matlab_蚁群算法_机器人路径优化问题

合集下载

MATLAB中的蚁群算法与粒子群优化联合优化实例分析

MATLAB中的蚁群算法与粒子群优化联合优化实例分析

MATLAB中的蚁群算法与粒子群优化联合优化实例分析引言:在现代科学技术的发展中,优化问题一直是一个关键的挑战。

为了解决这些问题,出现了许多优化算法。

其中,蚁群算法(Ant Colony Optimization,ACO)和粒子群优化算法(Particle Swarm Optimization,PSO)是两种被广泛应用的算法。

本文将通过示例分析,探讨如何将这两种优化算法结合使用以获得更好的优化结果。

1. 蚁群算法概述蚁群算法是一种启发式优化算法,灵感来源于蚂蚁寻找食物的行为。

蚂蚁在搜索食物的过程中,通过释放信息素与其他蚂蚁进行通信,从而引导整个群体向最优解靠近。

这种算法主要适用于组合优化问题,如旅行商问题(Traveling Salesman Problem,TSP)等。

2. 粒子群优化算法概述粒子群优化算法是一种仿生优化算法,灵感来源于鸟群觅食的行为。

在算法中,个体被模拟成鸟群中的粒子,并通过合作和竞争的方式搜索最优解。

粒子的位置代表可能的解,速度代表解的搜索方向和距离。

这种算法通常适用于连续优化问题。

3. 蚁群算法与粒子群优化算法的结合蚁群算法和粒子群优化算法有着不同的特点和适用范围,结合它们的优点可以提高优化结果的质量。

在下面的示例中,我们将探讨一个工程优化问题,通过联合使用这两种算法来获得较好的优化结果。

示例:电力系统优化在电力系统中,优化发电机组的负荷分配可以有效降低能源消耗和运行成本。

我们将使用蚁群算法和粒子群优化算法联合进行负荷分配的优化。

首先,我们需要建立一个能源消耗和运行成本的数学模型。

这个模型将考虑发电机组的负荷分配和相应的能源消耗和运行成本。

假设我们有n个发电机组,每个组的负荷分配为x1,x2,...,xn,则总的能源消耗为:E = f(x1) + f(x2) + ... + f(xn)其中f(x)是关于负荷分配的函数,代表了每个发电机组的能源消耗。

接下来,我们使用蚁群算法对发电机组的负荷分配进行优化。

Matlab蚁群算法

Matlab蚁群算法

实现蚂蚁移动和信息素挥发机制
蚂蚁移动
根据蚂蚁的移动规则和信息素值,让蚂 蚁在解空间中移动,并记录其路径。
VS
信息素挥发
模拟信息素的挥发过程,降低信息素值, 以反映信息的衰减。
迭代优化和结果
迭代优化
通过多次迭代,让蚂蚁不断寻找更好的解, 并逐渐逼近最优解。
结果输出
输出最终找到的最优解,以及算法的性能指 标,如收敛速度、最优解质量等。
05 Matlab蚁群算法的优缺点分析
优点分析
并行性
鲁棒性
全局搜索能力
易于实现
蚁群算法是一种自然启发的优 化算法,具有高度的并行性。 在Matlab中实现时,可以利用 多核处理器或GPU加速技术进 一步提高并行计算能力,从而
加快算法的收敛速度。
蚁群算法对初始参数设置不 敏感,具有较强的鲁棒性。 这意味着在Matlab实现时, 即使初始参数设置不当,算
法仍能找到较优解。
蚁群算法采用正反馈机制, 能够发现多条优质路径,具 有较强的全局搜索能力。这 有助于在Matlab中解决多峰、 离散、非线性等复杂优化问
题。
蚁群算法原理相对简单,实 现起来较为容易。在Matlab 中,可以利用现有的工具箱 或自行编写代码来实现该算
法。
缺点分析
01
计算量大
蚁群算法在解决大规模优化问题时,计算量较大,可能 导致算法运行时间较长。在Matlab实现中,可以通过优 化代码、采用并行计算等技术来降低计算量。
Matlab蚁群算法目录来自• 蚁群算法简介 • Matlab实现蚁群算法的步骤 • 蚁群算法的参数调整与优化 • Matlab蚁群算法的案例分析 • Matlab蚁群算法的优缺点分析
01 蚁群算法简介

蚁群算法路径优化matlab代码

蚁群算法路径优化matlab代码

蚁群算法路径优化matlab代码标题:蚁群算法路径优化 MATLAB 代码正文:蚁群算法是一种基于模拟蚂蚁搜索食物路径的优化算法,常用于求解复杂问题。

在路径优化问题中,蚂蚁需要从起点移动到终点,通过探索周围区域来寻找最短路径。

MATLAB 是一个常用的数值计算软件,可以用来实现蚁群算法的路径优化。

下面是一个基本的 MATLAB 代码示例,用于实现蚁群算法的路径优化:```matlab% 定义参数num_ants = 100; % 蚂蚁数量num_steps = 100; % 路径优化步数search_radius = 2; % 搜索半径max_iterations = 1000; % 最大迭代次数% 随机生成起点和终点的位置坐标start_pos = [randi(100), randi(100)];end_pos = [75, 75];% 初始化蚂蚁群体的位置和方向ants_pos = zeros(num_ants, 2);ants_dir = zeros(num_ants, 2);for i = 1:num_antsants_pos(i, :) = start_pos + randn(2) * search_radius; ants_dir(i, :) = randomvec(2);end% 初始化蚂蚁群体的速度ants_vel = zeros(num_ants, 2);for i = 1:num_antsants_vel(i, :) = -0.1 * ants_pos(i, :) + 0.5 *ants_dir(i, :);end% 初始时蚂蚁群体向终点移动for i = 1:num_antsans_pos = end_pos;ans_vel = ants_vel;for j = 1:num_steps% 更新位置和速度ans_pos(i) = ans_pos(i) + ans_vel(i);ants_vel(i, :) = ones(1, num_steps) * (-0.1 * ans_pos(i) + 0.5 * ans_dir(i, :));end% 更新方向ants_dir(i, :) = ans_dir(i, :) - ans_vel(i) * 3;end% 迭代优化路径max_iter = 0;for i = 1:max_iterations% 计算当前路径的最短距离dist = zeros(num_ants, 1);for j = 1:num_antsdist(j) = norm(ants_pos(j) - end_pos);end% 更新蚂蚁群体的位置和方向for j = 1:num_antsants_pos(j, :) = ants_pos(j, :) - 0.05 * dist(j) * ants_dir(j, :);ants_dir(j, :) = -ants_dir(j, :);end% 更新蚂蚁群体的速度for j = 1:num_antsants_vel(j, :) = ants_vel(j, :) - 0.001 * dist(j) * ants_dir(j, :);end% 检查是否达到最大迭代次数if i > max_iterationsbreak;endend% 输出最优路径[ans_pos, ans_vel] = ants_pos;path_dist = norm(ans_pos - end_pos);disp(["最优路径长度为:" num2str(path_dist)]);```拓展:上述代码仅仅是一个简单的示例,实际上要实现蚁群算法的路径优化,需要更加复杂的代码实现。

PythonMatlab实现蚂蚁群算法求解最短路径问题的示例

PythonMatlab实现蚂蚁群算法求解最短路径问题的示例

PythonMatlab实现蚂蚁群算法求解最短路径问题的⽰例⽬录1知识点1.1 蚁群算法步骤1.2 蚁群算法程序2蚂蚁算法求解最短路径问题——Python实现2.1源码实现2.2 ACA_TSP实现3 蚂蚁算法求解最短路径问题——Matlab实现3.1流程图3.2代码实现3.3结果1 知识点详细知识点见:我们这⼀节知识点只讲蚁群算法求解最短路径步骤及流程。

1.1 蚁群算法步骤设蚂蚁的数量为m,地点的数量为n,地点i与地点j之间相距Dij,t时刻地点i与地点j连接的路径上的信息素浓度为Sij,初始时刻每个地点间路径上的信息素浓度相等。

蚂蚁k根据各个地点间连接路径上的信息素决定下⼀个⽬标地点,Pijk表⽰t时刻蚂蚁k从地点i转移的概率,概率计算公式如下:上式中,为启发函数,,表⽰蚂蚁从地点i转移到地点j的期望程度;为蚂蚁k即将访问地点的集合,开始时中有n-1个元素(除出发地点),随时间的推移,蚂蚁每到达下⼀个地点,中的元素便减少⼀个,直⾄空集,即表⽰所有地点均访问完毕;a为信息素重要程度因⼦,值越⼤,表明信息素的浓度在转移中起到的作⽤越⼤,也就是说蚂蚁选择距离近的下⼀个地点的概率更⼤,β为启发函数重要程度因⼦。

蚂蚁在释放信息素的同时,每个地点间连接路径上的信息素逐渐消失,⽤参数表⽰信息素的挥发程度。

因此,当所有蚂蚁完成⼀次循环后,每个地点间连接路径上的信息素浓度需更新,也就是有蚂蚁路过并且留下信息素,有公式表⽰为:其中,表⽰第k只蚂蚁在地点i与j连接路径上释放的信息素浓度;表⽰所有蚂蚁在地点i与j连接路径上释放的信息素浓度之和;Q为常数,表⽰蚂蚁循环⼀次所释放的信息素总量;Lk表⽰第k只蚂蚁经过路径的长度,总的来说,蚂蚁经过的路径越短,释放的信息素浓度越⾼,最终选出最短路径。

1.2 蚁群算法程序(1)参数初始化在寻最短路钱,需对程序各个参数进⾏初始化,蚁群规模m、信息素重要程度因⼦α、启发函数重要程度因⼦β、信息素会发因⼦、最⼤迭代次数ddcs_max,初始迭代值为ddcs=1。

蚁群算法matlab代码讲解

蚁群算法matlab代码讲解

蚁群算法matlab代码讲解蚁群算法(Ant Colony Algorithm)是模拟蚁群觅食行为而提出的一种优化算法。

它以蚁群觅食的方式来解决优化问题,比如旅行商问题、图着色问题等。

该算法模拟了蚂蚁在寻找食物时的行为,通过信息素的正反馈和启发式搜索来实现问题的最优解。

在蚁群算法中,首先需要初始化一组蚂蚁和问题的解空间。

每只蚂蚁沿着路径移动,通过信息素和启发式规则来选择下一步的移动方向。

当蚂蚁到达目标位置后,会根据路径的长度来更新信息素。

下面是一个用MATLAB实现蚁群算法的示例代码:```matlab% 参数设置num_ants = 50; % 蚂蚁数量num_iterations = 100; % 迭代次数alpha = 1; % 信息素重要程度因子beta = 5; % 启发式因子rho = 0.1; % 信息素蒸发率Q = 1; % 信息素增加强度因子pheromone = ones(num_cities, num_cities); % 初始化信息素矩阵% 初始化蚂蚁位置和路径ants = zeros(num_ants, num_cities);for i = 1:num_antsants(i, 1) = randi([1, num_cities]);end% 迭代计算for iter = 1:num_iterations% 更新每只蚂蚁的路径for i = 1:num_antsfor j = 2:num_cities% 根据信息素和启发式规则选择下一步移动方向next_city = choose_next_city(pheromone, ants(i, j-1), beta);ants(i, j) = next_city;endend% 计算每只蚂蚁的路径长度path_lengths = zeros(num_ants, 1);for i = 1:num_antspath_lengths(i) = calculate_path_length(ants(i, :), distances);end% 更新信息素矩阵pheromone = (1 - rho) * pheromone;for i = 1:num_antsfor j = 2:num_citiespheromone(ants(i, j-1), ants(i, j)) = pheromone(ants(i, j-1), ants(i, j)) + Q / path_lengths(i); endendend```上述代码中的参数可以根据具体问题进行调整。

matlab-蚁群算法-机器人路径优化问题

matlab-蚁群算法-机器人路径优化问题

matlab-蚁群算法-机器人路径优化问题4.1问题描述移动机器人路径规划是机器人学的一个重要研究领域。

它要求机器人依据某个或某些优化原则(如最小能量消耗,最短行走路线,最短行走时间等),在其工作空间中找到一条从起始状态到目标状态的能避开障碍物的最优路径。

机器人路径规划问题可以建模为一个有约束的优化问题,都要完成路径规划、定位和避障等任务。

4.2算法理论蚁群算法(AntColonyAlgorithm,ACA),最初是由意大利学者DorigoM.博士于1991年首次提出,其本质是一个复杂的智能系统,且具有较强的鲁棒性,优良的分布式计算机制等优点。

该算法经过十多年的发展,已被广大的科学研究人员应用于各种问题的研究,如旅行商问题,二次规划问题,生产调度问题等。

但是算法本身性能的评价等算法理论研究方面进展较慢。

Dorigo提出了精英蚁群模型(EAS),在这一模型中信息素更新按照得到当前最优解的蚂蚁所构造的解来进行,但这样的策略往往使进化变得缓慢,并不能取得较好的效果。

次年Dorigo博士在文献[30]中给出改进模型(ACS),文中改进了转移概率模型,并且应用了全局搜索与局部搜索策略,来得进行深度搜索。

Stützle与Hoo给出了最大-最小蚂蚁系统(MA某-MINAS),所谓最大-最小即是为信息素设定上限与下限,设定上限避免搜索陷入局部最优,设定下限鼓励深度搜索。

蚂蚁作为一个生物个体其自身的能力是十分有限的,比如蚂蚁个体是没有视觉的,蚂蚁自身体积又是那么渺小,但是由这些能力有限的蚂蚁组成的蚁群却可以做出超越个体蚂蚁能力的超常行为。

蚂蚁没有视觉却可以寻觅食物,蚂蚁体积渺小而蚁群却可以搬运比它们个体大十倍甚至百倍的昆虫。

这些都说明蚂蚁群体内部的某种机制使得它们具有了群体智能,可以做到蚂蚁个体无法实现的事情。

经过生物学家的长时间观察发现,蚂蚁是通过分泌于空间中的信息素进行信息交流,进而实现群体行为的。

蚁群算法(ACA)及其Matlab实现

蚁群算法(ACA)及其Matlab实现

蚁群算法(ACA)及其Matlab实现1基本原理:本质上也是⼀种概率算法,通过⼤概率收敛到最佳值,和其他的智能算法很相似。

蚁群分泌的信息素存在正反馈,使得较佳的解具有⼤概率被选到,当全局都选⽤较佳的解,变可以得到整体的最优解。

2⼏个关键点:1)概率选择:受信息素浓度和启发函数影响,启发函数为距离的倒数2)信息素挥发考虑到信息素随时间的挥发,加⼊挥发因⼦3程序设计步骤:1初始化各个参数:包括各点的距离,信息素的初始浓度,蚂蚁数量,信息素挥发因⼦,信息素和启发函数的重要度因⼦,启发函数,最⼤迭代次数,路径记录表等等2迭代:对每个蚂蚁随机制定初始值,再根据概率选择,选择出每只蚂蚁的路径,确定每只蚂蚁的路径总长度,以及蚁群的最佳路径长度和平均长度,并对信息素进⾏更新。

3展⽰:展⽰出最佳路径,以及最佳路径对迭代的变化图4Matlab代码clc,clear %清空环境中的变量load data.txt %读⼊城市的坐标t0 = clock; %程序计时开始%%%%%%%%%%%%%%%%%%%%%初始化%%%%%%%%%%%%%%%%%city=data;n = size(city,1); %城市距离初始化D = zeros(n,n);for i = 1:nfor j = 1:nif i ~= jD(i,j) = sqrt(sum((city(i,:) - city(j,:)).^2));elseD(i,j) = 0; %设定的对⾓矩阵修正值endendendm=30; %蚂蚁数量alpha = 1; % 信息素重要程度因⼦beta = 5; % 启发函数重要程度因⼦v = 0.1; % 信息素挥发因⼦Q = 0.5; % 信息因⼦常系数H= 1./D; % 启发函数T= ones(n,n); % 信息素矩阵Table = zeros(m,n); % 路径记录表iter = 1; % 迭代次数初值iter_max = 50; % 最⼤迭代次数best_route = zeros(iter_max,n); % 各代最佳路径best_length = zeros(iter_max,1); % 各代最佳路径的长度%%while iter<=iter_max% 随机产⽣每只蚂蚁的起点城市start = zeros(m,1);for i = 1:mtemp = randperm(n);start(i) = temp(1);endTable(:,1) = start;city_index=1:n;for i = 1:m% 逐个城市路径选择for j = 2:ntabu = Table(i,1:(j - 1)); % 已访问的城市集合allow =city_index( ~ismember(city_index,tabu)); % 筛选出未访问的城市集合P = zeros(1,length(allow));% 计算相连城市的转移概率for k = 1:length(allow)P(k) = T(tabu(end),allow(k))^alpha * H(tabu(end),allow(k))^beta;endP = P/sum(P);% 轮盘赌法选择下⼀个访问城市Pc = cumsum(P); %参加说明2(程序底部)target_index = find(Pc >= rand);target = allow(target_index(1));Table(i,j) = target;endend% 计算各个蚂蚁的路径距离Length = zeros(m,1);for i = 1:mRoute = [Table(i,:) Table(i,1)];for j = 1:nLength(i) = Length(i) + D(Route(j),Route(j + 1));endend%对最优路线和距离更新if iter == 1[min_length,min_index] = min(Length);best_length(iter) = min_length;best_route(iter,:) = Table(min_index,:);else[min_length,min_index] = min(Length);if min_length<best_length(iter-1)best_length(iter)=min_length;best_route(iter,:)=Table(min_index,:);elsebest_length(iter)=best_length(iter-1);best_route(iter,:)=best_route(iter-1,:);endend% 更新信息素Delta_T= zeros(n,n);% 逐个蚂蚁计算for i = 1:m% 逐个城市计算Route = [Table(i,:) Table(i,1)];for j = 1:nDelta_T(Route(j),Route(j+1)) = Delta_T(Route(j),Route(j+1)) +D(Route(j),Route(j+1))* Q/Length(i); endendT= (1-v) * T + Delta_T;% 迭代次数加1,并清空路径记录表iter = iter + 1;Table = zeros(m,n);end%--------------------------------------------------------------------------%% 结果显⽰shortest_route=best_route(end,:); %选出最短的路径中的点short_length=best_length(end);Time_Cost=etime(clock,t0);disp(['最短距离:' num2str(short_length)]);disp(['最短路径:' num2str([shortest_route shortest_route(1)])]);disp(['程序执⾏时间:' num2str(Time_Cost) '秒']);%--------------------------------------------------------------------------%% 绘图figure(1)%采⽤连线图画起来plot([city(shortest_route,1);city(shortest_route(1),1)], [city(shortest_route,2);city(shortest_route(1),2)],'o-');for i = 1:size(city,1)%对每个城市进⾏标号text(city(i,1),city(i,2),[' ' num2str(i)]);endxlabel('城市位置横坐标')ylabel('城市位置纵坐标')title(['蚁群算法最优化路径(最短距离):' num2str(short_length) ''])figure(2)%画出收敛曲线plot(1:iter_max,best_length,'b')xlabel('迭代次数')ylabel('距离')title('迭代收敛曲线') 程序说明:采⽤蚁群算法求取TSP问题,共有34个城市,从txt⽂件加载数据:运⾏结果:。

基于蚁群算法的机器人路径规划MATLAB源代码

基于蚁群算法的机器人路径规划MATLAB源代码

基于蚁群算法的机器人路径规划MATLAB源代码————————————————————————————————作者: ————————————————————————————————日期:基于蚁群算法的机器人路径规划MATLAB源代码基本思路是,使用离散化网格对带有障碍物的地图环境建模,将地图环境转化为邻接矩阵,最后使用蚁群算法寻找最短路径。

function [ROUTES,PL,Tau]=ACASPS(G,Tau,K,M,S,E,Alpha,Beta,Rho,Q)%%---------------------------------------------------------------% ACASP.m%基于蚁群算法的机器人路径规划%GreenSim团队——专业级算法设计&代写程序% 欢迎访问GreenSim团队主页→%% ---------------------------------------------------------------%输入参数列表% G地形图为01矩阵,如果为1表示障碍物%Tau 初始信息素矩阵(认为前面的觅食活动中有残留的信息素)%K 迭代次数(指蚂蚁出动多少波)% M 蚂蚁个数(每一波蚂蚁有多少个)% S起始点(最短路径的起始点)% E终止点(最短路径的目的点)%Alpha表征信息素重要程度的参数% Beta 表征启发式因子重要程度的参数%Rho 信息素蒸发系数% Q 信息素增加强度系数%%输出参数列表% ROUTES每一代的每一只蚂蚁的爬行路线%PL 每一代的每一只蚂蚁的爬行路线长度%Tau 输出动态修正过的信息素%% --------------------变量初始化----------------------------------%loadD=G2D(G);N=size(D,1);%N表示问题的规模(象素个数)MM=size(G,1);a=1;%小方格象素的边长Ex=a*(mod(E,MM)-0.5);%终止点横坐标if Ex==-0.5Ex=MM-0.5;endEy=a*(MM+0.5-ceil(E/MM));%终止点纵坐标Eta=zeros(1,N);%启发式信息,取为至目标点的直线距离的倒数%下面构造启发式信息矩阵for i=1:Nix=a*(mod(i,MM)-0.5);if ix==-0.5ix=MM-0.5;endiy=a*(MM+0.5-ceil(i/MM));ifi~=EEta(1,i)=1/((ix-Ex)^2+(iy-Ey)^2)^0.5;elseEta(1,i)=100;endendROUTES=cell(K,M);%用细胞结构存储每一代的每一只蚂蚁的爬行路线PL=zeros(K,M);%用矩阵存储每一代的每一只蚂蚁的爬行路线长度%%-----------启动K轮蚂蚁觅食活动,每轮派出M只蚂蚁-------------------- fork=1:K%disp(k);form=1:M%% 第一步:状态初始化W=S;%当前节点初始化为起始点Path=S;%爬行路线初始化PLkm=0;%爬行路线长度初始化TABUkm(S)=0;%已经在初始点了,因此要排除DD=D;%邻接矩阵初始化%%第二步:下一步可以前往的节点DW=DD(W,:);DW1=find(DW<inf);forj=1:length(DW1)if TABUkm(DW1(j))==0endendLJD=find(DW<inf);%可选节点集Len_LJD=length(LJD);%可选节点的个数%% 觅食停止条件:蚂蚁未遇到食物或者陷入死胡同while W~=E&&Len_LJD>=1%%第三步:转轮赌法选择下一步怎么走PP=zeros(1,Len_LJD);for i=1:Len_LJDendPP=PP/(sum(PP));%建立概率分布Pcum=cumsum(PP);Select=find(Pcum>=rand);to_visit=LJD(Select(1));%下一步将要前往的节点%% 第四步:状态更新和记录Path=[Path,to_visit];%路径增加PLkm=PLkm+DD(W,to_visit);%路径长度增加W=to_visit;%蚂蚁移到下一个节点for kk=1:Nif TABUkm(kk)==0DD(W,kk)=inf;DD(kk,W)=inf;endendTABUkm(W)=0;%已访问过的节点从禁忌表中删除DW=DD(W,:);LJD=find(DW<inf);%可选节点集Len_LJD=length(LJD);%可选节点的个数end%% 第五步:记下每一代每一只蚂蚁的觅食路线和路线长度ROUTES{k,m}=Path;if Path(end)==EPL(k,m)=PLkm;elsePL(k,m)=inf;endend%% 第六步:更新信息素Delta_Tau=zeros(N,N);%更新量初始化for m=1:MifPL(k,m)<infROUT=ROUTES{k,m};TS=length(ROUT)-1;%跳数PL_km=PL(k,m);for s=1:TSx=ROUT(s);y=ROUT(s+1);Delta_Tau(x,y)=Delta_Tau(x,y)+Q/PL_km;Delta_Tau(y,x)=Delta_Tau(y,x)+Q/PL_km;endendendTau=(1-Rho).*Tau+Delta_Tau;%信息素挥发一部分,新增加一部分end%% ---------------------------绘图--------------------------------plotif=0;%是否绘图的控制参数if plotif==1%绘收敛曲线meanPL=zeros(1,K);minPL=zeros(1,K);for i=1:KPLK=PL(i,:);Nonzero=find(PLK<inf);PLKPLK=PLK(Nonzero);meanPL(i)=mean(PLKPLK);minPL(i)=min(PLKPLK);endfigure(1)plot(minPL);hold onplot(meanPL);grid ontitle('收敛曲线(平均路径长度和最小路径长度)');xlabel('迭代次数');ylabel('路径长度');%绘爬行图figure(2)axis([0,MM,0,MM])fori=1:MMfor j=1:MMifG(i,j)==1x1=j-1;y1=MM-i;x2=j;y2=MM-i;x3=j;y3=MM-i+1;x4=j-1;y4=MM-i+1;fill([x1,x2,x3,x4],[y1,y2,y3,y4],[0.2,0.2,0.2]);hold onelsex1=j-1;y1=MM-i;x2=j;y2=MM-i;x3=j;y3=MM-i+1;x4=j-1;y4=MM-i+1;fill([x1,x2,x3,x4],[y1,y2,y3,y4],[1,1,1]);hold onendendendhold onROUT=ROUTES{K,M};Rx=ROUT;Ry=ROUT;forii=1:LENROUTRx(ii)=a*(mod(ROUT(ii),MM)-0.5);if Rx(ii)==-0.5Rx(ii)=MM-0.5;endRy(ii)=a*(MM+0.5-ceil(ROUT(ii)/MM));endplot(Rx,Ry)endplotif2=0;%绘各代蚂蚁爬行图if plotif2==1figure(3)axis([0,MM,0,MM])for i=1:MMfor j=1:MMif G(i,j)==1x1=j-1;y1=MM-i;x2=j;y2=MM-i;x4=j-1;y4=MM-i+1;fill([x1,x2,x3,x4],[y1,y2,y3,y4],[0.2,0.2,0.2]);hold onelsex1=j-1;y1=MM-i;x2=j;y2=MM-i;x3=j;y3=MM-i+1;x4=j-1;y4=MM-i+1;fill([x1,x2,x3,x4],[y1,y2,y3,y4],[1,1,1]);hold onendendendfork=1:KPLK=PL(k,:);minPLK=min(PLK);pos=find(PLK==minPLK);m=pos(1);ROUT=ROUTES{k,m};LENROUT=length(ROUT);Rx=ROUT;Ry=ROUT;for ii=1:LENROUTRx(ii)=a*(mod(ROUT(ii),MM)-0.5);if Rx(ii)==-0.5Rx(ii)=MM-0.5;endRy(ii)=a*(MM+0.5-ceil(ROUT(ii)/MM));endplot(Rx,Ry)hold onendend源代码运行结果展示。

蚁群算法及MATLAB程序(详细)

蚁群算法及MATLAB程序(详细)

蚁群算法介绍:(1)寻找最短路径的蚁群算法来源于蚂蚁寻食的行为。

蚁群寻找食物时会派出一些蚂蚁分头在四周游荡, 如果一只蚂蚁找到食物, 它就返回巢中通知同伴并沿途留下“ 信息素”(外激素pheromone)作为蚁群前往食物所在地的标记。

信息素会逐渐挥发,如果两只蚂蚁同时找到同一食物, 又采取不同路线回到巢中, 那么比较绕弯的一条路上信息素的气味会比较淡, 蚁群将倾向于沿另一条更近的路线前往食物所在地。

蚁群算法设计虚拟的“蚂蚁”, 让它们摸索不同路线, 并留下会随时间逐渐消失的虚拟“信息素”, 根 据“信息素较浓的路线更近”的原则, 即可选择出最佳路线.(2) 为了模拟实际蚂蚁的行为, 首先引进如下记号: 设m 是蚁群中蚂蚁的数, ij d (i,j=1,2,...,n)表示城市i 和城市j 之间的距离, i b t 表示t 时刻位于城市i 的蚂蚁的个数,则有 1ni i mb tij t表示t 时刻在城市,i j 连线上残留的信息素。

初始时刻,各条路径上的信息素相等,设0ij c c 为常数。

蚂蚁1,2,,k k m 在运动过程中,根据各条路径上的信息素决定转移方向。

k ij P t 表示在t 时刻蚂蚁k 由城市i 转移到城市j 的概率:,0,kij ij kik ikij kktabu kt t t P j tabu j tabu (1) 其中:ij n 为先验知识或称为能见度,在TSP 问题中为城市i 转移到城市j 的启发信息,一般地取1ij d ij n ,为在路径上残留信息的重要程度;为启发信息的重要程度;与实际蚁群不同,人工蚁群系统具有记忆能力,1,2,,k tabu k m 用以记录蚂蚁K 当前所走过的城市,称为禁忌表(下一步不充许选择的城市),集合k tabu 随着进化过程进行动态调整。

经过n 个时刻,所有蚂蚁完成了一次周游,此时应清空禁忌表,将当前蚂蚁所在的城市置入k tabu 中准备下一次周游,这时计算每一只蚂蚁走过的路程k L ,并保存最短路径min min min ,1,,k L L L k m 。

蚁群算法matlab代码

蚁群算法matlab代码

蚁群算法matlab代码蚁群算法,英文名为Ant Colony Algorithm,缩写为ACO,是一种启发式算法,是一种模拟蚂蚁寻找食物路径的算法。

在实际生活中,蚂蚁找到食物并返回巢穴后,将其找到食物的路径上的信息素留下,其他蚂蚁通过检测信息素来指导寻路,成为了一种集体智慧行为。

ACO也是通过模拟蚂蚁寻找食物路径的方式来寻找优化问题的最优解。

在ACO算法中,信息素是一个重要的概念,代表了走过某一路径的“好概率”,用这个“好概率”更新一些路径上的信息素,使得其他蚂蚁更可能选择经过这条路径,从而实现路径优化的目的。

在本文中,我们将讨论如何使用Matlab实现蚁群算法来优化问题。

1. 设定问题首先,我们要选取一个优化问题,并将其转换为需要在优化过程中进行选择的决策变量。

例如,我们想要优化旅行商问题(TSP)。

在TSP中,我们需要让旅行商以最短的距离经过所有城市,每个城市仅经过一次,最终回到出发的城市。

我们可以将每个城市编号,然后将TSP转化为一个最短路径选择的问题,即最短路径从编号为1的城市开始,经过所有城市,最终回到编号为1的城市。

2. 设定ACO参数在使用ACO优化问题时,需要设定一些参数,这些参数会影响算法的表现。

ACO算法需要设定的参数有:1.信息素含量:初始信息素的大小,即每个路径上的信息素浓度。

2.信息素挥发速度:信息素的随时间“减弱”程度。

3.信息素加成强度:蚂蚁经过路径后增加的信息素量。

4.启发式权重:用于计算启发式因子,即节点距离的贡献值。

5.蚂蚁数量:模拟蚂蚁数量,即同时寻找路径的蚂蚁个数。

6.迭代次数:模拟的迭代次数,即ACO算法运行的次数。

7.初始节点:ACO算法开始的节点。

3. 创建ACO优化函数我们可以使用Matlab来创建一个函数来实现ACO算法。

我们称其为“ACOoptimization.m”。

function best_path =ACOoptimization(city_location,iter_num,ant_num,init ial_path,alpha,beta,rho,update_flag) %ACO优化函数 %输入: %city_location: 城市坐标矩阵,格式为[x1,y1;x2,y2;...;xn,yn] %iter_num: 迭代次数 %ant_num: 蚂蚁数量 %initial_path: 起始路径,即初始解 %alpha,beta,rho: 超参数,用于调节蚂蚁选择路径的概率 %update_flag: 是否更新信息素的标志(1表示更新,0表示否) %输出: %best_path: 最优解,即最短路径%初始化信息素 pheromone = 0.01 *ones(length(city_location),length(city_location)); %初始化路径权重 path_weight =zeros(ant_num,1); %城市数量 n_cities =length(city_location);%主循环 for iter = 1:iter_num %一个迭代里所有蚂蚁都寻找一遍路径 for ant =1:ant_num %初始化蚂蚁位置current_city = initial_path; %标记是否经过了某个城市 visit_flag =zeros(1,n_cities);visit_flag(current_city) = 1; %用来存储当前路径 current_path = [current_city];%蚂蚁找东西 for i =1:n_cities-1 %计算路径概率p =calculate_probability(current_city,visit_flag,phero mone,city_location,alpha,beta); %蚂蚁选择路径 [next_city,next_index] = select_path(p);%路径更新current_path = [current_path;next_city];visit_flag(next_city) = 1;current_city = next_city;%更新路径权重path_weight(ant) = path_weight(ant) +Euclidean_distance(city_location(current_path(end-1),:),city_location(current_path(end),:));end%加入回到起点的路径权重path_weight(ant) = path_weight(ant) +Euclidean_distance(city_location(current_path(end),:),city_location(current_path(1),:));%判断是否为最优解 ifant == 1 best_path = current_path; else if path_weight(ant) <path_weight(ant-1) best_path =current_path; end end%更新信息素 ifupdate_flag == 1 pheromone =update_pheromone(pheromone,path_weight,initial_path,current_path,rho); end end end end在函数中,我们首先定义了ACOalg函数的参数,包括城市坐标矩阵,迭代次数,蚂蚁数量,初始路径,超参数alpha,beta,rho,以及是否需要更新信息素。

(完整word版)基于蚁群算法的路径规划

(完整word版)基于蚁群算法的路径规划

MATLAB 实现基于蚁群算法的机器人路径规划1、问题描述移动机器人路径规划是机器人学的一个重要研究领域。

它要求机器人依据某个或某些优化原则(如最小能量消耗,最短行走路线,最短行走时间等),在其工作空间中找到一条从起始状态到目标状态的能避开障碍物的最优路径。

机器人路径规划问题可以建模为一个有约束的优化问题,都要完成路径规划、定位和避障等任务。

2 算法理论蚁群算法(Ant Colony Algorithm ,ACA ),最初是由意大利学者Dorigo M. 博士于1991 年首次提出,其本质是一个复杂的智能系统,且具有较强的鲁棒性,优良的分布式计算机制等优点。

该算法经过十多年的发展,已被广大的科学研究人员应用于各种问题的研究,如旅行商问题,二次规划问题,生产调度问题等。

但是算法本身性能的评价等算法理论研究方面进展较慢。

Dorigo 提出了精英蚁群模型(EAS ),在这一模型中信息素更新按照得到当前最优解的蚂蚁所构造的解来进行,但这样的策略往往使进化变得缓慢,并不能取得较好的效果。

次年Dorigo 博士给出改进模型(ACS ),文中改进了转移概率模型,并且应用了全局搜索与局部搜索策略,来得进行深度搜索。

Stützle 与Hoos 给出了最大-最小蚂蚁系统(MAX-MINAS ),所谓最大-最小即是为信息素设定上限与下限,设定上限避免搜索陷入局部最优,设定下限鼓励深度搜索。

蚂蚁作为一个生物个体其自身的能力是十分有限的,比如蚂蚁个体是没有视觉的,蚂蚁自身体积又是那么渺小,但是由这些能力有限的蚂蚁组成的蚁群却可以做出超越个体蚂蚁能力的超常行为。

蚂蚁没有视觉却可以寻觅食物,蚂蚁体积渺小而蚁群却可以搬运比它们个体大十倍甚至百倍的昆虫。

这些都说明蚂蚁群体内部的某种机制使得它们具有了群体智能,可以做到蚂蚁个体无法实现的事情。

经过生物学家的长时间观察发现,蚂蚁是通过分泌于空间中的信息素进行信息交流,进而实现群体行为的。

matlab基于蚁群算法的二维路径规划算法【matlab优化算法二十二】

matlab基于蚁群算法的二维路径规划算法【matlab优化算法二十二】

matlab基于蚁群算法的⼆维路径规划算法【matlab优化算法⼆⼗⼆】基于蚁群算法的⼆维路径规划算法路径规划算法路径规划算法是指在有障碍物的⼯作环境中寻找⼀条从起点到终点的、⽆碰撞地绕过所有障碍物的运动路径。

路径规划算法较多,⼤体上可分为全局路径规划算法和局部路径规划算法两类。

其中,全局路径规划⽅法包括位形空间法、⼴义锥⽅法、顶点图像法、栅格划归法;局部路径规划算法主要有⼈⼯势场法等。

MAKLINK图论理论MAKLINK图论可以建⽴⼆维路径规划的空间模型, MAKLINK图论通过⽣成⼤量的MAKLINK线构造⼆维路径规划可⾏空间, MAKLINK 线定义为两个障碍物之间不与障碍物相交的顶点之间的连线,以及障碍物顶点与边界相交的连线。

典型 MAKLINE图形如图所⽰。

在 MAKLINK图上存在l条⾃由连接线,连接线的中点依次为v,v,…,v,连接所有MAKLINK线的中点加上始点S和终点T构成⽤于初始路径规划的⽆向⽹络图蚁群算法蚁群算法是由 dorigo.M等⼈在20世纪90年代初提出的⼀种新型进化算法,它来源于对蚂蚁搜索问题的研究。

⼈们在观察蚂蚁搜索⾷物时发现,蚂蚁在寻找⾷物时,总在⾛过的路径上释放⼀种称为信息素的分泌物,信息素能够保留⼀段时间,使得在⼀定范围内的其他蚂蚁能够觉察到该信息素的存在。

后继蚂蚁在选择路径时,会选择信息素浓度较⾼的路径,并且在经过时留下⾃⼰的信息素这样该路径的信息素会不断增强,蚂蚁选择的概率也在不断增⼤蚁群算法最优路径寻找如图。

图表达了蚂蚁在觅⾷过程中的三个过程,其中点A是蚂蚁蚁巢,点D是⾷物所在地,四边形 EBFCE表⽰在蚁巢和⾷物之间的障碍物。

蚂蚁如果想从蚁巢点A达到点D,只能经过路径BFC或者路径BEC,假定从蚁巢中出来若⼲只蚂蚁去⾷物所在地D搬运⾷物,每只蚂蚁经过后留下的信息素为1,信息素保留的时间为1.⼀开始,路径BFC和BEC上都没有信息素,在点A的蚂蚁可以随机选择路径,蚂蚁以相同的概率选择路径BFC或BEC,如图(b)所⽰。

蚁群优化算法原理及Matlab编程实现

蚁群优化算法原理及Matlab编程实现

蚁群优化算法原理及Matlab编程实现
蚁群算法的提出:
人工蚂蚁与真实蚂蚁的异同比较
相同点比较
不同点比较
蚁群算法的流程图
基本蚁群算法的实现步骤
(i,j)的初始化信息量τij(t) = const,其中const表示常数,且初始时刻Δτij(0) = 0。

(2)循环次数。

(3)蚂蚁的禁忌表索引号k=1。

(4)蚂蚁数目。

(5)蚂蚁个体根据状态转移概率公式计算的概率选择元素(城市)j并前进,。

其中,表示在t时刻蚂蚁k由元素(城市)i转移到元素(城市)j的状态转
重要性,反映了蚂蚁在运动过程中启发信息在蚂蚁选择路径中的受重
视程度,其值越大,则该状态转移概率越接近于贪心规则;ηij(t)为启发函数,
表达式为。

式中,d ij表示相邻两个城市之间的距离。

(6)修改禁忌表指针,即选择好之后将蚂蚁移动到新的元素(城市),并把该τij(t + n) = (1 − ρ) * τij(t) + Δτij(t)
(9)若满足结束条件,即如果循环次数,则循环结束并输出程序计算结果,
]蚁群算法的matlab源程序1.蚁群算法主程序:main.m
2.蚁群算法寻找路径程序:path.m
[编辑]蚁群算法仿真结果。

matlab蚁群算法代码,蚁群算法(ACO)MATLAB实现

matlab蚁群算法代码,蚁群算法(ACO)MATLAB实现

matlab蚁群算法代码,蚁群算法(ACO)MATLAB实现(⼀)蚁群算法的由来蚁群算法(ant colony optimization)最早是由Marco Dorigo等⼈在1991年提出,他们在研究新型算法的过程中,发现蚁群在寻找⾷物时,通过分泌⼀种称为信息素的⽣物激素交流觅⾷信息从⽽能快速的找到⽬标,据此提出了基于信息正反馈原理的蚁群算法。

蚁群算法的基本思想来源于⾃然界蚂蚁觅⾷的最短路径原理,根据昆⾍科学家的观察,发现⾃然界的蚂蚁虽然视觉不发达,但它们可以在没有任何提⽰的情况下找到从⾷物源到巢⽳的最短路径,并在周围环境发⽣变化后,⾃适应地搜索新的最佳路径。

蚂蚁在寻找⾷物源的时候,能在其⾛过的路径上释放⼀种叫信息素的激素,使⼀定范围内的其他蚂蚁能够察觉到。

当⼀些路径上通过的蚂蚁越来越多时,信息素也就越来越多,蚂蚁们选择这条路径的概率也就越⾼,结果导致这条路径上的信息素⼜增多,蚂蚁⾛这条路的概率⼜增加,⽣⽣不息。

这种选择过程被称为蚂蚁的⾃催化⾏为。

对于单个蚂蚁来说,它并没有要寻找最短路径,只是根据概率选择;对于整个蚁群系统来说,它们却达到了寻找到最优路径的客观上的效果。

这就是群体智能。

(⼆)蚁群算法能做什么蚁群算法根据模拟蚂蚁寻找⾷物的最短路径⾏为来设计的仿⽣算法,因此⼀般⽽⾔,蚁群算法⽤来解决最短路径问题,并真的在旅⾏商问题(TSP,⼀个寻找最短路径的问题)上取得了⽐较好的成效。

⽬前,也已渐渐应⽤到其他领域中去,在图着⾊问题、车辆调度问题、集成电路设计、通讯⽹络、数据聚类分析等⽅⾯都有所应⽤。

(三)蚁群算法实现优化的 函数为F(x,y)= -(x.^2+3*y.^4-0.2*cos(3*pi*x)-0.4*cos(4*pi*y)+0.6)MATLABclearclcAnt = 300;%蚂蚁数量Times = 80;%移动次数Rou = 0.9;%荷尔蒙发挥系数P0 = 0.2;%转移概率Lower_1 = -1;%搜索范围Upper_1 = 1;Lower_2 = -1;Upper_2 = 1;for i=1:AntX(i,1)=(Lower_1+(Upper_1-Lower_1)*rand);X(i,2)=(Lower_1+(Upper_2-Lower_2)*rand);Tau(i)=F(X(i,1),X(i,2));endstep=0.05;f='-(x.^2+3*y.^4-0.2*cos(3*pi*x)-0.4*cos(4*pi*y)+0.6)';figure(1);subplot(1,2,1);mesh(x,y,z);hold on;plot3(X(:,1),X(:,2),Tau,'k*')hold on;text(0.1,0.8,-0.1,'蚂蚁的初始位置分布');xlabel('x');ylabel('y');zlabel('f(x,y)');for T=1:Timeslamda=1/T;[Tau_Best(T),BestIndex]=max(Tau);for i=1:AntP(T,i)=(Tau(BestIndex)-Tau(i))/Tau(BestIndex);%计算转移状态概率endfor i=1:Antif P(T,i)temp1=X(i,1)+(2*rand-1)*lamda;temp2=X(i,2)+(2*rand-1)*lamda;else%全局搜索temp1=X(i,1)+(Upper_1-Lower_1)*(rand-0.5);temp2=X(i,2)+(Upper_2-Lower_2)*(rand-0.5);endif temp1temp1=Lower_1;endif temp1>Upper_1temp1=Upper_1;endif temp2temp2=Lower_2;endif temp2>Upper_2if F(temp1,temp2)>F(X(i,1),X(i,2))%更新位置X(i,1)=temp1;X(i,2)=temp2;endendfor i=1:AntTau(i)=(1-Rou)*Tau(i)+F(X(i,1),X(i,2));%更新荷尔蒙endendsubplot(1,2,2);mesh(x,y,z);hold on;x=X(:,1);y=X(:,2);plot3(x,y,eval(f),'k*');hold on;text(0.1,0.8,-0.1,'蚂蚁的最终位置分布');xlabel('x');ylabel('y');zlabel('f(x,y)');[max_value,max_index]=max(Tau);maxX=X(max_index,1);maxY=X(max_index,2);maxValue=F(X(max_index,1),X(max_index,2));1234567891016 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 4450 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78clcAnt=300;%蚂蚁数量Times=80;%移动次数Rou=0.9;%荷尔蒙发挥系数P0=0.2;%转移概率Lower_1=-1;%搜索范围Upper_1=1;Lower_2=-1;Upper_2=1;fori=1:AntX(i,1)=(Lower_1+(Upper_1-Lower_1)*rand);X(i,2)=(Lower_1+(Upper_2-Lower_2)*rand);Tau(i)=F(X(i,1),X(i,2));endstep=0.05;f='-(x.^2+3*y.^4-0.2*cos(3*pi*x)-0.4*cos(4*pi*y)+0.6)';[x,y]=meshgrid(Lower_1:step:Upper_1,Lower_2:step:Upper_2); z=eval(f);figure(1);subplot(1,2,1);mesh(x,y,z);holdon;plot3(X(:,1),X(:,2),Tau,'k*')holdon;text(0.1,0.8,-0.1,'蚂蚁的初始位置分布');xlabel('x');ylabel('y');zlabel('f(x,y)');forT=1:Timeslamda=1/T;[Tau_Best(T),BestIndex]=max(Tau);fori=1:AntifP(T,i)temp1=X(i,1)+(2*rand-1)*lamda;temp2=X(i,2)+(2*rand-1)*lamda;else%全局搜索temp1=X(i,1)+(Upper_1-Lower_1)*(rand-0.5); temp2=X(i,2)+(Upper_2-Lower_2)*(rand-0.5); endiftemp1temp1=Lower_1;endiftemp1>Upper_1temp1=Upper_1;endiftemp2temp2=Lower_2;endiftemp2>Upper_2temp2=Upper_2;endifF(temp1,temp2)>F(X(i,1),X(i,2))%更新位置X(i,1)=temp1;X(i,2)=temp2;endendfori=1:AntTau(i)=(1-Rou)*Tau(i)+F(X(i,1),X(i,2));%更新荷尔蒙endendsubplot(1,2,2);mesh(x,y,z);y=X(:,2);plot3(x,y,eval(f),'k*');holdon;text(0.1,0.8,-0.1,'蚂蚁的最终位置分布');xlabel('x');ylabel('y');zlabel('f(x,y)');[max_value,max_index]=max(Tau);maxX=X(max_index,1);maxY=X(max_index,2);maxValue=F(X(max_index,1),X(max_index,2));优化函数:MATLABfunction f = F(x,y)f = -(x.^2+3*y.^4-0.2*cos(3*pi*x)-0.4*cos(4*pi*y)+0.6); end123functionf=F(x,y)f=-(x.^2+3*y.^4-0.2*cos(3*pi*x)-0.4*cos(4*pi*y)+0.6); end效果:。

matlab蚁群算法机器人路径优化问题-9页文档资料

matlab蚁群算法机器人路径优化问题-9页文档资料

用ACO 算法求解机器人路径优化问题4.1 问题描述移动机器人路径规划是机器人学的一个重要研究领域。

它要求机器人依据某个或某些优化原则(如最小能量消耗,最短行走路线,最短行走时间等),在其工作空间中找到一条从起始状态到目标状态的能避开障碍物的最优路径。

机器人路径规划问题可以建模为一个有约束的优化问题,都要完成路径规划、定位和避障等任务。

4.2 算法理论蚁群算法(Ant Colony Algorithm,ACA),最初是由意大利学者Dorigo M. 博士于1991 年首次提出,其本质是一个复杂的智能系统,且具有较强的鲁棒性,优良的分布式计算机制等优点。

该算法经过十多年的发展,已被广大的科学研究人员应用于各种问题的研究,如旅行商问题,二次规划问题,生产调度问题等。

但是算法本身性能的评价等算法理论研究方面进展较慢。

Dorigo 提出了精英蚁群模型(EAS),在这一模型中信息素更新按照得到当前最优解的蚂蚁所构造的解来进行,但这样的策略往往使进化变得缓慢,并不能取得较好的效果。

次年Dorigo 博士在文献[30]中给出改进模型(ACS),文中改进了转移概率模型,并且应用了全局搜索与局部搜索策略,来得进行深度搜索。

Stützle 与Hoos给出了最大-最小蚂蚁系统(MAX-MINAS),所谓最大-最小即是为信息素设定上限与下限,设定上限避免搜索陷入局部最优,设定下限鼓励深度搜索。

蚂蚁作为一个生物个体其自身的能力是十分有限的,比如蚂蚁个体是没有视觉的,蚂蚁自身体积又是那么渺小,但是由这些能力有限的蚂蚁组成的蚁群却可以做出超越个体蚂蚁能力的超常行为。

蚂蚁没有视觉却可以寻觅食物,蚂蚁体积渺小而蚁群却可以搬运比它们个体大十倍甚至百倍的昆虫。

这些都说明蚂蚁群体内部的某种机制使得它们具有了群体智能,可以做到蚂蚁个体无法实现的事情。

经过生物学家的长时间观察发现,蚂蚁是通过分泌于空间中的信息素进行信息交流,进而实现群体行为的。

基于蚁群算法的机器人路径规划MATLAB源码收藏

基于蚁群算法的机器人路径规划MATLAB源码收藏

基于蚁群算法的机器人路径规划MA TLAB源码收藏使用网格离散化的方法对带有障碍物的环境建模,使用邻接矩阵存储该环境,使得问题转化为蚁群算法寻找最短路径。

function [ROUTES,PL,Tau]=ACASPS(G,Tau,K,M,S,E,Alpha,Beta,Rho,Q)%% ---------------------------------------------------------------% ACASP.m% 蚁群算法动态寻路算法%% ---------------------------------------------------------------% 输入参数列表% G 地形图为01矩阵,如果为1表示障碍物% Tau 初始信息素矩阵(认为前面的觅食活动中有残留的信息素)% K 迭代次数(指蚂蚁出动多少波)% M 蚂蚁个数(每一波蚂蚁有多少个)% S 起始点(最短路径的起始点)% E 终止点(最短路径的目的点)% Alpha 表征信息素重要程度的参数% Beta 表征启发式因子重要程度的参数% Rho 信息素蒸发系数% Q 信息素增加强度系数%% 输出参数列表% ROUTES 每一代的每一只蚂蚁的爬行路线% PL 每一代的每一只蚂蚁的爬行路线长度% Tau 输出动态修正过的信息素%% --------------------变量初始化----------------------------------%loadD=G2D(G);N=size(D,1);%N表示问题的规模(象素个数)MM=size(G,1);a=1;%小方格象素的边长Ex=a*(mod(E,MM)-0.5);%终止点横坐标if Ex==-0.5Ex=MM-0.5;endEy=a*(MM+0.5-ceil(E/MM));%终止点纵坐标Eta=zeros(1,N);%启发式信息,取为至目标点的直线距离的倒数%下面构造启发式信息矩阵for i=1:Nix=a*(mod(i,MM)-0.5);if ix==-0.5ix=MM-0.5;endiy=a*(MM+0.5-ceil(i/MM));if i~=EEta(1,i)=1/((ix-Ex)^2+(iy-Ey)^2)^0.5;elseEta(1,i)=100;endendROUTES=cell(K,M);%用细胞结构存储每一代的每一只蚂蚁的爬行路线PL=zeros(K,M);%用矩阵存储每一代的每一只蚂蚁的爬行路线长度%% -----------启动K轮蚂蚁觅食活动,每轮派出M只蚂蚁-------------------- for k=1:K%disp(k);for m=1:M%% 第一步:状态初始化W=S;%当前节点初始化为起始点Path=S;%爬行路线初始化PLkm=0;%爬行路线长度初始化TABUkm(S)=0;%已经在初始点了,因此要排除DD=D;%邻接矩阵初始化%% 第二步:下一步可以前往的节点DW=DD(W,:);DW1=find(DW<inf);for j=1:length(DW1)if TABUkm(DW1(j))==0endendLJD=find(DW<inf);%可选节点集Len_LJD=length(LJD);%可选节点的个数%% 觅食停止条件:蚂蚁未遇到食物或者陷入死胡同while W~=E&&Len_LJD>=1%% 第三步:转轮赌法选择下一步怎么走PP=zeros(1,Len_LJD);for i=1:Len_LJDendPP=PP/(sum(PP));%建立概率分布Pcum=cumsum(PP);Select=find(Pcum>=rand);to_visit=LJD(Select(1));%下一步将要前往的节点%% 第四步:状态更新和记录Path=[Path,to_visit];%路径增加PLkm=PLkm+DD(W,to_visit);%路径长度增加W=to_visit;%蚂蚁移到下一个节点for kk=1:Nif TABUkm(kk)==0DD(W,kk)=inf;DD(kk,W)=inf;endendTABUkm(W)=0;%已访问过的节点从禁忌表中删除DW=DD(W,:);LJD=find(DW<inf);%可选节点集Len_LJD=length(LJD);%可选节点的个数end%% 第五步:记下每一代每一只蚂蚁的觅食路线和路线长度ROUTES{k,m}=Path;if Path(end)==EPL(k,m)=PLkm;elsePL(k,m)=inf;endend%% 第六步:更新信息素Delta_Tau=zeros(N,N);%更新量初始化for m=1:Mif PL(k,m)<infROUT=ROUTES{k,m};TS=length(ROUT)-1;%跳数PL_km=PL(k,m);for s=1:TSx=ROUT(s);y=ROUT(s+1);Delta_Tau(x,y)=Delta_Tau(x,y)+Q/PL_km;Delta_Tau(y,x)=Delta_Tau(y,x)+Q/PL_km;endendendTau=(1-Rho).*Tau+Delta_Tau;%信息素挥发一部分,新增加一部分end%% ---------------------------绘图--------------------------------plotif=0;%是否绘图的控制参数if plotif==1%绘收敛曲线meanPL=zeros(1,K);minPL=zeros(1,K);for i=1:KPLK=PL(i,:);Nonzero=find(PLK<inf);PLKPLK=PLK(Nonzero);meanPL(i)=mean(PLKPLK);minPL(i)=min(PLKPLK);endfigure(1)plot(minPL);hold onplot(meanPL);grid ontitle('收敛曲线(平均路径长度和最小路径长度)'); xlabel('迭代次数');ylabel('路径长度');%绘爬行图figure(2)axis([0,MM,0,MM])for i=1:MMfor j=1:MMif G(i,j)==1x1=j-1;y1=MM-i;x2=j;y2=MM-i;x3=j;y3=MM-i+1;x4=j-1;y4=MM-i+1;fill([x1,x2,x3,x4],[y1,y2,y3,y4],[0.2,0.2,0.2]);hold onelsex1=j-1;y1=MM-i;x2=j;y2=MM-i;x3=j;y3=MM-i+1;x4=j-1;y4=MM-i+1;fill([x1,x2,x3,x4],[y1,y2,y3,y4],[1,1,1]);hold onendendendhold onROUT=ROUTES{K,M};Rx=ROUT;Ry=ROUT;for ii=1:LENROUTRx(ii)=a*(mod(ROUT(ii),MM)-0.5);if Rx(ii)==-0.5Rx(ii)=MM-0.5;endRy(ii)=a*(MM+0.5-ceil(ROUT(ii)/MM));endplot(Rx,Ry)endplotif2=0;%绘各代蚂蚁爬行图if plotif2==1figure(3)axis([0,MM,0,MM])for i=1:MMfor j=1:MMif G(i,j)==1x1=j-1;y1=MM-i;x2=j;y2=MM-i;x4=j-1;y4=MM-i+1;fill([x1,x2,x3,x4],[y1,y2,y3,y4],[0.2,0.2,0.2]);hold onelsex1=j-1;y1=MM-i;x2=j;y2=MM-i;x3=j;y3=MM-i+1;x4=j-1;y4=MM-i+1;fill([x1,x2,x3,x4],[y1,y2,y3,y4],[1,1,1]);hold onendendendfor k=1:KPLK=PL(k,:);minPLK=min(PLK);pos=find(PLK==minPLK);m=pos(1);ROUT=ROUTES{k,m};LENROUT=length(ROUT);Rx=ROUT;Ry=ROUT;for ii=1:LENROUTRx(ii)=a*(mod(ROUT(ii),MM)-0.5);if Rx(ii)==-0.5Rx(ii)=MM-0.5;endRy(ii)=a*(MM+0.5-ceil(ROUT(ii)/MM));endplot(Rx,Ry)hold onendend。

蚁群算法及其在移动机器人路径规划中的应用剖析

蚁群算法及其在移动机器人路径规划中的应用剖析

蚁群算法及其在移动机器人路径规划中的应用剖析蚁群算法(Ant Colony algorithm)是一种模拟蚂蚁行为的启发式优化算法,其主要应用于解决组合优化问题,特别是在路径规划问题中的应用较为突出。

蚁群算法的基本原理是基于蚂蚁在寻找食物时的行为规律,当一只蚂蚁找到食物后,会释放一种称为信息素的物质,同时返回巢穴。

其他蚂蚁会根据信息素的浓度来选择路径,浓度高的路径被选择的概率较大。

当蚂蚁返回巢穴时,会根据所选择路径上的信息素浓度来增加信息素的浓度,从而在路径上留下更多的信息素。

随着时间的推移,信息素浓度逐渐增加,最终蚂蚁群体会逐渐聚集在较优的路径上。

移动机器人路径规划是指根据机器人的起点和终点,找到一条最优的路径。

在移动机器人路径规划中,蚁群算法可以解决多目标、多约束的路径规划问题。

下面将从问题建模、蚁群算法实现、实际应用等方面对蚁群算法在移动机器人路径规划中的应用进行剖析。

首先,对问题进行建模。

在移动机器人路径规划中,路径可以表示为有向图,图的节点表示机器人可以到达的位置,边表示连接两个位置的路径。

节点之间的距离可以是直线距离、时间、能耗等。

起始节点表示机器人的起点,终止节点表示机器人的目标。

路径规划的目标是找到一条从起始节点到终止节点的最短路径,同时尽可能满足约束条件。

其次,实现蚁群算法。

蚁群算法包括初始化信息素、蚂蚁的移动、信息素更新等步骤。

初始化信息素是指在路径上的每条边上设置初始信息素的浓度。

蚂蚁的移动过程中,每只蚂蚁根据信息素浓度和启发式函数来选择下一步移动的节点。

启发式函数可以根据节点和目标节点的距离、路径上信息素的浓度等因素来计算。

当蚂蚁到达终点后,根据蚂蚁的路径长度来更新路径上的信息素浓度,即路径长度越短的蚂蚁路径上的信息素浓度越高。

同时,为了防止信息素过快蒸发,可以引入信息素的挥发系数。

蚂蚁算法一般通过多次迭代来寻找最优的路径。

最后,应用蚁群算法进行路径规划。

蚁群算法在移动机器人路径规划中可以实现多目标、多约束的优化。

matlab-蚁群算法-机器人路径优化问题

matlab-蚁群算法-机器人路径优化问题

matlab-蚁群算法-机器人路径优化问题matlab蚁群算法机器人路径优化问题在当今科技迅速发展的时代,机器人的应用越来越广泛,从工业生产中的自动化装配到医疗领域的微创手术,从物流仓储的货物搬运到危险环境的探测救援,机器人都发挥着重要的作用。

而机器人在执行任务时,如何规划出一条最优的路径是一个关键问题,这不仅关系到机器人的工作效率,还影响着其能源消耗和任务完成的质量。

蚁群算法作为一种启发式算法,为解决机器人路径优化问题提供了一种有效的途径。

蚁群算法的灵感来源于自然界中蚂蚁的觅食行为。

蚂蚁在寻找食物的过程中,会在经过的路径上释放一种叫做信息素的化学物质。

其他蚂蚁能够感知到这种信息素,并倾向于选择信息素浓度高的路径。

随着时间的推移,较短的路径上信息素积累得更快,更多的蚂蚁会选择这条路径,从而形成一种正反馈机制,最终所有蚂蚁都能够找到一条从蚁巢到食物源的最短路径。

将蚁群算法应用于机器人路径优化问题时,首先需要将机器人的工作环境进行建模。

可以将工作空间划分为一个个的网格或者节点,机器人在这些节点之间移动。

然后,为每个节点之间的连接设置一个初始的信息素浓度。

在算法的每一次迭代中,机器人从起始点出发,根据节点之间的信息素浓度和一些启发式信息(例如节点之间的距离)来选择下一个要访问的节点。

当机器人到达目标点后,就完成了一次路径的探索。

在这次探索中,机器人所经过的路径上的信息素会得到更新,通常是路径越短,信息素的增加量越大。

为了使算法更加有效,还需要对信息素的更新规则进行合理的设计。

一种常见的方法是,在每次迭代结束后,对所有路径上的信息素进行挥发,即减少一定的比例,以避免早期形成的较好路径对后续的搜索产生过度的影响。

同时,对于本次迭代中产生的最优路径,给予较大的信息素增量,以强化这条路径的吸引力。

在实际应用中,使用 Matlab 来实现蚁群算法进行机器人路径优化具有很多优势。

Matlab 提供了丰富的数学计算和图形绘制功能,能够方便地处理矩阵运算和数据可视化。

2020年matlab蚁群算法机器人路径优化问题精编版

2020年matlab蚁群算法机器人路径优化问题精编版

用ACO 算法求解机器人路径优化问题4.1 问题描述移动机器人路径规划是机器人学的一个重要研究领域。

它要求机器人依据某个或某些优化原则(如最小能量消耗,最短行走路线,最短行走时间等),在其工作空间中找到一条从起始状态到目标状态的能避开障碍物的最优路径。

机器人路径规划问题可以建模为一个有约束的优化问题,都要完成路径规划、定位和避障等任务。

4.2 算法理论蚁群算法(Ant Colony Algorithm,ACA),最初是由意大利学者Dorigo M. 博士于1991 年首次提出,其本质是一个复杂的智能系统,且具有较强的鲁棒性,优良的分布式计算机制等优点。

该算法经过十多年的发展,已被广大的科学研究人员应用于各种问题的研究,如旅行商问题,二次规划问题,生产调度问题等。

但是算法本身性能的评价等算法理论研究方面进展较慢。

Dorigo 提出了精英蚁群模型(EAS),在这一模型中信息素更新按照得到当前最优解的蚂蚁所构造的解来进行,但这样的策略往往使进化变得缓慢,并不能取得较好的效果。

次年Dorigo 博士在文献[30]中给出改进模型(ACS),文中改进了转移概率模型,并且应用了全局搜索与局部搜索策略,来得进行深度搜索。

Stützle 与Hoos给出了最大-最小蚂蚁系统(MAX-MINAS),所谓最大-最小即是为信息素设定上限与下限,设定上限避免搜索陷入局部最优,设定下限鼓励深度搜索。

蚂蚁作为一个生物个体其自身的能力是十分有限的,比如蚂蚁个体是没有视觉的,蚂蚁自身体积又是那么渺小,但是由这些能力有限的蚂蚁组成的蚁群却可以做出超越个体蚂蚁能力的超常行为。

蚂蚁没有视觉却可以寻觅食物,蚂蚁体积渺小而蚁群却可以搬运比它们个体大十倍甚至百倍的昆虫。

这些都说明蚂蚁群体内部的某种机制使得它们具有了群体智能,可以做到蚂蚁个体无法实现的事情。

经过生物学家的长时间观察发现,蚂蚁是通过分泌于空间中的信息素进行信息交流,进而实现群体行为的。

蚁群算法路径优化matlab代码

蚁群算法路径优化matlab代码

蚁群算法路径优化matlab代码蚁群算法是一种基于生物群体的智能算法,常用于路径优化等问题。

在这个问题中,蚂蚁在寻找食物时会根据周围的环境信息和食物的香味找到最短路径。

本文将介绍如何在 MATLAB 中使用蚁群算法进行路径优化,并提供一些拓展。

在 MATLAB 中实现蚁群算法需要用到三个主要函数:ants_logic.m、ants_move.m 和 ants_display.m。

以下是这三个函数的基本功能和代码实现。

1. ants_logic.m这个函数是蚁群算法的核心部分,负责计算蚂蚁的当前路径和更新路径搜索树。

函数的基本思路是每个蚂蚁根据当前环境和食物香味来选择前进方向,如果前方是死路或食物已经被其他蚂蚁找到,则蚂蚁会返回原路。

如果蚂蚁到达了食物位置,则它会将自己的信息传递给其他蚂蚁,并更新食物香味。

拓展:在路径优化问题中,通常会有多个不同的路径可供选择,而蚁群算法可以通过学习其他蚂蚁的路径来发现更短、更快的路径。

为了实现这一功能,可以在 ants_logic.m 函数中增加一个参数,指示当前蚂蚁应该学习其他哪个蚂蚁的路径。

2. ants_move.m这个函数负责控制蚂蚁的移动方向。

在函数中,我们需要给定蚂蚁的当前位置和食物位置,并计算蚂蚁应该移动到的新位置。

在MATLAB 中,我们可以使用 rand 函数生成一个随机数,然后将其作为新位置的坐标。

拓展:为了提高路径搜索的效率,我们可以在 ants_move.m 函数中加入一些随机因子。

例如,可以在蚂蚁移动方向上添加一个随机偏置,这样可以让蚂蚁更有可能探索新的区域。

3. ants_display.m这个函数用于可视化路径搜索的过程。

在函数中,我们可以给定蚂蚁的初始位置和食物位置,并使用 MATLAB 的图形处理函数绘制路径。

拓展:为了使路径搜索过程更加有趣,我们可以在ants_display.m 函数中添加一些动画效果。

例如,可以使用 MATLAB 的 animation 函数创建动画,让蚂蚁路径在屏幕上动态地显示。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

用ACO 算法求解机器人路径优化问题4.1 问题描述移动机器人路径规划是机器人学的一个重要研究领域。

它要求机器人依据某个或某些优化原则(如最小能量消耗,最短行走路线,最短行走时间等),在其工作空间中找到一条从起始状态到目标状态的能避开障碍物的最优路径。

机器人路径规划问题可以建模为一个有约束的优化问题,都要完成路径规划、定位和避障等任务。

4.2 算法理论蚁群算法(Ant Colony Algorithm,ACA),最初是由意大利学者Dorigo M. 博士于1991 年首次提出,其本质是一个复杂的智能系统,且具有较强的鲁棒性,优良的分布式计算机制等优点。

该算法经过十多年的发展,已被广大的科学研究人员应用于各种问题的研究,如旅行商问题,二次规划问题,生产调度问题等。

但是算法本身性能的评价等算法理论研究方面进展较慢。

Dorigo 提出了精英蚁群模型(EAS),在这一模型中信息素更新按照得到当前最优解的蚂蚁所构造的解来进行,但这样的策略往往使进化变得缓慢,并不能取得较好的效果。

次年Dorigo 博士在文献[30]中给出改进模型(ACS),文中改进了转移概率模型,并且应用了全局搜索与局部搜索策略,来得进行深度搜索。

Stützle 与Hoos给出了最大-最小蚂蚁系统(MAX-MINAS),所谓最大-最小即是为信息素设定上限与下限,设定上限避免搜索陷入局部最优,设定下限鼓励深度搜索。

蚂蚁作为一个生物个体其自身的能力是十分有限的,比如蚂蚁个体是没有视觉的,蚂蚁自身体积又是那么渺小,但是由这些能力有限的蚂蚁组成的蚁群却可以做出超越个体蚂蚁能力的超常行为。

蚂蚁没有视觉却可以寻觅食物,蚂蚁体积渺小而蚁群却可以搬运比它们个体大十倍甚至百倍的昆虫。

这些都说明蚂蚁群体内部的某种机制使得它们具有了群体智能,可以做到蚂蚁个体无法实现的事情。

经过生物学家的长时间观察发现,蚂蚁是通过分泌于空间中的信息素进行信息交流,进而实现群体行为的。

下面简要介绍蚁群通过信息素的交流找到最短路径的简化实例。

如图 2-1 所示,AE 之间有两条路ABCDE 与ABHDE,其中AB,DE,HD,HB 的长度为1,BC,CD 长度为0.5,并且,假设路上信息素浓度为0,且各个蚂蚁行进速度相同,单位时间所走的长度为1,每个单位时间内在走过路径上留下的信息素的量也相同。

当t=0时,从A 点,E 点同时各有30 只蚂蚁从该点出发。

当t=1,从A 点出发的蚂蚁走到B 点时,由于两条路BH 与BC 上的信息素浓度相同,所以蚂蚁以相同的概率选择BH 与BC,这样就有15 只蚂蚁选择走BH,有15 只蚂蚁选择走BC。

同样的从E 点出发的蚂蚁走到D 点,分别有15 只蚂蚁选择DH 和DC。

当t=2 时,选择BC 与DC的蚂蚁分别走过了BCD 和DCB,而选择BH 与DH 的蚂蚁都走到了H 点。

所有的蚂蚁都在所走过的路上留下了相同浓度的信息素,那么路径BCD 上的信息素的浓度是路径BHD 上信息素浓度的两倍,这样若再次有蚂蚁选择走BC 和BH 时,或选择走DC 与DH 时,都会以较大的概率选择信息素浓度高的一边。

这样的过程反复进行下去,最短的路径上走过的蚂蚁较多,留下的信息素也越多,蚁群这样就可以找到一条较短的路。

这就是它们群体智能的体现。

蚁群算法就是模拟蚂蚁觅食过程中可以找到最短的路的行为过程设计的一种仿生算法。

在用蚁群算法求解组合优化问题时,首先要将组合优化问题表达成与信息素相关的规范形式,然后各个蚂蚁独立地根据局部的信息素进行决策构造解,并根据解的优劣更新周围的信息素,这样的过程反复的进行即可求出组合优化问题的优化解。

归结蚁群算法有如下特点:(1)分布式计算:各个蚂蚁独立地构造解,当有蚂蚁个体构造的解较差时,并不会影响整体的求解结果。

这使得算法具有较强的适应性;(2)自组织性:系统学中自组织性就是系统的组织指令是来自系统的内部。

同样的蚁群算法中的各个蚂蚁的决策是根据系统内部信息素的分布进行的。

这使得算法具有较强的鲁棒性;(3)正反馈机制与负反馈机制结合:若某部分空间上分布的信息素越多,那么在这个空间上走过的蚂蚁也就越多;走过的蚂蚁越多,在那个空间上留下的信息素也就越多,这就是存在的正反馈机制。

但蚁群算法中解的构造是通过计算转移概率实现的,也就是说构造解的时候可以接受退化解,这限制了正反馈机制,可以使得搜索范围扩大,这是蚁群算法中隐含的负反馈机制。

4.3 求解步骤应用蚁群算法求解机器人路径优化问题的主要步骤如下:(1)输入由0和1组成的矩阵表示机器人需要寻找最优路径的地图的地图,其中0表示此处可以通过的,1表示此处为障碍物。

上图的表示矩阵为:0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;0 1 1 1 0 0 1 1 1 0 1 1 1 1 0 0 0 0 0 0;0 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0;0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0; 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0; 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0;0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0;0 0 1 1 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0;0 0 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 1 1 0;0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 1 0;0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;(2)输入初始的信息素矩阵,选择初始点和终止点并且设置各种参数。

在此次计算中,我们设置所有位置的初始信息素相等。

(3)选择从初始点下一步可以到达的节点,根据每个节点的信息素求出前往每个节点的概率,并利用轮盘算法选取下一步的初始点。

{}[()][],if {}[()][]()0 otherw ise k ij ij k k ij ij ij k N tabu t j N tabu t p t αβαβτητη∈-⎧⋅∈-⎪⎪⋅=⎨⎪⎪⎩∑其中τij (t )为析取图中弧(i , j )上的信息素的浓度。

ηij 为与弧(i , j )相关联的启发式信息。

α ,β 分别为τij (t ) , ηij 的权重参数。

(4)更新路径,以及路程长度。

(5) 重复(3)(4)过程,直到蚂蚁到达终点或者无路可走。

(6)复(3)(4)(5),直到某一代m 只蚂蚁迭代结束。

(7)更新信息素矩阵,其中没有到达的蚂蚁不计算在内。

(1)(1)()i j i j i jt t τρττ+=-⋅+∆ ,k i j ()()0k i j k ij Q L t t τ⎧⎪∆=⎨⎪⎩如果蚂蚁经过,,蚂蚁不经过几点,其中ρ为信息素挥发系数。

Q 为信息量增加强度。

()k L t 为路径长度。

(8)重复(3)-(7),直至n 代蚂蚁迭代结束。

4.4 运行结果(图、表等)将上述矩阵输入到程序中,画出最短路径的路线,并且输入每一轮迭代的最短路径,查看程序的收敛效果,在程序中设置plotif=1则输出收敛和最短路径图,在程序中设置plotif2=1则输出每一代蚂蚁的路径图。

最终输出的结果如图function m_main()G=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;0 1 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;0 1 1 1 0 0 1 1 1 0 1 1 1 1 0 0 0 0 0 0;0 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0;0 0 0 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 0 0;0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0;0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0;0 0 1 1 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1 0;0 0 1 1 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 0;0 0 0 0 0 0 1 1 1 0 1 1 0 0 0 0 0 1 1 0;0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 1 1 0;0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0;0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0;];MM=size(G,1); % G 地形图为01矩阵,如果为1表示障碍物Tau=ones(MM*MM,MM*MM);% Tau 初始信息素矩阵(认为前面的觅食活动中有残留的信息素)Tau=8.*Tau;K=100; % K 迭代次数(指蚂蚁出动多少波)M=50; % M 蚂蚁个数(每一波蚂蚁有多少个)S=1 ; % S 起始点(最短路径的起始点)E=MM*MM; % E 终止点(最短路径的目的点)Alpha=1; % Alpha 表征信息素重要程度的参数Beta=7; % Beta 表征启发式因子重要程度的参数Rho=0.3 ; % Rho 信息素蒸发系数Q=1; % Q 信息素增加强度系数minkl=inf;mink=0;minl=0;D=G2D(G);N=size(D,1);%N表示问题的规模(象素个数)a=1;%小方格象素的边长Ex=a*(mod(E,MM)-0.5);%终止点横坐标if Ex==-0.5Ex=MM-0.5;endEy=a*(MM+0.5-ceil(E/MM));%终止点纵坐标Eta=zeros(N);%启发式信息,取为至目标点的直线距离的倒数%下面构造启发式信息矩阵for i=1:Nix=a*(mod(i,MM)-0.5);if ix==-0.5ix=MM-0.5;endiy=a*(MM+0.5-ceil(i/MM));if i~=EEta(i)=1/((ix-Ex)^2+(iy-Ey)^2)^0.5;elseEta(i)=100;endendROUTES=cell(K,M);%用细胞结构存储每一代的每一只蚂蚁的爬行路线PL=zeros(K,M);%用矩阵存储每一代的每一只蚂蚁的爬行路线长度%% -----------启动K轮蚂蚁觅食活动,每轮派出M只蚂蚁-------------------- for k=1:Kfor m=1:M%% 第一步:状态初始化W=S;%当前节点初始化为起始点Path=S;%爬行路线初始化PLkm=0;%爬行路线长度初始化TABUkm=ones(N);%禁忌表初始化TABUkm(S)=0;%已经在初始点了,因此要排除DD=D;%邻接矩阵初始化%% 第二步:下一步可以前往的节点DW=DD(W,:);DW1=find(DW);for j=1:length(DW1)if TABUkm(DW1(j))==0DW(DW1(j))=0;endendLJD=find(DW);Len_LJD=length(LJD);%可选节点的个数%% 觅食停止条件:蚂蚁未遇到食物或者陷入死胡同while W~=E&&Len_LJD>=1%% 第三步:转轮赌法选择下一步怎么走PP=zeros(Len_LJD);for i=1:Len_LJDPP(i)=(Tau(W,LJD(i))^Alpha)*((Eta(LJD(i)))^Beta); endsumpp=sum(PP);PP=PP/sumpp;%建立概率分布Pcum(1)=PP(1);for i=2:Len_LJDPcum(i)=Pcum(i-1)+PP(i);endSelect=find(Pcum>=rand);to_visit=LJD(Select(1));%% 第四步:状态更新和记录Path=[Path,to_visit];%路径增加PLkm=PLkm+DD(W,to_visit);%路径长度增加W=to_visit;%蚂蚁移到下一个节点for kk=1:Nif TABUkm(kk)==0DD(W,kk)=0;DD(kk,W)=0;endendTABUkm(W)=0;%已访问过的节点从禁忌表中删除DW=DD(W,:);DW1=find(DW);for j=1:length(DW1)if TABUkm(DW1(j))==0DW(j)=0;endendLJD=find(DW);Len_LJD=length(LJD);%可选节点的个数end%% 第五步:记下每一代每一只蚂蚁的觅食路线和路线长度ROUTES{k,m}=Path;if Path(end)==EPL(k,m)=PLkm;if PLkm<minklmink=k;minl=m;minkl=PLkm;endelsePL(k,m)=0;endend%% 第六步:更新信息素Delta_Tau=zeros(N,N);%更新量初始化for m=1:Mif PL(k,m)ROUT=ROUTES{k,m};TS=length(ROUT)-1;%跳数PL_km=PL(k,m);for s=1:TSx=ROUT(s);y=ROUT(s+1);Delta_Tau(x,y)=Delta_Tau(x,y)+Q/PL_km;Delta_Tau(y,x)=Delta_Tau(y,x)+Q/PL_km;endendendTau=(1-Rho).*Tau+Delta_Tau;%信息素挥发一部分,新增加一部分end%% ---------------------------绘图--------------------------------plotif=1;%是否绘图的控制参数if plotif==1%绘收敛曲线minPL=zeros(K);for i=1:KPLK=PL(i,:);Nonzero=find(PLK);PLKPLK=PLK(Nonzero);minPL(i)=min(PLKPLK);endfigure(1)plot(minPL);hold ongrid ontitle('收敛曲线(最小路径长度)'); xlabel('迭代次数');ylabel('路径长度');%绘爬行图figure(2)axis([0,MM,0,MM])for i=1:MMfor j=1:MMif G(i,j)==1x1=j-1;y1=MM-i;x2=j;y2=MM-i;x3=j;y3=MM-i+1;x4=j-1;y4=MM-i+1;fill([x1,x2,x3,x4],[y1,y2,y3,y4],[0.2,0.2,0.2]); hold onelsex1=j-1;y1=MM-i;x2=j;y2=MM-i;x3=j;y3=MM-i+1;x4=j-1;y4=MM-i+1;fill([x1,x2,x3,x4],[y1,y2,y3,y4],[1,1,1]); hold onendendendhold onROUT=ROUTES{mink,minl};LENROUT=length(ROUT);Rx=ROUT;Ry=ROUT;for ii=1:LENROUTRx(ii)=a*(mod(ROUT(ii),MM)-0.5);if Rx(ii)==-0.5Rx(ii)=MM-0.5;endRy(ii)=a*(MM+0.5-ceil(ROUT(ii)/MM)); endplot(Rx,Ry)endplotif2=0;%绘各代蚂蚁爬行图if plotif2==1figure(3)axis([0,MM,0,MM])for i=1:MMfor j=1:MMif G(i,j)==1x1=j-1;y1=MM-i;x2=j;y2=MM-i;x3=j;y3=MM-i+1;x4=j-1;y4=MM-i+1;fill([x1,x2,x3,x4],[y1,y2,y3,y4],[0.2,0.2,0.2]); hold onelsex1=j-1;y1=MM-i;x2=j;y2=MM-i;x3=j;y3=MM-i+1;x4=j-1;y4=MM-i+1;fill([x1,x2,x3,x4],[y1,y2,y3,y4],[1,1,1]); hold onendendendfor k=1:KPLK=PL(k,:);minPLK=min(PLK);pos=find(PLK==minPLK);m=pos(1);ROUT=ROUTES{k,m};LENROUT=length(ROUT);Rx=ROUT;Ry=ROUT;for ii=1:LENROUTRx(ii)=a*(mod(ROUT(ii),MM)-0.5);if Rx(ii)==-0.5Rx(ii)=MM-0.5;endRy(ii)=a*(MM+0.5-ceil(ROUT(ii)/MM)); endplot(Rx,Ry)hold onendendfunction D=G2D(G)l=size(G,1);D=zeros(l*l,l*l);for i=1:lfor j=1:lif G(i,j)==0for m=1:lfor n=1:lif G(m,n)==0im=abs(i-m);jn=abs(j-n);if im+jn==1||(im==1&&jn==1)D((i-1)*l+j,(m-1)*l+n)=(im+jn)^0.5;endendendendendendend。

相关文档
最新文档