气体绝热节流膨胀制冷
气体绝热节流膨胀制冷

1、绝热节流过程节流是高压流体气体、液体或气液混合物)在稳定流动中,遇到缩口或调节阀门等阻力元件时由于局部阻力产生,压力显著下降的过程。
节流膨胀过程由于没有外功输出,而且工程上节流过程进行得很快,流体与外界的热交换量可忽略,近似作为绝热过程来处理。
根据稳定流动能量方程:δq=dh+δw(2.1)得出绝热节流前后流体的比焓值不变,由于节流时流体内部存在摩擦阻力损耗,所以它是一个典型的不可逆过程,节流后的熵必定增大。
绝热节流后,流体的温度如何变化对不同特性的流体而言是不同的。
对于任何处于气液两相区的单一物质,节流后温度总是降低的。
这是由于在两相区饱和温度和饱和压力是一一对应的,饱和温度随压力的降低而降低。
对于理想气体,焓是温度的单值函数,所以绝热节流后焓值不变,温度也不变。
对于实际气体,焓是温度和压力的函数,经过绝热节流后,温度降低、升高和不变3种情况都可能出现。
这一温度变化现象称为焦耳-汤姆逊效应,简称J-T效应。
2、实际气体的节流效应实际气体节流时,温度随微小压降而产生的变化定义为微分节流效应,也称为焦耳-汤姆逊系数:αh=(ɑT/ɑp)2.2)αh>0表示节流后温度降低,αh<0表示节流后温度升高。
当压降(P2-P1)为一有限数值时,整个节流过程产生的温度变化叫做积分节流效应:ΔTh=T2-T1=ƒp2p1αhdp(2.3)理论上,可以使用热力学基本关系式推算出αh的表达式进行分析。
有焓的特性可知:dh=cpdT-[T(αv/aT)p-v]dp(2.4)由于焓值不变,dh=0,将上式移项整理可得:αh=(αT/αp)h=1/cp[T(αv/αT)p-v](2.5)由式(2.3)可知,微分节流效应的正负取决于T(αv/aT)p和v的差值。
若这一差值大于0,则αh>0节流时温度降低;若等于0则αh=0,节流时温度不变;若小于0则αh<0,节流时温度升高。
从物理实质出发,可以用气体节流过程中的能量转化关系来解释着三种情况的出现,由于节流前后气体的焓值不变,所以节流前后内能的变化等于进出推动功的差值:u2-u1=p1v1-p2v2气体的内能包括内动能和内位能两部分,而气体温度是降低、升高、还是不变,仅取决于气体内动能是减小、增大、还是不变。
节流膨胀制冷的原理

节流膨胀制冷的原理
节流膨胀制冷是一种常见的制冷技术,其原理主要涉及压缩冷凝循环和膨胀蒸发循环两个过程。
压缩冷凝循环是制冷循环的一部分,其中使用了压缩机、冷凝器、热交换器和膨胀阀。
在这一循环过程中,制冷剂首先经过压缩机,压缩机将制冷剂压缩,提高其压力和温度,并将其送入冷凝器。
在冷凝器中,制冷剂通过与外界环境的热交换,将热量释放给外界环境,使制冷剂的温度下降,并在此过程中冷凝为液体。
接下来,冷凝后的液体制冷剂通过热交换器与要制冷的物体进行热交换,将其冷却,同时自身被加热。
之后,热量再次传递给制冷剂,并将其再次加热。
膨胀蒸发循环是制冷循环的另一部分,其中包括膨胀阀和蒸发器。
制冷剂通过膨胀阀进入蒸发器,在蒸发器中,因膨胀阀的作用,制冷剂的压力迅速降低,使制冷剂的温度下降。
同时,制冷剂进入蒸发器后,与外界环境进行热交换,吸收外界环境的热量,使得蒸发器中的制冷剂从液体状态转变为蒸汽状态,并进一步降低了蒸发器中的温度。
这样,在膨胀蒸发循环的作用下,制冷剂从蒸发器中蒸发并吸收热量,实现了制冷效果。
节流膨胀制冷原理的关键在于膨胀阀的作用。
膨胀阀能够控制制冷剂在压缩冷凝循环和膨胀蒸发循环之间的压力差,从而使制冷剂在膨胀蒸发循环中能够迅速降低压力,降低温度,并吸收热量。
同时,节流阀的开度还会影响制冷剂的流量和速度,从而影响制冷系统的制冷效果。
因此,在节流膨胀制冷中,通
过调节膨胀阀的开度,可以实现对制冷剂的压力和温度的控制,从而实现有效的制冷效果。
节流、膨胀制冷原理

节流、膨胀制冷原理
节流膨胀制冷原理
1:节流膨胀(简称节流):当气体在管道中流动时,如遇到缩口和调节阀门等局部阻力时,其压力显著下降的现象。
如果在节流过程中气体与环境之间没有热量交换,称为绝热节流。
2、在节流膨胀过程中没有外功的输出,因此,气体在绝热节流时,根据稳定流动能量方程式,可以得出:
h1=h2,即绝热节流前后的比焓值保持不变,这是节流过程的一个主要特征。
由于节流时,气流内部存在摩擦阻力损耗,所以它是一个典型的不可逆过程,,其结果将导致熵的增加,这是节流过程的另一个主要特征。
节流、膨胀制冷原理【优选】

Δhr=h1\-h1=h1\-h2(1-16)
节流只是降低气体压力的一种方法,把空气等温压缩时,已具备的制冷内因表现出来。
等温节流效应可直接从热力性质图(T-s图)上查到,即等温压缩前后的焓差。对于低压空气的等温节流效应,应用图不易查准确,因此常采用下式计算求得–Δh=cpΔT(1-17)
1.4.2气体的等熵膨胀
微分节流效应是指气体节流时温度的变化(ΔT)与压力降(ΔP)所成比例关系,即
ΔT=dhΔΔP或dh=(ΔT/ΔP)h(1-14)
dh称为微分节流效应,即气流在节流时压力降为无限小时所发生的温度变化。微分节流效应一般用实验方法求得,几种常用气体的微分节流效应如表所示。
对于空气及氧气,当接近于标准状态的温度范围及压力在100个大气压以下进行试验得到如下经验公式dh=(a-bp)(273/T)2(1-15)
从图1-11所示的几种常用气体的转换曲线,可以看出dh的变化情况。气体的温度只有在转换曲线以内区域(降温区),通过节流膨胀才能降温或液化。
表1-2几种气体在低压下的转换温度
气体名称
转换温度(k)
气体名称
转换温度(k)
空气
氧
氮
氩
650
771
604
765
氖
氢
氦
230
204
246
3.积分节流效应气体的节流过程总是在较大的压差ΔP下进行的,相应的温度变化ΔT,即积分节流效应,节流所产生的温度变化为:
节流制冷原理

节流制冷原理
节流制冷是一种常见的制冷原理,主要通过液体在节流装置中的膨胀来降低温度。
其基本原理是利用物质膨胀时吸收热量的特性,实现对空气或物体的制冷。
在节流制冷过程中,首先需要选择一个适当的工作物质,常见的有氨、氟利昂等。
通过控制物质的温度和压力,使其处于饱和汽-液两相同时,经过节流装置进入低压区域。
节流装置通常为一个小孔或细管,将高压区的液体快速转变成低压区的雾状流体。
在流体通过节流装置时,由于液体的流速和流量减小,发生了液体的膨胀,使其内能减小,从而降低了温度。
通过将膨胀后的液体释放到目标区域,液体将吸收周围环境的热量,从而使目标区域的温度降低。
同时,膨胀后的液体将变成低温低压的气体,再经过压缩机进行压缩和冷凝,重新回到高压区域,开始下一次的节流膨胀过程。
节流制冷原理适用于各种场景,特别适用于家用电器、汽车空调和商业制冷等领域。
它具有制冷效果好、制冷剂量少、操作简便、安全可靠等优点。
同时,由于使用的制冷剂选择得当,可以减少对环境的污染,降低对臭氧层的破坏,是一种相对环保的制冷方式。
总之,节流制冷原理通过液体在节流装置中的膨胀来实现制冷,其简洁高效的工作方式使其成为制冷领域中常用的技术之一。
气体的节流过程和绝热膨胀过程[1]
![气体的节流过程和绝热膨胀过程[1]](https://img.taocdn.com/s3/m/d41e8913d1f34693dbef3eac.png)
绵阳师范学院本科生毕业论文(设计)题目气体的绝热膨胀和节流过程探讨专业物理学院部物理与电子工程学院学号 04姓名李飞指导教师廖碧涛讲师答辩时间 2011年5月论文工作时间: 2010 年 11 月至 2011 年 05 月气体的绝热膨胀过程和节流过程探讨学生: 李飞指导教师: 廖碧涛摘要:目前低温技术越来越受到人们的关注,低温制冷技术已经广泛应用于气象,军事,航空航天,低温电子技术,低温医学领域等。
气体的绝热膨胀和节流过程是获得低温的两种途径。
在绝热的条件下高压气体经过多孔塞或节流阀流到低压一边的稳定流动过程称为节流过程。
测量气体在多孔塞或节流阀两边的温度表明,在节流过程前后,气体的温度发生了变化,这效应称为焦耳-汤姆逊效应,简称焦-汤效应。
这是焦耳和汤姆逊在1852年用多孔塞实验研究气体内能时发现的。
绝热膨胀是指与外界没有热量交换,但气体对外界做功,气体膨胀。
根据热力学第一定律,可证明这是等熵过程,在这个过程中气体体积增大,压强降低,因而温度降低。
所以绝热膨胀经常用于降低气体的温度,起到冷冻的效应。
本篇文章主要是对理想气体和范德瓦耳斯气体在节流过程和绝热膨胀两种过程中热力学特征以及各状态函数变化的研究,得出各状态参量的变化情况。
加深对节流过程和绝热膨胀过程的理解和认识。
节流过程和绝热膨胀过程制冷都有着各自的优点和缺点,将节流过程和绝热膨胀过程结合使用可以充分弥补各自的缺点,发挥优点,达到极好的制冷效果,获得低至1K的低温。
目前节流过程和绝热膨胀过程被广泛运用与化工生产中。
关键词低温;绝热膨胀;节流过程;焦耳一汤姆孙效应The Insulation the Expansion Process and inThe Throttling process toUndergraduate: Li feiSupervisor: Liao BitaoAbstract:At present technology has been getting refrigeration technology is widely applied to meteorological, military, the cooler the air space and technology, medicine, etc. low temperatures.Of hot gas expands and throttling process is a low temperature two ways.In the insulation of high pressure gas after the plug or throttling the valve to the stability of the low side of the current process is called the throttling process. the gas or throttling the valve in the plug on the temperature that, in the throttling process, the temperature of the gas has changed, the effect is called joule - thompson, short dark - soup joule and effect. thompson is in the membrane in the plug experimental research on the gas can find. insulation expansion is from outside world and no calories But gas to do work, expansion of gases. according to law of thermodynamics to the first, but that this is the process of entropy, volume of gas, lower pressure and temperature is lower. therefore, the insulation is often used for lowering the temperature of the gas, to freeze effect. this article is in an ideal gas and vande gas in the throttling process and the insulation the expansion process thermodynamics characteristics and the condition function That the state the throttling process and the insulation. the expansion process of refrigeration have their respective advantages and disadvantages, will the throttling process and the insulation the expansion process can be used for their faults and virtues, a chilling effect, the low temperatures. in addition, 1k in temperatures constant concern and to explore technology, The throttling process and the insulation the expansion process was widely used and chemical production.Key words:Temperatures;Insulation expansion;The throttling process Joule and tom effect.目录引言 (1)1节流过程和绝热膨胀过程 (1)节流过程 (1)节流过程的定义及特征 (1)焦耳-汤姆逊效应 (2)绝热膨胀过程 (4)绝热膨胀的定义 (4)绝热膨胀的特征 (5)2理想气体的绝热膨胀和节流过程 (6)理想气体的绝热膨胀过程 (6)理想气体的节流过程 (8)3范德瓦尔斯气体的绝热膨胀和节流过程 (8)范德瓦耳斯气体的绝热膨胀 (8)范德瓦耳斯气体的节流过程 (9)4绝热膨胀与节流过程的比较和应用 (11)绝热膨胀与节流过程的比较 (11)两种过程获得低温的优缺点 (11)绝热膨胀和节流过程的应用 (12)结束语......................................................................12参考文献 (13)致谢 (14)引言低温制冷技术在已经在各领域的到广泛应用;有研究表明,寿命与环境温度的关系非常密切,如青蛙生活在2℃的水中的寿命,比它在21℃的水中高出960倍。
节流、膨胀制冷原理

节流膨胀效应1. 实际气体的节流,通常把高压流体经管道中的小孔后压力显著降低的过程称为节流,如图1所示。
节流前的状态参数为p1、T1、U1,节流后的状态参数为P2、T2、U2。
图1节流过程(焦耳-汤姆逊效应)节流孔径越小,则局部阻力越大,节流前后的压力变化(P1-P2)也越大。
反之,就越小。
在实际工作中,为了便于调节,通常用调节阀代替固定节流孔。
从能量转换的观点看。
由于气体经过节流阀小孔时,流速大、时间短,来不及与外界进行热交换,因此节流过程可以近似看作绝热过程。
因为节流时有摩擦力损失,所以节流过程是不可逆的。
气体在节流时,既无能量输出,也无能量输入,所以气体节流前后的能量保持不变,即节流前后的焓值相等h1=h2。
这是节流过程的基本特点。
理想气体的焓值只是温度的函数,因而理想气体节流前后的温度是不变的。
而实际气体的焓值是温度和压力的函数,所以实际气体节流后的温度是发生变化的。
这种现象称做节流效应(焦耳-汤姆逊效应)。
它分为微分节流效应和积分节流效应。
微分节流效应是指气体节流时温度的变化(ΔT)与压力降(ΔP)所成比例关系,即ΔT=d hΔΔP或d h=(ΔT/ΔP)h(1-14)d h称为微分节流效应,即气流在节流时压力降为无限小时所发生的温度变化。
微分节流效应一般用实验方法求得,几种常用气体的微分节流效应如表所示。
对于空气及氧气,当接近于标准状态的温度范围及压力在100个大气压以下进行试验得到如下经验公式 d h=(a-bp)(273/T)2(1-15)空气 a=2.73×10-3, b=0.0895×10-6氧气 a=3.19×10-3, b=0.884×10-6表1-1几种常用气体在0℃及98kpa时的微分节流效应气体名称dh气体名称dh(℃/at)(10-3K/Pa)(℃/at)(10-3K/Pa)空气氧氮+0.27+0.31+0.26+2.75+0.31+2.65二氧化碳氢氦+1.30–0.03-0. 0596+13.26–3.06–6.082. 转换温度从表1-1中的数值可以看出,空气、氧气、氮等气体的d h 为正值,节流后温度降低;而氢、氦等气体的d h 却是负值的,节流后温度要上升。
气体节流过程和绝热膨胀过程

T
1
T p
H
T p
H
T H
p
H p
T
1 Cp
T
V T
p
V
对理想气体, V nR,求得 0,即理想气体节流后温
度不变。 T p p
对实际气体(如范氏气体), 的正负取决T、p取值,用实际 气体进行节流过程可获得低温。
T p
H
V Cp
T
1
T 1 0 温度不变
pdV
dH dH=Vdp+TdS
dU TdS
dU=-pdV+TdS
V A,P,m,q电荷量 p ,E,0, 电动势 12
二、绝热去磁致冷效应
忽略磁介质体积变化, 则有 dG SdT 0md ,
三、 气体自由膨胀后的温度变化
W 0 Q 0 ΔU 0 气体自由膨胀后内能不变。
dU
CV dT
T
p T
V
pdV
T ?? V U
T V
U
1 CV
T
p T
V
p
p CV
T
1
理想气体 T 0 自由膨胀后温度不变。 V U
范氏气体
p
n2a V2
V
nb
nRT
2a RT b 0 T 0
温度降低 焦耳— 汤姆逊正效应 温度升高 焦耳— 汤姆逊负效应 温度不变 焦耳— 汤姆逊零效应
(3)在某个温度 Ti 时,实际气体的 0 ,它在节流过程中的
行为与理想气体一样。对不很稠密的范德瓦耳斯气体,
Ti 2a RT 时, 0 ,Ti称为转换温度,一般情况下,这
T V
U
n2a CVV 2
0
常见的五大制冷方法

常见的五大制冷方法
制冷领域常用的制冷方法有以下五种:
第一,利用高压气体的膨胀制冷,利用常温下的高压气体在膨胀机中绝热膨胀,风冷式冷水机组的型号,到达较低的温度,气体复热时即可在低温下制冷。
第二,液体蒸发制冷,在常温下冷凝的液体节流到较低的压力,这个时候,风冷式的冷水机组,它的温度也会随之降低,液体在低压下蒸发之后就能够达到制冷的效果。
第三,气体涡旋式制冷,在常温下高压气体流经涡流管就可分离成冷、热两股气流,冷气流复热时就能够制冷。
第四,半导体制冷,利用半导体的热-点效应制冷。
第五,化学方法制冷,利用吸热效应的化学反应过程制冷。
当今的制冷机利用的是高压气体膨胀制冷和液体的蒸发制冷为基础发展起来的,中间应用最为广泛的是液体的蒸发制冷。
各种的制冷机依靠某种工作介质的状态变化来完成它的工作循环,风冷式冷水机组所采用的的制冷剂被称为工作的介质。
这五种方式的制冷方法不断地应用在制冷厂家和制冷设备当中,其中利用风冷式的制冷机组制冷量也较大,能够满足人们对制冷量的需求。
节流膨胀制冷原理

节流膨胀制冷原理节流膨胀制冷原理是一种常见的制冷方式,它利用流体在节流膨胀过程中的物理原理,实现对空气或其他流体的制冷作用。
在这种原理下,流体通过节流装置进行膨胀,从而达到降温的效果。
接下来,我们将详细介绍节流膨胀制冷原理的工作原理和应用。
首先,我们来了解一下节流膨胀制冷原理的基本工作原理。
在制冷系统中,流体(通常是制冷剂)会通过压缩机进行压缩,然后进入冷凝器进行冷却,接着通过节流装置进行膨胀,最后进入蒸发器进行蒸发。
而节流膨胀装置起到的作用是将高压液体制冷剂膨胀成低压液体或蒸汽,从而降低其温度。
其次,我们来探讨一下节流膨胀制冷原理的具体过程。
当高压液体制冷剂通过节流装置进入低压区域时,其压力会突然降低,从而使得制冷剂的温度也随之下降。
这是因为根据热力学原理,液体在膨胀过程中会吸收周围的热量,从而降低其自身的温度。
因此,通过节流膨胀装置,我们可以实现将高温高压的液体制冷剂转变为低温低压的制冷剂,从而达到制冷的效果。
再者,我们来分析一下节流膨胀制冷原理的应用领域。
节流膨胀制冷原理广泛应用于空调、冷藏冷冻设备、制冷车辆等领域。
在这些设备中,制冷剂通过节流装置进行膨胀,从而实现对空气或物体的制冷作用。
而且,由于节流膨胀制冷原理具有结构简单、运行稳定、制冷效果好等优点,因此在工业和家用制冷领域得到了广泛的应用。
最后,我们总结一下节流膨胀制冷原理的特点和优势。
节流膨胀制冷原理通过控制流体的膨胀过程,实现对流体的降温作用。
它具有结构简单、制冷效果好、运行稳定等优点,因此在各种制冷设备中得到了广泛的应用。
同时,节流膨胀制冷原理也为我们提供了一种高效、可靠的制冷方式,为人们的生活和生产带来了诸多便利。
综上所述,节流膨胀制冷原理作为一种常见的制冷方式,其工作原理和应用领域都具有重要的意义。
通过对其原理和过程的深入了解,我们可以更好地掌握制冷技术,为制冷设备的设计和运行提供更为科学、有效的方法。
希望本文对您有所帮助,谢谢阅读!。
制冷和低温技术原理—第2章 制冷方法

高压液体流 经膨胀阀节 流,形成低 压低温的 气,液两相 混合物进入 蒸发器。
4. 应用: 蒸气压缩式制冷机是应用最广泛的制冷机。 是本课程的重点内容之一。 具有100多年的历史,相当完备,广泛应用 在空气调节,各种冰箱,食品冷藏,冷加工 方面。 制冷的温度范围为5℃ — -150℃。
2.1.5 吸附式制冷
1. 系统组成:
吸附床,冷凝器,蒸发器 用管道连成一个封闭系统。
太阳辐射 沸石 吸附床 (沸石密封盒)
2. 工作原理:
肋片 (冷凝器) 储水器
一定的固体吸附剂对某种 (蒸发器) 制冷剂气体具有吸附作用, 白天脱附 夜间吸附 而且吸附能力随吸附剂温 太阳能沸石-水吸附制冷原理 度的改变而不同。 通过周期性地冷却和加热吸附剂, 使之交替地吸附和解吸。 解吸时,释放制冷剂气体,使之凝结为液体。 吸附时,制冷剂液体蒸发,产生制冷作用。
热电制冷
气体绝热膨胀制冷
高压气体经绝热膨胀即可达到较低 温度,令低压气体复热即可制取冷量。 高压气体经涡流管膨胀后即可分离冷, 热两股气流,用冷气流的复热过程即 可制冷。
气体涡流制冷
2.1 物质相变制冷
2.1.1 相变制冷概述
液体蒸发制冷 固体相变制冷
以流体为制冷剂,通 过一定的机器设备构 成制冷循环,利用液 体汽化时的吸热效应 ,实现对被冷却对象 的连续制冷。
2.2.2 磁制冷
1. 工作原理: 是利用磁热效应的一种制冷方式。
既是固体磁性物质(磁性离子构成的系统)在受磁场 作用磁化时,系统的磁有序度加强(磁熵减小), 对外放出热量;再将其去磁,则磁有序度下降(磁熵 增大),又要从外界吸收热量。
2.2.3 声制冷
1. 工作原理: 是利用热声效应的一种制冷方式。
节流 膨胀制冷原理

表1-2几种气体在低压下的转换温度3. 积分节流效应 气体的节流过程总是在较大的压差ΔP 下进行的,相应的温度变化ΔT ,即积分节流效应,节流所产生的温度变化为:ΔT=d m Δpd m 是在某一压力范围内的d h 的平均值。
积分节流效应还可利用热力性质图(T-s )上的等焓线,读出节流过程的温度变化,如图1-12所示。
压缩空气从高压P 1和温度T 1绝热节流到P 2,即从点1沿等焓线与P 2等压线交于点2,点2的温度即为节流后的温度T 2,积分节流效应为ΔT h =T 1-T 2图1-12节流效应及等熵膨胀T-s 图上表示 4. 等温节流效应 空气经过节流,虽然可降低温度,但对外没有热交换,也没有做功,因此节流过程本身并没有产生冷量。
空气等温压缩(图1-12中1-1\过程)时,必须向冷却水排热,因此当压缩空气绝热节流时,温度下降,这时空气具有吸热能力。
当空气自图1-12中的点2状态,经等压过程回复到压缩前状态1\时,所吸收的热量称为等温节流效应,以-Δh r 表示。
Δh r =h 1\-h 1=h 1\-h 2 (1-16)节流只是降低气体压力的一种方法,把空气等温压缩时,已具备的制冷内因表现出来。
等温节流效应可直接从热力性质图(T-s 图)上查到,即等温压缩前后的焓差。
对于低压空气的等温节流效应,应用图不易查准确,因此常采用下式计算求得 –Δh=c p ΔT (1-17)1.4.2 气体的等熵膨胀高压气体等熵膨胀时向外输出机械功,这样消耗了大量气体内能(焓值减小)。
另外,还由于膨胀时,气体体积增大,分子距离也要增大,但是分子间有吸引力,为了克服分子间的吸引力而又要消耗气体分子的一些动能(动能减小)。
这样气体分子的内能和动能在等熵膨胀时大量消耗,从而降低了气体温度。
所以等熵膨胀后,气体温度总是下降的。
气体等熵膨胀时,压力微小变化所引起的温度变化称为微分等熵效应,用d s 表示 d s =(ΔT/ΔS )S 或ΔT=d s Δs (1-18)对于实际气体等熵膨胀产生的温度降,还可采用热力性质图(T-s 或h-s 图)查取积分等熵效应。
节流、膨胀制冷原理

节流膨胀效应1. 实际气体的节流,通常把高压流体经管道中的小孔后压力显著降低的过程称为节流,如图1所示。
节流前的状态参数为p1、T1、U1,节流后的状态参数为P2、T2、U2。
图1节流过程(焦耳-汤姆逊效应)节流孔径越小,则局部阻力越大,节流前后的压力变化(P1-P2)也越大。
反之,就越小。
在实际工作中,为了便于调节,通常用调节阀代替固定节流孔。
从能量转换的观点看。
由于气体经过节流阀小孔时,流速大、时间短,来不及与外界进行热交换,因此节流过程可以近似看作绝热过程。
因为节流时有摩擦力损失,所以节流过程是不可逆的。
气体在节流时,既无能量输出,也无能量输入,所以气体节流前后的能量保持不变,即节流前后的焓值相等h1=h2。
这是节流过程的基本特点。
理想气体的焓值只是温度的函数,因而理想气体节流前后的温度是不变的。
而实际气体的焓值是温度和压力的函数,所以实际气体节流后的温度是发生变化的。
这种现象称做节流效应(焦耳-汤姆逊效应)。
它分为微分节流效应和积分节流效应。
微分节流效应是指气体节流时温度的变化(ΔT)与压力降(ΔP)所成比例关系,即ΔT=d hΔΔP或d h=(ΔT/ΔP)h(1-14)d h称为微分节流效应,即气流在节流时压力降为无限小时所发生的温度变化。
微分节流效应一般用实验方法求得,几种常用气体的微分节流效应如表所示。
对于空气及氧气,当接近于标准状态的温度范围及压力在100个大气压以下进行试验得到如下经验公式 d h=(a-bp)(273/T)2(1-15)空气 a=2.73×10-3, b=0.0895×10-6氧气 a=3.19×10-3, b=0.884×10-6表1-1几种常用气体在0℃及98kpa时的微分节流效应气体名称dh气体名称dh(℃/at)(10-3K/Pa)(℃/at)(10-3K/Pa)空气氧氮+0.27+0.31+0.26+2.75+0.31+2.65二氧化碳氢氦+1.30–0.03-0. 0596+13.26–3.06–6.082. 转换温度从表1-1中的数值可以看出,空气、氧气、氮等气体的d h 为正值,节流后温度降低;而氢、氦等气体的d h 却是负值的,节流后温度要上升。
透平膨胀制冷_节流制冷__概述说明以及解释

透平膨胀制冷节流制冷概述说明以及解释1. 引言1.1 概述本文旨在对透平膨胀制冷和节流制冷这两种常见的制冷技术进行概述和详细说明。
随着全球变暖问题的日益严重,制冷技术的发展和应用变得越来越重要。
透平膨胀制冷和节流制冷作为两种不同的技术方式,在实现高效制冷的同时也具有一定的优缺点。
通过对其原理、应用领域以及优缺点进行分析,可以更好地了解这些制冷技术,并为相关领域的研究和应用提供参考依据。
1.2 文章结构本文将首先介绍透平膨胀制冷的原理说明,包括其基本工作原理和主要组成部分。
然后探讨透平膨胀制冷在不同领域中的应用情况,并对其优缺点进行分析。
接下来将详细阐述节流制冷的原理说明,包括其传热机理和系统组成结构。
随后探讨节流制冷在各个领域中的应用,并对其优缺点进行剖析。
在对透平膨胀制冷和节流制冷进行独立分析的基础上,本文将对两种制冷技术进行对比与综合分析,包括工作原理、性能指标和应用场景等方面的比较,并给出相应的选择建议。
最后,在总结中给出本文的主要观点和结论,并展望透平膨胀制冷和节流制冷在未来的发展前景。
1.3 目的本文旨在深入探讨透平膨胀制冷和节流制冷这两种常见的制冷技术,在概述其原理、应用领域以及优缺点的基础上,通过对其工作原理、性能指标及应用场景等方面进行对比与综合分析,提供给相关领域研究者和实践者关于这两种技术选择与应用的具体建议。
同时,通过本文还可以进一步促进对透平膨胀制冷和节流制冷相关问题的探索,为未来相关技术领域的发展提供一定的参考。
2. 透平膨胀制冷2.1 原理说明透平膨胀制冷是一种基于透平机械运动原理的制冷技术。
其主要原理是利用高速旋转的透平机械将高压气体通过膨胀功转化为低温效果。
当高压气体通过透平机械时,由于受到叶轮的加速和扩散作用,气体的动能增加,同时压力下降。
这种压力差可以产生冷却效应,并将热量带走,实现制冷。
2.2 应用领域透平膨胀制冷技术在空调、冷藏、低温物流等领域具有广泛应用。
《空调工程中的制冷技术》复习大全资料

第一章绪论1.11.空气调节:实现对某一房间或空间内的温度、湿度、空气的流动速度、洁净度进行调节与控制,并提供足够量的新鲜空气。
简称空调。
2.制冷技术:它是研究低温的产生和应用,以及物质在低温条件下所发生的物理、化学和生物学机理变化等方面的科学技术。
3.天然冷源:自然界中存在的低温物质,如深井水、天然冰。
4.人工制冷:借助一种“专门装置”,消耗一定的(外界)能量,迫使热量从温度比较低的被冷却物体(或环境)向温度比较高的周围环境(或物体)转移。
5.制冷分类:普通制冷:>-120℃深度制冷:-120℃~20K(-253℃)低温和超低温:<20K6.普通制冷分为:高温区+5℃~50℃主要空气调节和热泵设备低温区<-100℃主要用于气体液化、低温物理、超导和宇航研究中温区-100℃~+5℃主要用于食品冻结和冷藏,化工和机械生产工艺的冷却过程和冷藏运。
1.21.制冷方法:物理方法和化学方法2.制冷方法:相变制冷(溶解、汽化、升华)、气体绝热膨胀制冷、温差电制冷(热电制冷)3.溶解常用于冷却房间或冷藏食品;汽化:蒸汽压缩式制冷和吸收式制冷用的此原理,还有低温外科手术;升华可用于人工降雨、医疗中。
气体绝热膨胀制冷可用于飞机机仓里。
4.焦耳-汤姆逊效应:实际气体焓值是温度和压力的函数,所以实际气体绝热节流后的温度将发生变化。
至于温度升高还是降低与气体初始状态有关。
第二章蒸汽压缩式制冷的热力学原理2.11.制冷原理:利用液体蒸发吸收热量而完成制冷。
2.蒸汽压缩式制冷的基本系统:蒸发器、压缩机、冷凝器、节流机构(膨胀阀)3.蒸发器①里面制冷剂的汽化过程是一个等压沸腾过程。
②蒸发压力:蒸发器内制冷剂沸腾时的压力。
③蒸发温度:相对应的饱和温度。
(沸点)4.压缩机:从蒸发器中抽吸出蒸发的制冷剂蒸汽并进行压缩的设备。
功能:①从蒸发器内抽吸出蒸发的制冷剂蒸汽,以维持蒸发器内一定的蒸发压力,同时也就维持了一定的蒸发温度。
②将吸入的蒸汽进行压缩,或者说将蒸汽的压力提高,以便在较高的温度下将蒸汽冷却并凝结成液体,制冷剂得以循环使用。
39下 气体绝热节流_制冷与低温技术原理

p1 )
hp
p1
h
0
p2
Δ hT
2 1Δ
x=0
x=1
a) T-s图
s
积分节流效应
x=1 x=0
T ΔTh
b) h-T图
气体绝热节流
T T2 -T1
p2 p1
h
dp
h(
p2
p1 )
hp
解析解
h
T P
h
1 cp
T
v T
p
v
实验公式
h
(a
0
b0
p)
273
2
T
作图法
T
p1
p2
1
气体绝热节流
思考题
微分节流效应、积分节流效应、等温 节流效应各代表什么?如何表示?
+1.30
氧
+3.16
+0.31
氢
-3.06
-0.3
氮
+2.65
+0.26
氦
-6.08
-0.596
气体绝热节流
h
T p
h
dh
c p dT
T
v T
p
v
ቤተ መጻሕፍቲ ባይዱ
dp
dh 0
h
T P
h
1 cp
T
v T
p
v
气体绝热节流
实际气体:
h
T P
h
1 cp
T
v T
p
0
h =常数 2
ΔTh
x=0
x=1
a) T-s图
s
p1
h
0
p2
膨胀制冷原理

膨胀制冷原理
膨胀制冷是一种常用的制冷原理,它利用了气体的特性来实现制冷效果。
具体的工作原理如下:
1. 压缩:开始时,液态制冷剂通过压缩机被压缩为高压气体。
这个过程中,制冷剂会吸收环境中的热量,并且压缩机所作的功会通过冷却剂的冷凝过程而被排出。
2. 冷凝:压缩过后的高压气体进入冷凝器,冷凝器中的冷却剂有助于将高压气体中的热量排出,并逐渐冷却气体,使其变为高压液体。
3. 膨胀:高压液体进入膨胀阀(也叫节流阀),节流阀起到限制制冷剂流量并降低其压力的作用。
当液体通过节流阀流出时,因为压力下降,制冷剂会迅速蒸发成低温低压的气体。
4. 蒸发:膨胀后的低温低压气体进入蒸发器,蒸发器通常是一个呈扇形结构的热交换器,通过与外界的空气或其他物质接触,低温低压气体会吸收热量并迅速变成低温的气体。
这个过程中,蒸发器周围的环境会因为吸热而降低温度。
通过不断重复上述的过程,膨胀制冷系统能够持续将热量从制冷物体中吸收,并将吸收的热量传递到环境中,从而实现制冷效果。
这种制冷原理被广泛应用于家用空调、冰箱等冷却设备中。
气体节流膨胀和绝热膨胀的原理

心得报告题目:气体节流膨胀和绝热膨胀的原理在气体分离和液化设备中,气体节流膨胀和绝热膨胀是目前获得低温的主要方法。
一、节流过程的热力学特性工程热力学中认为,当气体在管道中流动,在遇到缩口和节流阀门时,由于局部阻力,使其压力显著下降,体积迅速膨胀,这种现象叫做“节流膨胀”。
气体经节流后,流速加大,气体内能和流动功将发生变化,又由于过程的时间较短,来不及与外界进行热量交换,一般可近似的认为节流过程是一个绝热过程,且不对外做功,气体的温度将发生一定变化。
大家知道焓(enthalpy)是某一状态下气体内能和流动功之和(H=U+PV),可以通过焓的这一定义,推导出气体在节流阀前的内能与流动功之和等于节流阀后的内能与流动功之和,也就是节流前后气体的焓值不变。
因为理想气体的焓值只是温度的函数,根据这一结论将十分清楚的告诉我们,理想气流体节流前后温度是不变的,因此对理想气体的节流研究是没有什么意义的。
由于实际气体的焓值是温度和压力的函数,那么实际气体的节流将与理想气体节流不同,实际气体节流后温度变化会有三种情况,即降温、升温、温度不变。
通常把低温液化气体节流后温度发生变化的这一现象,称之为“焦耳一汤姆逊效应” (Joule-Thomson effect )。
根据焓的定义和节流前后气体焓值不变的这一过程特性,可以得出气体节流前后内能变化等于气体流动功的变化,其关系式如下:u 1-u 2=P 2v 2-P 1v 1式中 u 1:节流前气体内能P 1:节流前气体压力v 1:节流前气体比容u 2:节流后气体内能P 2:节流后气体压力 V 2:节流后气体比容而气体的内能又由气体的内位能和内动能组成,因此气体节流功这三者的变化关系,其关系式如下:式中 T 1:节流前气体的温度u 1:节流前气体的位能T 2:节流后气体的温度u 2:节流后气体的位能C v :气体等容比热A :热功当量因为气体节流后,压力总是降低的,即比容增大,因此气体的内位能也将增大,也就是s s u u 12-为正值。
气体膨胀制冷

(a) 与压力 p2 的关系
(b) 与温度 T 的关系
图 5-4 氮气的-ΔhT 与压力 p2、温度 T 的关系
气体经过等温压缩和节流膨胀之后之所以具有制冷能力,是因为气体经等温压缩后比焓 值降低,气体的制冷能力是等温压缩时获得的,又通过节流表现出来。等温节流效应是等温 压缩和节流这两个过程的综合。 因为节流效应与压力、温度有关,所以等温节流效应也直接取决定于压力、温度。在一 定温度下,只要压力不超过对应温度下的转化压力,-ΔhT 将随压力的增加而增加。图 5- 4a 给出了氮气的-ΔhT 随压力的变化情况(T=300k) 。
在一定压力下,降低温度, -Δ hT 随之增大。图 5 - 4b 表示了氮气在 p1=0.1MPa, p2=25MPa 时,-ΔhT 与温度 T 的对应关系。可以看出,随着温度的降低,-ΔhT 可以增加 数倍。气体混合物的-ΔhT 值可以近似看为各组分的-ΔhT 值之和。
2.绝热节流制冷循环
简单绝热节流制冷循环称作林德( Linde )循环,系统组成如图 5-5 所示。图 5-6 为循 环的 T-s 图。系统由压缩机、冷却器、逆流换热器、节流阀和蒸发器组成。对于理想循环, 制冷工质在压缩机里从低压 p1 压缩到 p2,经冷却器等压冷却至常温(点 2) 。上述过程可近 似地认为压缩与冷却过程同时进行, 是一个等温压缩过程 (由此引起的误差由等温效率修正, 见后) ,在 T-s 图上简单地用等温线 1’-2 表示。然后经逆流换热器器冷却至状态 3,经 节流阀节流后到状态 4 并进入蒸发器。 在蒸发器中, 节流后形成的液体工质吸收被冷却物体 的热量 (即冷量) 蒸发为蒸气。 处于饱和状态的蒸气回流至换热器中用于冷却高压正流气体, 在理想情况下,本身复热到温度 T1,然后被吸入压缩机,完成整个循环。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、绝热节流过程
节流是高压流体气体、液体或气液混合物)在稳定流动中,遇到缩口或调节阀门等阻力元件时由于局部阻力产生,压力显著下降的过程。
节流膨胀过程由于没有外功输出,而且工程上节流过程进行得很快,流体与外界的热交换量可忽略,近似作为绝热过程来处理。
根据稳定流动能量方程:
δq=dh+δw(2.1)
得出绝热节流前后流体的比焓值不变,由于节流时流体内部存在摩擦阻力损耗,所以它是一个典型的不可逆过程,节流后的熵必定增大。
绝热节流后,流体的温度如何变化对不同特性的流体而言是不同的。
对于任何处于气液两相区的单一物质,节流后温度总是降低的。
这是由于在两相区饱和温度和饱和压力是一一对应的,饱和温度随压力的降低而降低。
对于理想气体,焓是温度的单值函数,所以绝热节流后焓值不变,温度也不变。
对于实际气体,焓是温度和压力的函数,经过绝热节流后,温度降低、升高和不变3种情况都可能出现。
这一温度变化现象称为焦耳-汤姆逊效应,简称J-T效应。
2、实际气体的节流效应
实际气体节流时,温度随微小压降而产生的变化定义为微分节流效应,也称为焦耳-汤姆
逊系数:
αh=(ɑT/ɑp)2.2)
αh>0表示节流后温度降低,αh<0表示节流后温度升高。
当压降(P2-P1)为一有限数值时,整个节流过程产生的温度变化叫做积分节流效应:
ΔTh=T2-T1=ƒp2p1αhdp(2.3)
理论上,可以使用热力学基本关系式推算出αh的表达式进行分析。
有焓的特性可知:
dh=cpdT-[T(αv/aT)p-v]dp(2.4)
由于焓值不变,dh=0,将上式移项整理可得:
αh=(αT/αp)h=1/cp[T(αv/αT)p-v](2.5)
由式(2.3)可知,微分节流效应的正负取决于T(αv/aT)p和v的差值。
若这一差值大于0,则αh>0节流时温度降低;若等于0则αh=0,节流时温度不变;若小于0则αh<0,节流时温度升高。
从物理实质出发,可以用气体节流过程中的能量转化关系来解释着三种情况的出现,由于节流前后气体的焓值不变,所以节流前后内能的变化等于进出推动功的差值:
u2-u1=p1v1-p2v2
气体的内能包括内动能和内位能两部分,而气体温度是降低、升高、还是不变,仅取决于气体内动
能是减小、增大、还是不变。
因气体节流后压力总是降低,比容增大,其内位能总是增大的。
由于实际气体与玻义耳定律存在偏差,在某个温度下节流后,pv值的变化可能有以下3种情况:
①p1v1<p2v2时u2<u1即节流后内能减小。
由于内位能总是增大的,所以内动能必定减小,那么节流后气体温度降低。
②p1v1=p2v2时u2=u1即节流后内能不变。
此时,内位能的增加等于内动能的减少,节流后气体温度仍然降低。
③p1v1>p2v2时u2>u1即节流后内能增大。
此时,若内能的增加小于内位能的增加,则内动能是减小的,温度仍是降低;若内能的增加大于内位能的增加,则内动能必然要增大,温度要上升。
由以上分析可知,在一定压力下,气体具有某一温度时,节流后满足p1v1>p2v2且pv值的减少量恰好补足了内位能的增量,这时节流前后温度不变,即微分节流效应等于0,这个温度称为转化温度,以Tinv表示。
转化温度的计算和变化关系可根据式(2.5),令αh=0得到。
下面利用范得瓦尔方程予以分析。
2a/9Rb(2±)
将范德瓦尔方程p=RT/v-b-a/v2在等压下对Ti求导得出(αv/αT)p后代入式(2.5)得:Αh=(αv/αT)h=(1/cp)(2a(1-b/v)2-RbT)/(RT-2a/v(1-b/v)2)(2.6)
当αh=0时,气体温度即为转化温度。
与范德瓦尔方程联立求解得:
Tinv=2a/9Rb(2±√1-(3b2/a)p)2(2.7)
式(2.7)表示的转化温度和压力的函数关系在坤图上为一连续曲线,称为转化曲线。
如图2.11所示,虚线是按式(2.7)计算得到,实线是通过实验得到。
二者的差别是由范德瓦尔方程在定量上的不准确引起的。
转化曲线存在一个最大转化压力pmax。
当p>pmax时,不存在转化温度;当p=pmax 时,只有一个转化温度;当p<pmax,对应于每个压力郡有两个转化温度,分别称为上转化温度分别称为上传化温度T’inv和下转化温度T”inv转化曲线将T-p两个区域:在转化曲线上,ah=0转化曲线外是制热区ah<0,节流后产生热效应;转化曲线内是制冷区ah>0,节流后产生冷效应。
从式(2.7)和图2.11中还可以得出p=0对应气体的最大转化温度Tmax。
表2.5列出了多种气体的最大转化温度。
对于大多数气体,如02,N2,,CO,空气等,最大转化温度都高于环境温度,故在环境温度下可以利用焦耳-汤姆逊效应来降温。
而Ne,H2,He的最大转化温度比室温低,不能单独用焦耳-汤姆逊效应降温,必须通过预冷或其他膨胀机来降低节流前的温度,节流后才会产生冷效应。
计算积分节流效应的方法很多,可直接将ah的经验公式代入式(2.3)中积分求解,工程中更实用的方法是采用气体T-s图h-T或者物性数据库来计算。
如图2.12所示,从节流前的状态点1(p1,T1)绘制等熔线,与节流后压力p2等压线交于点2,则两点之间的温差(T1-T2)即为要求的积分节流效应。
图解法使用简便,但精度较差,特别是在低压区,等恰线和等温线接近平行,误差更大。
由于节流前后比焓值是不变的,因此图2.12所示的节流过程1——2是一个降温而不制冷的过程。
如果将气体由起始状态0(p2,T1)等温压缩到状态1(p1,T1),再令其节流到状态2(P2,T2),节流后的气体恢复到原来的状态0(P2,T1),所吸收的热量即为单位制冷量:
因此,气体经过等温压缩和节流膨胀之后具有制冷能力,称为等温节流效应-Δht气体的制冷能力是等温压缩时获得的,又通过节流表现出来。
3、绝热节流制冷循环
一种简单的绝热节流制冷循环也被称作林德(Linde)循环(见图2.13)。
图2.14为循环的T-s图。
在理想情况下,气体在压缩机里进行的是一个等温压缩过程1——2。
实际上,气体是从低压p1(状态1)压缩到p2,经冷却器等压冷却至常温(状态2,该过程近似地认为压缩与冷却过程同时进行。
压缩后的气体经逆流换热器,与冷气流发生热交换被冷却至较低温度(状态3),然后经过节流阀膨胀到状态4并进入蒸发器。
在蒸发器中,节流后形成的液体工质从外界吸收热量蒸发,即产生制冷量。
处于饱和状态的蒸气通过换热器复热到温度乙(实际状态I,与状态l存在小的温差),然后被吸人压缩机,完成整个循环。
林德循环获得的制冷温度可以通过节流阀控制蒸发压力进行调节。
制冷温度的下限则受到三相点温度以及高真空很难维持的限制,要获得比液态N,更低的制冷温度,可采用工质Ne,H2,He。
但这些工质在常温下节流会产生热效应,必须首先将气体温度预冷到转化温度以下。
节流制冷循环的性能系数低,经济性较差,但由于其组成简单、无低温下的运动部件、可靠性高,所以仍然得到重视。
用高压贮气瓶代替压缩机作气源的开式节流制冷循环,更便于微型化和轻量化,在红外制导等领域得到了广泛使用。
目前,节流制冷循环研究的新进展在于利用混合工质代替纯工质以便达到降低压力、提高效率的目的。
4、节流液化循环
气体绝热节流可以膨胀到含液量大的气液两相区,其很重要的一个应用是进行气体液化。
气体液化系统与以制取冷量为目的的普通制冷系统区别在于:在普通制冷循环中,制冷剂进行的是封闭循环过程;而气体液化循环是一开式循环,所用的气体在循环过程中既起制冷剂的作用,本身又被部分或全部地液化作为液态产品输出。