产品生命周期的可靠性测试类型
高可靠长寿命产品可靠性技术研究
高可靠长寿命产品可靠性技术研究一、本文概述随着科技的发展和工业的进步,高可靠长寿命产品在众多领域,如航空航天、医疗设备、轨道交通等关键行业中的应用越来越广泛。
这些产品对于保证系统稳定运行、保障人民生命财产安全具有至关重要的作用。
因此,对高可靠长寿命产品的可靠性技术进行深入研究,不仅有助于提高产品质量,更对推动相关行业的可持续发展具有重要意义。
本文旨在探讨高可靠长寿命产品可靠性技术的相关理论与实践。
文章首先界定了高可靠长寿命产品的概念,并分析了其可靠性技术研究的现状与挑战。
接着,文章将详细介绍高可靠长寿命产品在设计、制造、测试和维护等各个环节中的可靠性技术,包括材料选择、结构设计、环境适应性设计、故障预测与健康管理等方面。
文章还将探讨可靠性评估与优化方法,以及可靠性技术在实际应用中的案例分析。
通过本文的研究,希望能够为相关领域的技术人员和管理人员提供有益的参考和借鉴,推动高可靠长寿命产品可靠性技术的不断进步和发展。
也希望能够引起更多学者和专家对这一领域的关注和投入,共同为高可靠长寿命产品的可靠性技术研究贡献力量。
二、高可靠长寿命产品可靠性定义与特点高可靠长寿命产品(Highly Reliable and Long-Life Products,简称HRLP)指的是在预期的使用环境和条件下,具有超出常规标准的耐久性和可靠性的产品。
这类产品通常被应用于对安全性和稳定性要求极高的领域,如航空航天、核能发电、医疗设备、轨道交通等。
高可靠长寿命产品的可靠性不仅体现在其设计和制造过程中的质量控制,更体现在其长时间、高强度运行过程中的稳定性和耐久性。
长期稳定性:HRLP能够在长时间内保持其性能的稳定,不易出现性能退化或故障。
高可靠性:产品的可靠性指标通常远超行业标准,能够满足极端或严苛条件下的使用需求。
高度安全性:由于应用领域的特殊性,HRLP往往承载着极高的安全责任,因此在设计和制造过程中需要采取严格的安全措施。
汽车零部件可靠性常用测试标准
温度循环/冲击试验是评估产品在高底温和温度交变的效应。效应:膨胀、减弱结构强度、 化学腐蚀电解所用、增加绝缘体导电作用、可动零件变形、表面涂料鬼裂等。
参考的测试标准: BMW GS95003-4,GMW3172 5.5.5, GMW3431 4.4.2, GM9123P 10.2.1, VW801015.2.2, Etl_82517 8.2.8 , FORD Ds00005 10.9.4 , FORD_WDS00.00EA_D114.5.6/4.5.7 , MGRES6221001 9.3.6, SES E 001-04 6.7, PSAB21 7090 6.6.3, IEC60068-2-14(air to air), MIL-STD-883E 1011.9,MIL-STD-202G/107G,MIL-STD-810F 503.4,GB2324.22,GJB150.5 0)
4. 温湿度试验目的:
温湿度测试方法是用来评估产品有可能储存或者使用在高温潮湿环境中的功能。
参考的测试标准: BMW GS95003-4,GMW3172 5.5.1/5.5.2/5.6,GMW3431 4.4.1/4.4.5/4.4.6,GM9123P 9.6/9.11/9.12,GME60202_0181,VM801015.1.2/5.1.3/5.3/5.5.2, FORD DS0000510.9.1/10.9.2/10.9.3/10.9.8/10.9.9/10.9.10,
更多信息敬请垂询:
联系人:Rocket Chen (陈先生) 电话: 0592-5773013 (电话打不通可写邮件) 邮箱: Rocket.Chen @
外壳防护等级(IP 代码) Road vehicles: Degrees of protection (IP code)- Protection against foreign objects, water and access Electircal Equipment Degrees of protection provided by enclosures (IP code) Road vehicles: Degrees of protection (IP code)- Protection against foreign objects, water and access Electircal Equipment
环境可靠性测试介绍
环境可靠性测试介绍环境可靠性测试(Environment Reliability Testing)是一种通过模拟真实环境条件来评估产品在不同环境下的稳定性和可靠性的测试方法。
该测试主要目的是验证产品的性能是否能够在各种极端环境条件下正常工作,并确定产品的耐久性、可靠性和适应性。
环境可靠性测试可在产品的整个生命周期中进行,可以包括设计验证、研发测试、生产前测试、产品发布前测试和售后服务测试等阶段。
通过对产品进行环境可靠性测试,可以有效识别和解决可能存在的问题,从而提高产品的质量和可靠性,减少售后服务和维修成本。
一般来说,环境可靠性测试涵盖以下几个方面的内容:1.温度测试:该测试主要评估产品在不同温度条件下的工作性能和稳定性。
测试过程中,产品会在高温和低温条件下运行一定时期,观察其是否能正常工作以及是否会出现功能失效或硬件故障等问题。
2.湿度测试:湿度是另一个重要的环境因素,对产品的性能和可靠性有很大影响。
湿度测试会模拟高湿度和低湿度环境对产品的影响,评估产品的抗湿度能力,以及是否会引起电路短路或电气故障等问题。
3.振动测试:振动是产品在运输或使用过程中经常会遇到的一种环境因素。
振动测试会模拟产品在运输过程中的振动环境,评估产品在振动条件下的稳定性和结构强度。
通过振动测试可以确保产品在运输和使用过程中不会发生松动、脱落等问题。
4.冲击测试:冲击是指产品在运输或使用过程中受到的突然而强烈的冲击力。
冲击测试会模拟产品在运输和使用过程中的冲击环境,评估产品在冲击条件下的性能和结构是否受到破坏。
5.盐雾测试:盐雾测试主要用于评估产品在高盐度环境下的耐腐蚀性能。
该测试会将产品暴露在盐雾环境中,观察其是否会出现金属腐蚀、电路短路等问题,从而判断产品在海洋环境等高盐度环境下的可靠性。
6.尘土测试:尘土是产品在户外环境中常见的污染源,会对产品的散热、电路连接等方面产生负面影响。
尘土测试会模拟产品在灰尘密集的环境中的使用情况,评估产品在尘土环境下的稳定性和可靠性。
集成电路的可靠性测验等级分类
集成电路的可靠性测验等级分类
可靠性(Reliability)是对产品耐久力的测量, 我们主要典型的IC产品的生命周期可以用一条浴缸曲线(Bathtub Curve)来表示。
如上图示意, 集成电路的失效原因大致分为三个阶段:
Region (I) 被称为早夭期(Infancy period), 这个阶段产品的失效率快速下降,造成失效的原因在于IC设计和生产过程中的缺陷;
Region (II) 被称为使用期(Useful life period), 这个阶段产品的失效率保持稳定,失效的原因往往是随机的,比如温度变化等等;
Region (III) 被称为磨耗期(Wear-Out period)这个阶段产品的失效率会快速升高,失效的原因就是产品的长期使用所造成的老化等。
军工级器件老化筛选
元器件寿命试验
ESD等级、Latch_up测试评价
高低温性能分析试验
集成电路微缺陷分析
封装缺陷无损检测及分析
电迁移、热载流子评价分析
根据试验等级分为如下几类:
一、使用寿命测试项目(Life test items)
EFR:早期失效等级测试(Early fail Rate Test )
目的:评估工艺的稳定性,加速缺陷失效率,去除由于天生原因失效的产。
最新IC产品的质量与可靠性测试
IC产品的质量与可靠性测试(IC Quality & Reliability Test )质量(Quality)和可靠性(Reliability)在一定程度上可以说是IC产品的生命,好的品质,长久的耐力往往就是一颗优秀IC产品的竞争力所在。
在做产品验证时我们往往会遇到三个问题,验证什么,如何去验证,哪里去验证,这就是what, how , where 的问题了。
解决了这三个问题,质量和可靠性就有了保证,制造商才可以大量地将产品推向市场,客户才可以放心地使用产品。
现将目前较为流行的测试方法加以简单归类和阐述,力求达到抛砖引玉的作用。
质量(Quality)就是产品性能的测量,它回答了一个产品是否合乎规格(SPEC)的要求,是否符合各项性能指标的问题;可靠性(Reliability)则是对产品耐久力的测量,它回答了一个产品生命周期有多长,简单说,它能用多久的问题。
所以说质量(Quality)解决的是现阶段的问题,可靠性(Reliability)解决的是一段时间以后的问题。
知道了两者的区别,我们发现,Quality的问题解决方法往往比较直接,设计和制造单位在产品生产出来后,通过简单的测试,就可以知道产品的性能是否达到SPEC 的要求,这种测试在IC的设计和制造单位就可以进行。
相对而言,Reliability的问题似乎就变的十分棘手,这个产品能用多久,who knows? 谁会能保证今天产品能用,明天就一定能用?为了解决这个问题,人们制定了各种各样的标准,如JESD22-A108-A EIAJED- 4701-D101注:JEDEC(Joint Electron Device Engineering Council)电子设备工程联合委员会,,著名国际电子行业标准化组织之一。
EIAJED:日本电子工业协会,著名国际电子行业标准化组织之一。
等等,这些标准林林总总,方方面面,都是建立在长久以来IC设计,制造和使用的经验的基础上,规定了IC测试的条件,如温度,湿度,电压,偏压,测试方法等,获得标准的测试结果。
产品寿命试验标准
产品寿命试验标准
产品寿命试验标准是指对产品的寿命进行试验的标准。
寿命试验的目的是确定产品在特定的使用条件下可以正常工作的时间。
产品寿命试验标准可以分为以下几类:
1.环境寿命试验标准:环境寿命试验标准是指对产品在特定的环境条件下进行
试验的标准。
环境条件包括温度、湿度、振动、冲击、辐射等。
2.使用寿命试验标准:使用寿命试验标准是指对产品在特定的使用条件下进行
试验的标准。
使用条件包括使用频率、使用强度等。
3.加速寿命试验标准:加速寿命试验标准是指通过在特定的加速条件下进行试
验,来缩短产品寿命试验的时间。
加速条件通常是环境条件或使用条件的放大。
产品寿命试验标准通常由国家标准化组织或行业协会制定。
产品寿命试验标准的制定需要考虑以下因素:
●产品的使用条件
●产品的结构和材料
●产品的预期寿命。
电子产品可靠性测试
电子产品可靠性测试电子产品在现代社会中扮演着重要的角色,它们的可靠性是用户最为关注的问题之一。
因此,为了确保电子产品的质量和性能,各行业都将可靠性测试作为产品生产和开发过程中的重要环节。
本文将探讨电子产品可靠性测试的相关规范、规程和标准。
一、可靠性测试的概述可靠性测试是指通过一系列的实验和分析,评估电子产品在特定环境条件下的长期稳定性和质量可靠性。
它对产品的设计、制造和材料选择提出了高要求,旨在提高产品的性能和使用寿命,减少故障率,保证产品在各种工作环境下的正常运行。
可靠性测试通常包括以下几个方面的内容:1.环境适应性测试:测试产品在各种温度、湿度、振动、电磁辐射等不同环境条件下的性能表现和稳定性。
2.可靠性指标测试:如寿命测试、故障率测试、平均无故障时间测试等,通过对产品的长期运行和故障统计,评估产品的可靠性水平。
3.可靠性设计评估:对产品的设计方案进行可靠性评估和改进,提前发现潜在的问题,提高产品的可靠性。
二、可靠性测试的规范和标准为了统一可靠性测试的方法和标准,各行业都会制定相应的规范和标准。
以下为常见的一些规范和标准:1.国际电工委员会(IEC):IEC制定了多项关于电子产品可靠性测试的国际标准,如IEC68、IEC60068等。
2.美国国家标准协会(ANSI):ANSI制定了多项与电子产品可靠性测试相关的标准,如ANSI/IEEE 344、ANSI/ISA S2.27等。
3.制造业标准化协会(MESA):MESA致力于制定和推广制造业的技术标准,其制定的MES模型可用于电子产品可靠性测试的信息管理和流程控制。
4.国际可靠性工程师协会(IREA):IREA制定了一系列可靠性工程师的认证考试标准,包括可靠性测试的理论、方法和实践。
5.电子工业标准化协会(EIA):EIA制定了多项与电子产品可靠性测试相关的标准和指南,如EIA-364、EIA-409等。
三、可靠性测试的方法和技术为了进行有效的可靠性测试,需要采用一系列科学的方法和先进的技术手段。
产品生命周期理论介绍
产品生命周期理论(Product Life Cycle)产品生命周期理论简介产品生命周期理论是美国哈佛大学教授雷蒙德·弗农(Raymond Vernon)1966年在其《产品周期中的国际投资与国际贸易》一文中首次提出的。
产品生命周期(product life cycle),简称PLC,是产品的市场寿命,即一种新产品从开始进入市场到被市场淘汰的整个过程。
费农认为:产品生命是指市上的的营销生命,产品和人的生命一样,要经历形成、成长、成熟、衰退这样的周期。
就产品而言,也就是要经历一个开发、引进、成长、成熟、衰退的阶段。
而这个周期在不同的技术水平的国家里,发生的时间和过程是不一样的,期间存在一个较大的差距和时差,正是这一时差,表现为不同国家在技术上的差距,它反映了同一产品在不同国家市场上的竞争地位的差异,从而决定了国际贸易和国际投资的变化。
为了便于区分,费农把这些国家依次分成创新国(一般为最发达国家)、一般发达国家、发展中国家。
典型的产品生命周期一般可以分成四个阶段,即介绍期(或引入期)、成长期、成熟期和衰退期。
(1)第一阶段:介绍(引入)期指产品从设计投产直到投入市场进入测试阶段。
新产品投入市场,便进入了介绍期。
此时产品品种少,顾客对产品还不了解,除少数追求新奇的顾客外,几乎无人实际购买该产品。
生产者为了扩大销路,不得不投入大量的促销费用,对产品进行宣传推广。
该阶段由于生产技术方面的限制,产品生产批量小,制造成本高,广告费用大,产品销售价格偏高,销售量极为有限,企业通常不能获利,反而可能亏损。
(2)第二阶段:成长期当产品进入引入期,销售取得成功之后,便进入了成长期。
成长期是指产品通过试销效果良好,购买者逐渐接受该产品,产品在市场上站住脚并且打开了销路。
这是需求增长阶段,需求量和销售额迅速上升。
生产成本大幅度下降,利润迅速增长。
与此同时,竞争者看到有利可图,将纷纷进入市场参与竞争,使同类产品供给量增加,价格随之下降,企业利润增长速度逐步减慢,最后达到生命周期利润的最高点。
eol测试有何安全要求
EOL测试有何安全要求EOL,即“End of Life”的缩写,指的是产品生命周期终止。
在这个阶段,产品需要经过各种测试,其中一项就是EOL测试。
这个测试通常是构建一个虚拟环境来模拟真实环境中的使用情况,以评估产品的性能、可靠性和安全性。
对于EOL测试,有一些安全要求需要遵守。
访问控制在进行EOL测试时,应该采取严格的访问控制措施。
只有被授权的测试人员才能够访问EOL测试环境。
这种控制可以通过使用身份验证和授权技术实现。
保护测试环境中的敏感数据和机密信息,以便只有授权人员才能够访问,并保持数据的完整性和保密性。
数据保护EOL测试涉及到大量的数据处理。
这包括对测试过程中产生的数据的收集、分析、存储等处理。
因此,要确保数据安全,必须实施严格的数据保护措施。
这些措施包括备份和恢复、数据加密、数据的完整性保护、以及恶意软件和病毒的控制等。
安全漏洞检测在进行EOL测试时,要注意安全漏洞的检测。
这些漏洞可能会以各种方式出现:从操作系统、软件应用程序、网络和数据存储设备中。
测试人员应该了解这些漏洞,以便及时发现并纠正它们。
大多数情况下,测试人员需要使用专业工具来检测安全漏洞。
保护测试生产环境EOL测试通常是在测试环境中进行的。
但是,测试环境通常需要进行配置和安装,以在实际环境中进行测试。
在这种情况下,测试人员需要保护测试生产环境,并采取适当的措施,以确保测试过程不会对生产环境产生任何深远的影响。
结论在进行EOL测试时,安全要求是至关重要的。
测试人员需要采取一系列措施,以确保测试过程是安全和可靠的。
这些措施包括访问控制、数据保护、安全漏洞检测和保护测试生产环境。
所有这些措施都需要测试人员来执行,并且需要进行严格的监控和跟踪,以确保测试过程的安全和技术的准确性。
医疗器械的可靠性评估与可用性设计
医疗器械的可靠性评估与可用性设计随着医学技术的不断进步,医疗器械在临床应用中发挥着越来越重要的作用。
然而,因为涉及人类的生命安全,医疗器械的可靠性评估和可用性设计成为至关重要的一环。
本文将从不同角度介绍医疗器械的可靠性评估与可用性设计的方法和技巧。
一、可靠性评估方法1.故障模式与影响分析(FMEA)故障模式与影响分析是一种常用的可靠性评估方法。
它通过对医疗器械的各种故障模式进行分析,评估故障对患者和操作人员的影响程度,以确定相应的风险等级。
通过FMEA,可以及时发现潜在的风险并采取相应的措施进行改进。
2.可靠性增长测试(RGT)可靠性增长测试是一种针对医疗器械的长期运行可靠性进行评估的方法。
通过将器械置于实际使用环境中进行持续运行,并记录故障发生的次数和时间,可以评估其可靠性水平。
基于可靠性增长测试结果,可以提前发现器械的潜在问题并进行改进。
3.生命周期可靠性测试(LCT)生命周期可靠性测试是一种全面评估医疗器械可靠性的方法。
它包括多个阶段,从设计验证到批量生产以及使用寿命测试。
通过全面的生命周期可靠性测试,可以提高医疗器械的可靠性水平。
二、可用性设计技巧1.人机工效学分析人机工效学分析是一种通过研究人员与医疗器械之间的互动来改善器械的可用性的方法。
通过评估人员在使用医疗器械时的认知负荷、人机界面的易用性等因素,可以提出相应的设计建议,从而增强医疗器械的可用性。
2.用户体验设计用户体验设计是一种注重用户需求和体验的设计方法。
在医疗器械设计中,通过深入了解用户的实际需求和使用场景,设计出符合用户期望的产品界面和操作流程,从而提高医疗器械的可用性。
3.标准化设计标准化设计是一种通过制定统一的设计规范来提高医疗器械可用性的方法。
通过遵循标准化的设计规范,可以减少使用者的认知负荷和学习成本,提高医疗器械的易用性和安全性。
结论医疗器械的可靠性评估与可用性设计是确保医疗器械安全可靠的重要环节。
通过采用合适的方法和技巧,可以有效地评估医疗器械的可靠性,并提高其可用性。
可靠性分析
可靠性分析为了深入探讨可靠性分析的概念、方法、工具及其在不同领域中的应用,本篇文章将涵盖以下内容:1. 可靠性分析的概念与定义2. 可靠性分析方法与技术3. 可靠性工具介绍4. 可靠性在不同领域中的应用一、可靠性分析的概念与定义可靠性是指产品或系统在特定时间和环境中保持正常运行的能力,也就是它所需的期望寿命。
可靠性在各个行业都非常重要,尤其是在工程领域。
可靠性评估可以帮助我们预测产品或系统的寿命、显示设备或机器的失效率、并提供解决方案以预测或减少可能的错误事件发生的可能性。
可靠性分析包括对产品或系统进行完整的风险管理、锅炉检查、测试等任务的详细过程。
其目的主要有两个:一是确定系统或产品的性能是否满足设计要求;二是识别问题并为解决问题提供路径。
二、可靠性分析方法与技术可靠性分析方法和技术主要可分为三种:故障树分析(FTA)、失效模式和效应分析(FMEA)以及可靠性基准测试(RBT)。
1.故障树分析( FTA)故障树分析是一种定量方法,它被广泛应用于评估高风险系统中的错误。
FTA是一种通过绘制故障树来描述命令或事件的发生原因的过程,由顶部称为“灾难”或“失效”开始,并且受到多个事件或机会事件的影响,被列为动态自然树的底部。
在这个过程中,较小的果子都会被大的因素切成各种各样的因素,并用逐步分解的方式进行描述与统计,最终对某些尾注勾销正确的集合开启相应的调查。
2.失效模式和效应分析(FMEA)失效模式和效应分析(FMEA)是一种分析各个部分出现潜在问题的技术。
作为一种非常受欢迎的工具,FMEA确保了可靠性分析中固有的资源并使得从当时管理失误的标准措施中搜寻、排除和共同做出困难决策成为可能。
FMEA经常用于确定可能导致产品或系统失效的关键性能,以及为优化设计和生产过程提供有用的信息。
在进行FMEA之前,必须将故障类型找出来,建立一个失败模式循环并推理其可能的结果。
所有危险或不良后果都被描绘成已知的无法避免的东西,并被分配到AIAG手册?快速解决方案文件中的风险值中。
可靠性测试标准
可靠性测试标准可靠性测试是产品质量保证的重要环节,其标准的制定对于产品的可靠性评估和改进具有重要意义。
本文将介绍可靠性测试标准的相关内容,以及在实际应用中的一些注意事项。
首先,可靠性测试标准应当包括产品的可靠性指标和测试方法。
产品的可靠性指标包括故障率、平均无故障时间、失效概率等。
这些指标可以客观地反映产品的可靠性水平,对于产品的设计和改进提供了重要依据。
而测试方法则是实现对这些指标进行测量和评估的手段,包括加速寿命试验、可靠性增长试验等。
其次,可靠性测试标准应当考虑到产品的使用环境和特点。
不同的产品在不同的使用环境下可能会有不同的可靠性要求,因此在制定测试标准时需要充分考虑产品的使用环境和特点,以确保测试的真实性和有效性。
另外,可靠性测试标准还应当考虑到测试的成本和周期。
在实际应用中,可靠性测试往往需要投入大量的人力、物力和时间,因此在制定测试标准时需要充分考虑到测试的成本和周期,以确保测试的可行性和效率。
在实际应用中,制定可靠性测试标准还需要注意以下几点:1. 标准的制定应当参考国际标准和行业标准,以确保标准的科学性和合理性。
2. 标准的制定应当充分考虑到产品的生命周期,包括设计阶段、生产阶段、使用阶段和维护阶段,以确保测试的全面性和有效性。
3. 标准的制定应当充分考虑到测试设备和测试方法的可行性和有效性,以确保测试的可靠性和准确性。
4. 标准的制定应当充分考虑到测试数据的处理和分析方法,以确保测试结果的科学性和可靠性。
综上所述,可靠性测试标准的制定对于产品的可靠性评估和改进具有重要意义。
在实际应用中,需要充分考虑产品的使用环境和特点,以及测试的成本和周期,制定科学合理的测试标准,以确保测试的可行性和有效性。
同时,还需要参考国际标准和行业标准,充分考虑测试设备和测试方法的可行性和有效性,以确保测试结果的科学性和可靠性。
可靠性试验包括哪些
可靠性试验包括哪些1. 引言可靠性试验是评估和验证产品、系统或设备在特定条件下的稳定性和可靠性的过程。
通过进行可靠性试验,可以评估产品在正常使用情况下的寿命、故障率、可用性和可靠性等指标。
本文将介绍几种常见的可靠性试验方法。
2. 寿命试验寿命试验是一种常见的可靠性试验方法,通过将产品在特定条件下加速使用,以评估其在实际使用中的寿命。
寿命试验通常需要在加速条件(例如高温、高湿度、高压力等)下对产品进行长时间运行,并记录产品的故障率和寿命数据。
通过对试验数据的分析,可以估计产品在正常使用情况下的寿命。
3. 环境试验环境试验是一种对产品在不同环境条件下的可靠性进行评估的方法。
环境试验可以包括高温试验、低温试验、温度循环试验、湿热试验等。
这些试验旨在模拟产品在实际使用中可能遇到的不同环境条件,以评估产品在不同环境条件下的可靠性和稳定性。
4. 动态负载试验动态负载试验是一种通过对产品施加动态负载来评估其在不同工作状态下的可靠性的方法。
在动态负载试验中,产品会被持续工作,并在不同负载条件下进行测试。
通过观察产品在不同负载下的性能和可靠性变化,可以评估产品在实际使用中的可靠性。
5. 故障模式和影响分析(FMEA)故障模式和影响分析(FMEA)是一种通过系统性地识别和分析潜在故障模式,评估其对系统性能和可靠性的影响的方法。
FMEA通过对系统设计和功能进行全面的分析,识别可能发生的故障模式,并评估这些故障对系统性能和可靠性的潜在影响。
通过FMEA可以帮助设计和开发团队在系统设计阶段排除潜在的故障和缺陷,提高产品的可靠性。
6. 可靠性增长试验可靠性增长试验是一种通过对产品进行连续运行和监测来评估产品可靠性增长情况的方法。
在可靠性增长试验中,产品会在实际使用条件下连续运行一段时间,并进行定期的监测和维护。
通过对试验期间的故障和维修情况进行分析,可以评估产品可靠性的增长情况,及时发现和修复潜在问题。
7. 可靠性验证试验可靠性验证试验是一种通过对产品进行真实场景下的测试和验证来评估产品可靠性的方法。
基于产品整体生命周期模型的产品设计可靠性研究
p o u t r la ii v l a i n s h me b s d o o a ie y l o e i g o r d c s r d c e i b l y e a u to c e a e n t t l l c c e m d ln f p o u t ,wh l e iy is a v n a e h o g t f ie v rf t d a t g s t r u h p o u to e i n o g a i n o c a i sa d e e ti s T i v l a i n s h me i c u e h e h d t e e mi e i e r d c i n d s g li me r to fme h n c n l c rc . h se a u to c e n l d st e m t o o d t r n ft h p o u to u c i n i v ia l , n u n n t t su d rd s u b n e i h mu t ea q ie h o g r c s v l a i n r d c i n f n to sa a l b e a d r n i g sa u n e it r a c swh c s c u r d t r u h a p e ie e a u t b o
Ab ta t s r c :Ac o d n o f r c s f p o u t r c s b o miy a d is i f u n e o r d c u c i n ,p t f r r c r i g t o e a to r d c s p o e s a n r t n t n l e c n p o u tf n to s u o wa d a
生命周期评价
1 生命周期评价(LCA)的产生背景生命周期评价(LCA),有时也称为“生命周期分析”、“生命周期方法”、“摇篮到坟墓”、“生态衡算”等。
其最初应用可追溯到1969年美国可口可乐公司对不同饮料容器的资源消耗和环境释放所作的特征分析。
该公司在考虑是否以一次性塑料瓶替代可回收玻璃瓶时,比较了两种方案的环境友好情况,肯定了前者的优越性。
自此以后,LCA方法学不断发展,现已成为一种具有广泛应用的产品环境特征分析和决策支持工具。
最初LCA主要集中在对能源和资源消耗的关注,这是由于20世纪60年代末和70年代初爆发的全球石油危机引起人们对能源和资源短缺的恐慌。
后来,随着这一问题不再象以前那样突出,其他环境问题也就逐渐进行人们的视野,LCA方法因而被进一步扩展到研究废物的产生情况,由此为企业选择产品提供判断依据。
在这方面,最早的事例之一是70年代初美国国家科学基金的国家需求研究计划(RANN)。
在该项目中,采用类似于清单分析的“物料——过程——产品”模型,对玻璃、聚乙烯和聚氯乙烯瓶产生的废物进行分析比较。
另一个早期事例是美国国家环保局利用LCA方法对不同包装方案中所涉及的资源与环境影响所作的研究。
80年代中期和90年代初,是LCA研究的快速增长时期。
这一时期,发达国家推行环境报告制度,要求对产品形成统一的环境影响评价方法和数据;一些环境影响评价技术,例如对温室效应和资源消耗等的环境影响定量评价方法,也不断发展。
这些为LCA方法学的发展和应用领域的拓展奠定了基础。
虽然当时对LCA的研究仍局限于少数科学家当中,并主要分布在欧洲和北美地区,但是那时对LCA的研究已开始从实验室阶段转变到实际中来了。
90年代初期以后,由于欧洲和北美环境毒理学和化学学会(SETAC)以及欧洲生命周期评价开发促进会(SPOLD)的大力推动,LCA方法在全球范围内得到较大规模的应用。
国际标准化组织制定和发布了关于LCA的ISO14040系列标准。
可靠性测试管理规范
4.2针对电源模块产品开展以下试验
(1)、温升测试
(2)、电源电性能测试
(3)、故障试验
(4)、高温高加速度试验
(5)、高温寿命试验(ORT抽检)
(6)、老化筛选试验
(7)、高温高湿试验
2. 适用范围
本规范适用于品质部在新产品评价或周期性产品评价期间对电源模块进行的可靠性评价。
3. 名词定义
3.1可靠性:指产品在规定的时间内,规定的条件下,完成规定功能的能力。
3.2 MTBF:Mean time between failure 平均无故障时间。
3.3HALT:Highly Accelerated Life Test 高加速寿命测试(HALT 测试在研发的早期阶段开始,一般在EVT 阶段与DVT 阶段进行。)
i输出过流保护测试
D.测试报告
见记录文件。
5.3故障试验
正常工作条件下进行模拟电源可能有安全隐患的位置故障发生情况
A.样机要求
满足正常工作的样机。
B.测试条件
a输入电压为额定输入电压,输出在额定负载条件下,进行模拟短路、开路故障试验,产品应能进入保护状态,当产品在短路撤除(或重新开机)后应能自动恢复正常工作。且产品在输出短路、开路时,其输入功率应小于额定输出功率的20%;闪烁保护时,输入峰值功率应小于额定输出功率60%。撤消短路后,在满载状态下能自动恢复或由产品标准规定。
c按规格要求调节好环境温度、风速等条件;
d开机运行3小时后,记录相应位置的温度;
e计算温升:实测温度-环境温度,对照温升测试规定判定是否合格。
现代设计方法部分习题与答案
现代设计⽅法部分习题与答案第1章1.何谓产品⽣命周期,简述其各个阶段。
产品⽣命周期(Product Life Cycle),简称PLC,是指产品的市场寿命,即⼀种新产品从开始进⼊市场到被市场淘汰的整个过程。
PLC分为介绍期(Introduc- tion)、增长期(Growth)、成熟期(Mature)、衰退期(Decline)四个阶段.2.简述现代设计所指的理论与⽅法有哪些。
3.简述产品开发的⼀般流程。
产品基本开发流程的6个阶段:阶段0,计划:规划经常被作为“零阶段”是因为它先于项⽬的达成和实际产品开发过程的启动。
阶段1,概念开发:概念开发阶段的主要任务是识别⽬标市场的需要,产⽣并评估可替代的产品概念,为进⼀步开发选择⼀个概念。
阶段2,系统⽔平设计:系统⽔平设计阶段包括产品结构的定义、产品⼦系统和部件的划分阶段3,细节设计:细节设计阶段包括产品的所有⾮标准部件及从供应商处购买的标准部件的尺⼨、材料和公差的完整明细表,建⽴流程计划并为每⼀个即将在⽣产系统中制造的部件设计⼯具。
阶段4,测试和改进:测试和改进阶段包括产品的多个⽣产前版本的构建和评估。
阶段5,产品推出:在产品推出阶段,使⽤规划⽣产系统制造第2章1.简述功能分析法的设计步骤。
总功能分析、功能分析、功能元求解、求系统原理、解求最佳系统原理⽅案。
2. 什么是技术系统?举例说明技术系统应具有的分功能单元。
技术系统所具有的功能,是完成技术过程的根本特性。
从功能的⾓度分析,技术系统应具有下列能完成不同分功能的单元:①作业单元,完成转换⼯作;②动⼒单元,完成能量的转换、传递与分配;③控制单元,接受、处理和输出控制信息;④检测单元,检测技术系统各种功能的完成情况,反馈给控制单元;⑤结构单元,实现系统各部分的连接与⽀承切削加⼯中⼼的功能构成第3章1. 产品创新的概念是什么?产品创新在哪些诱导机制下完成的,举例说明。
产品创新:新产品在经济领域⾥的成功运⽤,包括对现有⽣产要素进⾏组合⽽形成新的产品的活动。
可靠性测试
攀登,只为卓越峰光
稳润光电品牌战
二、环境测试项目(Environmental test items) PRE-CON, THB, HAST, AS, TC, TS, HTST, SD,RSH
①PRE-CON:预处理测试( Precondition Test ) 目的: 模拟器件在使用之前在一定湿度,温度条件下存储的耐久力,也就是器 件从生产到使用之间存储的可靠性。
失效机制:电介质的断裂,导体和绝缘体的断裂,不同界面的分层
其它 参考标准:
MIT-STD-883E Method 1010.7
JESD22-A104-A EIAJED- 4701-B-131
攀登,只为卓越峰光
稳润光电品牌战
二、环境测试项目(Environmental test items) PRE-CON, THB, HAST, AS, TC, TS, HTST, SD,RSH
⑥TS: 高低温冲击试验(Thermal Shock Test ) 目的: 评估产品中具有不同热膨胀系数的金属之间的界面的接触良率。方法是通过循 环流动的液体从高温到低温重复变化。 测试条件: Condition B: - 55℃ to 125℃ Condition C: - 65℃ to 150℃ 失效机制:电介质的断裂,材料的老化(如bond wires), 导体机械变形 参考标准: MIT-STD-883E Method 1011.9 JESD22-B106 EIAJED- 4701-B-141
⑨RSH:焊接热量耐久测试( Resistance to Solder Heat) 目的: 评估器件对瞬间高温的敏感度 测试方法: 侵入260℃ 锡盆中10秒 失效标准(Failure Criterion):根据电测试结果 具体的测试条件和估算结果也可参考以下标准 MIT-STD-883E Method 2003.7 EIAJED- 4701-B106
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
产品生命周期的可靠性测试类型
可靠性的主要测试类型根据产品生命周期的各个阶段大约分为四类,即HALT(研发早期)、ALT(研发中期)、RDT(研发末期暨生产导入期)、ORT(量产期)。
其他的一些可靠性GoTest由于目的单纯,所以样品数往往是经验值或与可靠性目标相关的统计学方法值,此处暂不赘述。
这四个阶段的测试对于样品数的要求都有所不同,下面给出一些参考意见。
HALT:此测试主要目的是找出设计中的重大问题和主要失效模式,增加产品的稳健度(Robustness),确定产品的四个极限即Low&HighDL(DestructiveLimit)和Low&HighOL(OperatingLimit)。
所以,样品数非常少,通常每次仅2-4个。
当然根据不同产品类型和测试条件,相应作出调整,但此时,样品数并不依据统计学方法给出。
ALT:此测试主要目的是验证MTBF目标。
此时,样品数的选择和几个因素有关,主要是MTBF目标、加速因子(AF)、GEMFactor、测试时间。
而加速因子与加速老化测试的条件(condition)相关,如温度、温湿度、温湿度加开关交变加速率等;GEMFactor同可接受失效数和置信度相关。
下面的表示温湿度ALT测试时间与样品数之间关系的公式可以进一步说明:
Duration(hrs)=(MTBFspecxGEMfactorCL)/(SampleSizexAFtempxAFRH).
GEMfactor如下表
RDT:此测试目的是为了验证可出货产品是否满足可靠性目标。
RDT可分为加速和非加速两种。
做RDT 计划,首先要知道产品寿命分布曲线(lifedistribution)。
然后根据lifedistribution,确定以下三种测试方法中的一种,即二项式参数(ParametricBinomial)、非二项式参数(Non-ParametricBinomial)、指数卡方(ExponentialChi-Squared)。
最后根据可靠性目标与相关参数的关系确定测试计划。
例如要确认产品的lifedistribution为非二项式参数(Non-ParametricBinomial)的可接受失效数为零的测试样品数公式为
当然,以上的计算可以通过一些商业软件非常容易地计算出来。
有时RDT是持续性测试(SequentialTesting),持续数周,数量也比较多。
加速RDT可以通过增加应力级数(stresslevel)相应缩短测试时间和样品数。
ORT:此测试主要目的就是为了筛除那些受到生产流程中的各种因素影响而导致可靠性下降不能满足目标的产品。
此时可以使用统计学方法计算样品数。
但是,由于产品类型的不同和量产时的情况复杂多变,包括样品数在内的各种测试条件和类型往往都是定制的。
没有一个统一的定论。
总结:每个阶段的测试条件各不相同,人们总想要最少的样品,最短的测试时间,而我也不认为可靠性越高对公司就越好。
要知道,可靠性也是合适的才是最好的。
所以,在定制测试计划时,不应一成不变,而是要充分了解产品特性、客户要求、自身能力等因素,从中找到一个平衡点,制定出合理的计划。