核磁共振氢谱(PPT文档)

合集下载

《核磁共振氢谱》PPT课件

《核磁共振氢谱》PPT课件

3. 影响化学位移的因素:
= d + p + a + s H核外只有s电子,故d 起主要作用, a 和s对也有一定的 作用。
影响化学位移的因素---诱导效应
核外电子云的抗磁性屏蔽是影响质子化学位移的主要因素。
核外电子云密度与邻近原子或基团的电负性大小密切相关, 电负性强的原子或基团吸电子诱导效应大,使得靠近它们的 质子周围电子云密度减小,质子所受到的抗磁性屏蔽( d)
范德华效应
当两个原子相互靠近时,由于受到范德华力作用, 电子云相互排斥,导致原子核周围的电子云密度降低 ,屏蔽减小,谱线向低场方向移动,这种效应称为范 德华效应。
这种效应与相互影响的两个原子之间的距离密切相关 ,当两个原子相隔 0.17nm(即范德华半径之和)时 ,该作用对化学位移的影响约为 0.5,距离为 0 . 2 0 nm 时 影 响 约 为 0 . 2 , 当 原 子 间 的 距 离 大 于 0.25nm 时可不再考虑。
共轭效应
在共轭效应中,推电子基使H减小,拉电子基使H增
大。
(+1.43)
H
O CH 3 H
H
(+1.29)
H
(-1.10)
H
H
(-0.59)
H
O
H
(0.00)
H
(-0.21)
H
(-0.81)
相连碳原子的杂化态影响
碳碳单键是碳原子 sp杂化轨道重叠而成的,而碳碳双键和三键分别 是 sp2和 sp杂化轨道形成的。s电子是球形对称的,离碳原子近, 而离氢原子较远。所以杂化轨道中 s成分越多,成键电子越靠近碳 核,而离质子较远,对质子的屏蔽作用较小。
芳烃的各向异 8.9;环内H 在受到高度的屏蔽作 用,故 : -1.8

核磁共振氢谱(化学位移)(共17张PPT)

核磁共振氢谱(化学位移)(共17张PPT)

不同质子的化学位移
不同质子的化学位移
LOGO
•TMS化学性质不活泼,与样品之间不发生化学反响和分子间缔合;
•TMS是一个对称结构,四个甲基的化学环境完全相同,不管在氢谱还 是碳谱都只产生一个吸收峰; •Si的电负性小(1.9),TMS中氢核与碳核周围的电子云密度高,屏蔽效应大, 产生NMR信号所需的磁场强度比一般有机物中的氢核和碳核产生NMR信号 所需的磁场强度大得多,处于较高场,与绝大局部样品信号不发生重叠和干 扰;
不同质子的化学位移
核外电子的影响,屏蔽效应,化学位移 核磁共振氢谱(1H-NMR) ——化学位移(chemical shifts) 测定和计算方法——标准物质(通常用TMS,即四甲基硅)对照法: 四甲基硅(TMS)作为标准物质的优点: 核外电子的影响,屏蔽效应,化学位移 Produced by Jiwu Wen 核外电子的影响,屏蔽效应,化学位移 由于屏蔽效应不同导致化学环境不同的原子核共振频率不同,因而在不同的位置上出现吸收峰,这种现象称为化学位移。 TMS沸点低(27℃),容易去除,有利于回收样品。 诱导效应:吸电子诱导效应降低原子核周围的电子云密度,化学位移向低场移动, 增大。 氢键:分子形成氢键后,氢核周围的电子云密度降低,产生去屏蔽作用,化学位移向低场移动, 增大。 (3)叁键的磁各向异性效应 核磁共振条件及面临的问题 TMS是一个对称结构,四个甲基的化学环境完全相同,不管在氢谱还是碳谱都只产生一个吸收峰; Produced by Jiwu Wen
h
h
2
B0(1
)
核共振频率不同,因而在不同的位置上出现 吸收峰,这种现象称为化学位移。
1
2
B0(1
)
化学位移的表示方法与测定

核磁氢谱解析ppt课件

核磁氢谱解析ppt课件
三键,双键,苯环由于磁各项异性都会产生屏蔽区和去屏蔽区,所以 这些也是影响化学位移的重要因素,经常借此因素来区分异构体。单 键也有磁各向异性,所以C3CH>C2CH2>CCH3
4) 共轭作用和诱导作用(对不饱和烷烃影响) 对不饱和烷烃共轭作用和诱导作用要综合考虑。
共轭作用有p-π共轭给电子,π-π共轭吸电子;诱导效 应主要是吸电子效应。
2. 在有机化学中使苯环活化的邻, 对位定位基, 主要是有 p-π共轭作用. 这类有: -OH, -OR, -NH2, -NHR.
3. 第三类取代基是有机化学中使苯环钝化的间位定位基. 主要是纯在π-π共轭, 同时杂原子拉电子性, 使苯电子云密 度降低, 尤其是邻位.这类集团有: -CHO, -COR, -COOR, COOH, -CONHR, -NO2, -N=NR 等.
谢谢!
感谢亲观看此幻灯片,此课件部分内容来源于网络, 如有侵权请及时联系我们删除,谢谢配合!
2)S-P杂化 从sp3(碳碳单键)到sp2(碳碳双键)s 电子的成分从25%增加到33%,键电子 更靠近碳原子,因而对相连的氢原子有 去屏蔽作用,即共振位移移向低场. (芳 环与烯烃比饱和烷烃的化学位移低场的 原因)
3)磁各向异性 根据S-P杂化原理, 炔烃应该比烯烃更低场,苯环与烯烃相近.但实
还有些化合物在一种溶剂里不稳定,做出来的谱图比较杂,这时可 以换一种溶剂来做。
如 成盐后氮旁边的CH2会低场偏移0.5 ppm,同 样在CDCl3或DMSO做溶剂的谱图中没有成盐之前的氨活 泼氢在0.5-4.0ppm处,但成盐后活泼氢会出在10- 12ppm处,并且是两个NH.HCl,这也是鉴定氨是否成盐 的一种方法。
下面是我们比较常见的两种结构的互变异构.在有些化合物中只表现一种 构型.有些化合物中两种构型皆有,此时在核磁管里面加入浓盐酸1-2滴,会 发现变为单一的构型,这样的方法比升温要方便。

核磁共振氢谱及碳谱(NMR)PPT课件

核磁共振氢谱及碳谱(NMR)PPT课件
核磁共振氢谱及碳谱
13C 谱
碳谱的特点
13C谱测定的困难:
1. 天然丰度低:~1.1%; 而 1H: 99.98%
2. 相 对 灵 敏 度 低 : gCgH/4, 因 此 其 相 对 灵 敏 度 为 (gC/gH)3=0.016。
3. 再考虑到弛豫等因素,总体来讲,13C的灵敏度要比 1H低约6000倍。
1H耦合的碳谱无法解释,因为往往会重叠在一起 。
ppt精选版
3
碳谱的特点
3. 由于碳谱的化学位移范围很大,在较为复杂的分子中, 1H耦合的碳谱无法解释,因为往往会重叠在一起 。 因此实际上我们通常使用的13C谱是质子去耦谱。
ppt精选版
4
碳谱的特点
13C谱的优点:
1. C构成化合物的骨架,因而C谱能够提供结构鉴定的 重要信息
160 140 120 100 90 80 70 60 50 40 30 ppm
• 对C而言,C=1.988,即C的信号强度最大可达到原来
的3倍,再加上谱线有几条合并成1条,总的强度增加
就更大。
ppt精选版
32
1H去耦脉冲序列
x
y
I
x
S
y, -y b
y
ppt精选版
Deco up le
33
1H去耦脉冲序列
小,|p|减小,dC减小。
• 如电子体系:电子密度r与dC有一个线性关

dC = 160r + 287.5 (ppm)
即电子密度r越大,化学位移越小
ppt精选版
11
烷烃中C的化学位移
• 取代基电负性对化学位移的影响
a. 取代基电负性越大,相邻的a-C原子越往低场移,

核磁共振氢谱(1H-NMR)

核磁共振氢谱(1H-NMR)

第二章核磁共振氢谱(1H-NMR)§1 概述基本情况1H天然丰度:99.9844%,I=1/2,γ=26.752(107radT-1S-1)共振频率:42.577 MHz/Tδ: 0~20ppm§2 化学位移1.影响δ值的因素A.电子效应(1)诱导效应a电负性电负性强的取代基使氢核外电子云密度降低,其共振吸收向低场位移,δ值增大b.多取代有加和性c.诱导效应通过成键电子传递,随着与电负性取代基距离的增大,诱导效应的影响逐渐减弱,通常相隔3个以上碳的影响可以忽略不计(2).共轭效应氮、氧等杂原子可与双键、苯环共轭。

苯环上的氢被推电子基取代,由于p-π共轭,使苯环电子云密度增大, δ值向高场移动苯环上的氢被吸电子基取代,由于p-π共轭或π-π共轭,使苯环电子云密度降低, δ值向低场移动(3). 场效应在某些刚性结构中,一些带杂原子的官能团可通过其电场对邻近氢核施加影响,使其化学位移发生变化.这些通过电场发挥的作用称为场效应(4). 范德华(Van der Waals)效应在某些刚性结构中,当两个氢核在空间上非常接近,其外层电子云互相排斥使核外电子云不能很好地包围氢核,相当于核外电子云密度降低,δ值向低场移动B.邻近基团的磁各向异性某些化学键和基团可对空间不同空间位置上的质子施加不同的影响,即它们的屏蔽作用是有方向性的。

磁各向异性产生的屏蔽作用通过空间传递,是远程的。

(1)芳环在苯环的外周区域感应磁场的方向与外加磁场的方向相同(顺磁屏蔽),苯环质子处于此去屏蔽区,其所受磁场强度为外加磁场和感应磁场之和,δ值向低场移动。

(2)双键>C=O, >C=C<的屏蔽作用与苯环类似。

在其平面的上、下方各有一个锥形屏蔽区(“+”),其它区域为去屏蔽区。

(3)三键互相垂直的两个π键轨道电子绕σ键产生环电流,在外加磁场作用下产生与三键平行但方向与外加磁场相反的感应磁场。

三键的两端位于屏蔽区(“+”),上、下方为去锥形屏蔽区(“-”)δ值比烯氢小。

核磁共振氢谱图怎么看PPT精品文档

核磁共振氢谱图怎么看PPT精品文档
20
5.3 帮助分析图谱的一些辅助手段
• 例:下面的化合物的1HNMR谱: •
O
O
• 当用CDCl3做溶剂时,异丙基的两个甲基以 及另一个甲基的峰重叠非常严重,不能区
分。如改用C6D6作溶剂,则三个甲基可以 获得较好的分离。
21
HO
OR OH O
OMe OH R=ribo
22
5.3 帮助分析图谱的一些辅助手段
• 5.3.1 重氢交换 • 活泼氢在溶液中可以进行不断的交换。
如果样品中含有活泼氢,在作完图谱后, 往样品管里滴加几滴重水,震荡,然后重 新作图,则相应的谱峰由于其活泼氢已被 氘交换而消失。由此可以完全确定活泼氢 的存在。
16
5.3 帮助分析图谱的一些辅助手段
• 5.3.2 重氢氧化钠交换
• 重氢氧化钠交换可以把羰基的α-氢交换 掉。这个方法对于测定化学结构有很大帮 助。
核(被照射核)为X。
28
5.4 双照射(双共振)技术
• 在双共振实验中,当被观测核与被干扰核 为同种类核时,称为同核双共振;如1H{1H}; 当被观测核与被干扰核为不同种类的核时, 称为异核双共振;如13C{1H}。
• 双共振技术的应用主要包括自旋去偶和核 的Overhauser效应(NOE)。
29
31
5.4 双照射(双共振)技术
• 以1-溴丙烷的双共振自旋去偶1HNMR谱 示意图为例:
32
33
5.4 双照射(双共振)技术
• 5.4.2 核的Overhauser效应(nuclear Overhauser effect, NOE)
• 如果分子内两组自旋核在空间的距离小 于5 (不一定相互偶合),那么,在双共 振实验中,当用照射射频照射其中的一组 核,使其共振饱和时,则可引起另一组核 的共振峰强度的增强。这种由于双共振引 起的谱峰强度增强的效应,称为核的 Overhauser效应。

《核磁共振氢谱》课件

《核磁共振氢谱》课件

芳烃的氢谱解析
芳烃的氢谱特征
芳烃的氢谱峰形较复杂,有多个峰,且峰与峰之间的距离较近。
芳烃的氢谱解析要点
根据峰的数量和位置,确定芳烃的类型和碳原子数;根据峰的强度 和形状,确定氢原子的类型和数量。
实例分析
以苯为例,其氢谱有多个峰,分别对应于不同位置上的氢原子。
PART 04
氢谱解析中的常见问题与 解决策略
偶合常数
当两个氢原子之间的距离足够近时, 它们的核磁共振信号会发生偶合,导 致峰分裂成双重峰。偶合常数是衡量 两个氢原子之间距离的指标。
氢谱解析的一般步骤
确定峰的位置和强度
根据核磁共振氢谱中的峰位置和强度,可以推断出分子中氢原子 的类型和数量。
确定氢原子的连接关系
通过分析峰的偶合常数,可以确定氢原子之间的连接关系,从而确 定分子的结构。
峰的简化问题
总结词
峰的简化问题是指某些情况下氢谱峰的数量过多,使得解析变得复杂。
详细描述
在某些情况下,由于分子结构中存在多个等效氢原子,会产生大量的重叠峰。这增加了氢谱解析的难 度。解决策略包括利用分子对称性来简化氢谱,以及利用去偶技术来消除某些峰的干扰,从而使得氢 谱更加简洁明了。
解析中的不确定性问题
多核共振技术
总结词
多核共振技术能够同时研究多个原子核的相 互作用和动态行为,有助于更全面地了解分 子结构和化学反应过程。
详细描述
多核共振技术是一种新兴的技术,它通过同 时研究多个原子核的相互作用和动态行为, 能够提供更全面、更深入的分子结构和化学 反应过程信息。这一技术的应用,将有助于 推动化学、生物学、物理学等领域的发展, 为解决复杂体系的研究提供新的手段。
2023-2026
ONE

《核磁共振氢谱解析》PPT课件

《核磁共振氢谱解析》PPT课件

在解析糖类的氢谱时,需要注意 区分不同糖环类型的影响,以便 准确推断出糖类分子的结构特征 。
由于糖类分子结构的复杂性,其 氢谱信号可能会出现重叠现象, 需要仔细解析以获得准确的结论 。
05
氢谱解析的挑战与展望
复杂样品与混合物的解析
挑战
复杂样品和混合物中的多种成分可能 导致谱线重叠和干扰,增加了氢谱解 析的难度。
峰面积
表示某一峰的强度或高 度,通常与产生该峰的
质子数成正比。
积分线
对谱线进行积分,得到 积分线,可以用于定量
分析。
校正因子
由于不同化学环境对质 子自旋耦合的影响,需 要引入校正因子来准确
计算质子数。
03
氢谱解析实践
简单分子的氢谱解析
总结词
掌握基础解析方法
01
总结词
熟悉常见峰型
03
总结词
注意杂质的干扰
解决方案
采用先进的谱图解析技术和化学位移 差异法,结合分子结构和物理状态信 息,对重叠的谱线进行分离和鉴别。
高磁场下的氢谱解析
挑战
高磁场条件下,氢谱的分辨率和灵敏度得到提高,但同时也带来了谱线复杂化 和解析难度增加的问题。
解决方案
利用高磁场下的多量子跃迁和异核耦合等效应,结合计算机模拟和量子化学计 算,对高磁场下的氢谱进行解析。
氢谱解析技巧与注意事项
总结词
重视峰的归属与确认
总结词
在复杂氢谱中,应注意分辨和区分重 叠的峰,运用适当的技巧和方法进行 解析。
详细描述
在解析氢谱时,应重视每个峰的归属 与确认,确保解析结果的准确性。
详细描述
注意峰的重叠与分辨
04
氢谱解析案例分析
案例一:醇类的氢谱解析

核磁共振氢谱(1H NMR)

核磁共振氢谱(1H NMR)
➢ 因交换缓慢,常可观察到与邻碳质子的耦合作用( J~8Hz)。
➢ 巯基质子与氘的交换是足够快的,因而可以用重水交 换而使其信号消除。
➢ 硫醇SH, δ= 1.2~1.6;硫酚SH,δ= 2.8~3.6;可变
第五十页,共53页。
第五十一页,共53页。
当结构中存在多个活泼氢(羧基、氨基、羟基等),若 相互之间交换速率快,只产生一个平均的活泼氢信号, 不发生偶合裂分。若交换慢,则表现为各自的吸收峰。
α-二酮只有稳定的烯醇式出现在NMR谱中。
第四十三页,共53页。
e) 羧酸
➢ 弱极性溶剂中,羧酸通常以稳定的氢键二聚体形式存在, 因此其质子吸收范围较窄(δ= 10.0~13.2)。极性溶剂使 二聚体部分断裂,吸收峰位移。
➢ 羧酸质子与水或醇的质子交换很快而给出一个单峰,吸收 峰的位置与浓度有关。
第二十七页,共53页。
(7)溶剂效应
由于溶质分子受到不同溶剂影响而引起的化学位移变化 称为溶剂效应。例如:
在氘代氯仿溶剂中,2.88;2.97。 逐步加入各向异性溶剂苯,和甲基的化学位移逐渐靠 近,然后交换位置。
第二十八页,共53页。
第二十九页,共53页。
➢ 溶剂效应的产生是由于溶剂的磁各向异性造成或者是由于不
ab
cd
c 、 b 、d效应
第八页,共53页。
(2) 相连碳原子的杂化态影响
电负性:Csp > Csp2 > C sp3 乙烷 0.88; 乙烯 5.23; 乙炔 2.88
第九页,共53页。
(3) 磁的各向异性效应
化合物中非球形对称的电子云(如:π电子系统)因电子的流动而产生诱导磁场, 这个磁场是各向异性的。在不同区域,磁场方向不一致。

《核磁共振氢谱》课件

《核磁共振氢谱》课件

《核磁共振氢谱》课件课程目标:1. 理解核磁共振氢谱的基本原理2. 学会分析核磁共振氢谱图3. 掌握核磁共振氢谱在有机化学中的应用第一部分:核磁共振氢谱的基本原理1. 核磁共振现象核磁共振的定义核磁共振的产生条件核磁共振的物理过程2. 核磁共振氢谱的化学位移化学位移的定义化学位移的影响因素化学位移的计算方法3. 核磁共振氢谱的耦合常数耦合常数的定义耦合常数的影响因素耦合常数的计算方法4. 核磁共振氢谱的积分强度积分强度的定义积分强度的影响因素积分强度的计算方法第二部分:核磁共振氢谱的解析1. 核磁共振氢谱图的解读谱线的数量和位置谱线的形状和积分强度谱线的耦合情况2. 等效氢的判断等效氢的定义等效氢的判断方法等效氢的例外情况3. 核磁共振氢谱的应用实例简单有机化合物的分析复杂有机化合物的分析手性化合物的分析第三部分:核磁共振氢谱的实验操作1. 核磁共振氢谱的样品制备样品的选择和制备方法样品的纯化和干燥样品的装载和测试2. 核磁共振氢谱的仪器操作核磁共振仪的基本结构核磁共振仪的操作步骤核磁共振氢谱的获取和保存3. 核磁共振氢谱的数据处理核磁共振氢谱的数据分析核磁共振氢谱的峰拟合核磁共振氢谱的定量分析第四部分:核磁共振氢谱的实践练习1. 练习题目简单有机化合物的核磁共振氢谱分析复杂有机化合物的核磁共振氢谱分析手性化合物的核磁共振氢谱分析2. 练习解答分析过程和思路核磁共振氢谱的解析步骤最终答案和讨论总结:核磁共振氢谱是一种重要的有机化学分析方法,通过对氢原子的核磁共振现象进行研究,可以得到有机化合物的结构和性质信息。

通过对核磁共振氢谱的基本原理、解析方法和实验操作的学习,可以更好地理解和应用核磁共振氢谱,为有机化学研究和教学提供有力的工具。

科学性:1. 内容准确:课件中的概念、原理和实验操作应基于有机化学和核磁共振氢谱的现有科学知识,确保无误。

2. 信息更新:课件中所引用的文献和数据应是最新的,以保证教学内容的时效性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
16
二、核磁共振仪
NMR波谱仪按照磁体分类,可分为:永久磁体,电 磁体和超导磁体。 按照射频频率(1H的共振频率)分类,可分为:60, 80,90,100,200,300,400,500,600,700, 900 MHz等。 按照射频源分类,又可以分为:连续波波谱仪(CWNMR)和傅里叶变换波谱仪(PFT-NMR)。
• 晶格泛指环境,即高能态自旋核把能量传给周围环境 (同类分子、溶剂小分子、固体晶格等)转变为热运 动而本身回到低能态维持Boltzmann分布。
• 自旋-晶格弛豫过程的半衰期用T1表示 (T1与样品状 态及核的种类、温度有关),液体T1~1s,固体或粘度 大的液体T1 很大。
• 自旋-晶格弛豫又称纵向弛豫。
核磁共振波谱法是结构分析的重要工具之一,经常使 用的是1H和13C 的共振波谱。 核磁共振波谱中最常用的氢谱将提供: 1. 分子中不同种类氢原子有关化学环境的信息 2. 不同环境下氢原子的数目 3. 每个氢原子相邻的基团的结构
2
δ / ppm
溴乙烷的1H NMR (400 MHz)
3
异丙苯的1H NMR (400 MHz)
即:hυ射= γhH0/2π
13
3. 弛豫过程
高能态的核自旋经过外辐射途径把多余的能量给予 环境或其它低能态的核,这个过程称为“弛豫”
前者称为纵向弛豫,也称“自旋--晶格子弛豫” T1 后者称为横向弛豫,也称“自旋---自旋弛豫” T2
14
自旋-晶格弛豫 (spin-lattice Relaxation)
11
2.核磁共振
如果以射频照射处于外磁场H0 中的核,且照射频 率υ恰好满足下列关系时
hυ= △E 或 υ= ( /2)B0 处于低能级的核将吸收射频能量而跃迁至高能 级, 这种现象称为核磁共振现象。 由上式可知, 一个核的跃迁频率与磁场强度B0 成正比, 使1H 核发生共振,由自旋m = ½取向变成m = -1/2 的取向。应供给△E 的电磁波(射频)。照射频率 与外加磁场强度成正比。
12
1H 的核磁共振( 1H NMR)
a. 无外加磁场,H0=0时,两自旋态的能量相同ms=±1/2。 b. 有外加磁场,H0≠0,两自旋态的能量不同:
1H 自旋产生的磁矩与H0同向平行,为低能态; 1H 自旋产生的磁矩与H0反向平行,为高能态。 两能级之差:ΔE=γhH0/2π c. 核磁共振的条件:E射=△E,
第三章 核磁共振氢谱
(1H Nuclear Magnetic Resonance Spectra,1H NMR)
1
核磁共振波谱法是吸收光谱的一种,用适宜的频率的电 磁波照射置于强磁场下的原子核(使其能级发生分裂)。当 核吸收的能量与核能级差相等时,就会发生核能级的跃迁, 同时产生核磁共振信号,从而得到一种吸收光谱的核磁共振 波谱,以这种原理建立的方法称核磁共振波谱法。
H+
H+
H+β 自旋 NhomakorabeaH+
能量较高 ΔE
H+
H+
H+
α 自旋
H+ 能量较低
没有磁场
有磁场B0
质子在没有磁场和有磁场情况下的磁矩方向
B0
9
若将自旋核放入磁场为H0 磁场中, 由于磁矩与磁场 相互作用, 核磁矩相对外加磁场有不同的取向, 按 照量子力学原理有m=2 I +1个取向。 对于氢核I =1/2, 即有m=2个取向, m=+1/2, m= -1/2两种取向, 即当自旋取向与外加磁场一致时, m=+1/2, 氢核处于一种低能级状态. (E1=-μz B0 ), 相反时m= -1/2时, 则处于一种高能级状态(E2=+μz B0 )
h
P= 2 I(I+1)·
式中: h为普朗克常数 自旋不为0的原子核,都有磁矩,用μ 表示, 磁矩随角动量增加成正比增加.
μ = r·P
式中r 为磁旋比, 不同的核具有不同的磁旋比。
8
NMR技术是观察原子序数或其质量数为奇数的原子核自旋的手 段。质子是最简单的原子核,它的原子序数是奇数且最小为1, 可以自旋。自旋的质子相当于带正电荷的小球在旋转运动中产 生磁场。
X
A为偶数,Z为奇数, ms=1,2,3…整数 A为奇数,Z为奇或偶数, ms=1/2,3/2,
5/2…半整数
当ms≠0时,原子核的自旋运动有NMR讯号。
6
由自旋量子数与原子的质量数及原子序数的关系可知: 原子质
量数和原子序数均为偶数的核,自旋量子数ms =0, 即没有自旋 现象; 当自旋量子数ms =1/2时, 有自旋现象, 核电荷呈球型
17
组成:磁铁、射频发生器、检测器、放大器、记录仪(放大器)、样品管
脉冲频率发射器
核磁管
脉冲频率放大器
检测器
扫描发生器
核磁共振光谱仪的简单构造示意图 原理:扫频--固定 H0,改变υ射,使υ射与H0匹配;
15
自旋-自旋弛豫 (spin-spin Relaxation):
• 高能态核把能量传给同类低能态的自旋核,本身回到 低能态,维持Boltzmann分布。结果是高低能态自旋 核总数不变。
• 自旋-自旋弛豫过程的半衰期用T2表示。 • 液体T2~1s, 固体或粘度大的液体,T2很小,10-
4~10-5s
分布, 它们的核磁共振现象较为简单。有 1H1,13C6,15N7, 19F9, 31P15 等。 原子核有自旋现象, 则有磁矩, 在磁场中能够受磁场作用, 能发 生核磁共振现象; 原子核无自旋现象, 则无磁矩, 不能发生核 磁共振现象.
7
1. 核的自旋运动
一些原子核有自旋现象, 因而具有自旋角动量P, I和P的关系 为:
4
丁酸的1H NMR(400 MHz)
5
一、核磁共振基本原理
原子核除具有电荷和质量外, 许多原子核还具有自旋现
象。通常用自旋量子数 I或ms表示, 原子的质量数 A 表 示,及原子序数 Z 表示。
原子核的自旋
原子核的自旋量子数:ms 与原子的质量数和原子序数之间的关系:
A、Z均为偶数,ms=0
A Z
10
高能级与低能级的能量差△E应由下式定:
△E= E (-1/2)- E (+1/2) =(h/2)B0
式中: B0 外加磁场强度
磁矩与外加磁场相反 高能自旋取向
E2 = (+1/2)(h/2)B0 m = +1/2
磁距与外加磁场一致 低能自旋取向 E1 = (-1/2)(h/2)B0 m = -1/2
相关文档
最新文档