一个指向开始结点的bintree类型的头指针构成二叉树的链式存储结构称二叉链表;20.二叉链表由根指针唯一确定;在n个结点的二叉链表中有2n个指针域,其中n+1个为空;21.二叉树的遍历方式有:前序遍历、中序遍历、后序遍历;时间复杂度为On;22.线索二叉树:利用二叉链表中的n+1个空指针域存放指向某种遍历次序下的前趋和后继结点的指针,这种指针称线索;加线索的二叉链表称线索链表;相应二叉树称线索二叉树;23.线索链表结点结构:lchild|ltag|data|rtag|rchild;ltag=0,lchild是指向左孩子的指针;ltag=1,lchild是指向前趋的线索;rtag=0,rchild是指向右孩子的指针;rtag=1,rchild是指向后继的线索;24.查找p在指定次序下的前趋和后继结点;算法的时间复杂度为Oh;线索对查找前序前趋和后序后继帮助不大;25.遍历线索二叉树;时间复杂度为On;26.树、森林与二叉树的转换1树、森林与二叉树的转换1树与二叉树的转换:1}所有兄弟间连线;2}保留与长子的连线,去除其它连线;该二叉树的根结点的右子树必为空;2森林与二叉树的转换:1}将所有树转换成二叉树;2}将所有树根连线;2二叉树与树、森林的转换;是以上的逆过程;27.树的存储结构1双亲链表表示法:为每个结点设置一个parent指针,就可唯一表示任何一棵树;Data|parent2孩子链表表示法:为每个结点设置一个firstchild指针,指向孩子链表头指针,链表中存放孩子结点序号;Data|firstchild;3双亲孩子链表表示法:将以上方法结合;Data|parent|firstchild4孩子兄弟链表表示法:附加两个指向左孩子和右兄弟的指针;Leftmostchild|data|rightsibling28.树和森林的遍历:前序遍历一棵树等价于前序遍历对应二叉树;后序遍历等价于中序遍历对应二叉树;29.最优二叉树哈夫曼树:树的路径长度是从树根到每一结点的路径长度之和;将树中的结点赋予实数称为结点的权;30.结点的带权路径是该结点的路径长度与权的乘积;树的带权路径长度又称树的代价,是所有叶子的带权路径长度之和;31.带权路径长度最小的二叉树称最优二叉树哈夫曼树;32.具有2n-1个结点其中有n个叶子,并且没有度为1的分支结点的树称为严格二叉树;33.哈夫曼编码34.对字符集编码时,要求字符集中任一字符的编码都不是其它字符的编码前缀,这种编码称前缀码;35.字符出现频度与码长乘积之和称文件总长;字符出现概率与码长乘积之和称平均码长;36.使文件总长或平均码长最小的前缀码称最优前缀码37.利用哈夫曼树求最优前缀码,左为0,右为1;编码平均码长最小;没有叶子是其它叶子的祖先,不可能出现重复前缀;第七章图1.图:图G是由顶点集V和边集E组成,顶点集是有穷非空集,边集是有穷集;中每条边都有方向称有向图;有向边称弧;边的始点称弧尾;边的终点称弧头;G中每条边都没有方向的称无向图;3.顶点n与边数e的关系:无向图的边数e介于0~nn-1/2之间,有nn-1/2条边的称无向完全图;有向图的边数e介于0~nn-1之间,有nn-1条边的称有向完全图;4.无向图中顶点的度是关联与顶点的边数;有向图中顶点的度是入度与出度的和;所有图均满足:所有顶点的度数和的一半为边数;5.图GV,E,如V’是V的子集,E’是E的子集,且E’中关联的顶点均在V’中,则G’V’,E’是G的子图;6.在有向图中,从顶点出发都有路径到达其它顶点的图称有根图;7.在无向图中,任意两个顶点都有路径连通称连通图;极大连通子图称连通分量;8.在有向图中,任意顺序两个顶点都有路径连通称强连通图;极大连通子图称强连通分量;9.将图中每条边赋上权,则称带权图为网络;10.图的存储结构:1邻接矩阵表示法:邻接矩阵是表示顶点间相邻关系的矩阵;n个顶点就是n阶方阵;无向图是对称矩阵;有向图行是出度,列是入度;2邻接表表示法:对图中所有顶点,把与该顶点相邻接的顶点组成一个单链表,称为邻接表,adjvex|next,如要保存顶点信息加入data;对所有顶点设立头结点,vertex|firstedge,并顺序存储在一个向量中;vertex保存顶点信息,firstedge保存邻接表头指针;11.邻接矩阵表示法与邻接表表示法的比较:1邻接矩阵是唯一的,邻接表不唯一;2存储稀疏图用邻接表,存储稠密图用邻接矩阵;3求无向图顶点的度都容易,求有向图顶点的度邻接矩阵较方便;4判断是否是图中的边,邻接矩阵容易,邻接表最坏时间为On;5求边数e,邻接矩阵耗时为On^2,与e无关,邻接表的耗时为Oe+n;12.图的遍历:1图的深度优先遍历:类似与树的前序遍历;按访问顶点次序得到的序列称DFS序列;对邻接表表示的图深度遍历称DFS,时间复杂度为On+e;对邻接矩阵表示的图深度遍历称DFSM,时间复杂度为On^2;2图的广度优先遍历:类似与树的层次遍历;按访问顶点次序得到的序列称BFS序列;对邻接表表示的图广度遍历称BFS,时间复杂度为On+e;对邻接矩阵表示的图广度遍历称BFSM,时间复杂度为On^2;13.将没有回路的连通图定义为树称自由树;14.生成树:连通图G的一个子图若是一棵包含G中所有顶点的树,该子图称生成树;有DFS生成树和BFS生成树,BFS生成树的高度最小;非连通图生成的是森林;15.最小生成树:将权最小的生成树称最小生成树;是无向图的算法1普里姆算法:1确定顶点S、初始化候选边集T0~n-2;formvex|tovex|lenght2选权值最小的Ti与第1条记录交换;3从T1中将tovex取出替换以下记录的fromvex计算权;若权小则替换,否则不变;4选权值最小的Ti与第2条记录交换;5从T2中将tovex取出替换以下记录的fromvex计算权;若权小则替换,否则不变;6重复n-1次;初始化时间是On,选轻边的循环执行n-1-k次,调整轻边的循环执行n-2-k;算法的时间复杂度为On^2,适合于稠密图;2克鲁斯卡尔算法:1初始化确定顶点集和空边集;对原边集按权值递增顺序排序;2取第1条边,判断边的2个顶点是不同的树,加入空边集,否则删除;3重复e次;对边的排序时间是Oelog2e;初始化时间为On;执行时间是Olog2e;算法的时间复杂度为Oelog2e,适合于稀疏图;16.路径的开始顶点称源点,路径的最后一个顶点称终点;17.单源最短路径问题:已知有向带权图,求从某个源点出发到其余各个顶点的最短路径;18.单目标最短路径问题:将图中每条边反向,转换为单源最短路径问题;19.单顶点对间最短路径问题:以分别对不同顶点转换为单源最短路径问题;20.所有顶点对间最短路径问题:分别对图中不同顶点对转换为单源最短路径问题;21.迪杰斯特拉算法:1初始化顶点集Si,路径权集Di,前趋集Pi;2设置Ss为真,Ds为0;3选取Di最小的顶点加入顶点集;4计算非顶点集中顶点的路径权集;5重复3n-1次;算法的时间复杂度为On^2;22.拓扑排序:对一个有向无环图进行拓扑排序,是将图中所有顶点排成一个线性序列,满足弧尾在弧头之前;这样的线性序列称拓扑序列;1无前趋的顶点优先:总是选择入度为0的结点输出并删除该顶点的所有边;设置各个顶点入度时间是On+e,设置栈或队列的时间是On,算法时间复杂度为On+e;2无后继的顶点优先:总是选择出度为0的结点输出并删除该顶点的所有边;设置各个顶点出度时间是On+e,设置栈或队列的时间是On,算法时间复杂度为On+e;求得的是逆拓扑序列;第八章排序1.文件:由一组记录组成,记录有若干数据项组成,唯一标识记录的数据项称关键字;2.排序是将文件按关键字的递增减顺序排列;3.排序文件中有相同的关键字时,若排序后相对次序保持不变的称稳定排序,否则称不稳定排序;4.在排序过程中,文件放在内存中处理不涉及数据的内、外存交换的称内排序,反之称外排序;5.排序算法的基本操作:1比较关键字的大小;2改变指向记录的指针或移动记录本身;6.评价排序方法的标准:1执行时间;2所需辅助空间,辅助空间为O1称就地排序;另要注意算法的复杂程度;7.若关键字类型没有比较运算符,可事先定义宏或函数表示比较运算;8.插入排序1直接插入排序算法中引入监视哨R0的作用是:1保存Ri的副本;2简化边界条件,防止循环下标越界;关键字比较次数最大为n+2n-1/2;记录移动次数最大为n+4n-1/2;算法的最好时间是On;最坏时间是On^2;平均时间是On^2;是一种就地的稳定的排序;2希尔排序实现过程:是将直接插入排序的间隔变为d;d的取值要注意:1最后一次必为1;2避免d 值互为倍数;关键字比较次数最大为n^;记录移动次数最大为^;算法的平均时间是On^;是一种就地的不稳定的排序;9.交换排序1冒泡排序实现过程:从下到上相邻两个比较,按小在上原则扫描一次,确定最小值,重复n-1次;关键字比较次数最小为n-1、最大为nn-1/2;记录移动次数最小为0,最大为3nn-1/2;算法的最好时间是On;最坏时间是On^2;平均时间是On^2;是一种就地的稳定的排序;2快速排序实现过程:将第一个值作为基准,设置i,j指针交替从两头与基准比较,有交换后,交换j,i;i=j时确定基准,并以其为界限将序列分为两段;重复以上步骤;关键字比较次数最好为nlog2n+nC1、最坏为nn-1/2;算法的最好时间是Onlog2n;最坏时间是On^2;平均时间是Onlog2n;辅助空间为Olog2n;是一种不稳定排序;10.选择排序1直接选择排序实现过程:选择序列中最小的插入第一位,在剩余的序列中重复上一步,共重复n-1次;关键字比较次数为nn-1/2;记录移动次数最小为0,最大为3n-1;算法的最好时间是On^2;最坏时间是On^2;平均时间是On^2;是一种就地的不稳定的排序;2堆排序。
数据结构(C语言版)
比较
Prim算法适用于稠密图, Kruskal算法适用于稀疏图;
两者时间复杂度相近,但 Kruskal算法需额外处理并查
集数据结构。
最短路径算法设计思想及实现方法比较
1 2
Dijkstra算法
从源点出发,每次找到距离源点最近的顶点并更 新距离值,直至所有顶点距离确定。适用于不含 负权边的图。
Floyd算法
特殊二叉树
满二叉树、完全二叉树等。
二叉树的遍历与线索化
二叉树的遍历
前序遍历、中序遍历、后序遍历和层 次遍历是二叉树的四种基本遍历方法 。
线索化二叉树
为了方便查找二叉树节点的前驱和后 继,可以对二叉树进行线索化处理, 即在节点的空指针域中存放指向前驱 或后继的指针。
树和森林的遍历与转换
树的遍历
01
串的顺序存储结构
01
02
03
串的顺序存储结构是用 一组地址连续的存储单 元来存储串中的字符序
列的。
按照预定义的大小,为 每个定义的串变量分配 一个固定长度的存储区 ,一般是用定长数组来
定义。
串值的存储:将实际串 长度值保存在数组的0下 标位置,串的字符序列 依次存放在从1开始的数
组元素中。
串的链式存储结构
03
比较
DFS空间复杂度较低,适用于递 归实现;BFS可找到最短路径, 适用于非递归实现。
最小生成树算法设计思想及实现方法比较
Prim算法
从某一顶点开始,每次选择当 前生成树与外界最近的边加入 生成树中,直至所有顶点加入
。
Kruskal算法
按边权值从小到大排序,依次 选择边加入生成树中,保证不
形成环路。
数据结构(C语言版)
数据结构中常用的逻辑结构和存储结构
数据结构中常用的逻辑结构和存储结构一、概念数据是指由有限的符号(比如,"0"和"1",具有其自己的结构、操作、和相应的语义)组成的元素的集合。
结构是元素之间的关系的集合。
数据结构是在整个计算机科学与技术领域上广泛被使用的术语。
数据结构是信息的一种组织方式,其目的是为了提高算法的效率,它通常与一组算法的集合相对应,通过这组算法集合可以对数据结构中的数据进行某种操作。
它用来反映一个数据的内部构成,即一个数据由那些成分数据构成,以什么方式构成,呈什么结构。
数据结构有逻辑上的数据结构和物理上的数据结构之分。
逻辑上的数据结构反映成分数据之间的逻辑关系即逻辑结构,而物理上的数据结构反映成分数据在计算机内部的存储安排即存储结构。
数据结构是数据存在的形式。
数据结构作为一门学科主要研究数据的各种逻辑结构和存储结构,以及对数据的各种操作。
因此,主要有三个方面的内容:数据的逻辑结构;数据的物理存储结构;对数据的操作(或算法)。
通常,算法的设计取决于数据的逻辑结构,算法的实现取决于数据的物理存储结构。
因而研究数据结构的逻辑结构与存储结构显得十分重要。
二、结构分析(一)逻辑结构数据的逻辑结构是对数据之间关系的描述,有时就把逻辑结构简称为数据结构。
逻辑结构形式地定义为(K,R)(或(D,S)),其中,K是数据元素的有限集,R是K上的关系的有限集。
逻辑结构元素决定输入、存储、发送、处理和信息传递的基本操作功能,常将逻辑结构元素称为逻辑模块。
逻辑结构元素可以是计算机操作系统、终端模块、通信程序模块等。
逻辑结构元素还可以是相关的几个逻辑模块联合起来的更复杂的实体。
分析逻辑结构元素的相互作用,应考虑整个系统的操作,研究处理与信息流有关的进程(操作系统中的一个概念,表示程序的一次执行),并决定系统的逻辑资源。
逻辑结构有四种基本类型:集合结构、线性结构、树状结构和网络结构。
表和树是最常用的两种高效数据结构,许多高效的算法能够用这两种数据结构来设计实现。
计算机二级C语言(公共基础知识基本数据结构与算法)
顺序存储方法是把逻辑上相邻的结点存储在物理
位置______的存储单元中。 答:相邻
假设线性表的每个元素需占用K个存储单元,并以所占 的第一个单元的存储地址作为数据元素的存储位置。则 线性表中第i+1个数据元素的存储位置LOC(ai+1)和第i 个数据元素的存储位置LOC(ai)之间满足下列关系: LOC(ai+1)=LOC(ai)+K LOC(ai)=LOC(a1)+(i-1)*K ① 其中,LOC(a1)是线性表的第一个数据元素a1的存储位 置,通常称做线性表的起始位置或基地址。 因为在顺序存储结构中,每个数据元素地址可以通过公 式①计算得到,所以线性表的顺序存储结构是随机存取 的存储结构。 在线性表的顺序存储结构下,可以对线性表做以下运算: 插入、删除、查找、排序、分解、合并、复制、逆转
九.顺序表的删除运算
线性表的删除运算是指在表的第I个位置上,删 除一个新结点x,使长度为n的线性表 (a1,a2 …ai…an)变成长度为n-1的线性表 (a1,a2…ai-1,ai+1…an). 当I=n,时间复杂度o(1),当I=1,时间复杂度o(n) , 平均时间复杂度为o(n)
顺序表的插入运算过程
六.线性表的定义
线性表是n 个元素构成的有限序列(A1,A2, A3……)。表中的每一个数据元素,除了第一个 以外,有且只有一个前件。除了最后一个以外有 且只有一个后件。即线性表是一个空表,或可以 表示为(a1,a2,……an), 其中ai(I=1,2,……n) 是属于数据对象的元素,通常也称其为线性表中 的一个结点。 非空线性表有如下一些特征: (1)有且只有一个根结点a1,它无前件; (2)有且只有一个终端结点an,它无后件; (3)除根结点与终端结点外,其他所有结点有 且只有一个前件,也有且只有一个后件。线性表 中结点的个数n称为线性表的长度。当n=0时称为 空表。
试举一个数据结构的例子、叙述其逻辑结构、存储结构、运算三个方面的内容。
数据结构复习笔记作者: 网络转载发布日期: 无数据就是指能够被计算机识别、存储和加工处理的信息的载体。
数据元素是数据的基本单位,有时一个数据元素可以由若干个数据项组成。
数据项是具有独立含义的最小标识单位。
如整数这个集合中,10这个数就可称是一个数据元素.又比如在一个数据库(关系式数据库)中,一个记录可称为一个数据元素,而这个元素中的某一字段就是一个数据项。
数据结构的定义虽然没有标准,但是它包括以下三方面内容:逻辑结构、存储结构、和对数据的操作。
这一段比较重要,我用自己的语言来说明一下,大家看看是不是这样。
比如一个表(数据库),我们就称它为一个数据结构,它由很多记录(数据元素)组成,每个元素又包括很多字段(数据项)组成。
那么这张表的逻辑结构是怎么样的呢? 我们分析数据结构都是从结点(其实也就是元素、记录、顶点,虽然在各种情况下所用名字不同,但说的是同一个东东)之间的关系来分析的,对于这个表中的任一个记录(结点),它只有一个直接前趋,只有一个直接后继(前趋后继就是前相邻后相邻的意思),整个表只有一个开始结点和一个终端结点,那我们知道了这些关系就能明白这个表的逻辑结构了。
而存储结构则是指用计算机语言如何表示结点之间的这种关系。
如上面的表,在计算机语言中描述为连续存放在一片内存单元中,还是随机的存放在内存中再用指针把它们链接在一起,这两种表示法就成为两种不同的存储结构。
(注意,在本课程里,我们只在高级语言的层次上讨论存储结构。
)第三个概念就是对数据的运算,比如一张表格,我们需要进行查找,增加,修改,删除记录等工作,而怎么样才能进行这样的操作呢? 这也就是数据的运算,它不仅仅是加减乘除这些算术运算了,在数据结构中,这些运算常常涉及算法问题。
弄清了以上三个问题,就可以弄清数据结构这个概念。
--------------------------------------------------------------------------------通常我们就将数据的逻辑结构简称为数据结构,数据的逻辑结构分两大类:线性结构和非线性结构(这两个很容易理解)数据的存储方法有四种:顺序存储方法、链接存储方法、索引存储方法和散列存储方法。
数据结构与算法课程总结
本课程的先修可称为离散数学和高级语言程序设计,后续课程为操作系统、数据库系统 原理和编译原理等。
数据结构中的存储结构及基本运算的实现需要程序设计的基本知识和编程能力和经验, 本课程大部分实例和实验均是用 C 语言实现的,故要求叫熟练地掌握 C 语言。 三、选用的教材及参考书
教材选用《数据结构与算法》,大连理工大学出版社,作者郭福顺、廖明宏等。参考书 为《数据结构(C 语言版》,清华大学出版社出版,严蔚敏、吴伟民编著。 四、教学内容
第六章 树 教学要求: 本章目的是二元树的定义、性质、存储结构、遍历、线索化,树的定义、存储结构、 遍历、树和森林与二元树的转换,哈夫曼树及其应用(优化判定过程和哈夫曼编码)等内容。 要求在熟悉这些内容的基础上,重点掌握二元树的遍历算法及其有关应用,难点是使用本章 所学到的有关知识设计出有效算法,解决与树或二元树相关的应用问题。 教学内容 1.树的概念(领会) 1.1 树的逻辑结构特征。 1.2 树的不同表示方法。 1.3 树的常用术语及含义。
数据结构参考资料
1.一个算法通常由两种基本要素组成:一是对数据对象的运算和操作,二是算法的控制结构。
1. 算法的复杂度主要包括时间复杂度和空间复杂度。
2. 实现算法所需的存储单元多少和算法的工作量大小分别称为算法的空间复杂度和时间复杂度。
3.所谓数据处理是指对数据集合中的各元素以各种方式进行运算,包括插入、删除、查找、更改等运算,也包括对数据元素进行分析。
4.数据结构是指相互有关联的数据元素的集合。
5.数据结构分为逻辑结构与存储结构,线性链表属于存储结构。
6.数据结构包括数据的逻辑结构和数据的存储结构。
7. 数据结构包括数据的逻辑结构、数据的存储结构以及对数据的操作运算。
8.数据元素之间的任何关系都可以用前趋和后继关系来描述。
9.数据的逻辑结构有线性结构和非线性结构两大类。
10.常用的存储结构有顺序、链接、索引等存储结构。
11. 顺序存储方法是把逻辑上相邻的结点存储在物理位置相邻的存储单元中。
12. 栈的基本运算有三种:入栈、退栈与读栈顶元素。
13. 队列主要有两种基本运算:入队运算与退队运算。
14. 在实际应用中,带链的栈可以用来收集计算机存储空间中所有空闲的存储结点,这种带链的栈称为可利用栈。
15.栈和队列通常采用的存储结构是链式存储和顺序存储。
16.当线性表采用顺序存储结构实现存储时,其主要特点是逻辑结构中相邻的结点在存储结构中仍相邻。
17. 循环队列主要有两种基本运算:入队运算与退队运算。
每进行一次入队运算,队尾指针就进1 。
18.当循环队列非空且队尾指针等于对头指针时,说明循环队列已满,不能进行入队运算。
这种情况称为上溢。
19.当循环队列为空时,不能进行退队运算,这种情况称为下溢。
20. 在一个容量为25的循环队列中,若头指针front=16,尾指针rear=9,则该循环队列中共有18 个元素。
注:当rear当rear>front时,元素个数=rear-front。
21. 在一个容量为15的循环队列中,若头指针front=6,尾指针rear=9,则该循环队列中共有3 个元素。
数据结构复习参考题与参考答案
第一章概论自测题答案一、填空题1. 数据结构是一门研究非数值计算的程序设计问题中计算机的操作对象以及它们之间的关系和运算等的学科。
2. 数据结构被形式地定义为(D, R),其中D是数据元素的有限集合,R是D上的关系有限集合。
3. 数据结构包括数据的逻辑结构、数据的存储结构和数据的运算这三个方面的内容。
4. 数据结构按逻辑结构可分为两大类,它们分别是线性结构和非线性结构。
5. 线性结构中元素之间存在一对一关系,树形结构中元素之间存在一对多关系,图形结构中元素之间存在多对多关系。
6.在线性结构中,第一个结点没有前驱结点,其余每个结点有且只有 1个前驱结点;最后一个结点没有后续结点,其余每个结点有且只有1个后续结点。
7. 在树形结构中,树根结点没有前驱结点,其余每个结点有且只有1个前驱结点;叶子结点没有后续结点,其余每个结点的后续结点数可以任意多个。
8. 在图形结构中,每个结点的前驱结点数和后续结点数可以任意多个。
9.数据的存储结构可用四种基本的存储方法表示,它们分别是顺序、链式、索引和散列。
10. 数据的运算最常用的有5种,它们分别是插入、删除、修改、查找、排序。
11. 一个算法的效率可分为时间效率和空间效率。
二、单项选择题(B)1. 非线性结构是数据元素之间存在一种:A)一对多关系 B)多对多关系C)多对一关系 D)一对一关系( C )2. 数据结构中,与所使用的计算机无关的是数据的结构;A) 存储 B) 物理C) 逻辑 D) 物理和存储(C)3. 算法分析的目的是:A) 找出数据结构的合理性B) 研究算法中的输入和输出的关系C) 分析算法的效率以求改进D) 分析算法的易懂性和文档性(A)4. 算法分析的两个主要方面是:A) 空间复杂性和时间复杂性B) 正确性和简明性C) 可读性和文档性D) 数据复杂性和程序复杂性(C )5. 计算机算法指的是:A) 计算方法B) 排序方法C) 解决问题的有限运算序列D) 调度方法(B)6. 计算机算法必须具备输入、输出和等5个特性。
数据结构的三个方面
数据结构的三个方面
数据结构包括数据的逻辑结构、数据的物理结构、数据存储结构三个方面。
1、数据的逻辑结构
指反映数据元素之间的逻辑关系的数据结构,其中的逻辑关系是指数据元素之间的前后件关系,而与他们在计算机中的存储位置无关。
2、数据的物理结构
数据的物理结构是数据结构在计算机中的表示(又称映像),它包括数据元素的机内表示和关系的机内表示。
由于具体实现的方法有顺序、链接、索引、散列等多种,所以,一种数据结构可表示成—种或多种存储结构。
3、数据存储结构
数据的逻辑结构在计算机存储空问中的存放形式称为数据的物理结构(也称为存储结构)。
一般来说,一种数据结构的逻辑结构根据需要可以表示成多种存储结构,常用的存储结构有顺序存储、链式存储、索引存储和哈希存储等。
《数据结构》学习指导
《数据结构》学习指导说明:本指导以《数据结构》(C语言版)(严蔚敏等编著,清华大学出版社1997年出版,国家级优秀教材特等奖)和《数据结构题集》(严蔚敏等编著,清华大学出版社1999年出版)为教学主要参考书。
一、绪论1、学习目的:明确数据结构课程在本专业知识结构中的地位,作用。
课程的特点,教学的要求,方法。
明确数据结构所研究的问题以及有关基本概念。
初步掌握抽象数据类型的表示与实现,初步明确算法分析的作用与分析的重点,初步掌握算法分析的方法。
2、学习重点:数据的逻辑结构、存储结构及其算法,数据结构的有关概念,抽象数据类型及其表示与实现,算法,算法设计的要求,算法的时间复杂度和算法的空间复杂度。
3、学习难点:数据结构的有关概念,抽象数据类型的表示与实现;算法的时间复杂度分析。
4、课程内容与基本要求(一) 数据结构的引入(1) 三个世界:现实世界,信息世界,机器世界。
数据结构要解决的就是实现从现实世界到信息世界,再由信息世界到机器世界的转换,从而实现用计算机来解决问题的目的。
(2) 非数值问题(结合三个世界讲):控制,管理,数据处理(3) 数值问题:数值计算(4)数据结构:从学科角度讲,数据结构是一门研究非数值计算的程序设计问题中计算机操作对象以及他们之间的关系和操作等等的学科。
(二) 课程的地位,性质,作用。
(1) 地位: 计算机专业的核心课程之一。
(2) 性质: 算法理论基础和软件设计的技术基础课。
(3) 作用: 程序设计的基础,编译程序,操作系统,数据库系统及软件系统和应用程序的基础(三) 数据结构的产生和发展(四) 课程的特点,学习的要求教材:《数据结构》(C语言版)严蔚敏等编著北京清华大学出版社1997年参考书:《数据结构》许卓群等编著北京高等教育出版社1987年数据结构实用教程》(C/C++描述)徐孝凯北京清华大学出版社1999年《数据结构题集》严蔚敏等编著北京清华大学出版社1999年《数据结构导学》苏光奎等编著北京清华大学出版社20XX年《数据结构》(C语言篇)-习题与解析李春葆编著北京清华大学出版社20XX年《数据结构》实验指导书唐开山自编讲义20XX年(五) 基本概念和术语数据数据元素数据对象(4)数据结构:按某种逻辑关系组织起来的一批数据,按一定的存储表示方式把它存储到计算机的存储器中,并在这些数据上定义了一个运算的集合,叫做一个数据结构。
第6章 习题参考答案
习题六一、用适当内容填空1.数据结构是指具有相同特征、相互关联的数据集合。
2.数据结构主要研究数据的逻辑结构、数据的存储结构,以及算法。
3.数据之间有四种逻辑结构,分别是集合、线性、树形和图形。
4.根据数据结构中数据元素之间前件与后件关系的复杂程度,将数据的逻辑结构分为线性结构和非线性结构。
5.在数据的存储结构中,不仅要存放各个数据元素,还要存放数据元素之间前后件关系信息。
数据的存储结构是逻辑结构在计算机存储器中的表示。
6.数据元素在计算机中通常有4种存储方式,即顺序、链式、索引和散列。
7.顺序存储结构是指在内存中开辟一块连续的单元用于存放数据,逻辑上相邻的结点在物理位置上也邻接,结点之间的逻辑关系由存储单元的相邻关系来体现。
8.在链式存储结构中,结点由两部分组成:一部分用于存放数据元素的值,称为数据域;另一部分用于存放前件或后件的存储地址,称为指针域。
链式存储结构是通过指针反映出数据元素之间的逻辑关系。
9.算法的设计基于数据的逻辑结构,而算法的实现依赖于数据的存储结构。
10.一个算法应该具有的基本特征有可行性、确定性、有穷性、输入性和输出性。
11.算法的复杂度有时间复杂度和空间复杂度。
12.栈是在表的同一端进行插入运算和删除运算的线性表。
将允许进行插入运算和删除运算的一端称为栈顶,另一端称为栈底。
栈遵循先进后出或后进先出的原则。
13.队列是在一端进行插入运算,而在另一端进行删除运算的线性表。
允许删除的一端称为队头,允许插入一端称为队尾。
队列遵循先进先出或后进后出的原则。
14.所谓循环队列是将队列的存储空间想象成一个首尾相连的环状空间。
15.判断循环队列为满的条件是(rear+1)%n = front 。
16.判断循环队列为空的条件是front = rear 。
17.树是一种常用的非线性结构,树结构中结点之间即具有分支关系又具有层次关系。
18.在树结构中,有且只有一个根结点,根结点有0 个前件,其他结点有 1 个前件。
计算机考研819数据结构与832计算机基础综合
计算机考研819数据结构与832计算机基础综合摘要:计算机考研819数据结构与832计算机基础综合I.引言- 计算机考研简介- 819数据结构与832计算机基础综合考试科目介绍II.819数据结构- 数据结构基本概念- 数据结构的逻辑结构和存储结构- 常用的数据结构及其操作- 数据结构的应用III.832计算机基础综合- 计算机系统基本组成- 计算机硬件系统- 计算机软件系统- 计算机网络基础- 操作系统基本概念IV.计算机考研复习策略- 制定合理的复习计划- 掌握考试大纲要求的知识点- 做好练习和模拟考试- 参加培训班或自习V.总结- 计算机考研819数据结构与832计算机基础综合的重要性- 对未来计算机领域发展的展望正文:计算机考研819数据结构与832计算机基础综合随着互联网的迅速发展,计算机科学与技术在人们生活中的地位越来越重要。
为了培养更高水平的计算机专业人才,我国设置了计算机考研科目,其中819数据结构和832计算机基础综合是两个重要的考试科目。
本文将针对这两个科目的相关内容进行介绍和分析。
首先,计算机考研是为了选拔优秀的计算机专业学生而设置的考试,考试科目涵盖了计算机科学的各个领域。
819数据结构主要考察学生对数据结构基本概念的理解,以及运用数据结构解决实际问题的能力。
数据结构包括逻辑结构和存储结构,常用的数据结构有线性表、栈、队列、树、图等。
掌握这些数据结构及其操作对于解决计算机科学中的问题具有重要意义。
其次,832计算机基础综合是对计算机系统基本组成、硬件系统、软件系统、计算机网络基础以及操作系统基本概念的考察。
计算机系统由硬件和软件两部分组成,硬件系统主要包括处理器、存储器、输入输出设备等;软件系统包括系统软件和应用软件,系统软件主要包括操作系统、编译器、驱动程序等,应用软件则是为了满足用户需求而设计的各种应用程序。
计算机网络基础涉及计算机网络的体系结构、网络协议、网络设备等内容。
数据结构实用教程习题答案
数据结构实⽤教程习题答案1 绪论1.1回答下列概念:数据结构,数据的逻辑结构,数据的存储结构,算法数据结构:按照某种逻辑关系组织起来的⼀批数据,⽤⼀定的存储⽅式存储在计算机的存储器中,并在这些数据上定义⼀个运算的集合,就称为⼀个数据结构。
数据的逻辑结构:数据元素之间的逻辑关系,是根据实际问题抽象出来的数学模型。
数据的存储结构:是指数据的逻辑结构到计算机存储器的映射。
算法:是指对数据元素进⾏加⼯和处理1.2数据结构研究的三⽅⾯内容是什么?它们之间有什么联系和区别?三⽅⾯内容: 数据的逻辑结构、数据的存储结构和数据运算的集合。
联系和区别:数据的逻辑结构是数学模型,数据的存储结构是指逻辑结构到存储区域的映射,运算是定义在逻辑结构上,实现在存储结构上。
1.3简述数据结构中讨论的三种经典结构及其逻辑特征。
三种经典结构:线性表、树和图。
线性表:有且仅有⼀个开始结点和⼀个终端结点,其余的内部结点都有且仅有⼀个前趋结点和⼀个后继结点,数据元素间存在着⼀对⼀的相互关系。
树:有且仅有⼀个开始结点,可有若⼲个终端结点,其余的内部结点都有且仅有⼀个前趋结点,可以有若⼲个后继结点,数据元素间存在着⼀对多的层次关系。
图:可有若⼲个开始结点和终端结点,其余的内部结点可以有若⼲个前趋结点和若⼲个后继结点,数据元素间存在着多对多的⽹状关系。
1.4实现数据存储结构的常⽤存储⽅法有哪⼏种?简述各种⽅法的基本思想。
常⽤存储⽅法有四种:顺序存储、链接存储、索引存储、散列存储。
各种⽅法的基本思想:顺序存储:把逻辑上相邻的数据元素存储在物理位置上相邻的存储单元⾥。
链接存储:通过附加指针域表⽰数据元素之间的关系。
索引存储:除了存储数据元素,还要建⽴附加索引表来标识数据元素的地址。
散列存储:根据数据元素的关键字直接计算出该结点的存储地址,称为关键字-地址转换法。
1.5算法的特性是什么?如何定性的评价⼀个算法的优劣?算法的特性:有穷性、确定性、可⾏性、输⼊、输出。
数据结构类型
数据结构类型数据的逻辑结构:数据的逻辑结构指元素之间的逻辑关系(和现实⽆关)。
分类⼀:线性结构和⾮线性结构 线性结构:有且只有⼀个开始结点和⼀个终端结点,并且所有结点都最多只有⼀个直接前驱和⼀个直接后继。
线性表就是⼀个典型的线性结构,它有四个基本特征: 1.集合中必存在唯⼀的⼀个"第⼀个元素"; 2.集合中必存在唯⼀的⼀个"最后的元素"; 3.除最后元素之外,其它数据元素均有唯⼀的"直接后继"; 4.除第⼀个元素之外,其它数据元素均有唯⼀的"直接前驱"。
⽣活中的案例:冰糖葫芦、排队上地铁⾮线性结构: 相对应于线性结构,⾮线性结构的逻辑特征是⼀个结点元素可能对应多个直接前驱和多个直接后继。
常见的⾮线性结构有: 树(⼆叉树等),图(⽹等)。
树:⼀个结点可以对应多个直接后继,但每个结点只能对应⼀个直接前驱(⼀对多) 图(⽹):⼀个结点可以对应多个直接后继和直接前驱(多对多) 树:⽣活案例 单位组织架构、族谱技术案例:⽂件系统图:⽣活案例 交通线路图、地铁线路图分类2:集合结构、线性结构、树状结构、⽹络结构 逻辑结构有四种基本类型:集合结构、线性结构、树状结构和⽹络结构。
表和树是最常⽤的两种⾼效数据结构,许多⾼效的算法能够⽤这两种数据结构来设计实现。
1.集合结构: 就是数学中所学的集合,集合中的元素有三个特征: 1).确定性(集合中的元素必须是确定的) 2).唯⼀性(集合中的元素互不相同。
例如:集合A={1,a},则a不能等于1) 3).⽆序性(集合中的元素没有先后之分。
例如:集合{3,4,5}和{3,5,4}算作同⼀个集合) 该结构的数据元素之间的关系是"属于同⼀个集合",此外⽆其他关系。
因为集合中元素关系很弱,数据结构中不对该结构进⾏研究。
2.线性结构: 数据结构中线性结构指的是数据元素之间存在着"⼀对⼀"的线性关系的数据结构。
数据结构课后习题部分参考答案
数据结构课后习题部分参考答案第一章一、选择题1.C 2.C 3.A 4.D 5.B二、判断题1.╳2.╳ 3.╳ 4.╳5.∨三、简答题1.常见逻辑结构:集合结构,数据元素之间的关系仅仅是属于同一个集合。
线性结构,除第一个元素只有一个直接后继、最后一个元素只有一个直接前驱,其余元素有且只有唯一一个直接前驱、有且只有唯一一个直接后继,数据元素之间存在一对一的关系。
树形结构,树中只有唯一一个根元素,除根元素之外,其余元素只有一个直接前驱,但可以有多个直接后继元素,数据元素之间存在一对多的关系。
图形结构,元素之间关系任意,数据元素之间存在多对多的关系。
常用的存储结构:顺序存储,把逻辑上相邻的元素存储在物理位置相邻的存储单元中,由此得到的存储表示称为顺序存储结构。
通常用数组实现。
链式存储,对逻辑上相邻的元素不要求其物理位置相邻,元素间的逻辑关系通过附加的指针字段来表示,由此得到的存储表示称为链式存储结构。
通常用指针来实现。
除上述两种方法外,有时为了查找方便还采用索引存储方法和散列存储方法。
索引存储:在存储结点信息的同时,还建立附加的索引表来标识结点的地址。
散列存储:根据元素的关键码确定元素存储位置的存储方式。
2.算法与程序的区别:程序不一定满足有穷性(如操作系统);程序中的指令必须是机器可执行的,算法中的指令则无此限制;算法代表了对问题的解,程序则是算法在计算机上的特定的实现(一个算法若用程序设计语言来描述,它才是一个程序);数据结构+算法=程序。
3.例如有一张学生成绩表,记录了一个班的学生各门课的成绩。
按学生的姓名为一行记成的表。
这个表就是一个数据结构。
每个记录就是一个结点,对于整个表来说,只有一个开始结点和一个终端结点,其他的结点则各有一个也只有一个直接前趋和直接后继。
这几个关系就确定了这个表的逻辑结构——线形结构。
那么我们怎样把这个表中的数据存储到里呢? 用高级语言如何表示各结点之间的关系呢? 是用一片连续的内存单元来存放这些记录(顺序存储)还是随机存放各结点数据再用指针进行链接(链式存储)呢? 这就是存储结构的问题,我们都是从高级语言的层次来讨论这个问题的。
数据结构重点知识点
数据结构重点知识点第一章概论1. 数据是信息的载体。
2. 数据元素是数据的基本单位。
3. 一个数据元素可以由若干个数据项组成。
4. 数据结构指的是数据之间的相互关系,即数据的组织形式。
5. 数据结构一般包括以下三方面内容:数据的逻辑结构、数据的存储结构、数据的运算①数据元素之间的逻辑关系,也称数据的逻辑结构,数据的逻辑结构是从逻辑关系上描述数据,与数据的存储无关,是独立于计算机的。
②数据元素及其关系在计算机存储器内的表示,称为数据的存储结构。
数据的存储结构是逻辑结构用计算机语言的实现,它依赖于计算机语言。
③数据的运算,即对数据施加的操作。
最常用的检索、插入、删除、更新、排序等。
6. 数据的逻辑结构分类: 线性结构和非线性结构①线性结构:若结构是非空集,则有且仅有一个开始结点和一个终端结点,并且所有结点都最多只有一个直接前趋和一个直接后继。
线性表是一个典型的线性结构。
栈、队列、串等都是线性结构。
②非线性结构:一个结点可能有多个直接前趋和直接后继。
数组、广义表、树和图等数据结构都是非线性结构。
7.数据的四种基本存储方法: 顺序存储方法、链接存储方法、索引存储方法、散列存储方法(1)顺序存储方法:该方法把逻辑上相邻的结点存储在物理位置上相邻的存储单元里,结点间的逻辑关系由存储单元的邻接关系来体现。
通常借助程序语言的数组描述。
(2)链接存储方法:该方法不要求逻辑上相邻的结点在物理位置上亦相邻,结点间的逻辑关系由附加的指针字段表示。
通常借助于程序语言的指针类型描述。
(3)索引存储方法:该方法通常在储存结点信息的同时,还建立附加的索引表。
索引表由若干索引项组成。
若每个结点在索引表中都有一个索引项,则该索引表称之为稠密索引,稠密索引中索引项的地址指示结点所在的存储位置。
若一组结点在索引表中只对应一个索引项,则该索引表称为稀疏索引稀疏索引中索引项的地址指示一组结点的起始存储位置。
索引项的一般形式是:(关键字、地址)关键字是能唯一标识一个结点的那些数据项。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数据结构中常用的逻辑结构和存储结构
一、概念
数据是指由有限的符号(比如,"0"和"1",具有其自己的结构、操作、和相应的语义)组成的元素的集合。
结构是元素之间的关系的集合。
数据结构是在整个计算机科学与技术领域上广泛被使用的术语。
数据结构是信息的一种组织方式,其目的是为了提高算法的效率,它通常与一组算法的集合相对应,通过这组算法集合可以对数据结构中的数据进行某种操作。
它用来反映一个数据的内部构成,即一个数据由那些成分数据构成,以什么方式构成,呈什么结构。
数据结构有逻辑上的数据结构和物理上的数据结构之分。
逻辑上的数据结构反映成分数据之间的逻辑关系即逻辑结构,而物理上的数据结构反映成分数据在计算机内部的存储安排即存储结构。
数据结构是数据存在的形式。
数据结构作为一门学科主要研究数据的各种逻辑结构和存储结构,以及对数据的各种操作。
因此,主要有三个方面的内容:数据的逻辑结构;数据的物理存储结构;对数据的操作(或算法)。
通常,算法的设计取决于数据的逻辑结构,算法的实现取决于数据的物理存储结构。
因而研究数据结构的逻辑结构与存储结构显得十分重要。
二、结构分析
(一)逻辑结构
数据的逻辑结构是对数据之间关系的描述,有时就把逻辑结构简称为数据结构。
逻辑结构形式地定义为(K,R)(或(D,S)),其中,K是数据元素的有限集,R是K上的关系的有限集。
逻辑结构元素决定输入、存储、发送、处理和信息传递的基本操作功能,常将逻辑结构元素称为逻辑模块。
逻辑结构元素可以是计算机操作系统、终端模块、通信程序模块等。
逻辑结构元素还可以是相关的几个逻辑模块联合起来的更复杂的实体。
分析逻辑结构元素的相互作用,应考虑整个系统的操作,研究处理与信息流有关的进程(操作系统中的一个概念,表示程序的一次执行),并决定系统的逻辑资源。
逻辑结构有四种基本类型:集合结构、线性结构、树状结构和网络结构。
表和树是最常用的两种高效数据结构,许多高效的算法能够用这两种数据结构来设计实现。
一、基本分类
数据的逻辑结构指数据元素之间的逻辑关系,分两种,线性结构和非线性结构。
线性结构:有且只有一个开始结点和一个终端结点,并且所有结点都最多只有一个直接前驱和一个直接后继。
)线性表就是一个典型的线性结构它有四个基本特征:1.集合中必存在唯一的一个"第一个元素";
2.集合中必存在唯一的一个"最后的元素";
3.除最后元素之外,其它数据元素均有唯一的"后继";
4.除第一元素之外,其它数据元素均有唯一的"前驱"。
相对应于线性结构,非线性结构的逻辑特征是一个结点元素可能对应多个直接前驱和多个直接后继。
常见的非线性结构有:树(二叉树等),图(网等)。
二、常用结构
集合结构:集合体结构又称团聚结构或絮凝结构。
由若干细小粘粒集合在一起形成的团聚体(或称集合体)相互堆积起来的一种结构类型。
团聚状的集粒主要靠颗粒问的联结力和起胶结作用的粘土质及游离氧化物把单粒和集粒聚合起来。
集合体结构是粘性土的基本结构类型。
线性结构:数据结构中线性结构指的是数据元素之间存在着“一对一”的线性关系的数据结构。
树状结构:树状结构是一个或多个节点的有限集合
网络结构:网络结构是指通信系统的整体设计,它为网络硬件、软件、协议、存取控制和拓扑提供标准。
它广泛采用的是国际标准化组织(ISO)在1979年提出的开放系统互连(OSI-Open System Interconnection)的参考模型。
(二)存储结构
数据结构的物理结构是指逻辑结构的存储映像(image)。
数据结构DS的物理结构P对应于从DS的数据元素到存储区M(维护着逻辑结构S)的一个映射。
存储结构是数据的逻辑结构用计算机语言的实现,常见的存储结构有顺序存储,链式存储,索引存储,以及散列存储。
其中散列所形成的存储结构叫散列表(又叫哈希表),因此哈希表也是一种存储结构。
栈只是一种抽象数据类型,是一种逻辑结构,栈逻辑结构对应的顺序存储结构为顺序栈,对应的链式存储结构为链栈。
循环队列是队列的顺序存储结构,链表是线性表的链式存储结构。
顺序存储结构:把逻辑上相邻的节点存储在物理位置上相邻的存储单元中,结点之间的逻辑关系由存储单元的邻接关系来体现。
由此得到的存储结构为顺序存储结构,通常顺序存储结构是借助于计算机程序设计语言(例如C/C++)的数组来描述的。
优点:是节省存储空间,因为分配给数据的存储单元全用存放结点的数据(不考虑c/c++语言中数组需指定大小的情况),结点之间的逻辑关系没有占用额外的存储空间。
采用这种方法时,可实现对结点的随机存取,即每一个结点对应一个序号,由该序号可以直接计算出来结点的存储地址。
但顺序存储方法的主要缺点是不便于修改,对结点的插入、删除运算时,可能要移动一系列的结点。
缺点:插入和删除操作需要移动元素,效率较低。
链式存储结构:在计算机中用一组任意的存储单元存储线性表的数据元素(这组存储单元可以是连续的,也可以是不连续的).
特点:
1、比顺序存储结构的存储密度小(每个节点都由数据域和指针域组成,所以相同空间内假设全存满的话顺序比链式存储更多)。
2、逻辑上相邻的节点物理上不必相邻。
3、插入、删除灵活(不必移动节点,只要改变节点中的指针)。
4、查找结点时链式存储要比顺序存储慢。
5、每个结点是由数据域和指针域组成。
索引存储结构:除建立存储结点信息外,还建立附加的索引表来标识结点的地址。
散列存储结构:根据结点的关键字直接计算出该结点的存储地址。