人教版六年级数学上册第三单元分数除法的知识点
小学人教版六年级数学上册第三单元知识点整理
小学人教版六年级数学上册第三单元知识点整理第三单元分数除法一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。
二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数。
1、被除数divide;除数=被除数times;除数的倒数。
例 divide;3= times; = 3divide; =3times; =52、除法转化成乘法时,被除数一定不能变,“divide;”变成“times;”,除数变成它的倒数。
3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。
4、被除数与商的变化规律:①除以大于1的数,商小于被除数:adivide;b=c 当bgt;1时,c②除以小于1的数,商大于被除数:adivide;b=c 当blt;1时,cgt;a (ane;0 bne;0)③除以等于1的数,商等于被除数:adivide;b=c 当b=1时,c=a三、分数除法混合运算1、混合运算用梯等式计算,等号写在第一个数字的左下角。
2、运算顺序:①连除:属同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。
加、减法为一级运算,乘、除法为二级运算。
②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。
注:(ab)divide;c=adivide;cbdivide;c四、比:两个数相除也叫两个数的比1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
注:连比如:3:4:5读作:3比4比52、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
例:12∶20= =12divide;20= =0.6 12∶20读作:12比20注:区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。
比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。
六年级数学上册第3课分数除法必备知识点
六年级数学上册3 分数除法必备知识点一、分数除法的意义分数除法实际上是“分数的除法运算是分数乘法的逆运算”。
即,已知两个数的积与其中一个因数,求另一个因数的运算。
二、分数除法的计算法则1.分数除以整数:分母不变,如果分子是整数的倍数,则用分子除以整数,商写在分子上。
分子不是整数的倍数时,这个除法可以写成“分数乘以这个整数的倒数”。
2.一个数除以分数:等于这个数乘以分数的倒数。
三、分数除法的简便运算1.约分:在计算过程中,能约分的要约分,以提高计算效率。
2.利用倒数:将除法转化为乘法,利用乘法的交换律、结合律进行简便运算。
四、分数除法的应用1.解决实际问题:分数除法常用于解决涉及比例、分率等问题的实际应用,如工程问题、行程问题等。
2.比较大小:通过分数除法,可以比较两个分数(或小数)的大小。
五、典型题型与解题技巧1.基本题型:分数除以整数整数除以分数分数除以分数2.解题技巧:明确除法的意义,将其转化为乘法。
确定计算顺序,先约分后计算。
检查结果,确保答案的准确性。
六、注意事项1.除数不能为0:与整数除法相同,分数除法中除数(或分数的分母)不能为0。
2.结果的化简:计算后得到的分数结果需要化简到最简形式。
3.理解题意:在应用分数除法解决实际问题时,要准确理解题意,确定正确的数学模型。
七、示例1.计算2÷4:3方法一:23÷4=23×14=212=16。
方法二:23÷4=23×4=212=16。
2.计算5÷34:方法:5÷34=5×43=203=623。
通过以上知识点的学习和练习,你可以掌握分数除法的基本概念和计算方法,并能够运用它来解决实际问题。
最新人教版六年级上册数学第三单元《分数除法》知识点
第三单元 《分数除法》一、倒数1.倒数的意义:乘积是1的两个数互为倒数。
这两个数可以是分数、小数、整数。
倒数是两个数的关系,它们互相依存,不能单独存在。
单独一个数不能称为倒数。
(必须说清谁是谁的倒数)2.判断两个数是否互为倒数的方法是:一要看两个数的乘积是不是1。
二要看相乘的两个数的分子和分母是否颠倒了位置。
例如:a ×b =1则a 、b 互为倒数。
3.找一个数的倒数的方法:①找分数的倒数:交换分子、分母的位置。
(a b 的倒数是ba )②找整数的倒数:找一个整数的倒数,先把整数看成分母是1的分数, 再交换分子和分母的位置(即整数1)。
③找带分数的倒数:先把带分数化成假分数,再交换分子和分母的位置。
④找小数的倒数:先把小数化成分数再求倒数。
4.特殊数的倒数:①1的倒数是它本身1,因为1×1=1②0没有倒数,因为任何数乘0积都是0,且0不能作分母。
真分数的倒数是假分数,真分数的倒数大于1,也大于它本身。
假分数的倒数小于或等于1;带分数的倒数小于1。
二、分数除法的意义:分数除法的意义:分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
例如:52÷4表示已知两个数的积是52 与其中一个因数4,求另一个因数是多少。
还表示把52平均分成4份,每份是多少。
二、分数除法的计算法则1.分数除以整数的计算方法:分数除以整数(0除外),等于分数乘这个整数的倒数(除法转化乘法)。
2.整数除以分数,可以转化为整数乘这个分数的倒数。
3.分数除以分数,可以转化为分数乘这个分数的倒数。
4.一个数除以一个不等于0的数,等于乘这个数的倒数(除法转化乘法)。
即甲数除以乙数(0除外),等于甲数乘乙数的倒数。
除法转化成乘法时,被除数一定不能变,“÷”号变成“×”号,除数变成它的倒数。
5.被除数不为0,商与被除数的比较①除以大于1的数,商小于被除数;②除以小于1的数,商大于被除数;③除以等于1的数,商等于被除数。
人教版六年级数学上册第三单元分数除法的知识点
分数除法的知识点一、倒数1、倒数的特征及意义。
乘积是1的两个数互为倒数。
倒数是两个数之间的一种特殊关系,互为倒数的两个数是互相依存的,因此必须说一个数是另一个数的倒数,不能孤立地说某个数是倒数。
2、求倒数的方法。
把这个数的分子和分母调换位置。
3、1的倒数仍是1;0没有倒数。
0没有倒数,是因为在分数中,0不能做分母。
4、求整数、带分数和小数的倒数的方法:(1)求整数(0除外)的倒数,要先把整数化成分母是1的假分数,再交换分子、分母的位置。
(2)求带分数的倒数,要先把带分数化成假分数,再交换分子、分母的位置。
(3)求小数的倒数,要先把小数化成分数,再交换分子、分母的位置。
二、分数除法1、分数除法的意义分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
除法是乘法的逆运算。
1013103=÷的意义是:已知两个因数的积是103,其中一个因数是3,求另一个因数是多少。
2、分数除以整数的计算方法把一个数平均分成整数份,求其中的几份就是求这个数的几分之几是多少。
分数除以整数(0除外)的计算方法:(1)用分子和整数相除的商做分子,分母不变。
.(2)分数除以整数,等于分数乘这个整数的倒数。
3、分数除法的统一计算法则甲数除以乙数(0除外),等于甲数乘乙数的倒数。
一个数除以分数,等于这个数乘分数的倒数。
4、商与被除数的大小关系一个数(0除外)除以小于1的数,商大于被除数,除以1,商等于被除数,除以大于1的数,商小于被除数。
0除以任何数商都为0.三、分数除法的混合运算1、分数除加、除减的运算顺序例:8÷32-4=8×23-4=8除加、除减混合运算,如果没有括号,先算除法,后算加减。
2、连除的计算方法 例:92÷72÷1514 分数连除,可以分步转化为乘法计算,也可以一次都转化为乘法再计算,能约分的要约分。
3、不含括号的分数混合运算的运算顺序在一个分数混合运算的算式里,如果只含有同一级运算,按照从左到右的顺序计算;如果含有两级运算,先算第二级运算,再算第一级运算。
六年级上册数学第三单元分数除法知识点归纳
六年级上册数学第三单元分数除法知识点归纳一、分数除法的意义:分数除法是分数乘法的逆运算,已知两个数的积与其中一个因数,求另一个因数的运算。
二、分数除法计算法则:除以一个数(0除外),等于乘上这个数的倒数。
1、被除数÷除数=被除数×除数的倒数。
例÷3= × = 3÷ =3×=52、除法转化成乘法时,被除数一定不能变,“÷”变成“×”,除数变成它的倒数。
3、分数除法算式中出现小数、带分数时要先化成分数、假分数再计算。
4、被除数与商的变化规律:①除以大于1的数,商小于被除数:a÷b=c 当b>1时,c<a (a≠0)②除以小于1的数,商大于被除数:a÷b=c 当b<1时,c>a (a≠0b≠0)③除以等于1的数,商等于被除数:a÷b=c 当b=1时,c=a三、分数除法混合运算1、混合运算用梯等式计算,等号写在第一个数字的左下角。
2、运算顺序:①连除:属同级运算,按照从左往右的顺序进行计算;或者先把所有除法转化成乘法再计算;或者依据“除以几个数,等于乘上这几个数的积”的简便方法计算。
加、减法为一级运算,乘、除法为二级运算。
②混合运算:没有括号的先乘、除后加、减,有括号的先算括号里面,再算括号外面。
注:(a±b)÷c=a÷c±b÷c四、比:两个数相除也叫两个数的比1、比式中,比号(∶)前面的数叫前项,比号后面的项叫做后项,比号相当于除号,比的前项除以后项的商叫做比值。
注:连比如:3:4:5读作:3比4比52、比表示的是两个数的关系,可以用分数表示,写成分数的形式,读作几比几。
例:12∶20= =12÷20= =0.6 12∶20读作:12比20 注:区分比和比值:比值是一个数,通常用分数表示,也可以是整数、小数。
比是一个式子,表示两个数的关系,可以写成比,也可以写成分数的形式。
人教版六年级数学上册第三单元知识点归纳
一、倒数的认识 1.定义:乘积是1的两个数互为倒数。 2.求一个数(0除外)的倒数的方法: (1)把这个数的分子、分母调换位置;(2)也可以用1除以这个数来求。 (3)求小数的倒数,可以先把小数化成分数,然后按上述方法求出倒数。
知识点
二、分数除法
1.意义:与整数除法的意义相同,都是已知两个因数的积与其中一个
(2)设单位“1”的量为x,根据分数乘法的意义列方程求解。
知识点
2.“差倍、和倍”问题
先找出单位“1”的量并设单位“1”的量为x,然后用含有x的式子表
示出另一个量,再根据和或差列方程求解。
知识点
3.工程问题
工作总量=工作效率×工作时间
工作效率=工作总量÷工作时间
工作时间=工作总量÷工作效率
因数,求另一个因数的运算。 2.计算方法:甲数除以乙数(0除外)等于甲数乘乙数的倒数。
知识点
三、分数四则混合运算
1.只含有同级运算的:按照从左到右的顺序依次计算。
2.含有不同级运算的:先算乘除,后算加减,有括号的先算括号里面的。
知识点
四、解决问题
1.已知一个数的几分之几是多少求这个数
(1)已知量÷已知量占单位“1”的几分之几=单位“1”的量
小学人教版六年级数学上册第三单元知识点整理
小学人教版六年级数学上册第三单元知识点整
理
学习是没有尽头的,只有在不断的学习中才能提高自
己,快快拿起你漂亮的笔记本和笔开始加入到学习的队伍中
吧!下面为大家分享六年级数学上册第三单元知识点整理,
希望对大家有所帮助。
第三单元分数除法
一、分数除法的意义:分数除法是分数乘法的逆运算,已知
两个数的积与其中一个因数,求另一个因数的运算。
二、分数除法计算法则:除以一个数(0除外),等于乘上这
个数的倒数。
1、被除数÷除数=被除数×除数的倒数。
例÷3= × = 3÷ =3× =5
2、除法转化成乘法时,被除数一定不能变,“÷”变成
“×”,除数变成它的倒数。
3、分数除法算式中出现小数、带分数时要先化成分数、假
分数再计算。
4、被除数与商的变化规律:
①除以大于1的数,商小于被除数:a÷b=c 当b>1时,c
②除以小于1的数,商大于被除数:a÷b=c 当ba (a≠0 b≠0)
③除以等于1的数,商等于被除数:a÷b=c 当b=1时,c=a 三、分数除法混合运算
第 1 页。
(完整版)六年级数学上册第三单元分数除法知识点总结
六年级数学上册第三单元分数除法知识点总结1、倒数的意义: 乘积是1的两个数互为倒数。
强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。
(要说清谁是谁的倒数)。
2、求倒数的方法:(1)、求分数的倒数:交换分子分母的位置。
(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。
(3)、求带分数的倒数:把带分数化为假分数,再求倒数。
(4)、求小数的倒数:把小数化为分数,再求倒数。
3、1的倒数是1; 因为1×1=1;0没有倒数,因为0乘任何数都得0,(分母不能为0) 。
4、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。
5、运用,a×2/3=b×1/4求a和b是多少。
把a×2/3=b×1/4看成等于1,也就是求2/3的倒数和求1/4的倒数。
6、分数除法的意义:分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。
乘法:因数×因数=积除法:积÷一个因数=另一个因数7、分数除法的计算法则:除以一个不为0的数,等于乘这个数的倒数。
8、分数除法比较大小时的规律:(1)当除数大于1,商小于被除数;(2)当除数小于1(不等于0),商大于被除数;(3)当除数等于1,商等于被除数。
9、分数除法解决问题(不知单位“1”的量(用除法)找单位“1”:在分率句中分率的前面;或“占”、“是”、“比”的后面。
10、解法:(1)方程:根据数量关系式设未知量为X,用方程解答。
解:设未知量为X (一定要解设),再列方程用 X×分率=具体量(2)算术(用除法):单位“1”的量未知用除法:即已知单位“1”的几分之几是多少,求单位“1”的量。
分率对应量÷对应分率 = 单位“1”的量(3)看分率前有没有比多或比少的问题;分率前是“多或少”的关系式:(比少):具体量÷ (1-分率)= 单位“1”的量;(比多):具体量÷ (1+分率)= 单位“1”的量(4)求一个数是另一个数的几分之几是多少:用一个数除以另一个数,结果写为分数形式。
六年级数学上册:分数除法知识点归纳
六年级数学上册:分数除法知识点归纳
一、分数除法的概念
分数除法是指将一个分数除以另一个分数,得到一个新的分数或一个整数的运算方法。
二、分数除法的运算规则
1. 同分母的分数相除,只需将分子相除,分母保持不变。
2. 不同分母的分数相除,需要先化为同分母,再按同分母的情况处理。
3. 除以一个真分数,可以先求它的倒数,再乘以被除数。
三、分数除法的解题步骤
1. 如果分数中有括号,先计算括号内的分数除法。
2. 按照运算规则进行分数除法运算。
3. 根据需要进行分数化简或转化。
四、注意事项
1. 在计算分数除法时,要注意约分和化简。
2. 在解决问题中,可以将分数转化为小数进行运算,最后再将小数转化为分数表示。
五、实例演练
例1:计算 2/3 ÷ 4/5。
解:根据运算规则,同分母的分数相除,只需将分子相除,分母保持不变。
所以,2/3 ÷ 4/5 = (2 ÷ 4) / (3 ÷ 5) = 1/2 ÷ 3/5 = 5/6。
例2:计算 5/8 ÷ 2。
解:根据运算规则,除以一个整数,可以先求它的倒数,再乘以被除数。
所以,5/8 ÷ 2 = 5/8 × 1/2 = 5/16。
六、总结
分数除法是数字运算中的一种重要运算方式,掌握分数除法的概念、运算规则和解题步骤,能够帮助我们解决与分数除法相关的数学问题。
六年级上册第三单元知识点
六年级上册第三单元知识点六年级上册人教版数学第三单元知识点。
一、分数除法。
1. 分数除法的意义。
- 与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
- 例如:(3)/(4)÷(1)/(2)表示已知两个因数的积是(3)/(4),其中一个因数是(1)/(2),求另一个因数。
2. 分数除法的计算方法。
- 除以一个不为0的数,等于乘这个数的倒数。
- 例如:(2)/(3)÷(4)/(5)=(2)/(3)×(5)/(4)=(5)/(6)。
- 注意:在计算过程中能约分的先约分再计算会更简便。
二、分数除法应用题。
1. 已知一个数的几分之几是多少,求这个数的应用题。
- 解题方法:- 设这个数为x,根据分数乘法的意义列出方程求解。
- 例如:已知一个数的(2)/(3)是10,求这个数。
- 设这个数为x,则(2)/(3)x = 10,解得x=10÷(2)/(3)=10×(3)/(2)=15。
- 也可以用算术方法,用已知量除以对应的分率。
如上面的例子,10÷(2)/(3)=15。
2. 比一个数多(或少)几分之几的数是多少,求这个数的应用题。
- 例如:一个数比12多(1)/(3),这个数是多少?- 设这个数为x,x - 12=12×(1)/(3),即x - 12 = 4,解得x = 16。
- 或者用算术方法:12×(1+(1)/(3))=12×(4)/(3)=16。
- 如果是已知比一个数多(或少)几分之几的数是多少,求这个数。
- 例如:比一个数多(1)/(4)的数是15,求这个数。
- 设这个数为x,x+(1)/(4)x = 15,合并同类项得(5)/(4)x = 15,解得x = 15÷(5)/(4)=15×(4)/(5)=12。
- 算术方法:15÷(1+(1)/(4)) = 15÷(5)/(4)=12。
最新版六年级数学上册第三单元小学六年级分数除法知识总结(整理版)
最新版六年级数学上册第三单元分数除法1.分数除法计算(1)分数除法的意义和分数除以整数整数除法的意义:已知两个因数的积与其中一个因数,求另一个因数的运算。
已知两个因数的积与其中一个因数,求另一个因数,用(除法)计算。
1013103=÷的意义是:已知两个因数的积是103,其中一个因数是3,求另一个因数是多少。
分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
分数除以整数的计算方法把一个数平均分成整数份,求其中的几份就是求这个数的几分之几是多少。
分数除以整数(0除外)的计算方法:(1)用分子和整数相除的商做分子,分母不变。
(2)分数除以整数,等于分数乘这个整数的倒数。
练习: 1.填空(1)根据3565372=⨯和分数除法意义可得:=÷53356( ),=÷72356( )。
(2)把29m 长的绳子平均剪成4段,每段是29m 的( )。
(3)打字员打一份文件,打了20分钟后还剩52,平均每分钟打这份文件的( )。
2.列式计算。
(1)一个数的6倍是51,这个数是多少?(2)51的61是多少?3.看图列式计算。
811(2)一个数除以分数知识点一:一个数除以分数的计算方法:一个数除以分数,等于这个数乘分数的倒数。
知识点二:分数除法的统一计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。
知识点三:商与被除数的大小关系:一个数(0除外)除以小于1的数,商大于被除数,除以1,商等于被除数,除以大于1的数,商小于被除数。
0除以任何数商都为0.练习:1.算一算4851625÷ 44392213÷ 1427277⨯ 210÷2.填空。
(1)32的43是( ),它和32÷( )得数相同。
(2)分数除法可以转化为( )进行计算,计算过程中,转变成乘( )的倒数。
4.判断。
(1)两个真分数相除,商大于被除数。
人教版小学六年级上册数学知识点【各单元】
人教版小学六年级上册数学知识点【各单元】分数除法一、分数除法1、分数除法的意义:分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。
2、分数除法的计算法则:除以一个不为0的数,等于乘这个数的倒数。
3、规律(分数除法比较大小时):(1)、当除数大于1,商小于被除数;(2)、当除数小于1(不等于0),商大于被除数;(3)、当除数等于1,商等于被除数。
4、“”叫做中括号。
一个算式里,如果既有小括号,又有中括号,要先算小括号里面的,再算中括号里面的。
二、分数除法解决问题(未知单位“1”的量(用除法):已知单位“1”的几分之几是多少,求单位“1”的量。
)1、数量关系式和分数乘法解决问题中的关系式相同:(1)分率前是“的”:单位“1”的量×分率=分率对应量(2)分率前是“多或少”的意思:单位“1”的量×(1分率)=分率对应量2、解法:(建议:用方程解答)(1)方程:根据数量关系式设未知量为X,用方程解答。
(2)算术(用除法):分率对应量÷对应分率=单位“1”的量3、求一个数是另一个数的几分之几:就一个数÷另一个数4、求一个数比另一个数多(少)几分之几:①求多几分之几:大数÷小数–1②求少几分之几:1-小数÷大数或①求多几分之几(大数-小数)÷小数②求少几分之几:(大数-小数)÷大数针对练习:1、果园里有桃树560棵,占果树总数的1/2,果园里一共有果树多少棵?2、一条裤子75元,是一件上衣价格的1/2,一件上衣多少钱?3、一个修路队修一条路,第一天修了全长1/2,正好是160米,这条路全长是多少米?4、幼儿园买来2千克水果糖,是买来的牛奶糖的1/2,买来牛奶糖多少千克?5、新风小学去年植树320棵,相当于今年植树棵数的1/2,今年去年共植树多棵?6、一桶水,用去它的1/2,正好是15千克,这桶水重多少千克?7、王新买了一本书和一枝钢笔,书的价格是4元,正好是钢笔价格的1/2,钢笔价格是多少元?7、一种小汽车的最快速度是每小时行140千米,相当于一种超音速飞机速度的1/2,这种超音速飞机每小时飞行多少千米?比和比的应用(一)、比的意义1、比的意义:两个数相除又叫做两个数的比。
人教版六年级上册数学《分数除法》知识点+练习解析
《分数除法》知识点1.分数除法计算(1)分数除法的意义和分数除以整数知识点一:分数除法的意义整数除法的意义:已知两个因数的积与其中一个因数,求另一个因数的运算。
已知两个因数的积与其中一个因数,求另一个因数,用(除法)计算。
的意义是:已知两个因数的积是,其中一个因数是3,求另一个因数是多少。
分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
知识点二:分数除以整数的计算方法把一个数平均分成整数份,求其中的几份就是求这个数的几分之几是多少。
分数除以整数(0除外)的计算方法:分数除以整数(0除外),等于分数乘这个整数的倒数。
(2)一个数除以分数知识点一:一个数除以分数的计算方法一个数除以分数,等于这个数乘分数的倒数。
知识点二:分数除法的统一计算法则甲数除以乙数(0除外),等于甲数乘乙数的倒数。
知识点三:商与被除数的大小关系一个数(0除外)除以小于1的数,商大于被除数。
除以1,商等于被除数。
除以大于1的数,商小于被除数。
0除以任何数商都为0.(3)分数除法的混合运算知识点一:分数除加、除减的运算顺序例:8÷-4=8×-4=8除加、除减混合运算,如果没有括号,先算除法,后算加减。
知识点二:连除的计算方法例:÷÷分数连除,可以分步转化为乘法计算,也可以一次都转化为乘法再计算,能约分的要约分。
填空练习1()()()()()。
考查目的:进一步强化对倒数概念的理解,熟练掌握求一个数的倒数的方法。
答案:,,,1,。
解析:引导学生通过审题明确意图,先找出最简单的共同结果“1”。
该题分别考查了求分数、整数、小数的倒数,1的倒数,以及用代数式表示互为倒数的关系等知识。
2既可以表示已知两个因数的积是(),其中一个因数是(),求另一个因数的运算;还可以表示已知一个数的是(),求这个数。
考查目的:对分数除法意义的理解。
答案:5,;,5。
解析:将除法的意义和解决问题的数量关系有机地结合在一起,对于加深理解、深化知识间的联系具有重要作用。
小学六年级上册数学分数除法知识点汇总
六年级上册数学分数除法知识点1.分数除法计算(1)分数除法的意义和分数除以整数➢知识点一:分数除法的意义整数除法的意义:已知两个因数的积与其中一个因数,求另一个因数的运算。
已知两个因数的积与其中一个因数,求另一个因数,用(除法)计算。
的意义是:已知两个因数的积是,其中一个因数是3,求另一个因数是多少。
分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
➢知识点二:分数除以整数的计算方法把一个数平均分成整数份,求其中的几份就是求这个数的几分之几是多少。
分数除以整数(0除外)的计算方法:分数除以整数(0除外),等于分数乘这个整数的倒数。
(2)一个数除以分数➢∙∙知识点一:一个数除以分数的计算方法一个数除以分数,等于这个数乘分数的倒数。
➢∙∙知识点二:分数除法的统一计算法则甲数除以乙数(0除外),等于甲数乘乙数的倒数。
➢∙∙知识点三:商与被除数的大小关系一个数(0除外)除以小于1的数,商大于被除数。
除以1,商等于被除数。
除以大于1的数,商小于被除数。
0除以任何数商都为0.(3)分数除法的混合运算➢∙∙知识点一:分数除加、除减的运算顺序例:8÷-4=8×-4=8除加、除减混合运算,如果没有括号,先算除法,后算加减。
➢∙∙知识点二:连除的计算方法例:÷÷分数连除,可以分步转化为乘法计算,也可以一次都转化为乘法再计算,能约分的要约分。
2.解决问题➢∙∙知识点一:已知一个数的几分之几是多少,求这个数的应用题解法解简单的“已知一个数的几分之几是多少,求这个数”(单位“1”是未知的):方程解法:(1)找出单位“1”,设未知量为x;(2)等量关系式;(3)列出方程。
算式法:(1)找出单位“1”是未知的;(2)等量关系;(3)列除法算式。
即已知量÷几分之几=单位“1”的量。
➢∙∙知识点二:分数连除应用题的解题方法(1)题中有3个数量,两个单位“1”,都是未知的。
人教版六年级数学上册-分数除法知识点归纳
人教版六年级数学上册-分数除法知识点归纳Unit 3: n nReciprocal1.The meaning of reciprocal: Two numbers whose product is 1 are reciprocals of each other。
It is important to emphasize that reciprocal is a nship een two numbers。
and they depend on each other。
Reciprocal cannot exist alone。
(It is necessary to clarify who is the reciprocal of whom).2.Methods to find reciprocal: (1) Find the reciprocal of a n: Swap the numerator and denominator。
(2) Find the reciprocal of a whole number: Treat the whole number as a n with the denominator of 1.and then swap the numerator and denominator。
(3) Find the reciprocal of a mixed number: Convert the mixed number into an improper n。
and then find the reciprocal。
(4) Findthe reciprocal of a decimal: Convert the decimal into a n。
and then find the reciprocal.3.The reciprocal of 1 is 1 because 1×1=1.There is no reciprocal because any number multiplied by 0 is 0.(The denominator cannot be 0).4.The reciprocal of a proper n is greater than 1.The reciprocal of an improper n is less than or equal to 1.The reciprocal of a mixed number is less than 1.5.n: If a×2/3=b×1/4.what are a and b。
六年级数学上册第三单元知识点(附同步练习)
六年级数学上册第三单元知识点(附同步练习)第三单元分数除法知识点⼀、分数除法;;1、分数除法的意义:乘法:因数×因数 = 积除法:积÷⼀个因数 = 另⼀个因数分数除法与整数除法的意义相同,表⽰已知两个因数的积和其中⼀个因数,求另⼀个因数的运算。
2、分数除法的计算法则:除以⼀个不为0的数,等于乘这个数的倒数。
3、规律(分数除法⽐较⼤⼩时):(1)、当除数⼤于1,商⼩于被除数;(2)、当除数⼩于1(不等于0),商⼤于被除数;(3)、当除数等于1,商等于被除数。
4、“[]”叫做中括号。
⼀个算式⾥,如果既有⼩括号,⼜有中括号,要先算⼩括号⾥⾯的,再算中括号⾥⾯的。
⼆、分数除法解决问题;;1、解简单的“已知⼀个数⼏分之⼏是多少,求这个数”的解题⽅法⑴解⽅程①找出单位“1”可借助线段图,设未知量为X②找出题中的数量关系式③列出⽅程⑵⽤算术法解①找出单位“1”②找出已知量和已知量占单位“1”的⼏分之⼏③列出除法算式即:已知量÷已知量占单位“1”的⼏分之⼏=单位“1”的量2、稍复杂的“已知⼀个数的⼏分之⼏是多少,求这个数”的应⽤题⑴已知量⽐单位“1”的量多⼏分之⼏①解⽅程②算术法即:已知量÷(1+⽐单位“1”多的⼏分之⼏)=单位“1”的量⑵已知量⽐单位“1”的量少⼏分之⼏①解⽅程②算术法即:已知量÷(1-⽐单位“1”少的⼏分之⼏)=单位“1”的量3、求⼀个数是另⼀个数的⼏分之⼏:⼀个数÷另⼀个数4、求⼀个数⽐另⼀个数多(少)⼏分之⼏:两个数的相差量÷单位“1”的量或:①求多⼏分之⼏:⼤数÷⼩数– 1②求少⼏分之⼏: 1 - ⼩数÷⼤数三、⽐和⽐的应⽤;;(⼀)、⽐的意义;;1、⽐的意义:两个数相除⼜叫做两个数的⽐。
2、在两个数的⽐中,⽐号前⾯的数叫做⽐的前项,⽐号后⾯的数叫做⽐的后项。
⽐的前项除以后项所得的商,叫做⽐值。
3、⽐可以表⽰两个相同量的关系,即倍数关系。
人教版六年级数学上册第三单元知识点汇总
人教版六年级数学上册第三单元知识点汇总第三单元:分数除法知识点一、分数除法1、分数除法的意义:乘法:因数×因数=积除法:积÷一个因数=另一个因数可以列出除法算式,即:已知量÷已知量占单位“1”的几分之几=单位“1”的量。
2、稍复杂的“已知一个数的几分之几是多少,求这个数”的应用题可以用分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。
3、分数除法的计算法则:除以一个不为0的数,等于乘这个数的倒数。
4、规律(分数除法比较大小时):1)、当除数大于1,商小于被除数;2)、当除数小于1(不等于0),商大于被除数;3)、当除数等于1,商等于被除数。
二、分数除法解决问题1、解简单的“已知一个数几分之几是多少,求这个数”的解题方法:⑴解方程①找出单位“1”可借助线段图,设未知量为X⑵用算术法解即:已知量÷(1+比单位“1”多的几分之几)=单位“1”的量2、求一个数是另一个数的几分之几:一个数÷另一个数3、求一个数比另一个数多(少)几分之几:两个数的相差量÷单位“1”的量或:①求多几分之几:大数÷小数–1②求少几分之几:1 -小数÷大数三、比和比的应用一)、比的意义1、比的意义:两个数相除又叫做两个数的比。
2、在两个数的比中,比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
3、比可以表示两个相同量的关系,即倍数关系。
也可以表示两个不同量的比,得到一个新量。
例:路程÷速度=时间。
4、区分比和比值比:表示两个数的关系,可以写成比的形式,也可以用分数表示。
比值:相当于商,是一个数,可以是整数,分数也可以是小数。
5、根据分数与除法的关系,两个数的比也可以写成分数形式。
6、比和除法、分数的联系:比除法分数7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。
人教版六年级上册数学 第3单元 《分数除法》归纳总结
三、 圆一、 认识圆1、圆的定义:圆是由曲线围成的一种平面图形。
2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。
一般用字母O 表示。
它到圆上任意一点的距离都相等.3、半径:连接圆心到圆上任意一点的线段叫做半径。
一般用字母r 表示。
把圆规两脚分开,两脚之间的距离就是圆的半径。
4、直径:通过圆心并且两端都在圆上的线段叫做直径。
一般用字母d 表示。
直径是一个圆内最长的线段。
5、圆心确定圆的位置,半径确定圆的大小。
6、在同圆或等圆内,有无数条半径,有无数条直径。
所有的半径都相等,所有的直径都相等。
7.在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的21。
用字母表示为:d =2r 或r =2d 8、轴对称图形: 如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。
折痕所在的这条直线叫做对称轴。
(经过圆心的任意一条直线或直径所在的直线)9、长方形、正方形和圆都是对称图形,都有对称轴。
这些图形都是轴对称图形。
10、只有1一条对称轴的图形有: 角、等腰三角形、等腰梯形、扇形、半圆。
只有2条对称轴的图形是: 长方形只有3条对称轴的图形是: 等边三角形只有4条对称轴的图形是: 正方形;有无数条对称轴的图形是: 圆、圆环。
二、圆的周长1、圆的周长:围成圆的曲线的长度叫做圆的周长。
用字母C 表示。
2、圆周率实验:在圆形纸片上做个记号,与直尺0刻度对齐,在直尺上滚动一周,求出圆的周长。
发现一般规律,就是圆周长与它直径的比值是一个固定数(π)。
3.圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。
用字母π(pai)表示。
(1)、一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。
圆周率π是一个无限不循环小数。
在计算时,一般取π ≈ 3.14。
(2)、在判断时,圆周长与它直径的比值是π倍,而不是3.14倍。
(3)、世界上第一个把圆周率算出来的人是我国的数学家祖冲之。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
分数除法的知识点
一、倒数
1、倒数的特征及意义。
乘积是1的两个数互为倒数。
倒数是两个数之间的一种特殊关系,互为倒数的两个数是互相依存的,因此必须说一个数是另一个数的倒数,不能孤立地说某个数是倒数。
2、求倒数的方法。
把这个数的分子和分母调换位置。
3、1的倒数仍是1;0没有倒数。
0没有倒数,是因为在分数中,0不能做分母。
4、求整数、带分数和小数的倒数的方法:
(1)求整数(0除外)的倒数,要先把整数化成分母是1的假分数,再交换分子、分母的位置。
(2)求带分数的倒数,要先把带分数化成假分数,再交换分子、分母的位置。
(3)求小数的倒数,要先把小数化成分数,再交换分子、分母的位置。
二、分数除法
1、分数除法的意义
分数除法的意义与整数除法的意义相同,都是已知两个因数的积与其中一个因数,求另一个因数的运算。
除法是乘法的逆运算。
10
13103=÷的意义是:已知两个因数的积是103,其中一个因数是3,求另一个因数是多少。
2、分数除以整数的计算方法
把一个数平均分成整数份,求其中的几份就是求这个数的几分之几是多少。
分数除以整数(0除外)的计算方法:(1)用分子和整数相除的商做分子,分母不变。
(2)分数除以整数,等于分数乘这个整数的倒数。
3、分数除法的统一计算法则
甲数除以乙数(0除外),等于甲数乘乙数的倒数。
一个数除以分数,等于这个数乘分数的倒数。
4、商与被除数的大小关系
一个数(0除外)除以小于1的数,商大于被除数,除以1,商等于被除数,除以大于1的数,商小于被除数。
0除以任何数商都为0.
三、分数除法的混合运算
1、分数除加、除减的运算顺序
例:8÷32-4=8×2
3-4=8
除加、除减混合运算,如果没有括号,先算除法,后算加减。
2、连除的计算方法 例:92÷72÷1514 分数连除,可以分步转化为乘法计算,也可以一次都转化为乘法再计算,能约分的要约分。
3、不含括号的分数混合运算的运算顺序
在一个分数混合运算的算式里,如果只含有同一级运算,按照从左到右的顺序计算;如果含有两级运算,先算第二级运算,再算第一级运算。
4、含有括号的分数混和运算的运算顺序
在一个分数混合运算的算式里,如果既有小括号又有中括号,要先算小括号里面的,再算中括号里面的。
5、整数的运算定律在分数混和运算中的运用
在进行分数的混和运算中,可以利用加法、减法、 乘法、除法的运算定律或运算性质,使计算简便。
四、解决问题
1、已知一个数的几分之几是多少,求这个数的应用题解法
列方程解题的关键:找出题中数量间的等量关系。
用算术法解除法应用题的关键:找准已知数量对应的单位“1”的几分之几。
解简单的“已知一个数的几分之几是多少,求这个数”的解题方法:
方程解法:(1)找出单位“1”,设未知量为x ;(2)找出题中的数量关系式;(3)列出方程。
算术法:(1)找出单位“1”;(2)找出已知量和已知量占单位“1”的几分之几;(3)列除法算式。
即已知量÷已知量占单位“1”的几分之几=单位“1”的量。
2、分数连除应用题的解题方法
(1)分数连除应用题的结构特点:题中有3个数量,两个单位“1”,都是未知的。
(2)分数连除应用题的解题方法:①方程解法:设所求单位“1”的量为x ,根据等量关系列方程解答。
即x ×a b ×c
d =已知量。
②算术解法:用已知量连续除以它们所对应的单位“1”的几分之几。
即已知量÷c d ÷a b =另一个单位“1”的量。
(3)解题关键:找准单位“1”,求出中间量。
3、稍复杂的“已知一个数的几分之几是多少,求这个数”的应用题的解法
(1)稍复杂的“已知一个数的几分之几是多少,求这个数”的应用题的结构特征:单位“1”是未知的,已知的比较量与所给的几分之几不对应。
(2)解题方法:①用方程解:找到题中数量间的等量关系,设未知量为x ,列出方程。
②算术法解:找到题中单位“1”,计算出已知量占单位“1”的几分之几,利用已知量÷已知量占单位“1”的几分之几=单位“1”的量(标准量)列式解答。
(3)解题关键:找准单位“1”,弄清谁是谁的几分之几,谁比谁多几分之几,计算出已知量是单位“1”的几分之几。
练习:
1、妈妈给小林一些钱买衣服,小林买毛衣花了90元,买裤子花了60元,买这两样衣物花的钱是妈妈给小林钱数的43,妈妈给小林多少钱?
2、赵老师的讲桌上有红粉笔16支,白粉笔的支数是红粉笔的45,又是蓝粉笔的11
10。
蓝粉笔有多少支?
3、一袋面粉,用去它的5
1
,还剩20kg 。
剩下的面粉是这袋面粉的几分之几?这袋面粉重多少千克?
4、六(2)班的人数是六(1)班的109
,六(2)班比六(1)班少5人,六(
1)班有多少人。