四年级奥数第3讲标数法
四年级奥数教程第3讲:横式数字谜
四年级奥数教程第3讲:横式数字谜例1:下列算式中, ○ □各代表什么数字?(1) + + =129解(1)△表示一个数,△+△+△=△×3,于是,△=129÷3=43;(2)8×□-51÷3=478×=47+17 口=64÷:8 =8(3)36-150÷ =96÷6 把150÷☆看成一个数,得到 150÷☆=36-6, 150÷☆=30,☆=150÷30, ☆=5例2:如果○+□=6,□=○+○,那么,□-○= 。
分析要求口-的值,必须求出□=?O=?将□=O+O 代入O+□=6中可求出出○的值,进而求出□的值. 也可以由条件口=O+O 分析得出□为偶数,这样6可以分解为2+4,从面求出O 、的值 解法一把□=+O 代入+=6中,得 +O+=6,即30=6,O=2, 这样□=4,口-O=4-2=2 解法二由□=O+O 知,口一定是个偶数,而O+=6,因此O 也 是偶数由6=2+4,得O=2,□=4,□-O=4-2=2. 说明此题含有两个未知数O 、口,要设法通过代入将其转化为只含有个未知数的式子,这样就可寻求突破随堂练习1:下列各式中,□代表什么数: (1)□×9+6×□=600÷2 (2) 25×25-□÷3=610 (1)口×(9+6)=300,=300÷15, 口=20(2)625-□÷3=610, 口÷3=625-610, 口÷3=15=15×3 □=45.例3:将数字0、1、3、4、5、6填入下面的□内,使等式成立,每个空格只填入一个数字,并且所填数字不能重复。
□×□=□2=□□÷□分析上面等式中,因为积与商相等,所以被除数是较大的一个数,可以考虑6或7.先用7去试,只能7×1=7÷1,7与1不能重复用,排除7.再用6去 试,有三种情况(1)2×3=6÷1; (2)2×1=6÷3; (3)3×1=6:2 根据题意列式得到4+7-5=6; 4+5-7=2 说明(1)(2)符合题意,(3)不成立 解(1)2×3=6÷1=4+7-5; (2)2×1=6÷3=4+5-7例4:在下列等号左边的每两个数字之间,添上加号或减号,也可以用括号,使算式成立。
小学奥数 几何计数(三) 精选练习例题 含答案解析(附知识点拨及考点)
1.掌握计数常用方法;2.熟记一些计数公式及其推导方法;3.根据不同题目灵活运用计数方法进行计数.本讲主要介绍了计数的常用方法枚举法、标数法、树形图法、插板法、对应法等,并渗透分类计数和用容斥原理的计数思想.一、几何计数在几何图形中,有许多有趣的计数问题,如计算线段的条数,满足某种条件的三角形的个数,若干个图分平面所成的区域数等等.这类问题看起来似乎没有什么规律可循,但是通过认真分析,还是可以找到一些处理方法的.常用的方法有枚举法、加法原理和乘法原理法以及递推法等.n 条直线最多将平面分成21223(2)2n n n ++++=++……个部分;n 个圆最多分平面的部分数为n (n -1)+2;n 个三角形将平面最多分成3n (n -1)+2部分;n 个四边形将平面最多分成4n (n -1)+2部分……在其它计数问题中,也经常用到枚举法、加法原理和乘法原理法以及递推法等.解题时需要仔细审题、综合所学知识点逐步求解.排列问题不仅与参加排列的事物有关,而且与各事物所在的先后顺序有关;组合问题与各事物所在的先后顺序无关,只与这两个组合中的元素有关.二、几何计数分类数线段:如果一条线段上有n +1个点(包括两个端点)(或含有n 个“基本线段”),那么这n +1个点把这条线段一共分成的线段总数为n +(n -1)+…+2+1条数角:数角与数线段相似,线段图形中的点类似于角图形中的边.数三角形:可用数线段的方法数如右图所示的三角形(对应法),因为DE 上有15条线段,每条线段的两端点与点A 相连,可构成一个三角形,共有15个三角形,同样一边在BC 上的三角形也有15个,所以图中共有30个三角形.ED CBA数长方形、平行四边形和正方形:一般的,对于任意长方形(平行四边形),若其横边上共有n 条线段,纵边上共有m 条线段,则图中共有长方形(平行四边形)mn 个.模块一、立体几何计数【例 1】 用同样大小的正方体小木块堆成如下图的立体图形,那么一共用了__________块小正方体。
奥数标数法练习 计数之标数法经典例题讲解
奥数标数法练习计数之标数法经典例题讲解解答:第1步:在起点A处标1。
再观察点B,要想到达点B,只有一个入口A,所以在B点也标1。
第2步:再观察点C,要想到达点C,它有两个入口A和B,所以在点C处标1+1=2。
同理重复点F,点D,点E,点G,点H,点I【第三篇】分析:既然要走最短路线,自然是不能回头走,所以从A地到B地的过程中只能向右或向下走.我们首先来确认一件事,如下图从A地到P点有m种走法,到Q点有n种走法,那么从A地到B 地有多少种走法呢?就是用加法原理,一共有m+n种走法.这个问题明白了之后,我们就可以来解决这道例题了:首先由于只能向右或向下走,那么最上面一行和最左边一列的每一个点都只能有一种走法,(因为不可以走回头路).我们就在这些交点的旁边标记上一个数字,代表走到这个位置有多少种方法.【第四篇】有一个5位数,每个数字都是1,2,3,4,5中的一个,并且相临两位数之差是1.那么这样的5位数到底有多少个呢?(数字可以重复) 这是一道数论的题目,但是我们也可以使用标数法来解答,并且非常直观.到第一站可以有5种选择,每种选择有一种走法,那么下一站,走1号门就只有一种走法(就是第一站走的2号门),走2号门就有2种走法(第一站走1号或3号门)走3号门也是2种走法(第一站走2号门或4号门)走4号门2种走法(第一站走3号门或者5号门)走5号门只有一种走法(第一站走的是4号门)我们发现在这一站经过某个门有多少种走法,正好等于他左上和右上的两个数字和.于是我们可以将数字标全.这道题的答案就是42种,虽然很多同学会用枚举法也能做出42种,但是一旦这道题给的不是5位数,而是7位数,9位数的话,枚举法就显得无力了.这种时候标数法是个不错的选择.可以用到标数法的问题有很多,大家掌握这种方法之后可以解决很多平时看起来很麻烦的题目。
小奥四年级标数法
四年级计数问题:标数法难度:高难度如图,某城市的街道由5条东西向马路和7条南北向马路组成,现在要从西南角的处沿最短的路线走到东北角出,由于修路,十字路口不能通过,那么共有____种不同走法.解答:四年级计数问题:标数法难度:中难度如图为一幅街道图,从A出发经过十字路口B,但不经过C走到D的不同的最短路线有条.解答:计数习题标数法和加法原理的综合应用(★★★★)有20个相同的棋子,一个人分若干次取,每次可取1个,2个,3个或4个,但要求每次取之后留下的棋子数不是3或4的倍数,有()种不同的方法取完这堆棋子.【分析】把20、0和20以内不是3或4的倍数的数写成一串,用标号法把所有的方法数写出来:考点说明:本题主要考察学生对于归纳递推思想的理解,具体来说就是列表标数法的使用,难度一般,只要发现了题目中的限制条件,写出符合条件的剩余棋子数,然后进行递推就可以了。
<评价> :计数问题在各大考试中所占的分量越来越重,计数的知识也学习的比较早,标号法是加乘原理中加法原理的内容,在四年级以前已经学习过,但是灵活应用学习过的知识才是学习最重要的意义,六年级上(第十一级)第10讲会将计数问题与应用题或者最值问题进行综合学习,学习后能力会有进一步的提高。
计数方法与技巧(标数法例题1)计数方法与技巧(标数法例题2)计数方法与技巧(标数法例题3)1. 如图所示,小明家在A地,小学在B地,电影院在C地。
1.小明从家里去学校,走最短的线路,有多少种走法?2.小明从家里去电影院,走最短线路,有多少种走法?如图,从一楼到二楼有12梯,小明一步只能上1梯或2梯,问小明从1楼上到2楼有多少种走法?一只蜜蜂从A处出发,回到家里B处,每次只能从一个蜂房爬向右侧邻近的蜂房而不准逆行,共有多少种回家的方法?解答:蜜蜂“每次只能从一个蜂房爬向右侧邻近的蜂房而不准逆行”这意味着它只能从小号码的蜂房爬进相邻的大号码的蜂房。
明确了行走路径的方向,就可运用标数法进行计算。
小学奥数计数之标数法经典例题讲解【三篇】
小学奥数计数之标数法经典例题讲解【三篇】
解答:蜜蜂“每次只能从一个蜂房爬向右侧邻近的蜂房而不准逆行”
这意味着它只能从小号码的蜂房爬进相邻的大号码的蜂房。
明确了行
走路径的方向,就可使用标数法实行计算。
如图所示,小蜜蜂从A出发到B处共有89种不同的回家方法。
【第二篇】
例1.按图中箭头所指的方向行走,从A到I共有多少条不同的路线?
解答:
第1步:在起点A处标1。
再观察点B,要想到达点B,只有一个入口A,所以在B点也标1。
第2步:再观察点C,要想到达点C,它有两个入口A和B,所以在点
C处标1+1=2。
同理重复点F,点D,点E,点G,点H,点I
【第三篇】
分析:既然要走最短路线,自然是不能回头走,所以从A地到B地
的过程中只能向右或向下走.
我们首先来确认一件事,如下图
从A地到P点有m种走法,到Q点有n种走法,那么从A地到B地有多少种走法呢?
就是用加法原理,一共有m+n种走法.
这个问题明白了之后,我们就能够来解决这道例题了:
首先因为只能向右或向下走,那么最上面一行和最左边一列的每一个点都只能有一种走法,(因为不能够走回头路).
我们就在这些交点的旁边标记上一个数字,代表走到这个位置有多少种方法.。
标数法: 用来解决计算最短路线问题的方法,在给出的图形中
1 1 1 1 1 1 2 3 4 5 6 5 11 11 11 1 3 1 4 1 5 5 1 6 11 11 11 22
B
4. 采用标数法(如图) .可得从学校到少年宫共有 90 种走法.
少年宫 90 42 48 20 6 1 28 14 5 1
14 14 9 4 1 5 5 3 1 2 2 1 1 学校
【例 6】 图中的“我爱希望杯”有多少种不同的读法。
“为什么蜈蚣出门要这么长时间呢?” “因为它要穿鞋呀… …”
1.
一只蚂蚁在长方形格纸上的 A 点, 它想去 B 点玩, 但是不知走哪条路最近. 小朋友们, 你能给它找到几条这样的最短路线呢?
A
B
2. 阿强和牛牛结伴骑车去图书馆看书,第一天他们从学校直接去图书馆;第二天他们先 去公园看大熊猫再去图书馆;第三天公园修路不能通行.咱们学而思的小朋友都很聪 明,请你们帮阿强和牛牛想想这三天从学校到图书馆的最短路线分别有多少种不同的 走法?
【例 4】
下图是大宽学校附近小区的平面图,今天从家里去上学需要先去 G 路口 办点事。请问:大宽经过 G 路口上学有多少种不同的最短路线?
【例 5】 (第七届小机灵杯三年级第 10 题) 下图中有 10 个编好号码的房间,你可以从小号码的房间周围到相邻的大号码的 房间,但是不能从大号码的房间走到小号码的房间,从 1 号房间走到 10 号房间共有 ( )种不同的走法。
1 1 n 4 t 10 i s 1
3 s 10 e 30 n
【例 1】
蚂蚁小蓝在长方形格纸上的 A 点,它想去 B 点玩,但是不知走哪条路最 近。小朋友们,你能给它找到几条最短的路线呢?
下图是海淀区某街道的平面图,大宽要从家到学校。请问,大宽有多少种不同的最短路线 可供选择?
小学奥数训练专题 加法原理之树形图及标数法.学生版【推荐】.doc
1.使学生掌握加法原理的基本内容;2.掌握加法原理的运用以及与乘法原理的区别;3.培养学生分类讨论问题的能力,了解分类的主要方法和遵循的主要原则.加法原理的数学思想主旨在于分类讨论问题,教授本讲的目的也是为了培养学生分类讨论问题的习惯,锻炼思维的周全细致.一、加法原理概念引入生活中常有这样的情况,就是在做一件事时,有几类不同的方法,而每一类方法中,又有几种可能的做法.那么,考虑完成这件事所有可能的做法,就要用加法原理来解决.例如:王老师从北京到天津,他可以乘火车也可以乘长途汽车,现在知道每天有五次火车从北京到天津,有4趟长途汽车从北京到天津.那么他在一天中去天津能有多少种不同的走法?分析这个问题发现,王老师去天津要么乘火车,要么乘长途汽车,有这两大类走法,如果乘火车,有5种走法,如果乘长途汽车,有4种走法.上面的每一种走法都可以从北京到天津,故共有5+4=9种不同的走法.在上面的问题中,完成一件事有两大类不同的方法.在具体做的时候,只要采用一类中的一种方法就可以完成.并且两大类方法是互无影响的,那么完成这件事的全部做法数就是用第一类的方法数加上第二类的方法数.二、加法原理的定义一般地,如果完成一件事有k 类方法,第一类方法中有1m 种不同做法,第二类方法中有2m 种不同做法,…,第k 类方法中有k m 种不同做法,则完成这件事共有12 k N m m m =+++……种不同方法,这就是加法原理.加法原理运用的范围:完成一件事的方法分成几类,每一类中的任何一种方法都能完成任务,这样的问题可以使用加法原理解决.我们可以简记为:“加法分类,类类独立”.分类时,首先要根据问题的特点确定一个适合于它的分类标准,然后在这个标准下进行分类;其次,分类时要注意满足两条基本原则: ① 完成这件事的任何一种方法必须属于某一类; ② 分别属于不同两类的两种方法是不同的方法.只有满足这两条基本原则,才可以保证分类计数原理计算正确.运用加法原理解题时,关键是确定分类的标准,然后再针对各类逐一计数.通俗地说,就是“整体等于局部之和”.三、加法原理解题三部曲1、完成一件事分N 类;2、每类找种数(每类的一种情况必须是能完成该件事);3、类类相加枚举法:枚举法又叫穷举法,就是把所有符合条件的对象一一列举出来进行计数.分类讨论的时候经常会需要把每一类的情况全部列举出来,这时的方法就是枚举法.枚举的时候要注意顺序,这样才能做到不重不漏.知识要点教学目标7-1-3.加法原理之树形图及标数法模块一、树形图法“树形图法”实际上是枚举的一种,但是它借助于图形,可以使枚举过程不仅形象直观,而且有条理又不重复遗漏,使人一目了然.【例 1】 A 、B 、C 三个小朋友互相传球,先从A 开始发球(作为第一次传球),这样经过了5次传球后,球恰巧又回到A 手中,那么不同的传球方式共多少种?【考点】加法原理之树形图法 【难度】3星 【题型】解答 【关键词】2005年,小数报 【解析】 如图,A 第一次传给B ,到第五次传回A 有5种不同方式. 同理,A 第一次传给C ,也有5种不同方式.所以,根据加法原理,不同的传球方式共有5510+=种.C B CC B AAB A B CCBA【答案】10【巩固】 一只青蛙在A ,B ,C 三点之间跳动,若青蛙从A 点跳起,跳4次仍回到A 点,则这只青蛙一共有多少种不同的跳法?【考点】加法原理之树形图法 【难度】3星 【题型】解答 【解析】 6种,如图,第1步跳到B ,4步回到A 有3种方法;同样第1步到C 的也有3种方法.根据加法原理,共有336+=种方法.AA A BCAB C BA【答案】6【例 2】 甲、乙二人打乒乓球,谁先连胜两局谁赢,若没有人连胜头两局,则谁先胜三局谁赢,打到决出输赢为止.问:一共有多少种可能的情况?【考点】加法原理之树形图法 【难度】3星 【题型】解答 【解析】 如下图,我们先考虑甲胜第一局的情况:图中打√的为胜者,一共有7种可能的情况.同理,乙胜第一局也有 7种可能的情况.一共有 7+7=14(种)可能的情况. 【答案】14【例 3】 如图,从起点走到终点,要求取出每个站点上的旗子,并且每个站点只允许通过一次,有 种不同的走法。
四年级上第3课时数图形的学问
四年级上第3课时数图形的学问《四年级上第 3 课时数图形的学问》在我们的日常生活中,图形无处不在。
从简单的三角形、正方形,到复杂的多边形,它们构成了我们丰富多彩的世界。
而在数学的学习中,数图形可是一项非常有趣且重要的学问。
今天,就让我们一起走进四年级上册的第 3 课,来探索数图形的奥秘。
想象一下,我们面前有一条线段,上面有几个点。
要数出这条线段被分成了多少段,这就是一个简单的数图形问题。
也许你会觉得这很容易,但是如果点的数量增多,或者图形变得更复杂,比如变成一个三角形、一个四边形,那该怎么数呢?这就需要我们掌握一些方法和技巧。
先来说说数线段的方法。
假如一条线段上有 A、B、C、D 四个点,我们从最左边的点A 开始,依次和后面的点连接,可以得到线段AB、AC、AD;接着从点 B 出发,和后面的点连接,有线段 BC、BD;再从点C 出发,只有线段CD 了。
这样,我们把所有的线段都数了一遍,一共有 6 条线段。
通过这种方法,我们发现,数线段的数量其实就是从 1 开始连续相加,一直加到比点数少 1 的数。
那如果是数角呢?比如一个三角形,它有三个角。
如果是一个四边形,角的数量就更多了。
我们可以把角的顶点看作是线段上的点,数角的方法和数线段类似。
从一个顶点出发,依次和其他的边组成角,这样就能不重复、不遗漏地数出角的数量。
再看看数三角形。
如果有一个大三角形被分成了几个小三角形,要怎么数呢?我们可以先数单个的小三角形,然后再数由两个小三角形组成的较大三角形,接着数由三个小三角形组成的更大的三角形,以此类推。
通过这种分层有序的方法,就能准确地数出三角形的总数。
数图形的学问不仅在数学课本里,在我们的生活中也有很多应用。
比如,在建筑设计中,设计师需要数清楚各种图形的数量,来计算材料的用量和成本;在交通规划中,规划师要数清楚道路的交叉点和路段,以便合理安排交通流量。
对于我们四年级的小朋友来说,掌握数图形的学问不仅能提高我们的数学思维能力,还能让我们在解决实际问题时更加得心应手。
四年级奥数教程第3讲:横式数字谜
四年级奥数教程第3讲:横式数字谜例1:下列算式中, ○ □各代表什么数字?(1) + + =129解(1)△表示一个数,△+△+△=△×3,于是,△=129÷3=43;(2)8×□-51÷3=478×=47+17 口=64÷:8 =8(3)36-150÷ =96÷6 把150÷☆看成一个数,得到 150÷☆=36-6, 150÷☆=30,☆=150÷30, ☆=5例2:如果○+□=6,□=○+○,那么,□-○= 。
分析要求口-的值,必须求出□=?O=?将□=O+O 代入O+□=6中可求出出○的值,进而求出□的值. 也可以由条件口=O+O 分析得出□为偶数,这样6可以分解为2+4,从面求出O 、的值 解法一把□=+O 代入+=6中,得 +O+=6,即30=6,O=2, 这样□=4,口-O=4-2=2 解法二由□=O+O 知,口一定是个偶数,而O+=6,因此O 也 是偶数由6=2+4,得O=2,□=4,□-O=4-2=2. 说明此题含有两个未知数O 、口,要设法通过代入将其转化为只含有个未知数的式子,这样就可寻求突破随堂练习1:下列各式中,□代表什么数: (1)□×9+6×□=600÷2 (2) 25×25-□÷3=610 (1)口×(9+6)=300,=300÷15, 口=20(2)625-□÷3=610, 口÷3=625-610, 口÷3=15=15×3 □=45.例3:将数字0、1、3、4、5、6填入下面的□内,使等式成立,每个空格只填入一个数字,并且所填数字不能重复。
□×□=□2=□□÷□分析上面等式中,因为积与商相等,所以被除数是较大的一个数,可以考虑6或7.先用7去试,只能7×1=7÷1,7与1不能重复用,排除7.再用6去 试,有三种情况(1)2×3=6÷1; (2)2×1=6÷3; (3)3×1=6:2 根据题意列式得到4+7-5=6; 4+5-7=2 说明(1)(2)符合题意,(3)不成立 解(1)2×3=6÷1=4+7-5; (2)2×1=6÷3=4+5-7例4:在下列等号左边的每两个数字之间,添上加号或减号,也可以用括号,使算式成立。
小学奥数计数问题:计数习题标数法和加法原理的综合应用
小学奥数计数问题:计数习题标数法和加法原理的综合应用(★★★★)有20个相同的棋子,一个人分若干次取,每次可取1个,2个,3个或4个,但要求每次取之后留下的棋子数不是3或4的倍数,有()种不同的方法取完这堆棋子.
【分析】把20、0和20以内不是3或4的倍数的数写成一串,用标号法把所有的方法数写出来:
考点说明:本题主要考察学生对于归纳递推思想的理解,具体来说就是列表标数法的使用,难度一般,只要发现了题目中的限制条件,写出符合条件的剩余棋子数,然后进行递推就可以了。
:计数问题在各大考试中所占的分量越来越重,计数的知识也学习的比较早,标号法是加乘原理中加法原理的内容,在四年级以前已经学习过,但是灵活应用学习过的知识才是学习最重要的意义,六年级上(第十一级)第10讲会将计数问题与应用题或者最值问题进行综合学习,学习后能力会有进一步的提高。
小学四年级数学奥数基础教程--30讲全
小学奥数基础教程(四年级)第1讲速算与巧算(一)第2讲速算与巧算(二)第3讲高斯求和第4讲 4,8,9整除的数的特征第5讲弃九法第6讲数的整除性(二)第7讲找规律(一)第8讲找规律(二)第9讲数字谜(一)第10讲数字谜(二)第11讲归一问题与归总问题第12讲年龄问题第13讲鸡兔同笼问题与假设法第14讲盈亏问题与比较法(一)第15讲盈亏问题与比较法(二)第16讲数阵图(一)第17讲数阵图(二)第18讲数阵图(三)第19将乘法原理第20讲加法原理(一)第21讲加法原理(二)第22讲还原问题(一)第23讲还原问题(二)第24讲页码问题第25讲智取火柴第26讲逻辑问题(一)第27讲逻辑问题(二)第28讲最不利原则第29讲抽屉原理(一)第30讲抽屉原理(二)第1讲速算与巧算(一)计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。
准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。
我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。
例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。
求这10名同学的总分。
分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。
观察这些数不难发现,这些数虽然大小不等,但相差不大。
我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。
于是得到总和=80×10+(6-2-3+3+11-=800+9=809。
实际计算时只需口算,将这些数与80的差逐一累加。
为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。
四年级奥数第3次课数数问题
莂聿膀蒈蒇羄袆膄教师寄语:数学题型主要分为70%基础、20%难点、10%探究题,所以学好数学,必须要有扎实的基础,我们每天进步一点点,每天熟练一道题,相信我们一定可以学好数学这门简单易懂的学科!第3课数数图形一、知识要点咱们已经熟悉了线段、角、三角形、长方形等大体图形,当这些图形重重叠叠地交织在一路时就组成了复杂的几何图形。
要想准确地计数这种图形中所包括的某一种大体图形的个数,就需要仔细地观察,灵活地运用有关的知识和思考方式,掌握数图形的规律,才能取得正确的结果。
要准确、迅速地计数图形必需注意以下几点:1.弄清被数图形的特征和转变规律。
2.要按必然的顺序数,做到不重复,不遗漏。
二、精讲精练【例题1】数出下面图中有多少条线段。
练习1::数出下列图中有多少条线段。
(2)(3)【例题2】数一数下图中有多少个锐角。
【思路导航】数角的方式和数线段的方式类似,图中的五条射线相当于线段上的五个点,因此,要求图中有多少个锐角,可按照公式1+2+3……(总射线数-1)求得:1+2+3+4=10(个).练习2::下列各图中各有多少个锐角?【例题3】数一数下图中共有多少个三角形。
【思路导航】图中AD边上的每一条线段与极点O组成一个三角形,也就是说,AD边上有几条线段,就组成了几个三角形,因为AD上有4个点,共有1+2+3=6条线段,所以图中有6个三角形。
练习3::数一数下面图中各有多少个三角形。
【例题4】数一数下图中共有多少个三角形。
【思路导航】与前一个例子相较,图中多了一条线段EF,因此三角形的个数应是AD和EF上面的线段与点O所围成的三角形个数的和。
显然,以AD上的线段为底边的三角形也是1+2+3=6个,所以图中共有6×2=12个三角形。
练习4::数一数下面各图中各有多少个三角形。
【例题5】数一数下图中有多少个长方形。
【思路导航】数长方形与数线段的方式类似。
可以这样思考,图中的长方形的个数取决于AB或CD边上的线段,AB边上的线段条数是1+2+3=6条,所以图中有6个长方形。
四年级奥数教材
第一讲数串规律掌握数与数之间的联系以及数形之间的变化规律,能够从整体出发找出部分之间的特点;善于抓出问题的主要特征,运用已知的规律解决实际问题。
培养观察能力、探究能力、分析能力、综合能力、推算能力。
训练条理思想、比较思想、归纳思想教会方法:一看数字、二想联想、三分析算法一尝试、二验证、三运用一观察、二比较、三归纳例1、计算下面数列从左往右的第10个数是什么?1 7 13 19 25……【导学】本题主要应用比较思想和归纳思想,1、首先比较相邻两个数,很容易知道相差,2、7=1+,13=7+=1+6×,19=13+ =1+6×,……3、第10个数=1+6×。
练习一1、 3、 6、 12、 24、()、……2、请根据规律计算出下面数列从左往右数的第9个数是多少?5 10 15 20 25……例题2、1+1,2+3,3+5,1+7,2+9,3+11,1+13,2+15,3+17,…,第20个算式是多少?【导学】本题主要运用比较思想和归纳思想,通过比较知:1、每组第一个加数依次是…;2、第二个加数是连续的单数…;3、那么第20个数组中第一个加数是,即为,第二个加数为,第20个算式是。
练习二1、1+2,2+4,3+6,4+8,1+10,2+13,3+14,4+16,1+18,…,问第21个算式是()+()。
2、下面算式是按一定规律排列的,其中第六个算式的计算结果是多少?3+12,6+10,12+8,24+6,48+4,……例题3、观察下面各题中的排列规律,然后填上所缺的数。
【导学】在图1中尝试知5×9=45,7×8=56,所以3×6=18;在图2中尝试知2+1+3=6,3+2+5=10,1+4+6=11,所以4+3+1=8;在图3中尝试知2×2=3+1,7×2=6+8,4×2=4+4,所以6×2=12,12-9=3。
四年级奥数第3讲标数法
第四讲:计数方法(八)——标数法知识与方法归纳数学世界是一个充满的惊喜的世界,在这个奇特的世界里,总是会有很多闪亮的星星指引我们走向更美好的星空。
标数法是这个世界里比较闪亮的一颗星星,它是解决数学中一类问题的捷径,一般用于求从某地到某地最短路线的条数,是一个有用而不失有趣的数学方法。
欢迎您来感受神奇的标数法!标数法一般适用于求从点A到点B的最短路线的条数。
标数法的核心思想是:从起点到达任何一点的最短线路,都等于从起点出发到达与这一点相邻的点的最短路线数之和。
这种思想本质上就是利用加法原理进行分类计数。
经典例题例1.图中的线段表示的是汽车所能经过的所有马路,这辆汽车从A走到B处共有多少条最短路线?例2.五(二)班少先队开展智力游戏活动。
先在大操场内用石灰画好如图所示的线路。
从A点出发沿线走到B点,只能按由北到南,从西向东(即不能倒回走),共有多少种不同的走法?如果有21个同学从A点到B点,问他们能不能都走不同的路线?体验训练1从学校到少年宫有4条东西向的马路和3条南北向的马路相通。
如图所示,李楠从学校出发,步行到少年宫(只许向东或向南行进),问最多有多少种不同的走法?例3.如图所示,从P到Q共有多少种不同的最短路线?例4.如图所示,图为某城市的街道示意图,若从A走到B(只能由北向南,由西向东),问共有多少种不同的走法?体验训练2沿图中的格线,选最近的路线从A走到B,问共有多少种不同的走法?*例5.如图所示,从甲地到乙地,最近的道路有几条?*例6.取两排蜂巢,如图所示,一只蜜蜂要从A爬到B去,它爬行的方向只允许是向右(→)、向右上(↗)、向右下(↘)这三种中的任一种,并爬到相邻的下一个蜂巢。
问从A到B有多少种不同的爬行路线?*7.如图所示,这是一张某城市的主要公路示意图,今在C、D、E、F、G、H路口修建立交桥,车辆不能通行,问从A到B的最近路线共有几条?过关检测总分15分时间10分钟得分1.如图所示,ABCD是一个长和宽分别为4个单位和3个单位的长方形。
小奥四年级标数法教学内容
小奥四年级标数法四年级计数问题:标数法难度:高难度如图,某城市的街道由5条东西向马路和7条南北向马路组成,现在要从西南角的处沿最短的路线走到东北角出,由于修路,十字路口不能通过,那么共有____种不同走法.解答:四年级计数问题:标数法难度:中难度如图为一幅街道图,从A出发经过十字路口B,但不经过C走到D的不同的最短路线有条.解答:计数习题标数法和加法原理的综合应用(★★★★)有20个相同的棋子,一个人分若干次取,每次可取1个,2个,3个或4个,但要求每次取之后留下的棋子数不是3或4的倍数,有()种不同的方法取完这堆棋子.【分析】把20、0和20以内不是3或4的倍数的数写成一串,用标号法把所有的方法数写出来:考点说明:本题主要考察学生对于归纳递推思想的理解,具体来说就是列表标数法的使用,难度一般,只要发现了题目中的限制条件,写出符合条件的剩余棋子数,然后进行递推就可以了。
<评价> :计数问题在各大考试中所占的分量越来越重,计数的知识也学习的比较早,标号法是加乘原理中加法原理的内容,在四年级以前已经学习过,但是灵活应用学习过的知识才是学习最重要的意义,六年级上(第十一级)第10讲会将计数问题与应用题或者最值问题进行综合学习,学习后能力会有进一步的提高。
计数方法与技巧(标数法例题1)计数方法与技巧(标数法例题2)计数方法与技巧(标数法例题3)1. 如图所示,小明家在A地,小学在B地,电影院在C地。
1.小明从家里去学校,走最短的线路,有多少种走法?2.小明从家里去电影院,走最短线路,有多少种走法?如图,从一楼到二楼有12梯,小明一步只能上1梯或2梯,问小明从1楼上到2楼有多少种走法?一只蜜蜂从A处出发,回到家里B处,每次只能从一个蜂房爬向右侧邻近的蜂房而不准逆行,共有多少种回家的方法?解答:蜜蜂“每次只能从一个蜂房爬向右侧邻近的蜂房而不准逆行”这意味着它只能从小号码的蜂房爬进相邻的大号码的蜂房。
小学数学奥数基础教程(四年级)--03
小学数学奥数基础教程(四年级)本教程共30讲高斯求和德国著名数学家高斯幼年时代聪明过人,上学时,有一天老师出了一道题让同学们计算:1+2+3+4+…+99+100=?老师出完题后,全班同学都在埋头计算,小高斯却很快算出答案等于5050。
高斯为什么算得又快又准呢?原来小高斯通过细心观察发现:1+100=2+99=3+98=…=49+52=50+51。
1~100正好可以分成这样的50对数,每对数的和都相等。
于是,小高斯把这道题巧算为(1+100)×100÷2=5050。
小高斯使用的这种求和方法,真是聪明极了,简单快捷,并且广泛地适用于“等差数列”的求和问题。
若干个数排成一列称为数列,数列中的每一个数称为一项,其中第一项称为首项,最后一项称为末项。
后项与前项之差都相等的数列称为等差数列,后项与前项之差称为公差。
例如:(1)1,2,3,4,5, (100)(2)1,3,5,7,9, (99)(3)8,15,22,29,36, (71)其中(1)是首项为1,末项为100,公差为1的等差数列;(2)是首项为1,末项为99,公差为2的等差数列;(3)是首项为8,末项为71,公差为7的等差数列。
由高斯的巧算方法,得到等差数列的求和公式:和=(首项+末项)×项数÷2。
例1 1+2+3+…+1999=?分析与解:这串加数1,2,3,…,1999是等差数列,首项是1,末项是1999,共有1999个数。
由等差数列求和公式可得原式=(1+1999)×1999÷2=1999000。
注意:利用等差数列求和公式之前,一定要判断题目中的各个加数是否构成等差数列。
例2 11+12+13+…+31=?分析与解:这串加数11,12,13,…,31是等差数列,首项是11,末项是31,共有31-11+1=21(项)。
原式=(11+31)×21÷2=441。
在利用等差数列求和公式时,有时项数并不是一目了然的,这时就需要先求出项数。
四年级奥数第3讲标数法
四年级奥数第3讲标数法2(总6页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第四讲:计数方法(八)——标数法知识与方法归纳数学世界是一个充满的惊喜的世界,在这个奇特的世界里,总是会有很多闪亮的星星指引我们走向更美好的星空。
标数法是这个世界里比较闪亮的一颗星星,它是解决数学中一类问题的捷径,一般用于求从某地到某地最短路线的条数,是一个有用而不失有趣的数学方法。
欢迎您来感受神奇的标数法!标数法一般适用于求从点A到点B的最短路线的条数。
标数法的核心思想是:从起点到达任何一点的最短线路,都等于从起点出发到达与这一点相邻的点的最短路线数之和。
这种思想本质上就是利用加法原理进行分类计数。
经典例题例1.图中的线段表示的是汽车所能经过的所有马路,这辆汽车从A走到B处共有多少条最短路线?例2.五(二)班少先队开展智力游戏活动。
先在大操场内用石灰画好如图所示的线路。
从A点出发沿线走到B点,只能按由北到南,从西向东(即不能倒回走),共有多少种不同的走法如果有21个同学从A点到B点,问他们能不能都走不同的路线体验训练1从学校到少年宫有4条东西向的马路和3条南北向的马路相通。
如图所示,李楠从学校出发,步行到少年宫(只许向东或向南行进),问最多有多少种不同的走法?例3.如图所示,从P到Q共有多少种不同的最短路线?例4.如图所示,图为某城市的街道示意图,若从A走到B(只能由北向南,由西向东),问共有多少种不同的走法?体验训练2沿图中的格线,选最近的路线从A走到B,问共有多少种不同的走法?*例5.如图所示,从甲地到乙地,最近的道路有几条?*例6.取两排蜂巢,如图所示,一只蜜蜂要从A爬到B去,它爬行的方向只允许是向右(→)、向右上(↗)、向右下(↘)这三种中的任一种,并爬到相邻的下一个蜂巢。
问从A到B有多少种不同的爬行路线?*7.如图所示,这是一张某城市的主要公路示意图,今在C、D、E、F、G、H路口修建立交桥,车辆不能通行,问从A到B的最近路线共有几条?过关检测总分15分时间10分钟得分1.如图所示,ABCD是一个长和宽分别为4个单位和3个单位的长方形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第四讲:计数方法(八)
——标数法
知识与方法归纳
数学世界是一个充满的惊喜的世界,在这个奇特的世界里,总是会有很多闪亮的星星指引我们走向更美好的星空。
标数法是这个世界里比较闪亮的一颗星星,它是解决数学中一类问题的捷径,一般用于求从某地到某地最短路线的条数,是一个有用而不失有趣的数学方法。
欢迎您来感受神奇的标数法!
标数法一般适用于求从点A到点B的最短路线的条数。
标数法的核心思想是:从起点到达任何一点的最短线路,都等于从起点出发到达与这一点相邻的点的最短路线数之和。
这种思想本质上就是利用加法原理进行分类计数。
经典例题
例1.图中的线段表示的是汽车所能经过的所有马路,这辆汽车从A走到B处共有多少条最短路线
例2.五(二)班少先队开展智力游戏活动。
先在大操场内用石灰画好如图所示的线路。
从A 点出发沿线走到B点,只能按由北到南,从西向东(即不能倒回走),共有多少种不同的走法如果有21个同学从A点到B点,问他们能不能都走不同的路线
体验训练1
从学校到少年宫有4条东西向的马路和3条南北向的马路相通。
如图所示,李楠从学校出发,步行到少年宫(只许向东或向南行进),问最多有多少种不同的走法
例3.如图所示,从P到Q共有多少种不同的最短路线
例4.如图所示,图为某城市的街道示意图,若从A走到B(只能由北向南,由西向东),问共有多少种不同的走法
体验训练2
沿图中的格线,选最近的路线从A走到B,问共有多少种不同的走法
*例5.如图所示,从甲地到乙地,最近的道路有几条
*例6.取两排蜂巢,如图所示,一只蜜蜂要从A爬到B去,它爬行的方向只允许是向右(→)、向右上(↗)、向右下(↘)这三种中的任一种,并爬到相邻的下一个蜂巢。
问从A到B有多少种不同的爬行路线
*7.如图所示,这是一张某城市的主要公路示意图,今在C、D、E、F、G、H路口修建立交桥,车辆不能通行,问从A到B的最近路线共有几条
过关检测总分15分时间10分钟得分
1.如图所示,ABCD是一个长和宽分别为4个单位和3个单位的长方形。
沿图中线段从A到C 最短线路的长度是7个单位,那么从A到C有几条不同的最短线路
2.如果沿图中的线段以最短的路程,从A点出发到B点,问共有多少种不同的走法
3.一块蜂巢如图所示。
一只蜜蜂要从A爬到B去,它每次沿方向“↗”或↖向上爬到邻格。
问它从A爬到B,共有多少种不同的路线
家庭作业总分15分时间10分钟得分
1.在下图中,从A沿着格线到B的最近走法有多少种
2.沿图中的格线,选最近的路线从A走到B,问共有多少种不同的走法
3.沿图中的格线,选最近的路线从A走到B,问共有多少种不同的走法。