高中物理选修3-3计算题学习资料

合集下载

高中物理选修3-3试题大全

高中物理选修3-3试题大全

一、分子动理论(微观量计算、布朗运动、分子力、分子势能)1、用油膜法测出分子的直径后,要测定阿伏加德罗常数,只需知道油滴( A 、摩尔质量B 、摩尔体积C 、体积D 、密度2、将1cm 3油酸溶于酒精中,制成 200cm 3油酸酒精溶液。

已知1cm 3溶液中有50滴。

现取一滴油酸酒精溶液滴到水面 上,随着酒精溶于水后,油酸在水面上形成一单分子薄层。

已测出这薄层的面积为 0.2m 2,由此估测油酸分子的直径为()-10-10-9-9A 、2X 10 mB 、5X 10 mC 、2X 10 mD 、5X 10 m3、只要知道下列哪一组物理量,就可以估算出气体中分子间的平均距离( )A •阿伏加德罗常数、该气体的摩尔质量和质量B •该气体的摩尔质量和密度C.阿伏加德罗常数、该气体的摩尔体积 D •该气体的密度、体积和质量4、若以M 表示水的摩尔质量, V 表示在标准状态下水蒸气的摩尔体积, p 为在标准状态下水蒸气的密度,加德罗常数,m 、V 。

表示每个水分子的质量和体积,下面是四个关系式:(1) N^ —m⑵匸二」(3) m 二也(4) V 。

二工其中( )N A V 0 N A N AA . (1 )和(2)都是正确的B • (1)和(3)都是正确的 C . (3 )和(4)都是正确的D . (1) 和(4)都是正确的5、 关于布朗运动,下列说法正确的( )A •布朗运动就是分子的无规则运动B.布朗运动是液体分子的无规则运动C.温度越高,布朗运动越剧烈D.在00C 的环境中, 布朗运动消失 6、关于布朗运动,卜列说法中止确的疋( )A •悬浮在液体或气体中的小颗粒的无规则运动就是分子的无规则运动B •布朗运动反映了悬浮微粒分子的无规则运动C .分子的热运动就是布朗运动D •悬浮在液体或气体中的颗粒越小,布朗运动越明显7、在较暗的房间里,从射进来的阳光中,可以看到悬浮在空气中的微粒在不停地运动,这些微粒的运动是( A .是布朗运动B .空气分子运动C .自由落体运动D .是由气体对流和重力引起的运动8做布朗运动实验,得到某个观测记录如图所示. 图中记录的是()A •分子无规则运动的情况B .某个微粒做布朗运动的轨迹C ・某个微粒做布朗运动的速度 一时间图线D •按等时间间隔依次记录的某个运动微粒位置的连线 9、以下关于分子力的说法正确的是 ( )A.分子间既存在引力也存在斥力 B.液体难以被压缩表明液体分子间只有斥力存在 C.气体分子间总没有分子力的作用 D.扩散现象表明分子间不存引力10、 分子间的相互作用力由引力 f 引和斥力f 斥两部分组成,则()A . f 引和f 斥是同时存在的B . f 引总是大于f 斥,其合力总是表现为引力C .分子间的距离越小,f 引越小,f 斥越大D .分子间的距离越小,f 弓越大,f 斥越小 11、 若两分子间距离为r o 时,分子力为零,则关于分子力、分子势能说法中正确的是( A .当分子间的距离为r o 时,分子力为零,也就是说分子间既无引力又无斥力 B .分子间距离大于r o 时,分子距离变小时,分子力一定增大C .分子间距离小于r 0时,分子距离变小时,分子间斥力变大,引力变小12、两个分子开始时相隔 10倍分子直径以上的距离,在它们逐渐被压缩到不能再靠近的过程中,以下说法正确的是 13、a 、b 两分子相距较远,此时它们之间的分子力可忽略,设 a 固定不动,b 逐渐向a 靠近,直到很难再靠近的整个过程中()N A 为阿伏D .在分子力作用范围内,不管r>r 0,还是r<r 0,斥力总是比引力变化快, ( )A .分子势能先增大后减小C .分子势能先减小后增大.B .分子力先增大后减小D .分子力先减小后增大A、分子力总是对b做正功B、b总是克服分子力做功4、 关于热量、功和内能三个物理量,下列说法中正确的是( ) A 、热量、功和内能三者的物理意义相同,只是说法不同 B 、热量、功都可以作为物体内能变化的量度 C 、热量、功和内能的单位不同D 、功由过程决定,而热量和内能由物体的状态决定5、 一定质量的理想气体在某一过程中,外界对气体做功 7.0X 104J,气体内能减少1.3X 105J ,则此过程()55A 、气体从外界吸收热量 2.0 X 10 JB 、气体向外界放出热量2.0X 10 J C 、气体从外界吸收热量 2.0 X 104 J D 、气体向外界放出热量6.0 X 104J6、 以下说法错误的是()A •能量耗散过程中能量仍守恒B •在轮胎爆裂这一短暂过程中,气体膨胀,温度下降C •满足能量守恒定律的客观过程并不都是可以自发进行的D •从单一热源吸取热量,使之全部变成有用的机械功是不可能的7、将一定质量的气体圭寸闭在气缸中,用力迅速向下压缩活塞,会观察到气缸内的消化棉被点燃的现象;在气体压缩过 程中,下列说法中正确的是( )A 、每个气体分子动能均增加B 、气体压强保持不变C 、 克服摩擦力做功,使气体内能增加,温度升高D 、活塞对气体做功,使气体内能增加,温度升高8下列说法中正确的是 ()A 、 •对于理想热机,若无摩擦、漏气等能量损失,就能使热机效率达到 100 %B 、 •热量不能从低温物体传到高温物体C 、.一切物理过程都具有方向性D 、 由热力学定律可推断出某个物理过程是否能自发进行三、气体的性质1、 对一定量的理想气体,下列说法正确的是( )A •气体体积是指所有气体分子的体积之和B •气体分子的热运动越剧烈,气体的温度就越高C 、 当气体膨胀时,气体的分子势能减小,因而气体的内能一定减少D •气体的压强是由气体分子的重力产生的,在失重的情况下,密闭容器内的气体对器壁没有压强 2、 关于气体的状态参量,下列说法中正确的是( )A .温度由气体分子热运动的平均速度决定B .体积就是气体所有分子体积的总和C .气体压强是由气体分子间的斥力产生的D •压强在数值上就等于气体对单位面积器壁的压力3、 下列说法正确的是()A.气体对器壁的压强就是大量气体分子作用在器壁单位面积上的平均作用力 E 、 气体对器壁的压强就是大量气体分子单位时间作用在器壁上的平均作用力C 、b 先克服分子力做功,然后分子力对 b 做正功 14、分子间的势能与体积的关系,以下说法正确的是(A 、物体的体积增大,分子间势能增加。

人教版高二物理选修3-3 综合复习3-3计算题(17张PPT)课件

人教版高二物理选修3-3   综合复习3-3计算题(17张PPT)课件
(2)对下部分气体进行分析,初状态压强为 p0,体积为 h2S,温度为 T1,末状态压强为 p,体积设为 h3S,温度为 T2。
由理想气体状态方程可得:p0Th12S=phT32S,
得:h3=pp0TT12h2=11.5××11005× 5×430000×18 cm=16 cm。 对上部分气体进行分析,因 M 活塞是导热的,所以上 部分气体作等温变化,根据玻意耳定律可得: p0(h1-h2)S=pLS,得:L=6 cm。 故此时活塞 M 距离底端的距离为 h4=16 cm+6 cm=22 cm。
V1=S2l-2l +
l S12
①,
V2=S2l ②,在活塞缓慢下移的过程中,用 p1 表示缸内气体的压强,
由力的平衡条件得:S1(p1-p)=m1g+m2g+S2(p1-p) ③,故缸内气体
的压强不变。
由盖-吕萨克定律有VT11=VT22 =330 K ⑤。
④,联立①②④式并代入题给数据得 T2
(2)在大活塞与大圆筒底部刚接触时,被封闭气体的压强为 p1。在此 后与汽缸外大气达到热平衡的过程中,被封闭气体的体积不变。设达到
热平衡时被封闭气体的压强为 p′,由查理定律,有pT′=Tp12 联立③⑤⑥式并代入题给数据得 p′=1.01×105 Pa。
⑥,
• 变式.一汽缸竖直放在水平地面上,缸体质量M=10 kg,活塞质量m=4 kg,活塞 横截面积S=2×10-3 m2,活塞上面的汽缸内封闭了一定质量的理想气体,下面有 气孔O与外界相通,大气压强p0=1.0×105 Pa;活塞下面与劲度系数k=2×103 N/m 的轻弹簧相连;当汽缸内气体温度为127 ℃时弹簧为自然长度,此时缸内气柱长度 L1=20 cm,g取10 m/s2,缸体始终竖直,活塞不漏气且与缸壁无摩擦.

最新高中物理人教版选修3-3:综合复习测试卷及答案

最新高中物理人教版选修3-3:综合复习测试卷及答案

最新人教版物理精品资料第Ⅰ卷(选择题 共48分)一、选择题(本题包括12个小题,每小题4分,共48分.每小题给出的四个选项中,有的只有一个选项正确,有的有多个选项正确,全部选对的得4分,选对但不全的得2分,选错或不选的不得分)1.下列说法中正确的是 ( )A .温度是分子平均动能的标志B .物体的体积增大时,分子势能一定增大C .分子间的引力和斥力都随分子间距离的增大而减小D .利用阿伏伽德罗常数和某种气体的密度,就一定可以求出该种气体的分子质量2.如图1所示,甲分子固定在坐标原点O ,乙分子位于x 轴上,甲分子对乙分子的作用力与两分子间距离的关系如图中曲线所示,F >0为斥力,F <0为引力,a 、b 、c 、d 为x 轴上四个特定的位置,现把乙分子从a 处由静止释放,则 ( )A .乙分子由a 到b 做加速运动,由b 到c 做减速运动B .乙分子由a 到c 做加速运动,到达c 时速度最大C .乙分子由a 到c 的过程,动能先增后减D .乙分子由b 到d 的过程,两分子间的分子势能一直增加 3.若以M 表示水的摩尔质量,V 表示在标准状态下水蒸气的摩尔体积,ρ为在标准状态下水蒸气的密度,A N 为阿伏加德罗常数,m 、v 分别表示每个水分子的质量和体积,下面是四个关系式,正确的是:( )A .A V N mρ= B .A M N v ρ= C .A M m N = D .A V v N = 4.关于液体和固体,以下说法正确的是 ( )A .液体分子间的相互作用比固体分子间的相互作用强B .液体分子同固体分子一样,也是密集在一起的C .液体分子的热运动没有固定的平衡位置D .液体的扩散比固体的扩散快5.甲、乙两个相同的密闭容器中分别装有等质量的同种气体,已知甲、乙容器中气体的压强分别为 甲p 、 乙p ,且 甲p < 乙p ,则( )图1A.甲容器中气体的温度高于乙容器中气体的温度B.甲容器中气体的温度低于乙容器中气体的温度C.甲容器中气体分子的平均动能小于乙容器中气体分子的平均动能D.甲容器中气体分子的平均动能大于乙容器中气体分子的平均动能6.如图2所示,两个相通的容器P、Q间装有阀门K,P中充满气体,Q为真空,整个系统与外界没有热交换.打开阀门K后,P中的气体进入Q中,最终达到平衡,则()A.气体体积膨胀对外做功,内能减小,温度降低B.气体对外做功,内能不变,温度不变C.气体不做功,内能不变,温度不变,压强减小D.Q中气体不可能自发地全部退回到P中7.恒温的水池中,有一气泡缓慢上升,在此过程中,气泡的体积会逐渐增大,不考虑气泡内气体分子势能的变化,下列说法中正确的是()A.气泡内的气体对外界做功B.气泡内的气体内能增加C.气泡内的气体与外界没有热传递D.气泡内气体分子的平均动能保持不变8.如图3所示,某同学将空的薄金属筒开口向下压入水中.设水温均匀且恒定,筒内空气无泄漏,不计气体分子间相互作用,则被掩没的金属筒在缓慢下降过程中,筒内空气体积减小.()A.从外界吸热B.内能增大C.向外界放热D.内能减小9.一定质量的理想气体,初始状态为p、V、T。

(完整版)人教版物理选修3-3热学计算题专项突破训练(解析版)

(完整版)人教版物理选修3-3热学计算题专项突破训练(解析版)

热学计算题(二)1.如下图,一根长L=100cm 、一端封闭的细玻璃管张口向上竖直搁置,管内用h=25cm 长的水银柱封闭了一段长L1=30cm 的空气柱.已知大气压强为75cmHg ,玻璃管四周环境温度为27℃.求:Ⅰ.若将玻璃管迟缓倒转至张口向下,玻璃管中气柱将变为多长?Ⅱ.若使玻璃管张口水平搁置,迟缓高升管内气体温度,温度最高高升到多少摄氏度时,管内水银不可以溢出.2.如下图,两头张口、粗细平均的长直U 形玻璃管内由两段水银柱封闭着长度为15cm 的空气柱,气体温度为 300K 时,空气柱在U 形管的左边.( i )若保持气体的温度不变,从左边张口处迟缓地注入25cm 长的水银柱,管内的空气柱长为多少?( ii )为了使空气柱的长度恢复到15cm,且回到原地点,能够向U 形管内再注入一些水银,并改变气体的温度,应从哪一侧注入长度为多少的水银柱?气体的温度变为多少?(大气压强P0=75cmHg ,图中标注的长度单位均为cm)3.如下图, U 形管两臂粗细不等,张口向上,右端封闭的粗管横截面积是张口的细管的三倍,管中装入水银,大气压为76cmHg 。

左端张口管中水银面到管口距离为11cm,且水银面比封闭管内高4cm,封闭管内空气柱长为11cm。

此刻张口端用小活塞封住,并迟缓推进活塞,使两管液面相平,推进过程中两管的气体温度一直不变,试求:①粗管中气体的最后压强;②活塞推进的距离。

4.如下图,内径粗细平均的U 形管竖直搁置在温度为7℃的环境中,左边管上端张口,并用轻质活塞封闭有长l 1=14cm ,的理想气体,右边管上端封闭,管上部有长l 2=24cm 的理想气体,左右两管内水银面高度差 h=6cm ,若把该装置移至温度恒为27℃的房间中(依旧竖直搁置),大气压强恒为p0=76cmHg ,不计活塞与管壁间的摩擦,分别求活塞再次均衡时左、右双侧管中气体的长度.5.如下图,张口向上竖直搁置的内壁圆滑气缸,其侧壁是绝热的,底部导热,内有两个质量均为 m 的密闭活塞,活塞 A 导热,活塞 B 绝热,将缸内理想气体分红Ⅰ、Ⅱ两部分.初状态整个装置静止不动且处于均衡状态,Ⅰ、Ⅱ两部分气体的高度均为l 0,温度为00T .设外界大气压强为P 保持不变,活塞横截面积为 S,且 mg=P0S,环境温度保持不变.求:在活塞 A 上渐渐增添铁砂,当铁砂质量等于2m 时,两活塞在某地点从头处于均衡,活塞 B 降落的高度.6.如图,在固定的气缸 A 和 B中分别用活塞封闭必定质量的理想气体,活塞面积之比为S A: S B=1: 2,两活塞以穿过 B 的底部的刚性细杆相连,可沿水平方向无摩擦滑动.两个气缸都不漏气.初始时,A、 B中气体的体积皆为 V 00=300K . A 中气体压强A00A 加,温度皆为T P =1.5P, P 是气缸外的大气压强.现对1热,使此中气体的体积增大4V 0,温度升到某一温度T.同时保持 B 中气体的温度不变.求此时 A 中气体压强(用 P0表示结果)和温度(用热力学温标表达)7.如下图为一简略火灾报警装置.其原理是:竖直搁置的试管中装有水银,当温度高升时,水银柱上涨,使电路导通,蜂鸣器发出报警的响声.27℃时,空气柱长度 L1为,水银上表面与导线下端的距离 L 2为,管内水银柱的高度h 为,大气压强20cm10cm13cm P =75cmHg.(1)当温度达到多少摄氏度时,报警器会报警?(2)假如要使该装置在 87℃时报警,则应当再往玻璃管内注入多少cm 高的水银柱?8.如下图,导热气缸 A 与导热气缸 B 均固定于地面,由刚性杆连结的导热活塞与两气缸间均无摩擦,两活塞面积S A、 S B的比值4: 1,两气缸都不漏气;初始状态系统处于均衡,两气缸中气体的长度皆为7L ,温度皆为 t=27℃, A 中气体压强PA=8P ,P 是气缸外的大气压强;000(Ⅰ)求 b 中气体的压强;(Ⅱ)若使环境温度迟缓高升,而且大气压保持不变,求在活塞挪动位移为L时环境温度为多少摄氏2度?9.如图,两气缸AB 粗细平均,等高且内壁圆滑,其下部由体积可忽视的细管连通; A 的直径为 B 的 2倍, A 上端封闭, B 上端与大气连通;两气缸除 A 顶部导热外,其他部分均绝热.两气缸中各有一厚度可忽视的绝热轻活塞a、 b,活塞下方充有氮气,活塞 a 上方充有氧气;当大气压为P0,外界随和缸内气1体温度均为7℃且均衡时,活塞 a 离气缸顶的距离是气缸高度的 4 ,活塞b在气缸的正中央.(ⅰ)现经过电阻丝迟缓加热氮气,当活塞 b 升至顶部时,求氮气的温度;(ⅱ)持续迟缓加热,使活塞 a 上涨,当活塞 a 上涨的距离是气缸高度的1时,求氧气的压强.16、B 汽缸的水平长度均为、截面积均为2,C 是可在汽缸内无摩擦滑动的、10. A20 cm10 cm体积不计的活塞, D 为阀门.整个装置均由导热资料制成.开初阀门封闭, A 内有压强 P A=4.0 ×105 Pa 的氮气. B 内有压强 P B 2.0 ×105Pa 的氧气.阀门翻开后,活塞 C 向右挪动,最后达到均衡.求活塞 C 挪动的距离及均衡后 B 中气体的压强.11.如下图,内壁圆滑长度为4l 、横截面积为S 的汽缸 A 、 B ,A 水平、 B 竖直固定,之间由一段容积可忽视的细管相连,整个装置置于温度27℃、大气压为p0的环境中,活塞C、 D 的质量及厚度均忽视不计.原长 3l、劲度系数k 3 p0 SC、另一端固定在位于汽缸 A 缸口的 O 点.开的轻弹簧,一端连结活塞l始活塞 D 距汽缸 B 的底部 3l .后在 D 上放一质量为m p0 S的物体.求:g( 1)稳固后活塞 D 降落的距离;( 2)改变汽缸内气体的温度使活塞 D 再回到初地点,则气体的温度应变为多少?答案分析1.解:Ⅰ.以玻璃管内封闭气体为研究对象,设玻璃管横截面积为S,初态压强为:P1=P0+h=75+25=100cmHg , V 1=L 1S=30S,倒转后压强为:P2=P0﹣ h=75﹣ 25=50cmHg ,V 2=L 2S,由玻意耳定律可得:P1L 1=P2L2,100 ×30S=50 ×L 2S,解得: L 2=60cm ;Ⅱ. T 1=273+27=300K ,当水银柱与管口相平常,管中气柱长为:L 3=L ﹣ h=100 ﹣ 25cm=75cm ,体积为: V 3=L 3S=75S,P3 =P0﹣h=75 ﹣25=50cmHg ,由理想气体状态方程可得:代入数据解得:T3=375K ,t=102 ℃2.解:(ⅰ)因为气柱上边的水银柱的长度是25cm,因此右边水银柱的液面的高度比气柱的下表面高25cm,因此右边的水银柱的总长度是25+5=30cm ,试管的下边与右边段的水银柱的总长45cm,因此在左侧注入 25cm 长的水银后,设有长度为x 的水银处于底部水平管中,则50﹣x=45解得 x=5cm即 5cm 水银处于底部的水平管中,末态压强为75+ ( 25+25)﹣ 5=120cmHg ,由玻意耳定律p1 V1=p2V 2代入数据,解得:L 2=12.5cm(ⅱ)由水银柱的均衡条件可知需要也向右边注入25cm 长的水银柱才能使空气柱回到 A 、B 之间.这时空气柱的压强为:P3 =(75+50 ) cmHg=125cmHg由查理定律,有:=解得 T 3=375K3.①88cmHg ;② 4. 5cm①设左管横截面积为S,则右管横截面积为3S,以右管封闭气体为研究对象.初状态p1= 80 cmHg , V 1=11×3S= 33S,两管液面相平常,Sh1= 3Sh2, h1+ h2= 4 cm,解得 h2= 1 cm,此时右端封闭管内空气柱长l= 10 cm,V 2= 10×3S= 30S即 80×33S= p2×30S 解得 p2= 88cmHg②以左管被活塞封闭气体为研究对象p1′= 76 cmHg , V 1′= 11S,p2= p2′= 88 cmHg气体做等温变化有p1′V1′= p2′V2′解得 V 2′= 9. 5S活塞推进的距离为L = 11 cm+ 3 cm- 9.5 cm= 4. 5cm4.解:设管的横截面积为S,活塞再次均衡时左边管中气体的长度为l ,′左边管做等压变化,则有:此中,T=280K , T′=300K,解得:设均衡时右边管气体长度增添x,则由理想气体状态方程可知:此中,h=6cmHg解得: x=1cm因此活塞均衡时右边管中气体的长度为25cm.5.解:对 I 气体,初状态,末状态由玻意耳定律得:因此,对 II 气体,初状态,末状态由玻意耳定律得:因此, l2= l0B 活塞降落的高度为:= l0;6.解:活塞均衡时,由均衡条件得:P A S A+P B S B =P0(S A +S B)①,P A′S A+P B′S B=P0( S A+S B)②,B 中气体初、末温度相等,末体V B,由玻意耳定律得: P B BBV 0④,′V=PA 中气体末的体 V A,因两活塞移的距离相等,故有=⑤,A 中气体,由理想气体状方程得:⑥,代入数据解得:P B=,P B′=,P A′ =2P0,V A=,V B=,T A==500K ,7.① 177℃② 8 cm①封气体做等化,管横截面S,初: V1=20S, T1=300K,末: V2=30S,由盖克定v1v2,解得 T =450K,因此 t =177℃.律可得:T T222② 当有xcm 水柱注入会在87 ℃警,由理想气体状方程可得:p1v1=p2v2 ,T1T2代入数据解得x=8 cm.8.解:( 1)初汽缸 B 内的p B,两活塞及性杆成的系由均衡条件有:p A S A +p0S B =p B S B+p0S A⋯①据已知条件有:S A: S B=4: 1⋯②立①②有:p B =;( 2)末汽缸 A 内的 p A ',汽缸 B 内的p B',境温度由上涨至的程中活塞向右移位移 x,汽缸 A 中的气体由理想气体状方程得:⋯③汽缸 B 中的气体,由理想气体状方程得:⋯④末两活塞及性杆成的系由均衡条件有:p A 'S A +p 0S B=p B 'S B+p0S A⋯⑤立③④⑤得:t=402℃.9.解:(ⅰ)活塞 b 升至部的程中,活塞 a 不,活塞a、 b 下方的氮气等程.气缸 A 的容V 0,氮气初体V 1,温度T 1,末体V 2,温度T2,按意,气缸 B 的容V 0,得:V2= V0+ V0=V0,②依据盖 ?吕萨克定律得:=,③由①②③式和题给数据得:T2=320K ;④(ⅱ)活塞 b 升至顶部后,因为持续迟缓加热,活塞 a 开始向上挪动,直至活塞上涨的距离是气缸高度的时,活塞 a 上方的氧气经历等温过程,设氧气初态体积为V 1′,压强为 P1′,末态体积为V 2′,压强为P2′,由题给数占有,V 1′=V 0,P1′ =P0, V 2′= V 0,⑤由玻意耳定律得: P1′V1′ =P2′V2′,⑥由⑤⑥式得: P20.⑦′=P10. 6.7 cm 3×105 Pa分析:由玻意耳定律,对 A 部分气体有P A LS P( L x) S ①对 B 部分气体有P B LS P( L x)S②代入有关数据解得x=20=6.7cm,P=3×10 5 Pa 311.解:( 1)开始时被封闭气体的压强为,活塞 C 距气缸 A 的底部为l ,被封气体的体积为4lS,重物放在活塞 D 上稳固后,被封气体的压强为:活塞 C 将弹簧向左压缩了距离,则活塞 C 受力均衡,有:依据玻意耳定律,得:解得: x=2l活塞 D 降落的距离为:( 2)高升温度过程中,气体做等压变化,活塞 C 的地点不动,最后被封气体的体积为,对最先和最后状态,依据理想气体状态方程得解得:。

高中物理选修3-3气体压强专项练习题(附答案)

高中物理选修3-3气体压强专项练习题(附答案)

选修3—3 气体压强计算专项练习一、计算题1、一定质量的理想气体从状态A变化到状态B再变化到状态C,其状态变化过程的p﹣V图象如图所示.已知该气体在状态A时的温度为27℃.则:①该气体在状态B和C时的温度分别为多少℃?②该气体从状态A经B再到C的全过程中是吸热还是放热?传递的热量是多少?2、一定质量理想气体经历如图所示的A→B、B→C、C→A三个变化过程,T A=300 K,气体从C→A的过程中做功为100 J,同时吸热250 J,已知气体的内能与温度成正比。

求:(i)气体处于C状态时的温度T C;(i i)气体处于C状态时内能U C.3、如图所示,一个内壁光滑的导热气缸竖直放置,内部封闭一定质量的理想气体,环境温度为27℃,现将一个质量为m=2kg的活塞缓慢放置在气缸口,活塞与气缸紧密接触且不漏气.已知活塞的横截面积为S=4。

0×10﹣4m2,大气压强为P0=1。

0×105Pa,重力加速度g取10m/s2,气缸高为h=0。

3m,忽略活塞及气缸壁的厚度.(i)求活塞静止时气缸内封闭气体的体积.(ii)现在活塞上放置一个2kg的砝码,再让周围环境温度缓慢升高,要使活塞再次回到气缸顶端,则环境温度应升高到多少摄氏度?4、【2017·开封市高三第一次模拟】如图所示,一汽缸固定在水平地面上,通过活塞封闭有一定质量的理想气体,活塞与缸壁的摩擦可忽略不计,活塞的截面积S=100 cm2.活塞与水平平台上的物块A用水平轻杆连接,在平台上有另一物块B,A、B的质量均为m=62.5 kg,物块与平台间的动摩擦因数μ=0.8。

两物块间距为d=10 cm。

开始时活塞距缸底L1=10 cm,缸内气体压强p1等于外界大气压强p0=1×105Pa,温度t1=27 ℃.现对汽缸内的气体缓慢加热,(g=10 m/s2)求:①物块A开始移动时,汽缸内的温度;②物块B开始移动时,汽缸内的温度。

专题13选修3-3(计算题)-高三名校物理试题解析分项汇编(新课标Ⅱ版)(第01期)(解析版)

专题13选修3-3(计算题)-高三名校物理试题解析分项汇编(新课标Ⅱ版)(第01期)(解析版)

(精心整理,诚意制作)全国新课标Ⅱ卷有其特定的命题模板,无论是命题题型、考点分布、模型情景等,还是命题思路和发展趋向方面都不同于其他省市的地方卷。

为了给全国新课标Ⅱ卷考区广大师生提供一套专属自己的复习备考资料,学科网物理解析团队的名校名师们精心编写了本系列资料。

本资料以全国新课标Ⅱ卷考区的最新名校试题为主,借鉴并吸收了其他省市最新模拟题中对全国新课标Ⅱ卷考区具有借鉴价值的典型题,优化组合,合理编排,极限命制。

备注:新课标Ⅰ卷专版所选试题和新课标Ⅱ卷专版所选试题不重复,欢迎同时下载使用。

专题13 选修3-3(计算题)(解析版)1.【20xx·云南省玉溪一中、昆明三中、楚雄一中高三统考】一定量的理想气体在某一过程中,外界对气体做功2.0×105J,气体内能减少1.2×105J,则在这一过程中,气体________(填“吸收”或“放出”)的热量是_________J。

2.【2014·吉林××市高三8月摸底考试】(9分)两端开口、内表面光滑的U形管处于竖直平面内,如图所示,质量均为m=10kg的活塞A、B在外力作用下静止于左右管中同一高度A处,将管内空气封闭,此时管内外空气的压强均为p0=1.0×105 Pa左管和水平管横截面积S1=10 cm2,右管横截面积S2 =20cm2,水平管长为3h。

现撤去外力让活塞在管中下降,求两活塞稳定后所处的高度。

(活塞厚度均大于水平管直径,管内气体初末状态温度相同,g取10 m/s2)2.解析:撤去外力后左侧向下的压强:50012.010Pa2mgp p pS=+=⨯=左右侧向下的压强:5002 1.510Pa 1.5mg p p p S =+=⨯=右 故活塞均下降,且左侧降至水平管口。

设右侧降至高为x 处,此时封闭气体压强变为:p ′=1.5p 0对封闭气体:p 0(4hS 1+hS 2)=1.5p 0(3hS 1+xS 2),解得:x =0.5h 。

高中物理选修3-3必背资料

高中物理选修3-3必背资料

高中2021届物理记背资料(选修3-3)〇、知识网络1、理论基础(1)微观——分子动理论↕统计观点——质量、体积、温度、压强、内能,阿伏加德罗常数(2)宏观——热力学定律(〇、一、二、三)2、物质凝聚态(1)固体——晶体(单晶体、多晶体)、非晶体↕液晶(2)液体——表面张力↕汽液共存态——饱和蒸汽(压)、不饱和蒸汽,相对湿度(3)气体——气体实验定律(理想气体:nRT pV =)一、二级结论(一)分子动理论与统计观点1、分子直径数量级为10-10m ,质量数量级为10-26~10-27kg 。

2、微观量和宏观量的关系:(1)分子的质量m 0与摩尔质量M :m 0=M N A =ρV m N A;(2)分子的体积V 0与摩尔体积V m :V 0=V m N A =M ρN A(只适用于固体、液体,不适用于气体);(3)物体所含的分子数:N =n ·N A ,N =V V m ·N A =m ρV m ·N A ,N =m M ·N A =ρV M·N A 。

3、分子热运动的实验依据:扩散现象、布朗运动(1)扩散现象:温度越高,分子平均速率越大,扩散越快;气体最快,液体次之,固体最慢;(2)布朗运动:布朗粒子(固体颗粒)被液体分子撞击的不平衡性而导致的运动;温度越高(液体分子无规则运动越剧烈),布朗粒子越小,液体分子对布朗粒子撞击的不平衡性越明显,布朗运动越剧烈。

4、分子力曲线,分子势能曲线5、麦克斯韦气体分子速率分布律与温度(1)气体温度较高时,较多的分子处于速率较大的区间,温度较低时,较多的分子处于速率较小的区间;但是,无论温度高低,都有分子速率很大和很小的分子;(2)温度是分子平均动能的标志:k 2i E kT =——平均平动动能kT E 23k =。

6、物体的内能,等于物体中所有分子的热运动的动能与分子势能的总和;物体内能的大小由物体的温度、体积和物质的量共同决定。

高中物理选修3-3知识点梳理及习题

高中物理选修3-3知识点梳理及习题

高中物理选修3-3知识点梳理及习题一、电流和电阻1.电流的概念:电荷在单位时间内通过导体的量。

电流的单位是安培(A),1A等于1C/s。

2.电流的计算:I=Q/t,其中I为电流,Q为通过截面的电荷量,t为通过截面的时间。

3.电阻的概念:材料对电流的阻碍程度。

电阻的单位是欧姆(Ω),1Ω等于1V/A。

4.欧姆定律:U=IR,其中U为电压,I为电流,R为电阻。

5.导体和绝缘体:导体具有较低的电阻,能够很容易地传导电流;绝缘体具有很高的电阻,不容易传导电流。

二、电阻的影响因素1.长度:电阻与电阻长度成正比,R∝l。

2.截面积:电阻与截面积的倒数成正比,R∝1/A。

3.材料电阻率:电阻与材料电阻率成正比,R∝ρ。

4.电阻串联:串联电阻等效电阻等于各电阻的总和。

5.电阻并联:并联电阻等效电阻满足倒数之和的倒数。

三、电压、电流和功率1.电压的概念:电荷的电位差,也称为电势差。

电压的单位是伏特(V),1V等于1J/C。

2.电流和电压的关系:U=IR,其中U为电压,I为电流,R为电阻。

3.功率的概念:单位时间内做功的量。

功率的单位是瓦特(W),1W等于1J/s。

4.功率的计算:P=IV,其中P为功率,I为电流,V为电压。

5.电阻的功率计算:P=I^2R=V^2/R,其中P为功率,I为电流,R为电阻,V为电压。

四、电路中的能量变换1.电源的作用:提供电压差,驱动电荷在电路中流动。

2.电源的类型:干电池、蓄电池、发电机等。

3.电路的分类:串联电路、并联电路和混联电路。

4.串联电路中的电压:串联电路中各电器所接收的电压等于总电压。

5.并联电路中的电流:并联电路中各电器所接受的电流等于总电流。

综合练习题:1.一根电阻为10Ω的导线中通过电流2A,求导线两端的电压。

解:U=IR=10Ω×2A=20V2.一个电阻为5Ω的电灯接在12V的电压源上,求电灯的功率。

解:P=(12V)^2/5Ω=28.8W3.有一个串联电路,其中包括一个电阻为20Ω的灯泡和一个电阻为30Ω的电热器,接入220V的电压源,求电路总电阻和总电流。

高中物理选修3-3大题复习(含答案)

高中物理选修3-3大题复习(含答案)

高三物理选修3-3大题训练1.(10分)如图,一定质量的理想气体被质量可忽略的活塞封闭在可导热的气缸内,活塞距底部的高度为h=0.1m,可沿气缸无摩擦地滑动。

取箱沙子缓慢地倒在活塞的上表面上,沙子倒完时,活塞下降了△h=0.02m,在此过程中外界大压和温度始终保持不变已知大气压p0=1.0×105Pa,活塞横截面积为S=4.0×10﹣3m2,求:(g取10N/kg)(i)这箱沙子的质量。

(ii)若环境温度t0=27o C,加热气缸使活塞回到原来的h高度,则对气缸内的气体需如热到多少摄氏度?2.(10分)如图甲所示,在内壁光滑、导热性良好的汽缸内通过有﹣定质量的密封活塞,密封一部分气体汽缸水平放置时,活塞距离汽缸底部的距离为L,现迅速将汽缸竖立起来,活塞缓慢下降,稳定后,活塞距离汽缸底部的距离为,如图乙所示。

已知活塞的横截面为S,大气压强为p0,环境温度为T0,重力加速度为g,求:(1)末态时气体的压强P 1。

(2)活塞的质量m;(3)在此过程中,气体与外界交换的热量Q。

3.(10分)如图所示,竖直放置的导热气缸,活塞横截面积为S=0.01m2,可在气缸内无摩擦滑动,气缸侧壁有一个小孔与装有水银的U形玻璃管相通,气缸内封闭了一段高为H =70cm的气柱(U形管内的气体体积不计)。

已知活塞质量m=20.4kg,大气压强p0=105Pa,水银密度ρ=13.6×103kg/m3,g=10m/s2。

(1)求U形管中左管与右管的水银面的高度差h1;(2)在活塞上加一竖直向上的拉力使U形管中左管水银面高出右管水银面h2=5cm,求活塞平衡时与气缸底部的高度为多少厘米?(结果保留两位有效数字)。

4.(10分)在一个横截面积为S=10cm2的圆柱形容器中,有一个质量不计的活塞用弹簧和底部相连,容器中密闭有一定质量的理想气体,当温度为t1=27℃时,弹簧恰好处于原长,此时活塞和底面相距L=20cm,已知弹簧的劲度系数k=10N/cm,外部大气压强为p0=1.0×105Pa,若在活塞上放一质量为m1的物体,活塞静止时下降10cm,温度仍为27℃,不计活塞与容器壁的摩擦,弹簧的形变在弹性限度范围内,g=10m/s2,(i)求物体m1的质量?(ii)如果把活塞内气体加热到,t2=57℃并保持不变,为使活塞静止时位置距容器底面距离仍为10cm,求活塞上应再加物体的质量m2。

物理选修三3-3复习题

物理选修三3-3复习题

物理选修三3-3复习题物理选修三3-3通常指的是高中物理选修课程中关于热学、热力学和统计物理的部分。

以下是一份复习题的内容:# 物理选修三3-3复习题一、选择题1. 热力学第一定律的数学表达式是什么?A. ΔU = Q - WB. ΔU = Q + WC. ΔU = Q / WD. ΔU = W / Q2. 以下哪个不是热力学第二定律的表述?A. 不可能从单一热源吸热使之完全转化为功而不产生其他影响。

B. 不可能实现一个循环过程,其唯一结果就是将热量从冷物体传到热物体。

C. 热量不能自发地从低温物体传到高温物体。

D. 热量总是从高温物体传到低温物体。

3. 什么是熵?A. 热力学系统的无序度B. 热力学系统的有序度C. 热力学系统的功D. 热力学系统的热量二、填空题4. 热力学第一定律表明能量______,即能量不能被创造或消灭,只能从一种形式转化为另一种形式。

5. 熵增加原理是热力学第二定律的一种表述,它表明在一个孤立系统中,熵总是______。

三、简答题6. 解释什么是理想气体,并简述其状态方程。

7. 描述什么是热机,并简述其工作原理。

四、计算题8. 一个理想气体在等压过程中从体积V1=2m³增加到V2=4m³,压强P=1.5×10⁵Pa。

求气体在这个过程中所做的功W。

9. 一个系统从单一热源吸热Q=100J,同时对外做功W=50J,求该系统内能的变化ΔU。

五、论述题10. 论述热力学第二定律在日常生活和工业生产中的应用。

请注意,以上题目仅为示例,实际的复习题应根据具体的教学大纲和课程内容进行设计。

希望这份复习题能够帮助学生更好地复习物理选修三3-3的知识点。

2020年高三年级高考复习:选修3-3计算题部分汇集(下)(解析版)

2020年高三年级高考复习:选修3-3计算题部分汇集(下)(解析版)

高考复习选修3-3计算题部分汇集(下)解析版大牛(2020年3月12日)1.封闭在气缸内一定质量的理想气体由状态A变到状态D,其体积V与热力学温度T的关系如图所示。

该气体的摩尔质量为M,状态A的体积为V0,温度为T0,O、A、D三点在同一直线上。

在上述过程中,气体对外做功为5J,内能增加9J。

则:①气体吸收热量还是放出热量,热量为多少焦耳?②若在状态D的体积为2V0,则状态D的温度为多少?2.一定质量的理想气体经历如图所示的A→B、B→C、C→A三个变化过程,T A=300K,气体从C→A的过程中吸热250J,已知气体的内能与温度成正比.求:(1)气体在状态B 的温度T B;(2)C→A的过程中气体内能改变多少?(3)气体处于状态C时的内能E C.3.如图所示,为一汽缸内封闭的一定质量的气体的p﹣V图线,当该系统从状态a沿过程a→c→b到达状态b时,有335J的热量传入系统,系统对外界做功126J.求:(1)若沿a→d→b过程,系统对外做功42J,则有多少热量传入系统?(2)若系统由状态b沿曲线过程返回状态a时,外界对系统做功84J,问系统是吸热还是放热?热量传递是多少?4.如图所示,横截面积为S,质量为M的活塞在气缸内封闭着一定质量的理想气体,现对气缸内气体缓慢加热,使其温度从T1升高了∆T,气柱的高度增加了ΔL,吸收的热量为Q,不计气缸与活塞的摩擦,外界大气压强为p0,重力加速度为g,求:①此加热过程中气体内能增加了多少?②若保持缸内气体温度不变,再在活塞上放一砝码,如图所示,使缸内气体的体积又恢复到初始状态,则放砝码的质量为多少?5.一定质量的理想气体经历了如图所示的A→B→C→D→A循环,该过程每个状态视为平衡态,各状态参数如图所示。

A状态的压强为51⨯Pa,求:10(i)B状态的温度;(ii)完成一个循环,气体与外界热交换的热量。

6.如图所示,一长为L、内横截面积为S的绝热气缸固定在水平地面上,气缸内用一质量为m的绝热活塞封闭了一定质量的理想气体,幵始时活塞用销钉固定在气缸正中央,气缸内被封闭气体压强为P ,外界大气压为P0(P>P0).现释放活塞,测得活塞被缸内气体推到缸口时的速度为V .求:(1)此过程克服大气压力所做的功;(2)活塞从释放到将要离开缸口,缸内气体内能改变了多少?7.一只篮球的体积为V 0,球内气体的压强为p 0,温度为T 0。

(完整word版)高中物理人教版选修3-3课后习题整理

(完整word版)高中物理人教版选修3-3课后习题整理

高中物理人教版选修3-3课后习题整理第七章分子动理论7.11. 把一片很薄的均匀薄膜放在盐水中,把盐水密度调节为1.2×10 3 kg/m 3 时薄膜能在盐水中悬浮。

用天平测出尺寸为10 cm×20 cm的这种薄膜的质量是36 g,请计算这种薄膜的厚度。

2. 在做“用油膜法估测分子的大小”实验时,每 10 4 mL 油酸酒精溶液中有纯油酸6 mL。

用注射器测得 75 滴这样的溶液为 1 mL。

把 1 滴这样的溶液滴入盛水的浅盘里,把玻璃板盖在浅盘上并描画出油酸膜轮廓,如图 7.1-4 所示。

图中正方形小方格的边长为 1 cm。

(1) 1 滴油酸酒精溶液中含有纯油酸的体积是多少?(2) 油酸膜的面积是多少?(3) 按以上数据,估算油酸分子的大小。

3. 把铜分子看成球形,试估算铜分子的直径。

已知铜的密度为8.9×10 3 kg/m 3 ,铜的摩尔质量为6.4×10 - 2 kg/mol。

4. 在标准状态下,氧气分子之间的平均距离是多少?已知氧气的摩尔质量为3.2×10 - 2 kg/mol,1 mol气体处于标准状态时的体积是 2.24×10 - 2 m 3 。

7.22. 以下关于布朗运动的说法是否正确?说明道理。

(1) 布朗运动就是分子的无规则运动。

(2) 布朗运动证明,组成固体小颗粒的分子在做无规则运动。

(3) 一锅水中撒一点胡椒粉,加热时发现水中的胡椒粉在翻滚。

这说明温度越高布朗运动越激烈。

(4) 在显微镜下可以观察到煤油中小粒灰尘的布朗运动,这说明煤油分子在做无规则运动。

7.31. 请描述:当两个分子间的距离由小于r 0 逐渐增大,直至远大于r 0时,分子间的引力如何变化?分子间的斥力如何变化?分子间引力与斥力的合力又如何变化?2. 当两个分子间的距离由图 7.3-2 中的 r 0 逐渐增大时,分子间相互作用力的合力会出现一个极大值。

高中物理选修3_3气体压强专项练习题附答案

高中物理选修3_3气体压强专项练习题附答案

选修3-3气体压强计算专项练习一、计算题 1、一定质量的理想气体从状态A变化到状态B再变化到状态C.其状态变化过程的p-V图象如图所示.已知该气体在状态A时的温度为27℃.则:①该气体在状态B和C时的温度分别为多少。

C?②该气体从状态A经B再到C的全过程中是吸热还是放热?传递的热量是多少?2、一定质量理想气体经历如图所示的A T B、B T C、C T A三个变化过程.T A=300 K.气体从C—A的过程中做功为100 J. 同时吸热250 J.已知气体的内能与温度成正比。

求:(i)气体处于C状态时的温度T ;C(i i)气体处于C状态时内能U C。

3、如图所示.一个内壁光滑的导热气缸竖直放置.内部封闭一定质量的理想气体.环境温度为27C.现将一个质量为m=2kg的活塞缓慢放置在气缸口.活塞与气缸紧密接触且不漏气.已知活塞的横截面积为S=4.0X10-4m2.大气压强为P=1.0X105Pa.重力加速度g取10m/s2.气缸高为h=0.3m.忽略活塞及气缸壁的厚度.(i)求活塞静止时气缸内封闭气体的体积.(ii)现在活塞上放置一个2kg的砝码.再让周围环境温度缓慢升高.要使活塞再次回到气缸顶端.则环境温度应升高到多少摄氏度?4、【2017 •开封市高三第一次模拟】如图所示一汽缸固定在水平地面上.通过活塞封闭有一定质量的理想气体.活塞与缸壁的摩擦可忽略不计.活塞的截面积S=100 cm2.活塞与水平平台上的物块A用水平轻杆连接.在平台上有另一物块B.A、B的质量均为m=62.5 kg.物块与平台间的动摩擦因数日二0.8.两物块间距为d=10cm.开始时活塞距缸底L=10 cm.1缸内气体压强p1等于外界大气压强p『1X105 Pa.温度t1=27 ℃.现对汽缸内的气体缓慢加热.(g=10 m/s2)求:①物块A开始移动时.汽缸内的温度;②物块B开始移动时.汽缸内的温度.5、如图所示.一导热性能良好、内壁光滑的气缸水平放置.横截面积为S=2X10 - 3m2质量为m=4kg厚度不计的活塞与气缸底部之间封闭了一部分气体.此时活塞与气缸底部之间的距离为24cm.在活塞的右侧12cm处有一对与气缸固定连接的卡环.气体的温度为300K.大气压强P=1.0X105Pa.现将气缸竖直放置.如图所示.取g=10m/s2求:(1)活塞与气缸底部之间的距离;(2)加热到675K时封闭气体的压强.6、一个上下都与大气相通的直圆筒.内部横截面积为S=0.01m2.中间用两个活塞A和B封住一定质量的气体。

选修3-3(高中物理习题)

选修3-3(高中物理习题)

高三一轮物理复习(人教版)选修3-3一、选择题(本大题共6小题,每小题4分,共24分,每小题至少有一个选项正确,选不全得3分)1.两个分子由于距离发生变化而使得分子势能变小,则可以判断在这一过程中A.一定是分子力做了正功B.两分子间的相互作用力可能增大C.两分子间的距离一定变大D.两分子间的相互作用力一定是引力解析分子势能减小一定是分子力做正功,这可能是引力做正功(分子间距变小)或斥力做正功(分子间距变大).答案AB2.对于气体,下列说法正确的是A.气体的体积是所有气体分子的体积之和B.气体温度越高,气体分子的热运动就越剧烈C.气体对容器的压强是由大量气体分子对容器不断碰撞而产生的D.气体压强的大小只与气体分子的密集程度有关答案BC3.下列说法中正确的是A.多晶体具有确定的几何形状B.单晶体的各向异性是由晶体微观结构决定的C.由于液体可以流动,因此液体表面有收缩的趋势D.饱和汽压与液面上饱和汽的体积无关解析多晶体没有确定的几何形状,A项错误,B项正确;液体表面的分子间距大于内部的分子间距,在引力作用下收缩,与流动无关,C项错误;饱和汽压与温度有关,与液面上饱和汽的体积无关,D项正确.答案BD4.下列说法中正确的是A.扩散运动向着更为无序的方向进行,是可逆过程B.物体的内能取决于温度、体积和物质的量C.分子间作用力随分子间距离的增大而减小D.液晶对不同颜色光的吸收强度随电场强度的变化而变化解析一切宏观自然过程都是不可逆的,选项A错误;在平衡位置以内,分子间作用力随分子间距离的增大而减小,在平衡位置以外,分子间作用力随分子间距离的增大先增大再减小,选项C错误.答案BD5.下列说法正确的是A.悬浮在液体中的微粒越大,在某一瞬间撞击它的液体分子数越多,布朗运动越明显B.没有摩擦的理想热机可以把吸收的能量全部转化为机械能C.知道某物质的摩尔质量和密度可求出阿伏加德罗常数D.内能不同的物体,它们分子热运动的平均动能可能相同解析悬浮在液体中的微粒越大,在某一瞬间撞击它的液体分子数越多,微粒受力越趋于平衡,布朗运动越不明显,A错.根据热力学第二定律可知机械能可以全部转化为内能,但是内能不可以全部转化为机械能,而不引起其他变化,B错.知道物质的摩尔质量和密度可以求出摩尔体积,但不能求出阿伏加德罗常数,C错.内能不同的物体温度可能相同,分子平均动能可能相同,D对.答案 D6.如图1所示,一定质量的理想气体密封在绝热(即与外界不发生热交换)容器中,容器内装有一可以活动的绝热活塞.今对活塞施以一竖直向下的压力F,使活塞缓慢向下移动一段距离后,气体的体积减小.若忽略活塞与容器壁间的摩擦力,则被密封的气体图1A.温度升高,压强增大,内能减少B.温度降低,压强增大,内能减少C.温度升高,压强增大,内能增加D.温度降低,压强减小,内能增加解析由于气体密闭在绝热容器中,所以Q=0,体积减小,则外界对气体做功,W>0,由热力学第一定律ΔU=W+Q>0,所以气体内能增加,温度升高.由理想气体状态方=C可以判断压强增大,选项C正确.程pVT答案 C7.(12分)(1)(4分)关于空气湿度,下列说法正确的是 (填入正确选项前的字母。

高中物理选修3-3计算题

高中物理选修3-3计算题

高中物理选修3-3计算题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN(2009年高考宁夏理综卷)34. [物理——选修3-3](15分)(2)(10分)图中系统由左右连个侧壁绝热、底部、截面均为S的容器组成。

左容器足够高,上端敞开,右容器上端由导热材料封闭。

两个容器的下端由可忽略容积的细管连通。

容器内两个绝热的活塞A、B下方封有氮气,B上方封有氢气。

大气的压强p0,温度为T0=273K,连个活塞因自身重量对下方气体产生的附加压强均为0.1 p0。

系统平衡时,各气体柱的高度如图所示。

现将系统的底部浸入恒温热水槽中,再次平衡时A上升了一定的高度。

用外力将A缓慢推回第一次平衡时的位置并固定,第三次达到平衡后,氢气柱高度为0.8h。

氮气和氢气均可视为理想气体。

求(i)第二次平衡时氮气的体积;(ii)水的温度。

6.(2012全国新课标).[物理——选修3-3](15分)(1)(6分)关于热力学定律,下列说法正确的是_________(填入正确选项前的字母,选对1个给3分,选对2个给4分,选对3个给6分,每选错1个扣3分,最低得分为0分)。

A.为了增加物体的内能,必须对物体做功或向它传递热量B.对某物体做功,必定会使该物体的内能增加C.可以从单一热源吸收热量,使之完全变为功D.不可能使热量从低温物体传向高温物体E.功转变为热的实际宏观过程是不可逆过程(2)(9分)如图,由U形管和细管连接的玻璃泡A、B和C浸泡在温度均为0°C的水槽中,B的容积是A的3倍。

阀门S将A和B两部分隔开。

A内为真空,B和C内都充有气体。

U形管内左边水银柱比右边的低60mm。

打开阀门S,整个系统稳定后,U形管内左右水银柱高度相等。

假设U形管和细管中的气体体积远小于玻璃泡的容积。

(i)求玻璃泡C中气体的压强(以mmHg为单位)(ii)将右侧水槽的水从0°C加热到一定温度时,U形管内左右水银柱高度差又为60mm,求加热后右侧水槽的水温。

高中物理选修3-3气体压强专项练习题(附答案)

高中物理选修3-3气体压强专项练习题(附答案)

选修3-3 气体压强计算专项练习一、计算题1、一定质量的理想气体从状态A变化到状态B再变化到状态C,其状态变化过程的p﹣V图象如图所示.已知该气体在状态A时的温度为27℃.则:①该气体在状态B和C时的温度分别为多少℃?②该气体从状态A经B再到C的全过程中是吸热还是放热?传递的热量是多少?2、一定质量理想气体经历如图所示的A→B、B→C、C→A三个变化过程,T A=300 K,气体从C→A的过程中做功为100 J,同时吸热250 J,已知气体的内能与温度成正比。

求:(i)气体处于C状态时的温度T C;(i i)气体处于C状态时内能U C。

3、如图所示,一个内壁光滑的导热气缸竖直放置,内部封闭一定质量的理想气体,环境温度为27℃,现将一个质量为m=2kg的活塞缓慢放置在气缸口,活塞与气缸紧密接触且不漏气.已知活塞的横截面积为S=4.0×10﹣4m2,大气压强为P0=1.0×105Pa,重力加速度g取10m/s2,气缸高为h=0.3m,忽略活塞及气缸壁的厚度.(i)求活塞静止时气缸内封闭气体的体积.(ii)现在活塞上放置一个2kg的砝码,再让周围环境温度缓慢升高,要使活塞再次回到气缸顶端,则环境温度应升高到多少摄氏度?4、【2017·开封市高三第一次模拟】如图所示,一汽缸固定在水平地面上,通过活塞封闭有一定质量的理想气体,活塞与缸壁的摩擦可忽略不计,活塞的截面积S=100 cm2.活塞与水平平台上的物块A用水平轻杆连接,在平台上有另一物块B,A、B的质量均为m=62.5 kg,物块与平台间的动摩擦因数μ=0.8.两物块间距为d=10 cm.开始时活塞距缸底L1=10 cm,缸内气体压强p1等于外界大气压强p0=1×105Pa,温度t1=27 ℃.现对汽缸内的气体缓慢加热,(g=10 m/s2)求:①物块A开始移动时,汽缸内的温度;②物块B开始移动时,汽缸内的温度.5、如图所示,一导热性能良好、内壁光滑的气缸水平放置,横截面积为S=2×10﹣3m2质量为m=4kg厚度不计的活塞与气缸底部之间封闭了一部分气体,此时活塞与气缸底部之间的距离为24cm,在活塞的右侧12cm处有一对与气缸固定连接的卡环,气体的温度为300K,大气压强P0=1.0×105Pa.现将气缸竖直放置,如图所示,取g=10m/s2求:(1)活塞与气缸底部之间的距离;(2)加热到675K时封闭气体的压强.6、一个上下都与大气相通的直圆筒,内部横截面积为S = 0.01m2,中间用两个活塞A和B封住一定质量的气体。

人教版高中物理选修3-3测试题及答案解析全套

人教版高中物理选修3-3测试题及答案解析全套

人教版高中物理选修3-3测试题及答案解析全套含模块综合测试题,共5套阶段验收评估(一)分子动理论(时间:50分钟满分:100分)一、选择题(本题共8小题,每小题6分,共48分,第1~5小题中只有一个选项符合题意,第6~8小题中有多个选项符合题意,全选对的得6分,选对但不全的得3分,有选错的得0分) 1.下列说法中正确的是()A.扩散现象就是布朗运动B.布朗运动是扩散现象的特例C.布朗运动就是分子热运动D.扩散现象、布朗运动和分子热运动都随温度的升高而变得剧烈解析:选D扩散现象:相互接触的物质彼此进入对方的现象。

不同的固体间、液体间、气体间均可以发生。

扩散现象可以是分子的扩散,也可以是原子、电子等微观粒子的扩散,是由两种接触物质的浓度差引起的。

同种物质间无所谓扩散运动,但同种物质内分子也存在永不停息的无规则运动。

布朗运动:悬浮在液体或气体中的小颗粒的无规则的运动。

它是由液体或气体分子对悬浮颗粒的无规则的碰撞不平衡引起的,并不是分子的无规则运动,也不是扩散现象。

但是扩散现象和布朗运动都反映了分子的无规则热运动。

2.关于温度的概念,下述说法中正确的是()A.温度是分子平均动能的标志,温度越高,则分子平均动能越大B.温度是分子平均动能的标志,温度升高,则物体的每一个分子的动能都增大C.当某物体的内能增加时,则该物体的温度一定升高D.甲物体的温度比乙物体的温度高,则甲物体分子平均速率比乙物体分子平均速率大解析:选A温度是分子平均动能的标志,温度升高,则分子平均动能增大,但不是每一个分子的动能都增大,A正确,B错误。

物体的内能等于所有分子动能和势能之和,内能的变化与分子动能、势能都有关系,C错误。

甲物体的温度比乙物体的温度高,甲物体分子平均动能比乙物体分子平均动能大,由于不明确甲、乙物体分子质量的大小,无法判定两者分子平均速率大小,D错误。

3.A、B两个分子的距离等于分子直径的10倍,若将B分子向A分子靠近,直到不能再靠近的过程中,关于分子力做功及分子势能的变化说法正确的是()A.分子力始终对B做正功,分子势能不断减小B.B分子始终克服分子力做功,分子势能不断增大C.分子力先对B做正功,而后B克服分子力做功,分子势能先减小后增大D.B分子先克服分子力做功,而后分子力对B做正功,分子势能先增大后减小解析:选C由于两分子的距离等于分子直径的10倍,即r=10-9m,则将B分子向A分子靠近的过程中,分子间相互作用力对B分子先做正功、后做负功,分子势能先减小、后增大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精品文档
精品文档
(2009年高考宁夏理综卷) 34. [物理——选修3-3](15分)
(2)(10分)图中系统由左右连个侧壁绝热、底部、截面均为S 的容器组成。

左容器足够高,上端敞
开,右容器上端由导热材料封闭。

两个容器的下端由可忽略容积的细管连通。

容器内两个绝热的活塞A 、B 下方封有氮气,B 上方封有氢气。

大气的压强p 0,温度为T 0=273K ,
连个活塞因自身重量对下方气体产生的附加压强均为0.1 p 0。

系统平衡时,各气体柱的高度如图所示。

现将系统的底部浸入恒温热水槽中,再次平衡时A 上升了一定的高度。

用外力将A 缓慢推回第一次平衡时的位置并固定,第三次达到平衡后,氢气柱高度为0.8h 。

氮气和氢气均可视为理想气体。


(i )第二次平衡时氮气的体积; (ii )水的温度。

6.(2012全国新课标).[物理——选修3-3](15分) (1)(6分)关于热力学定律,下列说法正确的是_________
(填入正确选项前的字母,选对1个给3分,选对2个给4分,选对3个给6分,每选错1个扣3分,最低得分为0分)。

A.为了增加物体的内能,必须对物体做功或向它传递热量
B.对某物体做功,必定会使该物体的内能增加
C.可以从单一热源吸收热量,使之完全变为功
D.不可能使热量从低温物体传向高温物体
E.功转变为热的实际宏观过程是不可逆过程 (2)(9分)如图,由U 形管和细管连接的玻璃泡A 、B 和C 浸泡在温度均为0°C 的水槽中,B 的容积是A 的3倍。

阀门S 将A 和B 两部分隔开。

A 内为真空,B 和C 内都充有气体。

U 形管内左边水银柱比右边的低60mm 。

打开阀门S ,整个系统稳定后,U 形管内左右水银柱高度相等。

假设U 形管和细管中的气体体积远小于玻璃泡的容积。

(i )求玻璃泡C 中气体的压强(以mmHg 为单位) (ii )将右侧水槽的水从0°C 加热到一定温度时,U 形管内左右水银柱高度差又为60mm ,求加热后右侧水槽的水温。

15、(2013年海南物理)如图,一带有活塞的气缸通过底部的水平细管与一个上端开口的竖直管相连,气缸与竖直管的横截面面积之比为3:1,初始时,该装置的底部盛有水银;活塞与水银面之间有一定量的气体,气柱高度为l (以cm 为单位);竖直管内的水银面比气缸内的水银面高出3l /8。

现使活塞缓慢向上移动11l /32,这时气缸和竖直管内的水银面位于同一水平面上,求初始时气缸内气体的压强(以cmHg 为单位)
16、 (2013年新课标Ⅰ卷) 如图,两个侧壁绝热、顶部和底部都导热的相同气缸直立放置,气缸底部和顶部均有细管连通,顶部的细管带有阀门K.两气缸的容积均为V 0气缸中各有一个绝热活塞(质量不同,厚度可忽略)。

开始时K 关闭,两活塞下方和右活塞上方充有气体(可视为理想气体),压强分别为P o 和P o /3;左活塞在气缸正中间,其上方为真空; 右活塞上方气体体积为V 0/4。

现使气缸底与一恒温热源接触,平衡后左活塞升至气缸顶部,且与顶部刚好没有接触;然后打开K ,经过一段时间,重新达到平衡。

已知外界温度为T 0,不计活塞与气缸壁间的摩擦。

求:
(i) 恒温热源的温度T ;
(ii) 重新达到平衡后左气缸中活塞上方气体的体积V x 。

17、(2013年新课标Ⅱ卷)如图,一上端开口、下端封闭的细长玻璃管竖直放置。

玻璃管的下部封有长l1=25.0cm 的空气柱,中间有一段长为l2=25.0cm 的水银柱,上部空气柱的长度l3=40.0cm 。

已知大气压强为P0=75.0cmHg 。

现将一活塞(图中未画出)从玻璃管开口处缓缓往下推,使管下部空气柱长度变为l1’=20.0cm 。

假设活塞下推过程中没有漏气,求活塞下推的距离。

3l /8
l。

相关文档
最新文档