运筹学作业题

合集下载

运筹学考试试题

运筹学考试试题

运筹学考试试题一、选择题(每题2分,共10分)1. 线性规划的标准形式中,目标函数的系数应为:A. 正数B. 负数C. 任意非零数D. 零2. 在单纯形法中,如果某个非基变量的检验数大于零,则:A. 该变量不能进入基B. 该变量必须进入基C. 该变量的值可以增加D. 该变量的值可以减少3. 下列哪项不是运输问题的特殊矩阵?A. 平衡矩阵B. V型矩阵C. U型矩阵D. 散布矩阵4. 对于一个确定的线性规划问题,下列哪项是正确的?A. 只有一个最优解B. 有多个最优解C. 可能没有可行解D. 所有选项都是正确的5. 在动态规划中,状态转移方程的作用是:A. 确定初始状态B. 确定最终状态C. 确定中间状态D. 确定最优解二、简答题(每题5分,共20分)1. 简述单纯形法的基本步骤。

2. 解释什么是灵敏度分析,并说明其在运筹学中的应用。

3. 什么是网络流问题?请举例说明其在实际中的应用。

4. 描述动态规划的基本原理及其与分阶段决策过程的关系。

三、计算题(每题10分,共30分)1. 给定如下线性规划问题,请找出其最优解,并计算目标函数的最小值。

Maximize Z = 3x1 + 2x2Subject tox1 + 2x2 ≤ 103x1 + x2 ≤ 15x1, x2 ≥ 02. 考虑一个有三个仓库(A、B、C)和三个市场(D、E、F)的运输问题。

运输成本矩阵如下:| D E F ||--|--|--|A | 2 3 4 || B | 1 2 3 || C | 5 6 7 |每个仓库的供应量和每个市场的需求量如下:Supply/Demand: A: 10, B: 8, C: 5, D: 8, E: 10, F: 7使用北街角规则找出初始可行解。

3. 一个公司想要在三个城市(城市1、城市2、城市3)之间运输货物。

运输成本和需求量如下表所示:| 城市1 城市2 城市3 ||--|--|--|| 2 3 5 || 1 2 4 || 3 4 6 |需求量:城市1: 4, 城市2: 3, 城市3: 2请使用匈牙利算法解决此问题。

运筹学作业题

运筹学作业题
1 0 (4)、x1 的系数列向量由 变为 ; 12 5
(5)、增加一个约束条件③: 2 x1 3x2 5 x3 50 ; (6)、将原约束条件②改变为: 10 x1 5 x2 10 x3 100 。 十二、灵敏度分析 某工厂生产 A、B、C 三种产品,设 x、y、z 分别为三种产品的产量,为制定 最优生产计划建立如下模型。
x1 2 x2 2 x3 1 2
其最优解是否变化?如变化,试求出最优解。 十、灵敏度分析
Max z x1 2x2 2 x1 x2 2 给出线性规划问题: x1 2 x2 7 的最优单纯形表: s.t. 3 x1 x1 , x2 0
的最优解及其最优目标值。 十一、灵敏度分析 有线性规划问题:
Max z 5 x1 5 x2 13 x3 x1 x2 3 x3 20 s.t. 12 x1 4 x2 10 x3 90 x , x , x 0 1 2 3
请进行如下条件的灵敏度分析: (1)、约束条件①的右端常数由 20 变为 30; (2)、约束条件②的右端常数由 90 变为 70; (3)、目标函数中 x3 的系数由 13 变为 8;
四、分别用图解法和单纯形表法求解线性规划问题,并指出每一个单纯形表所 对应的可行域的顶点
Max z 100x1 200x2 x1 x2 500 x 200 1 s.t. x1 3 x2 600 x1 , x2 0
五、用大 M 法求解线性规划问题,并对照图解法演示大 M 法过程
Max z 4x1 6x2 +2x3 5 4 x1 4 x2 x 6 x 5 (3)、 1 2 s.t. x1 x2 x3 5 x1 , x2 , x3 0, 且x3为整数

运筹学作业题目

运筹学作业题目

运筹学作业题目1. 题目描述某物流公司需要将货物从A地运送到B地,货物数量为N件。

已知A地和B 地之间有M个中转站,每个中转站都有一定的处理能力和储存能力。

现在需要你运用运筹学的方法,给出一个最优的货物运输方案。

2. 问题分析首先,我们需要确定以下几个问题:•货物从A地到B地的最短路径是什么?•每个中转站的处理能力和储存能力分别是多少?•每个中转站的位置以及与其他中转站的距离是多少?3. 数据收集为了解决这个问题,我们需要收集以下数据:•A地和B地之间的距离•每个中转站的处理能力和储存能力•每个中转站的位置以及与其他中转站的距离4. 模型建立我们可以将这个问题建模为一个网络图问题,其中A地和B地为源点和汇点,中转站为中间节点。

我们需要找到从源点到汇点的最短路径,并且满足各个中转站的处理能力和储存能力的限制。

我们可以使用最短路径算法(如Dijkstra算法或Floyd-Warshall算法)找到从源点到汇点的最短路径,并计算出该路径上各个中转站的处理能力和储存能力。

5. 求解与优化在求解过程中,我们需要考虑以下几个方面:•最短路径的选择:我们可以根据距离、处理能力和储存能力三个因素进行综合考虑,选择最优的路径。

•货物分配策略:根据中转站的处理能力和储存能力,我们需要制定合理的货物分配策略,使得所有中转站的资源利用率最大化。

•容量约束的处理:如果某个中转站的处理能力或储存能力不足,我们需要考虑如何调整货物的分配,以避免资源浪费或堆积。

6. 结果分析根据我们的模型和求解过程,我们可以得到一个最优的货物运输方案,并且可以得到以下几个结果:•最短路径:确定了从A地到B地的最短路径,方便后续货物的运输安排。

•中转站资源利用率:根据我们的货物分配策略,可以评估每个中转站资源的利用率,进一步优化中转站的运营效果。

•资源调配建议:如果存在处理能力或储存能力不足的中转站,我们可以提供资源调配建议,帮助公司优化资源分配。

运筹学20道习题

运筹学20道习题

1.已知线性规划(15分)123123123max 3452102351,2,3jZ x x x x x x x x x x j =++⎧+-≤⎪-+≤⎨⎪≥=⎩0,(1)求原问题和对偶问题的最优解;(2)求最优解不变时c j 的变化范围36.解:(1)化标准型 2分 (2)单纯形法 5分(3)最优解X=(0,7,4);Z =48 (2分) (4)对偶问题的最优解Y =(3.4,2.8) (2分)(5)Δc 1≤6,Δc 2≥-17/2,Δc 3≥-6,则 1235(,9),,13c c c ∈-∞≥-≥-(4分)2.某公司要将一批货从三个产地运到四个销地,有关数据如下表所示。

现要求制定调运计划,且依次满足:(1)B 3的供应量不低于需要量; (2)其余销地的供应量不低于85%; (3)A 3给B 3的供应量不低于200; (4)A 2尽可能少给B 1;(5)销地B 2、B 3的供应量尽可能保持平衡。

(6)使总运费最小。

试建立该问题的目标规划数学模型。

3、请用表上作业法解下题,得到最优解,并计算此时总运费:现在有运价表如下:产地销地B1B2B3产量A1 5 1 6 12A2 2 4 0 14A3 3 6 7 4销量9 10 11 30 答案:根据上面运价表以及销量和产量的要求,使用表上作业法:5 1 62 4 03 6 79 10 11得到下面运输方案:检验空格:空格A检验:6 –(0+3) = 3 > 0空格B检验:7 – (3-2) = 6 > 0空格C检验:6 - (1-2) = 7 > 0空格D检验:4 – (1-3)= 6 > 0 故全部符合要求。

总运输费用:2×5 + 3× 2 + 4 × 3 + 10 × 1 + 11 × 0 = 38 答:上面的运输方案为最佳方案,总运费为38。

运筹学考试练习题精选全文完整版

运筹学考试练习题精选全文完整版

可编辑修改精选全文完整版运筹学自测题第一套题一、判断题(T-正确,F-错误)1.图解法同单纯形法虽然求解的形式不同,但从几何上理解,两者是一致的。

2.若线性规划问题存在最优解,则最优解一定对应可行域边界上的一个点。

3.一旦一个人工变量在迭代中变为非基变量后,该变量及相应列的数字可以从单纯形表中删除,而不影响计算结果。

4.线性规划问题的可行解如为最优解,则该可行解一定是基可行解。

5.任何线性规划问题存在并具有唯一的对偶问题。

6.运输问题是一种特殊的线性规划模型,因而求解结果也可能出现下列四种情况之一:有唯一最优解,有无穷多最优解,无界解,无可行解。

7.整数规划的目标函数值一般优于其相应的线性规划问题的解的目标函数值。

8.分枝定界法在需要分枝时必须满足:分枝后的各子问题必须容易求解;各子问题解的集合必须包含原问题的解。

9.整数割平面法每次只割去问题的部分非整数解。

10.线性规划问题是目标规划问题的一种特殊形式。

11.目标规划模型中,应同时包含系统约束(绝对约束)与目标约束。

12.图论中的图不仅反映了研究对象之间的关系,而且是真实图形的写照,因而对图中点与点的相对位置、点与点连线的长短曲直等都要严格注意。

13.网络图中代表两点之间的距离长短的数字,其含义也可以是时间或费用。

14.在制定网络计划时,将一个任务分解成若干个独立的工作单元,称为任务的分解。

二、选择题1.线性规划数学模型的特征是:________都是线性的。

A. 目标函数和决策变量B. 决策变量和约束条件C. 目标函数和约束条件D. 目标函数、约束条件及决策变量2.关于剩余变量,下列说法错误的是:A. 为将某个大于等于约束化为等式约束,在该约束中减去一个剩余变量B. 剩余变量在实际问题中表示超过收益的部分C. 剩余变量在目标函数中的系数为零D. 在用单纯形法求解线性规划问题时,剩余变量一般作为初始基变量。

A. 任意m 个列向量组成的矩阵B. 任意m 阶子矩阵C. 前m 个列向量组成的矩阵D. 任意m 个线性无关的列向量组成的矩阵A. mB. n-mC. 至少mD. 至少n-m5.如果是求极大值的线性规划问题,单纯形法的每次迭代意味着其目标函数值将( A)必然增加;(B)必然减少;(C)可能增加;(D)可能减少6.单纯形法求解线性规划问题时,如何判断问题存在无界解?(A)全部变量的检验数非负;(B)某个检验数为正的非基变量,其系数列向量不存在正分量;(C)最终的单纯形表中含有人工变量,且其取值不为零;(D)非基变量全部非正,且某个非基变量的检验数为零。

运筹学 大作业

运筹学  大作业

运筹学请在以下五组题目中任选一组作答,满分100分。

第一组:计算题(每小题25分,共100分)1.福安商场是个中型的百货商场,它对售货人员的需求经过统计分析如下表所示,为了保证售货人员充分休息,售货人员每周工作五天,休息两天,并要求休息的两天是连续的,问该如何安排售货人员的休息,既满足了工作需要,又使配备的售货人员的人数最少,请列出此问题的数学模型。

2.A、B两人分别有10分(1角)、5分、1分的硬币各一枚,双方都不知道的情况下各出一枚,规定和为偶数,A赢得8所出硬币,和为奇数,8赢得A所出硬币,试据此列出二人零和对策模型,并说明此游戏对双方是否公平。

3、某厂生产甲、乙两种产品,这两种产品均需在A、B、C三种不同的设备上加工,每种产品在不同设备上加工所需的工时不同,这些产品销售后所能获得利润以及这三种加工设备问:该厂应如何组织生产,即生产多少甲、乙产品使得该厂的总利润为最大?4、用图解法求解 max z = 6x1+4x2 s.t.第二组:计算题(每小题25分,共100分)1、用图解法求解min z =-3x1+x2 s.t.⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≤+≥+≤≤08212523421212121x x x x x x x x ,2、用单纯形法求解 max z =70x1+30x2 s.t.⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+072039450555409321212121x x x x x x x x ,3、用单纯形法求解 max z =7x1+12x2 s.t.⑵ ⑶ ⑷ ⑸、⑹1212212210870x x x x x x x +≤⎧⎪+≤⎪⎨≤⎪⎪≥⎩, ⑴ ⑵ ⑶ ⑷ ⑸⑹、⑺⑴⎪⎪⎩⎪⎪⎨⎧≥≤+≤+≤+0300103200543604921212121x x x x x x x x ,4.某企业要用三种原材料A 、B 、C 生产出出三种不同规格的产品甲、乙、丙。

已知产品的规格要求,产品单价,每天能供应的原材料数量及原材料单价,分别见表1和表2。

《运筹学》课程考试试卷试题(含答案)

《运筹学》课程考试试卷试题(含答案)

《运筹学》课程考试试卷试题(含答案)一、选择题(每题5分,共25分)1. 运筹学的核心思想是()A. 最优化B. 系统分析C. 预测D. 决策答案:A2. 在线性规划中,约束条件可以用()表示。

A. 等式B. 不等式C. 方程组D. 矩阵答案:B3. 以下哪个不是运筹学的基本模型?()A. 线性规划B. 整数规划C. 非线性规划D. 随机规划答案:D4. 在目标规划中,以下哪个术语描述的是决策变量的偏离程度?()A. 目标函数B. 约束条件C. 偏差变量D. 权重系数答案:C5. 在动态规划中,以下哪个概念描述的是在决策过程中,某一阶段的最优决策对后续阶段的影响?()A. 最优子结构B. 无后效性C. 最优性原理D. 阶段性答案:B二、填空题(每题5分,共25分)1. 运筹学是一门研究在复杂系统中的______、______和______的科学。

答案:决策、优化、实施2. 在线性规划中,若目标函数为最大化,则其标准形式为______。

答案:max z = c^T x3. 在非线性规划中,若目标函数和约束条件均为凸函数,则该规划问题为______。

答案:凸规划4. 在目标规划中,若决策变量x_i的权重系数为w_i,则目标函数可以表示为______。

答案:min Σ(w_i d_i^+ + w_i d_i^-)5. 在动态规划中,若状态变量为s_n,决策变量为u_n,则状态转移方程可以表示为______。

答案:s_{n+1} = f(s_n, u_n)三、判断题(每题5分,共25分)1. 线性规划问题的最优解一定在可行域的顶点处取得。

()答案:正确2. 在整数规划中,若决策变量为整数,则目标函数和约束条件也必须为整数。

()答案:错误3. 目标规划中的偏差变量可以是负数。

()答案:正确4. 在动态规划中,最优策略具有最优子结构。

()答案:正确5. 在非线性规划中,若目标函数为凸函数,则约束条件也必须为凸函数。

运筹学考试试卷及答案

运筹学考试试卷及答案

运筹学考试试卷及答案一、选择题(每题2分,共20分)1. 线性规划问题的标准形式是:A. 所有变量都非负B. 目标函数是最大化C. 所有约束条件都是等式D. 所有约束条件都是不等式答案:A2. 单纯形法中,如果某个变量的检验数为负数,那么:A. 该变量可以增大B. 该变量可以减小C. 该变量保持不变D. 该变量不能进入基答案:A3. 在运输问题中,如果某种资源的供应量大于需求量,那么应该:A. 增加供应量B. 减少需求量C. 增加需求量D. 减少供应量答案:C4. 动态规划的基本原理是:A. 递归B. 迭代C. 回溯D. 分解答案:D5. 决策树中,每个节点代表:A. 一个决策B. 一个状态C. 一个结果D. 一个概率答案:A6. 排队论中,M/M/1队列的特点是:A. 到达时间服从泊松分布,服务时间服从指数分布,且只有一个服务台B. 到达时间服从指数分布,服务时间服从泊松分布,且只有一个服务台C. 到达时间服从泊松分布,服务时间服从指数分布,且有两个服务台D. 到达时间服从指数分布,服务时间服从泊松分布,且有两个服务台答案:A7. 网络流问题中,最大流最小割定理说明:A. 最大流等于最小割B. 最大流小于最小割C. 最大流大于最小割D. 最大流与最小割无关答案:A8. 整数规划问题中,分支定界法的基本思想是:A. 将问题分解为多个子问题B. 将问题转化为线性规划问题C. 将问题转化为非线性规划问题D. 将问题转化为动态规划问题答案:A9. 在多目标决策中,如果目标之间存在冲突,通常采用的方法是:A. 目标排序B. 目标加权C. 目标合并D. 目标替换答案:B10. 敏感性分析的目的是:A. 确定最优解的稳定性B. 确定最优解的唯一性C. 确定最优解的可行性D. 确定最优解的最优性答案:A二、填空题(每题2分,共20分)1. 线性规划问题的可行域是由所有_________约束条件构成的集合。

答案:可行2. 在单纯形法中,如果目标函数的系数都是正数,则该问题为_________问题。

最全运筹学习题及答案

最全运筹学习题及答案

最全运筹学习题及答案共1 页运筹学习题答案)1.1用图解法求解下列线性规划问题,并指出问题是具有唯一最优解、无穷多最优解、无界解还是无可行解。

(1)max z?x1?x25x1+10x2?50x1+x2?1x2?4x1,x2?0(2)min z=x1+1.5x2x1+3x2?3x1+x2?2x1,x2?0(3)+2x2x1-x2?-0.5x1+x2x1,x2?0(4)max z=x1x2x1-x2?03x1-x2?-3x1,x2?0(1)(图略)有唯一可行解,max z=14(2)(图略)有唯一可行解,min z=9/4(3)(图略)无界解(4)(图略)无可行解1.2将下列线性规划问题变换成标准型,并列出初始单纯形表。

共2 页(1)min z=-3x1+4x2-2x3+5x4 4x1-x2+2x3-x4=-2x1+x2+3x3-x4?14 -2x1+3x2-x3+2x4?2x1,x2,x3?0,x4无约束(2zk?i??xk?1mxik?(1Max s. t .-4x1xx1,x2共3 页(2)解:加入人工变量x1,x2,x3,…xn,得:Max s=(1/pk)? i?1n?k?1m?ikxik-Mx1-Mx2-…..-Mxnm(1)max z=2x1+3x2+4x3+7x4 2x1+3x2-x3-4x4=8x1-2x2+6x3-7x4=-3x1,x2,x3,x4?0(2)max z=5x1-2x2+3x3-6x4共4 页x1+2x2+3x3+4x4=72x1+x2+x3+2x4=3x1x2x3x4?0(1)解:系数矩阵A是:?23?1?4??1?26?7? ??令A=(P1,P2,P3,P4)P1与P2线形无关,以(P1,P2有2x1+3x2=8+x3+4x4x1-2x2=-3-6x3+7x4令非基变量x3,x4解得:x1=1;x2=2基解0,0)T为可行解z1=8(2)同理,以(P=(45/13,0,-14/13,0)T是非可行解;3以(P1,P4X(3)=,,7/5)T是可行解,z3=117/5;(4)以(P2,P=(,45/16,7/16,0)T是可行解,z4=163/16;3以(P2,P4)为基,基解X(5)0,68/29,0,-7/29)T是非可行解;(6)TX以(P4,P)为基,基解=(0,0,-68/31,-45/31是非可行解;)3最大值为z3=117/5;最优解X(3)=(34/5,0,0,7/5)T。

运筹练习题及答案

运筹练习题及答案

运筹练习题及答案运筹学是应用数学的一个分支,它主要研究如何在有限资源下,通过合理规划和决策来达到最优效果。

以下是一些运筹练习题及答案,供学习者练习和参考。

练习题1:线性规划问题某工厂生产A和B两种产品,每种产品都需要使用机器和劳动力。

生产1单位A产品需要1小时机器时间和2小时劳动力,生产1单位B产品需要2小时机器时间和1小时劳动力。

工厂每天有10小时机器时间和15小时劳动力。

如果A产品的利润是3元,B产品的利润是5元,问如何安排生产计划以使总利润最大化?答案:设生产A产品的数量为x,B产品的数量为y。

目标函数:最大化利润 Z = 3x + 5y约束条件:1. 机器时间:x + 2y ≤ 102. 劳动力时间:2x + y ≤ 153. 非负性:x ≥ 0, y ≥ 0通过图解法或单纯形法,我们可以得到最优解为x = 4, y = 3,此时最大利润为34元。

练习题2:整数规划问题一家公司需要安排10名员工在5个不同的部门工作。

每个部门至少需要1名员工,且每个员工只能在一个部门工作。

部门A需要至少3名员工,部门B需要至少2名员工,部门C需要1名员工,部门D和E 各需要至少1名员工。

问如何分配员工以满足所有部门的需求?答案:设部门A、B、C、D、E分别分配的员工数为x1, x2, x3, x4, x5。

目标函数:满足所有部门需求,无直接利润最大化。

约束条件:1. x1 + x2 + x3 + x4 + x5 = 102. x1 ≥ 33. x2 ≥ 24. x3 = 15. x4 = 16. x5 = 1通过枚举法或整数规划算法,我们可以得到一种分配方案为:部门A 分配3人,B分配2人,C、D、E各分配1人。

练习题3:网络流问题某公司有3个仓库和4个销售点,每个销售点每天对产品的需求量已知。

公司需要决定如何从仓库向销售点分配产品,以满足所有销售点的需求,同时使总运输成本最小。

答案:设仓库i向销售点j的运输量为x_ij,运输成本为c_ij。

运筹学试题及答案4套汇总

运筹学试题及答案4套汇总

《运筹学》试卷一一、(15分)用图解法求解下列线性规划问题二、(20分)下表为某求极大值线性规划问题的初始单纯形表及迭代后的表,、为松弛变量,试求表中到的值及各变量下标到的值。

-1311611 -2 002 -111/21/214 07三、(15分)用图解法求解矩阵对策,其中四、(20分)(1)某项工程由8个工序组成,各工序之间的关系为工序 a b c d e f g h —— a a b,c b,c,d b,c,d e 紧前工序试画出该工程的网络图。

(2)试计算下面工程网络图中各事项发生的最早、最迟时间及关键线路(箭线下的数字是完成该工序的所需时间,单位:天)五、(15分)已知线性规划问题其对偶问题最优解为,试根据对偶理论求原问题的最优解。

六、(15分)用动态规划法求解下面问题:七、(30分)已知线性规划问题用单纯形法求得最优单纯形表如下,试分析在下列各种条件单独变化的情况下,最优解将如何变化。

2-11 02311311111610-3-1-2(1)目标函数变为;(2)约束条件右端项由变为;(3)增加一个新的约束:八、(20分)某地区有A、B、C三个化肥厂向甲、乙、丙、丁四个销地供应同一种化肥,已知产地产量、销地需求量和各产地运往不同销地单位运价如下表,试用最小元素法确定初始调运方案,并调整求最优运输方案销地甲乙丙丁产量产地A 4 12 4 11 16B 2 10 3 9 10C 8 5 11 6 22 需求量8 14 12 14 48《运筹学》试卷二一、(20分)已知线性规划问题:(a)写出其对偶问题;(b)用图解法求对偶问题的解;(c)利用(b)的结果及对偶性质求原问题的解。

二、(20分)已知运输表如下:销地B1B2B3B4供应量产地A1 3 2 7 6 50A2 7 5 2 3 60A3 2 5 4 5 25需求量60 40 20 15(1)用最小元素法确定初始调运方案;(2)确定最优运输方案及最低运费。

运筹学考试试题

运筹学考试试题

运筹学考试试题
问题一:线性规划
某食品公司有两种包装酱油的产品,产品 A 和产品 B。

产品 A 需
要 2 包的玻璃瓶和 3 包的金属瓶,产品 B 需要 4 包的玻璃瓶和 1 包的金属瓶。

公司每天共有 60 包玻璃瓶和 50 包金属瓶可用于生产。

产品
A 毛利为 10 元/包,产品
B 毛利为 15 元/包。

为了最大限度地提高公司的毛利,请问公司每天应该生产多少包产品 A 和产品 B?
问题二:整数规划
某快递公司需要派送多个包裹,在不同的送货地点停靠。

每个派送地点需要 1 辆专门的送货车。

快递公司最多可以使用 5 辆送货车。

每辆车的容量为 30 个包裹。

每个送货地点的包裹量如下:地点 1 需要 12 个包裹,地点 2 需要 8 个包裹,地点 3 需要 15 个包裹,地点 4 需要 10 个包裹。

每个送货地点停靠一辆车后,可以继续往下一个地点派送。

请问如何安排送货车来最大化送货量?
问题三:动态规划
假设有一个 3×3 的方格矩阵,每个格子里都写有一个正整数。

从左上角出发,每次只能向右或向下移动,直到达到右下角。

路线上所有经过的格子的数字加起来就是这条路径的价值。

求最优路径和的最大值。

问题四:网络流
某市有 4 座工厂,生产不同种类的零件。

每座工厂每天的生产能力不同,且每种零件的需求也不相同。

如何设计一个合理的生产调度方案,使得所有工厂的产量最大化,且满足市场对不同零件的需求?
以上考试试题仅供参考,实际考试内容以试卷内容为准。

祝考试顺利!。

运筹学期末试题及答案

运筹学期末试题及答案

运筹学期末试题及答案一、单项选择题(每题2分,共20分)1. 线性规划的最优解一定在可行域的哪个位置?A. 边界上B. 内部C. 顶点D. 不确定答案:A2. 动态规划的基本原理是什么?A. 贪心算法B. 分而治之C. 动态规划D. 回溯算法答案:B3. 整数规划问题中,变量的取值范围是?A. 连续的B. 离散的C. 整数D. 任意实数答案:C4. 以下哪个不是网络流问题?A. 最短路径问题B. 最大流问题C. 旅行商问题D. 线性规划问题答案:D5. 用单纯形法求解线性规划问题时,如果目标函数的系数矩阵是奇异的,则会出现什么情况?A. 无解B. 多解C. 无界解D. 有唯一解答案:C6. 以下哪个算法不是启发式算法?A. 遗传算法B. 模拟退火算法C. 动态规划D. 贪心算法答案:C7. 以下哪个是多目标优化问题?A. 只有一个目标函数B. 有多个目标函数C. 目标函数是线性的D. 目标函数是凸的答案:B8. 以下哪个是确定性决策方法?A. 决策树B. 随机模拟C. 蒙特卡洛方法D. 马尔可夫决策过程答案:A9. 以下哪个是排队论中的基本概念?A. 服务时间B. 到达率C. 队列长度D. 以上都是答案:D10. 以下哪个是存储论中的基本概念?A. 订货点B. 订货周期C. 订货量D. 以上都是答案:D二、多项选择题(每题3分,共15分)1. 以下哪些是线性规划问题的解?A. 可行解B. 基本解C. 基本可行解D. 非基本解答案:ABC2. 以下哪些是整数规划问题的解?A. 整数解B. 混合整数解C. 连续解D. 非整数解答案:AB3. 以下哪些是动态规划的步骤?A. 确定状态B. 确定决策C. 确定状态转移方程D. 确定目标函数答案:ABC4. 以下哪些是排队论中的基本概念?A. 到达过程B. 服务过程C. 等待时间D. 服务台数量答案:ABCD5. 以下哪些是图论中的基本概念?A. 节点B. 边C. 路径D. 环答案:ABCD三、简答题(每题5分,共20分)1. 请简述线性规划的几何意义。

运筹学作业习题

运筹学作业习题

运筹学作业习题- x 1 + 4x 2 - 3x 3 - 5x 4 = 9 2x 1 + 4x 2 - 3x 3 + 2x 4 = 15- 2x 1 + 3x 2 + 4x 3 ≤ 12 3x 1 - x 6 = 0线性规划建模及单纯形法思考题主要概念及内容:线性规划模型结构(决策变量,约束不等式、等式,⽬标函数);线性规划标准形式;可⾏解、可⾏集(可⾏域、约束集),最优解;基、基变量、⾮基变量、基向量、⾮基向量;基本解、基本可⾏解、可⾏基、最优基。

复习思考题:1、线性规划问题的⼀般形式有何特征?2、建⽴⼀个实际问题的数学模型⼀般要⼏步?3、两个变量的线性规划问题的图解法的⼀般步骤是什么?4、求解线性规划问题时可能出现⼏种结果,哪种结果反映建模时有错误?5、什么是线性规划的标准型,如何把⼀个⾮标准形式的线性规划问题转化成标准形式。

6、试述线性规划问题的可⾏解、基本解、基本可⾏解、最优解、最优基本解的概念及它们之间的相互关系。

7、试述单纯形法的计算步骤,如何在单纯形表上判别问题具有唯⼀最优解、有⽆穷多个最优解、⽆界解或⽆可⾏解。

8、在什么样的情况下采⽤⼈⼯变量法,⼈⼯变量法包括哪两种解法?9、⼤ M 法中,M 的作⽤是什么?对最⼩化问题,在⽬标函数中⼈⼯变量的系数取什么?最⼤化问题呢?10、什么是单纯形法的两阶段法?两阶段法的第⼀段是为了解决什么问题?在怎样的情况下,继续第⼆阶段?作业习题1、将下列线性规划问题化为标准型max z = 3x 1 + 5x 2 - 4x 3 + 2x 4 ?2x 1 + 6x 2 - x 3 + 3x 4 ≤ 18(1) ?x 1 - 3x 2 + 2x 3 - 2x 4 ≥ 13x 1, x 2 , x 4 ≥ 0 min f = 3x 1 + x 2 + 4x 3 + 2x 4 2x 1 + 3x 2 - x 3 - 2x 4 ≤ -51(2) ?3x 1 - 2x 2 + 2x 3 - x 4 ≥ -7x 1, x 2 ≥ 0, x 4 ≤ 02、(1)求出下列不等式组所定义的多⾯体的所有基本解和基本可⾏解(极点): ?2x 1 + 3x 2 + 3x 3 ≤ 6 ? ?x 1, x 2 , x 3 ≥ 0(2)对下述线性规划问题找出所有基本解,指出哪些是基本可⾏解,并确定最优解. max z = 3x 1 + x 2 + 2x 3 ?12x 1 + 3x 2 + 6x 3 + 3x 4 = 9 ?8x 1 + x 2 - 4x 3 + 2x 5 = 10 ? ?x j ≥ 0( j 1,K K ,6)3、⽤图解法求解下列线性规划问题x 1 ≤ 3 3x 1 - 5x 2 ≥ 15x 1 + 4x 2 - x 3 ≤ 4 - x 1 + x 2 ≤ 5 2x 2 - x 3 ≤ 12 2x 1+ x 2 + x 3 = 13 - x 1 + 5x 2 + x 3 ≤ 4 max z = x 1 + 2x 2 2x 1 - x 2 ≤ 6(1) ?3x 1 + 2x 2 ≤ 12x 1, x 2 ≥ 0min z = -x 1 + 3x 24x 1 + 7x 2 ≥ 56(2) ?x 1, x 2 ≥ 04、在以下问题中,列出所有的基,指出其中的可⾏基,基础可⾏解以及最优解。

(完整word版)运筹学习题及答案

(完整word版)运筹学习题及答案
A.无可行解 B。有唯一最优解 C。有多重最优解 D。有无界解
34。某个常数bi波动时,最优表中引起变化的有(A)
A.B-1bB。 C.B-1D.B-1N
35.某个常数bi波动时,最优表中引起变化的有(C)
A. 检验数 B。CBB-1C。CBB-1b D。系数矩阵
36.任意一个容量的网络中,从起点到终点的最大流的流量等于分离起点和终点的任一割集的容量.(B)A.正确B。错误C.不一定D。无法判断
9.对偶单纯形法迭代中的主元素一定是负元素( )A
A。正确B.错误C。不一定D。无法判断
10。对偶单纯形法求解极大化线性规划时,如果不按照最小化比值的方法选取什么变量则在下一个解中至少有一个变量为正( )B
A。换出变量B.换入变量C.非基变量D。基变量
11.对 问题的标准型: ,利用单纯形表求解时,每做一次换基迭代,都能保证它相应的目标函数值 必为()B
A.换出变量B.换入变量C。非基变量D。基变量
29。可行解是满足约束条件和非负条件的决策变量的一组取值.( )A
A。正确B。错误C。不一定D。无法判断
30。 连通图G有n个点,其部分树是T,则有(C)
A。T有n个点n条边 B.T的长度等于G的每条边的长度之和
C.T有n个点n-1条边 D。T有n-1个点n条边
47.通过什么方法或者技巧可以把产销不平衡运输问题转化为产销平衡运输问题(C)
A。非线性问题的线性化技巧B.静态问题的动态处理
C.引入虚拟产地或者销地D。引入人工变量
48.为什么单纯形法迭代的每一个解都是可行解?因为遵循了下列规则 (A)
A。按最小比值规则选择出基变量 B。先进基后出基规则
C。标准型要求变量非负规则 D。按检验数最大的变量进基规则
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.已知某线性规划问题的初始单纯形表和用单纯形表法迭代后得到的表1,试求括号中未知数a-l的数值。

解:
(1)X5是基变量,检验数l=0
(2)x1是基变量,则,g=1,h=0
(3)x4行乘以1/2得到迭代后的x1行
所以,f=6*1/2=3, b=2,c=4,d=-2
(4)x4行乘以1/2加到x5行上,得到迭代后的x5行
所以,c*1/2+3=i,i=5,d*1/2+e=1, e=2
(5)迭代前为初始单纯形表,价值系数为初始表检验数
所以,x2价值系数为-1,x3价值系数为2,x4价值系数为0
则,-7=-1-(2a-0*i),所以a=3
j=2-(-a)=5;k=0-(1/2*a+1/2*0)=-3/2
即,a=3,b=2,c=4,d=-2,e=2, f=3, g=1, h=0, i=5, j=5, k= -3/2, l=0
2.已知某求极大化线性规划问题用单纯形法求解时的初始单纯形表及最终单纯
解:初始单纯形表中的单位矩阵,在最终单纯形表中变化为B -1
(1) ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=-21043041411
h i l B
⎥⎥⎥⎦⎤
⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣
⎡--==-2/54/254/520152**********
'b h i l b B b 在最终表中,x 4是基变量,所以l =1
所以,b=10,i=-1/4,h=-1/2
(2) ⎥⎥⎥⎦⎤
⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----==-0102121210414304141111'1a p B p 则a=2 (3)⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡----==-1001121210414304141121'2c p B p 则c=3 以此类推其它未知数取值。

即,a=2 b=10 c=3 d=1/4 e=5/4 f=-1/2 g=-3/4 h= -1/2 i= -1/4 j= -1/4 k=0 l=1
3.给出线性规划问题
⎪⎪⎪⎩

⎪⎪⎨⎧=≥≤++
≤+
+
≤+≤+++++=)
4,...,1(09
66283.42max 3
214
3
2
2
1
42
14
321j x x x x x x x x x x x x st x x x x z j
要求:(1)写出其对偶问题;(2)已知原问题最优解为X*=(2,2,4,0),试根据对偶理论,直接写出对偶问题的最优解。

解:(1)其对偶问题为
⎪⎪⎪⎩
⎪⎪⎪⎨⎧=≥≥+≥+
≥++
+≥+++++=)
4,...,1(01
14322.9668min 3
14
3
432
142
1
4321j y y y y y y y y y y y y st y y y y w j
(2)根据对偶理论知,4,2,2321===x x x 均绝对大于零,所以其变量对应的对偶问题
的约束条件取严格等式。

原问题与对偶问题同时取得最优解,且目标函数值相等。

则可得:
⎪⎪⎪⎩
⎪⎪⎪⎨⎧+++=+++=+=+++=+++++=43214
3
2
143
432142
1
432142966814
32
2.9668min x x x x y y y y y y y y y y y y y st y y y y w 解得,⎪⎪⎩⎪⎪⎨⎧====0
153544321y y y y
4.某厂生产A/B/C 三种产品,其所需劳动力、材料等相关数据见下表。

要求:
(1)确定获利最大的产品生产计划;(2)产品A 的利润在什么范围内变动时,上述最优计划不变;(3)如果设计一种新产品D ,单件劳动力消耗为8单位,材料消耗为2单位,每件可获利3元,问该产品是否值得生产?(4)如果劳动力数量不增,材料不足时可从市场
解:
(1)设A/B/C 三种产品的产量分别为x 1,x 2,x 3,写出最优生产计划数学模型。

⎪⎩⎪
⎨⎧=≥≤++≤++++=3,2,1,04553645
536.43max 321321321j x x x x x x x st x x x z j
标准化后,列单纯形表计算。

⎪⎩⎪
⎨⎧===3053
21x x x (2)假设产品A 的利润变动量为λ时,上述最优计划不变。

则体现在最终单纯形表上为:
抱持最优计划不变,则需要当前解仍为最优解。

即检验数行均小于等于零。

⎪⎪⎪⎩⎪⎪⎪⎨⎧≤-≤--≤-05
3305
1
3023λλλ
解得5953≤≤-λ
所以5
243512≤
+≤λ 即在上述范围内最优计划不变。

(3)设计新产品,相当于增加一列p ,则有
⎥⎥⎦⎤⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⋅⎥⎥⎥⎦

⎢⎢⎢⎣⎡--==-542285251313
161'
6p B p ()5
1
5424366=⎥⎥⎦⎤⎢⎢⎣⎡--=c δ
因为检验数大于零,所以此产品值得生产。

(4)劳动力数量不增,材料不足可购买,相当于资源拥有量b 发生了变化,设变化情况为
⎥⎦⎤⎢⎣⎡=∆λ0b ,则⎥⎥⎥⎦
⎤⎢⎢⎢⎣⎡+-=⎥⎦⎤⎢⎣⎡⋅⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--+⎥⎦⎤⎢⎣⎡=∆+=-λλλ52335052513131351'b B b b 因为决策为扩大生产,即保持生产品种(基变量)不变,所以得到:
⎪⎩⎪⎨⎧
≥+≥-05
2
3035λλ得到150≤≤λ 因为利润35
3
4321+=
++=λx x x z ,可知z 值随着λ增长而增长。

当λ取最大值15时,z 值同时取的最大值。

因此以购进15单位为宜。

5、 1.2.3三个城市每年需分别供应电力320,250,350个单位,由A、B两个电站提供,它们的最大可供电量分别为400,450个单位,单位费用如表所示。

由于需求大于供给,决定城市1的供应量可减少0~30个单位,城市2的供应量不变,城市3的供应量不能少于270单位。

试求总费用最低的分配方案。

(将可供电量用完。

)。

相关文档
最新文档