1998年同济大学暖通招收攻读硕士研究生入学考试试题

合集下载

同济大学1998、1999年研究生入学考试高等代数试题

同济大学1998、1999年研究生入学考试高等代数试题
2 2 2
(8 分) 五、设 A 是 n 阶实可逆阵,证明 2( A t A) −1 是正定阵。 六、设方阵 A、B 适合 A + 3 A + 7 E = 0 ,证明 A 可逆。 (10 分)
3 2
七、问 k 取何值时,以下方程组 AX = β (1) 有唯一解; (2)无解; (3)有无穷多组解,这
1 k 1 1 (14 分) 时求它的通解,其中 A = 1 − 1 1 , β = 1 。 k 1 2 1
八、求正交变换化二次型 f = 2 x1 + 5 x 2 + 5 x 3 + 4 x1 x 2 − 4 x1 x 3 − 8 x 2 x 3 为标准型。 (18 分)
(v, v) 表示 V 的长度,
(1) 设 n 是奇数, Α : V → V ,是 V 的一个正交变换,证明存在 V 中非零向量 v 使得 Av = v 或 Av = −v ,(6 分) (2) 举例说明:当 n 为偶数时(1)的结论不一定成立.(7 分)
(3) 设变换 Τ : V → V 满足 (1) Τ(0) = 0 ,(2) Τ(v) − T ( w) = v − w , ∀v, w ∈ V , 证明 T 一定是 V 的线性变换.(7 分) 十、 已知一个 2 × 2 的矩阵序列 M 1 , M 2 , L , M n , 其中 M n = c n 有 M n +1
2
变换。 ( ) 3、 任意一个实方阵必相似于一个实上三角阵。 ( )
2 −1 3 2 2 6 4 x −5 −2 =0,求 x.(8 分) 二、设 −3 2 − 1 x 2 + 1 3 − 2 1 − 2 1 1 0 1 2 2 1 1 B 1 1 ,求矩阵 X 使 X 三、设 A= 2 5 4 ,B= ,C= 1 1 0 1 A =C.(8分) 2 4 5 1 1 1

1998 年全国硕士研究生入学统一考试数学试题库及答案

1998 年全国硕士研究生入学统一考试数学试题库及答案

1998 年全国硕士研究生入学统一考试数学一试题一、填空题(本题共5小题,每小题3分,满分15分.)(1) 22limx x→= . (2) 设1()(),,z f xy y x y f x ϕϕ=++具有二阶连续导数,则2zx y ∂=∂∂ .(3) 设L 为椭圆221,43x y +=其周长记为a ,则22(234)L xy x y ds ++=⎰ . (4) 设A 为n 阶矩阵,0A ≠,*A 为A 的伴随矩阵,E 为n 阶单位矩阵.若A 有特征值λ,则*2()A E +必有特征值 . (5) 设平面区域D 由曲线1y x=及直线20,1,y x x e ===所围成,二维随机变量(,)X Y 在区域D 上服从均匀分布,则(,)X Y 关于X 的边缘概率密度在2x =处的值为 _ .二、选择题(本题共5小题,每小题3分,共15分.) (1) 设()f x 连续,则220()x d tf x t dt dx-=⎰ ( ) (A) 2()xf x (B) 2()xf x - (C) 22()xf x (D) 22()xf x - (2) 函数23()(2)f x x x x x =---不可导点的个数是 ( )(A) 3 (B) 2 (C) 1 (D) 0 (3) 已知函数()y y x =在任意点x 处的增量2,1y xy xα∆∆=++且当0x ∆→时,α是x ∆的高阶无穷小,(0)y π=,则(1)y 等于 ( ) (A) 2π (B) π (C) 4e π (D) 4e ππ(4) 设矩阵111222333a b c a b c a b c ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦是满秩的,则直线333121212x a y b z c a a b b c c ---==---与直线 111232323x a y b z c a a b b c c ---==--- ( )(A) 相交于一点 (B) 重合(C) 平行但不重合 (D) 异面(5) 设A B 、是两个随机事件,且0()1,()0,(|)(|),P A P B P B A P B A <<>=则必有( )(A) (|)(|)P A B P A B = (B) (|)(|)P A B P A B ≠ (C) ()()()P AB P A P B = (D) ()()()P AB P A P B ≠三、(本题满分5分)求直线11:111x y z L --==-在平面:210x y z ∏-+-=上的投影直线0L 的方程,并求0L 绕y 轴旋转一周所成曲面的方程.四、(本题满分6分)确定常数λ,使在右半平面0x >上的向量42242(,)2()()A x y xy x y i x x y j λλ=+-+为某二元函数(,)u x y 的梯度,并求(,)u x y .五、(本题满分6分)从船上向海中沉放某种探测仪器,按探测要求,需确定仪器的下沉深度y (从海平面算起)与下沉速度v 之间的函数关系.设仪器在重力作用下,从海平面由静止开始铅直下沉,在下沉过程中还受到阻力和浮力的作用.设仪器的质量为m ,体积为B ,海水比重为ρ,仪器所受的阻力与下沉速度成正比,比例系数为(0)k k >.试建立y 与v 所满足的微分方程,并求出函数关系式()y =y v .六、(本题满分7分)计算212222(),()axdydz z a dxdy x y z ∑++++⎰⎰其中∑为下半球面z =,a 为大于零的常数.七、(本题满分6分)求2sin sin sin lim .1112n n n n n n n πππ→∞⎛⎫ ⎪++⋅⋅⋅+ ⎪+ ⎪++⎝⎭八、(本题满分5分)设正项数列{}n a 单调减少,且1(1)nn n a ∞=-∑发散,试问级数11()1nn n a ∞=+∑是否收敛?并说明理由.九、(本题满分6分)设()y f x =是区间[0,1]上的任一非负连续函数.(1) 试证存在0(0,1)x ∈,使得在区间[]00,x 上以0()f x 为高的矩形面积,等于在区间[]0,1x 上以()y f x =为曲边的梯形面积. (2) 又设()f x 在区间(0,1)内可导,且2()(),f x f x x'>-证明(1)中的0x 是唯一的.十、(本题满分6分)已知二次曲面方程2222224x ay z bxy xz yz +++++=,可以经过正交变换x y P z ξηζ⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦化为椭圆柱面方程2244ηζ+=,求,a b 的值和正交矩阵P .十一、(本题满分4分)设A 是n 阶矩阵,若存在正整数k ,使线性方程组0kA x =有解向量α,且10k A α-≠, 证明:向量组1,,,k A A ααα-是线性无关的.十二、(本题满分5分)已知线性方程组1111221,222112222,221122,220,0,()0n n n n n n n n n a x a x a x a x a x a x I a x a x a x ++⋅⋅⋅+=⎧⎪++⋅⋅⋅+=⎪⎨⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⎪⎪++⋅⋅⋅+=⎩的一个基础解系为11121,221222,212,2(,,,),(,,,),,(,,,)TTTn n n n n n b b b b b b b b b ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅,试写出线性方程组1111221,222112222,221122,220,0,()0n n n n n n n n n b y b y b y b y b y b y II b y b y b y ++⋅⋅⋅+=⎧⎪++⋅⋅⋅+=⎪⎨⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⎪⎪++⋅⋅⋅+=⎩的通解,并说明理由.十三、(本题满分6分)设两个随机变量,X Y 相互独立,且都服从均值为0、方差为12的正态分布,求随机变量X Y -的方差.十四、(本题满分4分)从正态总体2(3.4,6)N 中抽取容量为n 的样本,如果要求其样本均值位于区间(1.4,5.4)内的概率不小于0.95,问样本容量n 至少应取多大?附表:标准正态分布表22()t zz dt -Φ=⎰z1.28 1.645 1.962.33 ()z Φ0.9000.9500.9750.990十五、(本题满分4分)设某次考试的学生成绩服从正态分布,从中随机地抽取36位考生的成绩,算得平均成绩为66.5分,标准差为15分,问在显著性水平0.05下,是否可以认为这次考试全体考生的平均成绩为70分?并给出检验过程. 附表:t 分布表{()()}p P t n t n p ≤=1998年全国硕士研究生入学统一考试数学一试题解析一、填空题(本题共5小题,每小题3分,满分15分.) (1)【答案】14-【解析】方法1:用四则运算将分子化简,再用等价无穷小替换,原式22x→=24x →-=)221lim4x x →=2220112112lim 24x xx x →-- =-.方法2:采用洛必达法则.原式)()022limxx →''洛0x →= 0x →=0x →=0x → 洛 14==-.方法3:将分子按佩亚诺余项泰勒公式展开至2x 项,()22111128x x o x =+-+()22211128x x o x =--+, 从而 原式()()2222122011111122828lim x x x o x x x o x x →+-++--+-= ()()222122014lim x x o x o x x→-++=14=-. (2)【答案】()()()yf xy x y y x y ϕϕ'''''++++【分析】因为1()(),,z f xy y x y f xϕϕ=++具有二阶连续导数,利用混合偏导数在连续的条件下与求导次序无关,先求z x ∂∂或z y∂∂均可,但不同的选择可能影响计算的繁简. 方法1:先求z x∂∂. 211()()()()()z y f xy y x y f xy f xy y x y x x x x x ϕϕ∂∂⎡⎤''=++=-+++⎢⎥∂∂⎣⎦, 2221()()()11()()()()()11()()()()()()()().z y f xy f xy y x y x y y x x yf xy x f xy f xy x x y y x y x x xf xy f xy yf xy x y y x y x xyf xy x y y x y ϕϕϕϕϕϕϕ∂∂⎛⎫''=-+++ ⎪∂∂∂⎝⎭'''''''=-++++++'''''''=-++++++'''''=++++ 方法2:先求z y∂∂. 11()()()()()()()(),z f xy y x y f xy x x y y x y y y x xf xy x y y x y ϕϕϕϕϕ∂∂⎡⎤''=++=++++⎢⎥∂∂⎣⎦''=++++ []22()()()()()().z z f xy x y y x y x y y x xyf xy x y y x y ϕϕϕϕ∂∂∂''==++++∂∂∂∂∂'''''=++++ 方法3:对两项分别采取不同的顺序更简单些:()[][][]21()()1()()()()()()().z f xy y x y x y x y x y x f xy x y x y x x y f xy y x y x yyf xy x y y x y ϕϕϕϕϕ⎡⎤∂∂∂∂∂⎛⎫⎡⎤=++ ⎪⎢⎥⎢⎥∂∂∂∂∂∂⎝⎭⎣⎦⎣⎦∂∂⎡⎤''=++⎢⎥∂∂⎣⎦∂∂''=++∂∂'''''=++++ 评注:本题中,,f ϕ中的中间变量均为一元,因此本题实质上是一元复合函数的求导,只要注意到对x 求导时,y 视为常数;对y 求导时,x 视为常数就可以了. (3)【答案】12a【解析】L 关于x 轴(y 轴)对称,2xy 关于y (关于x )为奇函数20Lxyds ⇒=⎰.又在L 上,22222213412(34)1212.43L L x y x y x y ds ds a +=⇒+=⇒+==⎰⎰因此, 原式222(34)12LLxyds xy ds a =++=⎰⎰.【相关知识点】对称性:平面第一型曲线积分(),lf x y ds ⎰,设(),f x y 在l 上连续,如果l 关于y 轴对称,1l 为l 上0x ≥的部分,则有结论:()()()()12,,,,0,l lf x y ds f x y x f x y ds f x y x ⎧ ⎪=⎨ ⎪⎩⎰⎰关于为偶函数,,关于为奇函数. 类似地,如果l 关于x 轴对称,2l 为l 上0y ≥的部分,则有结论:()()()()22,,,,0,l lf x y ds f x y y f x y ds f x y y ⎧ ⎪=⎨ ⎪⎩⎰⎰关于为偶函数,,关于为奇函数. (4)【答案】 21A λ⎛⎫+ ⎪⎝⎭【解析】方法1:设A 的对应于特征值λ的特征向量为ξ,由特征向量的定义有,(0)A ξλξξ=≠.由0A ≠,知0λ≠(如果0是A 的特征值0A ⇔=),将上式两端左乘A *,得A A A A A ξξλξλξ***===,从而有 *,AA ξξλ=(即A *的特征值为Aλ).将此式两端左乘A *,得()22**AA A A ξξξλλ⎛⎫== ⎪⎝⎭.又E ξξ=,所以()()22*1A A E ξξλ⎛⎫⎛⎫ ⎪+=+ ⎪ ⎪⎝⎭⎝⎭,故*2()A E +的特征值为21A λ⎛⎫+ ⎪⎝⎭.方法2:由0A ≠,A 的特征值0λ≠(如果0是A 的特征值0A ⇔=),则1A -有特征值1λ,A *的特征值为A λ;*2()A E +的特征值为21A λ⎛⎫+ ⎪⎝⎭.【相关知识点】1.矩阵特征值与特征向量的定义:设A 是n 阶矩阵,若存在数λ及非零的n 维列向量X 使得AX X λ=成立,则称λ是矩阵A 的特征值,称非零向量X 是矩阵A 的特征向量.由λ为A 的特征值可知,存在非零向量α使A αλα=,两端左乘1A -,得1A αλα-=.因为0α≠,故0λ≠,于是有11A ααλ-=.按特征值定义知1λ是1A -的特征值. 若AX X λ=,则()()A kE X AX kX k X λ+=+=+.即若λ是A 的特征值,则A kE +的特征值是k λ+.2.矩阵A 可逆的充要条件是0A ≠,且11A A A-*=. (5)【答案】14【解析】首先求(,)X Y 的联合概率密度(,)f x y .21(,)|1,0D x y x e y x ⎧⎫=≤≤≤≤⎨⎬⎩⎭,区域D 的面积为22111ln 2.e e D S dx x x===⎰1,(,),(,)20, x y D f x y ⎧∈⎪=⎨⎪⎩其他.其次求关于X 的边缘概率密度.当1x <或2x e >时,()0X f x =;当21x e ≤≤时,1011()(,)22x X f x f x y dy dy x+∞-∞===⎰⎰. 故1(2).4X f =二、选择题(本题共5小题,每小题3分,共15分.) (1)【答案】(A)【解析】为变限所定义的函数求导数,作积分变量代换22,u x t =-2:0:0t x u x →⇒→,()222du d x t tdt =-=-12dt du t⇒=-,222022220001()()211()(),22xx xx tf x t dt u x t tf u dt t f u du f u du ⎛⎫-=-- ⎪⎝⎭=-=⎰⎰⎰⎰()2220022221()()211()()2(),22x x d d tf x t dt f u du dx dx f x x f x x xf x -='=⋅=⋅=⎰⎰选(A).【相关知识点】对积分上限的函数的求导公式:若()()()()t t F t f x dx βα=⎰,()t α,()t β均一阶可导,则[][]()()()()()F t t ft t f t ββαα'''=⋅-⋅.(2)【答案】(B)【解析】当函数中出现绝对值号时,就有可能出现不可导的“尖点”,因为这时的函数是分段函数.22()(2)1f x x x x x =---,当0,1x ≠±时()f x 可导,因而只需在0,1x =±处考察()f x 是否可导.在这些点我们分别考察其左、右导数.由 22222222(2)(1),1,(2)(1),10,()(2)(1),01,(2)(1),1,x x x x x x x x x x f x x x x x x x x x x x ⎧---<-⎪----≤<⎪=⎨---≤<⎪⎪---≤⎩⇒ ()()22111(2)(1)0(1)lim lim 011x x f x f x x x x f x x ---→-→-------'-===++, ()()22111(2)(1)0(1)lim lim 011x x f x f x x x x f x x +++→-→-------'-===++,即()f x 在1x =-处可导.又()()22000(2)(1)0(0)lim lim 2x x f x f x x x x f x x ---→→-----'===,()()22000(2)(1)0(0)lim lim 2x x f x f x x x x f x x+++→→-----'===-, 所以()f x 在0x =处不可导.类似,函数()f x 在1x =处亦不可导.因此()f x 只有2个不可导点,故应选(B).评注:本题也可利用下列结论进行判断:设函数()()f x x a x ϕ=-,其中()x ϕ在x a =处连续,则()f x 在x a =处可导的充要条件是()0a ϕ=. (3)【答案】(D) 【解析】由2,1y x y x α∆∆=++有2.1y y x x xα∆=+∆+∆令0,x ∆→得α是x ∆的高阶无穷小,则0lim0x xα∆→=∆,0limx y x ∆→∆∆20lim 1x y x x α∆→⎛⎫=+ ⎪+∆⎝⎭200lim lim 1x x y x x α∆→∆→=++∆21y x =+ 即21dy y dx x =+. 分离变量,得2,1dy dx y x =+ 两边积分,得 ln arctan y x C =+,即arctan 1.xy C e =代入初始条件(0),y π=得()arctan0110.y C e C π===所以,arctan x y e π=.故 arctan 1(1)xx y eπ==arctan1eπ=4.e ππ=【相关知识点】无穷小的比较:设在同一个极限过程中,(),()x x αβ为无穷小且存在极限 ()lim ()x l x αβ=, (1) 若0,l ≠称(),()x x αβ在该极限过程中为同阶无穷小; (2) 若1,l =称(),()x x αβ在该极限过程中为等价无穷小,记为()()x x αβ;(3) 若0,l =称在该极限过程中()x α是()x β的高阶无穷小,记为()()()x o x αβ=. 若()lim()x x αβ不存在(不为∞),称(),()x x αβ不可比较. (4)【答案】(A) 【解析】设3331121212:x a y b z c L a a b b c c ---==---,1112232323:x a y b z c L a a b b c c ---==---,题设矩阵111222333a b c a b c a b c ⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦是满秩的,则由行列式的性质,可知 11112121222223232333333312230a b c a a b b c c a b c a a b b c c a b c a b c ------≠行减行,行减行, 故向量组121212(,,)a a b b c c ---与232323(,,)a a b b c c ---线性无关,否则由线性相关的定义知,一定存在12,k k ,使得11212122232323(,,)(,,)0k a a b b c c k a a b b c c ---+---=,这样上面行列式经过初等行变换值应为零,产生矛盾.121212(,,)a a b b c c ---与232323(,,)a a b b c c ---分别为12,L L 的方向向量,由方向向量线性相关,两直线平行,可知12,L L 不平行.又由333121212x a y b z c a a b b c c ---==---得333121212111x a y b z c a a b b c c ----=-=----,即()()()312312312121212x a a a y b b b z c c c a a b b c c ---------==---. 同样由111232323x a y b z c a a b b c c ---==---,得111232323111x a y b z c a a b b c c ---+=+=+---,即 ()()()123323323232323x a a a y b b b z c c c a a b b c c -+--+--+-==---, 可见12,L L 均过点()213213213,,a a a b b b c c c ------,故两直线相交于一点,选(A). (5)【答案】C【分析】由题设条件(|)(|)P B A P B A =,知A 发生与A 不发生条件下B 发生的条件概率相等,即A 发生不发生不影响B 的发生概率,故,A B 相互独立.而本题选项(A)和(B)是考虑(|)P A B 与(|)P A B 是否相等,选项(C)和(D)才是事件A 与B 是否独立.【解析】由条件概率公式及条件(|)(|),P B A P B A =知{}{}{}{}{}{}{}1P AB P AB P B P AB P A P A P A-==-, 于是有 {}{}{}{}{}1P AB P A P A P B P AB -=⋅-⎡⎤⎡⎤⎣⎦⎣⎦, 可见 {}{}{}P AB P A P B =. 应选(C).【相关知识点】条件概率公式:{}{}{}|P AB P B A P A =.三、(本题满分5分)【解析】方法1:求直线L 在平面∏上的投影0L :方法1:先求L 与∏的交点1N .以1,:,1x t L y t z t =+⎧⎪=⎨⎪=-⎩代入平面∏的方程,得(1)2(1)101t t t t +-+--=⇒=.从而交点为1(2,1,0)N ;再过直线L 上点0(1,0,1)M 作平面∏的垂线11:112x y z L --'==-,即1,,12.x t y t z t =+⎧⎪=-⎨⎪=+⎩并求L '与平面∏的交点2N :1(1)()2(12)103t t t t +--++-=⇒=-,交点为2211(,,)333N .1N 与2N 的连接线即为所求021:421x y zL --==-. 方法2:求L 在平面∏上的投影线的最简方法是过L 作垂直于平面∏的平面0∏,所求投影线就是平面∏与0∏的交线.平面0∏过直线L 上的点(1,0,1)与不共线的向量(1,1,1)l =- (直线L 的方向向量)及(1,1,2)n =-(平面∏的法向量)平行,于是0∏的方程是111110112x y z ---=-,即3210x y z --+=. 投影线为 0210,:3210.x y z L x y z -+-=⎧⎨--+=⎩下面求0L 绕y 轴旋转一周所成的旋转曲面S 的方程.为此,将0L 写成参数y 的方程:2,1(1).2x y z y =⎧⎪⎨=--⎪⎩ 按参数式表示的旋转面方程得S 的参数方程为,,.x y y z θθ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩消去θ得S 的方程为()222212(1)2x z y y ⎡⎤+=+--⎢⎥⎣⎦,即2224174210.x y z y -++-=四、(本题满分6分)【解析】令42(,)2(),P x y xy x y λ=+242(,)(),Q x y x x y λ=-+则(,)((,),(,))A x y P x y Q x y =在单联通区域右半平面0x >上为某二元函数(,)u x y 的梯度Pdx Qdy ⇔+在0x >上∃原函数(,)u x y ⇔,0.Q Px x y∂∂=>∂∂ 其中,42242132()()4Qx x y x x y x xλλλ-∂=-+-+⋅∂, 424212()2()2Px x y xy x y y yλλλ-∂=+++⋅∂. 由Q Px y∂∂=∂∂,即满足 4224213424212()()42()2()2x x y x x y x x x y xy x y y λλλλλλ---+-+⋅=+++⋅,424()(1)01x x y λλλ⇔++=⇔=-.可见,当1λ=-时,所给向量场为某二元函数的梯度场.为求(,)u x y ,采用折线法,在0x >半平面内任取一点,比如点(1,0)作为积分路径的起点,则根据积分与路径无关,有2(,)42(1,0)2(,)x y xydx x dyu x y C x y -=++⎰244210200xy x x dx dy C x x y⋅-=++++⎰⎰(折线法) 242yx dy C x y-=++⎰ 2242(1)yx dy C y x x -=+⎛⎫+ ⎪⎝⎭⎰(第一类换元法)222222004221(1)(1)yy x x y y d C d C x x y y x x x ⋅⎛⎫⎛⎫=-+=-+ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎰⎰ 2arctan yC x =-+(基本积分公式) 其中C 为任意常数.【相关知识点】1.二元可微函数(,)u x y 的梯度公式:u u gradu i +j x y∂∂=∂∂. 2.定理:设D 为平面上的单连通区域,函数()P x,y 与(,)Q x y 在D 内连续且有连续的一阶偏导数,则下列六个命题等价:(1),(,)Q Px y D x y∂∂≡∈∂∂; (2) 0,LPdx Qdy L +=⎰为D 内任意一条逐项光滑的封闭曲线;(3)LABPdx Qdy +⎰仅与点,A B 有关,与连接,A B 什么样的分段光滑曲线无关;(4) 存在二元单值可微函数(,)u x y ,使du Pdx Qdy =+(即Pdx Qdy +为某二元单值可微函数(,)u x y 的全微分; (5) 微分方程0Pdx Qdy +=为全微分方程;(6) 向量场P +Q i j 为某二元函数(,)u x y 的梯度u P +Q =grad i j .换言之,其中任一组条件成立时,其它五组条件皆成立.当条件成立时,可用试图法或折线法求函数(,)u x y .五、(本题满分6分)【解析】先建立坐标系,取沉放点为原点O ,铅直向下作为Oy 轴正向,探测器在下沉过程中受重力、浮力和阻力的作用,其中重力大小:mg ,浮力的大小:F B ρ=-浮;阻力:kv -,则由牛顿第二定律得202,0,0.t t d ym mg B g kv y vdtρ===--== (*)由22,dy d y dv dv dy dv dy v v v dv dt dt dt dy dt dy===⋅==,代入(*)得y 与v 之间的微分方程10,0y dy mv mg B kv v dv ρ-=⎛⎫=--= ⎪⎝⎭.分离变量得 mvdy dv mg B kv ρ=--,两边积分得 mvdy dv mg B kv ρ=--⎰⎰,2222()()()Bm m g Bm m g mv k k k k y dv mg B kv m Bm m g mg B kv k k k dv mg B kv m g Bm m k dvk mg B kv m m mg B dv dvk k mg B kv ρρρρρρρρρρ+--+=------+=--⎛⎫- ⎪=-+ ⎪-- ⎪ ⎪⎝⎭-=-+--⎰⎰⎰⎰⎰1()()()()m mg B m k v d mg B kv k k mg B kv ρρρ-⋅-=-+----⎰ (第一类换元法) 2()ln()m m mg B v mg B kv C k k ρρ-=----+.再根据初始条件0|0,y v ==即22()()ln()0ln()m mg B m mg B mg B C C mg B k kρρρρ----+=⇒=-. 故所求y 与v 函数关系为()2ln .m mg B m mg B kv y v k k mg B ρρρ-⎛⎫--=-- ⎪-⎝⎭六、(本题满分7分)【解析】方法1:本题属于求第二类区面积分,且不属于封闭区面,则考虑添加一平面使被积区域封闭后用高斯公式进行计算,但由于被积函数分母中包含12222()x y z ++,因此不能立即加、减辅助面2221:0x y a z ⎧+≤∑⎨=⎩,宜先将曲面方程代入被积表达式先化简:2212222()1().()axdydz z a dxdy I axdydz z a dxdy a x y z ∑∑++==++++⎰⎰⎰⎰ 添加辅助面2221:0x y a z ⎧+≤∑⎨=⎩,其侧向下(由于∑为下半球面z =侧,而高斯公式要求是整个边界区面的外侧,这里我们取辅助面的下侧,和∑的上侧组成整个边界区面的内侧,前面取负号即可),由高斯公式,有11222211()()()1()().D I axdydz z a dxdy axdydz z a dxdy a a z a ax dV a dxdy a x z ∑+∑∑Ω=++-++⎛⎫⎡⎤∂+⎛⎫∂⎣⎦ ⎪=-+-- ⎪ ⎪∂∂⎝⎭⎝⎭⎰⎰⎰⎰⎰⎰⎰⎰⎰第一个积分前面加负号是由于我们取边界区面的内侧,第二个积分前面加负号是由于1∑的方向向下;另外由曲面片1∑在yoz 平面投影面积为零,则10axdydz ∑=⎰⎰,而1∑上0z =,则()22z a a +=.21(2())D I a z a dV a dxdy a Ω⎛⎫=-+++ ⎪⎝⎭⎰⎰⎰⎰⎰,其中Ω为∑与1∑所围成的有界闭区域,D 为1∑在xoy 面上的投影222{(,)|}D x y x y a =+≤. 从而,220322001321232.3D a I a dv zdv a dxdy a a a d rdr a a a ππθπΩΩ⎛⎫=--+ ⎪⎝⎭⎛⎫=-⋅-+⋅ ⎪⎝⎭⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰第一个积分用球体体积公式;第二个用柱面坐标求三重积分;第三个用圆的面积公式.()2042400242200242300224224440411222112()21()1122242412a a a aI a d r z dr a a a d r a r dr a a d a r r draa r r a a a a a a a a a a ππππθππθπθππππππ⎛⎫⎛=--+ ⎪⎝⎝⎭⎛⎫⎛⎫=---- ⎪ ⎪⎝⎭⎝⎭=-+-⎛⎫⎛⎫⎛⎫⎛⎫ ⎪=-+⋅-=-+⋅- ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭=-+⋅⎰⎰⎰⎰⎰⎰4342a π⎛⎫=- ⎪⎝⎭ 方法2:逐项计算:2212222212()1()()1().axdydz z a dxdyI axdydz z a dxdy a x y z xdydz z a dxdy I I a ∑∑∑∑++==++++=++=+⎰⎰⎰⎰⎰⎰⎰⎰其中,12,Dyz DyzDyzI xdydz ∑==-+=-⎰⎰⎰⎰⎰⎰⎰⎰第一个负号是由于在x 轴的正半空间区域∑的上侧方向与x 轴反向;第二个负号是由于被积函数在x 取负数.yz D 为∑在yoz 平面上的投影域222{(,)|,0}yz D y z y z a z =+≤≤,用极坐标,得2102203223320212()2222()(0),333aI d a r a r a a ππθππππ=-=-⋅--=-=-=-⎰⎰⎰(222222002302300042230044411()1(22)2(22)2222123422(3Dxya a a a a a a I z a dxdy a dxdya a d a r rdra a r r dr a a rdr a r dr a r a r a a a a a a aπθππππ∑=+=-=-=-⎡⎤=--⎢⎥⎣⎦⎡⎤⎛⎫⎛⎫⎢⎥=-⋅- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦=--⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰3),46a π=其中yz D 为∑在yoz 平面上的投影域222{(,)|}yz D y z y z a =+≤.故312.2I I I a π=+=-【相关知识点】高斯公式:设空间闭区域Ω是由分片光滑的闭曲面∑所围成,函数(,,)P x y z 、(,,)Q x y z 、(,,)R x y z 在Ω上具有一阶连续偏导数,则有,P Q R dv Pdydz Qdzdx Rdxdy x y z Ω∑⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰ 或()cos cos cos ,P Q R dv P Q R dS x y z αβγΩ∑⎛⎫∂∂∂++=++ ⎪∂∂∂⎝⎭⎰⎰⎰⎰⎰这里∑是Ω的整个边界曲面的外侧,cos α、cos β、cos γ是∑在点(,,)x y z 处的法向量的方向余弦.上述两个公式叫做高斯公式.七、(本题满分6分)【分析】这是n 项和式的极限,和式极限通常的方法就两种:一、把和式放缩,利用夹逼准则求极限;二、把和式转换成定积分的定义形式,利用定积分求极限.这道题,把两种方法结合到一起来求极限.当各项分母均相同是n 时,n 项和式2sin sinsin n n n n n x nnnπππ=+++是函数sin x π在[0,1]区间上的一个积分和.于是可由定积分1sin xdx π⎰求得极限lim nn x→∞.【解析】由于sinsin sin ,1,2,,11i i i n n n i n n n n iπππ≤≤=⋅⋅⋅++,于是,111sinsin sin 11nn ni i i i i i n n n n nn iπππ===≤≤++∑∑∑.由于 1011sin12limlim sin sin nnn n i i i i n xdx n n n ππππ→∞→∞=====∑∑⎰,10111sin112lim lim sin lim sin sin 11nn nn n n i i i i n i i n xdx n n n n n n πππππ→∞→∞→∞===⎡⎤=⋅===⎢⎥++⎣⎦∑∑∑⎰根据夹逼定理知,1sin2lim1nn i i n n iππ→∞==+∑. 【相关知识点】夹逼准则:若存在N ,当n N >时,n n n y x z ≤≤,且有lim lim n n n n y z a →+∞→+∞==,则lim n n x a →+∞=.八、(本题满分5分)【解析】方法1:因正项数列{}n a 单调减少有下界0,知极限lim n n a →∞存在,记为a ,则n a a ≥且0a ≥.又1(1)nn n a ∞=-∑发散,根据莱布尼茨判别法知,必有 0a >(否则级数1(1)n n n a ∞=-∑收敛).又正项级数{}n a 单调减少,有11,11nnn a a ⎛⎫⎛⎫≤ ⎪ ⎪++⎝⎭⎝⎭而1011a <<+,级数11()1n n a ∞=+∑收敛.根据正项级数的比较判别法,知级数11()1nn n a ∞=+∑也收敛. 方法2:同方法1,可证明lim 0n n a a →∞=>.令1,1nn n b a ⎛⎫= ⎪+⎝⎭则11lim1,11n n na a →∞==<++根据根值判别法,知级数11()1nn n a ∞=+∑也收敛. 【相关知识点】1.交错级数的莱布尼茨判别法:设交错级数11(1)n n n u ∞-=-∑满足:(1)1,1,2,;n n u u n +≥= (2)lim 0.n n u →∞=则11(1)n n n u ∞-=-∑收敛,且其和满足1110(1),n n n u u ∞-=<-<∑余项1.n n r u +<反之,若交错级数11(1)n n n u ∞-=-∑发散,只是满足条件(1),则可以反证说明此级数一定不满足条件(2)lim 0n n u →∞=,所以有lim 0.n n u →∞>(否则级数11(1)n n n u ∞-=-∑收敛)2.正项级数的比较判别法:设1n n u ∞=∑和1n n v ∞=∑都是正项级数,且lim,nn nv A u →∞=则(1)当0A <<+∞时,1nn u∞=∑和1nn v∞=∑同时收敛或同时发散;(2)当0A =时,若1nn u∞=∑收敛,则1nn v∞=∑收敛;若1nn v∞=∑发散,则1nn u∞=∑发散;(3)当A =+∞时,若1nn v∞=∑收敛,则1nn u∞=∑收敛;若1nn u∞=∑发散,则1nn v∞=∑发散.3.根值判别法:设0n u >,则当111, 1, lim 0,1, .n n n n n n n u u u ρ∞=∞→∞=⎧<⎪⎪⎪=>≠⎨⎪⎪=⎪⎩∑∑时收敛,时发散,且时此判别法无效九、(本题满分6分)【解析】(1)要证0(0,1)x ∃∈,使0100()()x x f x f x dx =⎰;令1()()()x x xf x f t dt ϕ=-⎰,要证0(0,1)x ∃∈,使0()0x ϕ=.可以对()x ϕ的原函数0()()x x t dt ϕΦ=⎰使用罗尔定理:(0)0Φ=,11111111000(1)()()(())()()()0,xx x x x dx xf x dx f t dt dxxf x dx x f t dt xf x dx ϕ==Φ==-⎡⎤=-+=⎢⎥⎣⎦⎰⎰⎰⎰⎰⎰⎰分部又由()f x 在[0,1]连续()x ϕ⇒在[0,1]连续,()x Φ在[0,1]连续,在(0,1)可导.根据罗尔定理,0(0,1)x ∃∈,使00()()0x x ϕ'Φ==.(2) 由()()()()()2()0x xf x f x f x xf x f x ϕ'''=++=+>,知()x ϕ在(0,1)内单调增,故(1)中的0x 是唯一的.评注:若直接对()x ϕ使用零点定理,会遇到麻烦:1(0)()0,(1)(1)0f t dt f ϕϕ=-≤=≥⎰.当()0f x ≡时,对任何的0(0,1)x ∈结论都成立;当()f x ≡0时,(0)0,ϕ<但(1)0ϕ≥,若(1)0ϕ=,则难以说明在(0,1)内存在0x .当直接对()x ϕ用零点定理遇到麻烦时,不妨对()x ϕ的原函数使用罗尔定理. 【相关知识点】1.罗尔定理:如果函数()f x 满足 (1) 在闭区间[,]a b 上连续; (2) 在开区间(,)a b 内可导;(3) 在区间端点处的函数值相等,即()()f a f b =, 那么在(,)a b 内至少有一点ξ(a b ξ<<),使得()0f ξ'=.十、(本题满分6分)【解析】经正交变换化二次型为标准形,二次型矩阵与标准形矩阵既合同又相似.由题设知,二次曲面方程左端二次型对应矩阵为111111b A b a ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则存在正交矩阵P ,使得 1000010004P AP -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦B 记,即A B 与相似.由相似矩阵有相同的特征值,知矩阵A 有特征值0,1,4.从而,211014,3, 1.(1)0.a a b A b B ++=++⎧⎪⇒==⎨=--==⎪⎩从而,111131.111A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦当10λ=时,()1110131111E A ---⎡⎤⎢⎥-=---⎢⎥⎢⎥---⎣⎦1(1)23⨯-行分别加到,行111020000---⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦ 于是得方程组(0)0E A x -=的同解方程组为12320,20.x x x x ---=⎧⎨-=⎩(0)2r E A -=,可知基础解系的个数为(0)321n r E A --=-=,故有1个自由未知量,选1x 为自由未知量,取11x =,解得基础解系为1(1,0,1).Tα=-当21λ=时,()011121110E A --⎡⎤⎢⎥-=---⎢⎥⎢⎥--⎣⎦3(1)2⨯-加到行011011110--⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦ 1(1)2⨯-行加到行011000110--⎡⎤⎢⎥⎢⎥⎢⎥--⎣⎦23,行互换011110000--⎡⎤⎢⎥--⎢⎥⎢⎥⎣⎦, 于是得方程组()0E A x -=的同解方程组为23120,0.x x x x --=⎧⎨--=⎩()2r E A -=,可知基础解系的个数为()321n r E A --=-=,故有1个自由未知量,选1x 为自由未知量,取11x =,解得基础解系为2(1,1,1).Tα=-当34λ=时,()3114111113E A --⎡⎤⎢⎥-=--⎢⎥⎢⎥--⎣⎦12,行互换111311113--⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦ 1行的3,(-1)倍分别加到2,3行111024024--⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦23行加到行111024000--⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦,于是得方程组(4)0E A x -=的同解方程组为123230,240.x x x x x -+-=⎧⎨-=⎩(4)2r E A -=,可知基础解系的个数为(4)321n r E A --=-=,故有1个自由未知量,选2x 为自由未知量,取22x =,解得基础解系为3(1,2,1).Tα=由实对称矩阵不同特征值对应的特征向量相互正交,可知123,,ααα相互正交. 将123,,ααα单位化,得111222333,,.TTTαηααηααηα======因此所求正交矩阵为0P ⎡⎢⎢⎢=⎢⎢⎢⎢⎣. 评注:利用相似的必要条件求参数时,iiiia b=∑∑是比较好用的一个关系式.亦可用E A E B λλ-=-比较λ同次方的系数来求参数.【相关知识点】1.特征值的性质:11nni iii i aλ===∑∑2.相似矩阵的性质:若矩阵A B 与相似,则A B =.十一、(本题满分4分)【解析】用线性无关的定义证明.设有常数011,,,,k λλλ-⋅⋅⋅使得10110.()k k A A λαλαλα--++⋅⋅⋅+=*两边左乘1k A-,则有()110110k k k A A A λαλαλα---++⋅⋅⋅+=,即 12(1)0110k k k k A A Aλαλαλα---++⋅⋅⋅+=. 上式中因0kA α=,可知()2110k k A A αα-+===,代入上式可得100.k A λα-=由题设10k Aα-≠,所以00.λ=将00λ=代入()*,有1110k k A A λαλα--+⋅⋅⋅+=.两边左乘2k A-,则有 ()21110k k k A A A λαλα---+⋅⋅⋅+=,即123110k k k A A λαλα---+⋅⋅⋅+=.同样,由0kA α=,()2110k k A A αα-+==,可得110.k A λα-=由题设10k Aα-≠,所以10.λ=类似地可证明210,k λλ-=⋅⋅⋅==因此向量组1,,,k A A ααα-⋅⋅⋅是线性无关的. 【相关知识点】向量组线性相关和线性无关的定义:存在一组不全为零的数12m k ,k ,,k 使11220m m k k k ααα+++=,则称12m ,,,ααα线性相关;否则,称12m ,,,ααα线性无关.十二、(本题满分5分) 【解析】()II 的通解为1122n n k k k ξξξ++⋅⋅⋅+,其中,111121,2(,,,),Tn a a a ξ=⋅⋅⋅221222,2(,,,),,T n a a a ξ=⋅⋅⋅12,2(,,,)T n n n n n a a a ξ=⋅⋅⋅,12,,,n k k k ⋅⋅⋅为任意常数.理由:可记方程组22()0,()0,n n n n I A X II B Y ⨯⨯==()I ,()II 的系数矩阵分别记为,A B ,由于B 的每一行都是20n n A X ⨯=的解,故0T AB =.TB 的列是()I 的基础解系,故由基础解系的定义知,TB 的列向量是线性无关的,因此()r B n =.故基础解系所含向量的个数2()n n r A =-,得()2r A n n n =-=.因此,A 的行向量线性无关.对0TAB =两边取转置,有()0TT T ABBA ==,则有T A 的列向量,即A 的行向量是0BY =的线性无关的解.又()r B n =,故0BY =基础解系所含向量的个数应为2()2n r B n n n -=-=,恰好等于A 的行向量个数.故A 的行向量组是0BY =的基础解系,其通解为1122n n k k k ξξξ++⋅⋅⋅+,其中,111121,2(,,,),Tn a a a ξ=⋅⋅⋅221222,2(,,,),,T n a a a ξ=⋅⋅⋅12,2(,,,)T n n n n n a a a ξ=⋅⋅⋅,12,,,n k k k ⋅⋅⋅为任意常数.十三、(本题满分6分)【分析】把X Y -看成一个随机变量,根据独立正态随机变量的线性组合必然为正态分布的性质,可以知道N(0,1)X Y-,这样可以简化整题的计算.【解析】令Z X Y =-,由于,X Y 相互独立,且都服从正态分布,因此Z 也服从正态分布,且()()()0E Z E X E Y =-=,11()()()122D Z D X D Y =+=+=. 于是,(0,1)Z X Y N =-~.()()()()()()()22222()1.D X Y D ZE ZE Z D Z E Z E ZE Z-==-=+-=-而2222z z E Z z dz ze dz +∞+∞---∞==⎰222222z z z ed e +∞+∞--⎡⎤⎛⎫==-=⎥ ⎪⎝⎭⎥⎦ 故21.D X Y π-=-【相关知识点】1.对于随机变量X 与Y 均服从正态分布,则X 与Y 的线性组合亦服从正态分布.若X 与Y 相互独立,由数学期望和方差的性质,有()()()E aX bY c aE X bE Y c ++=++,22()()()D aX bY c a D X b D Y ++=+,其中,,a b c 为常数.2.方差的定义:22()DX EX EX =-.3.随机变量函数期望的定义:若()Y g X =,则()()EY g x f x dx +∞-∞=⎰.十四、(本题满分4分) 【解析】由题知:212,,,~(3.4,6)n X X X N ,11nn i i X X n ==∑,各样本相互独立,根据独立正态随机变量的性质,211~(,)n n i i X X N n μσ==∑.其中11n n i i EX E X n μ=⎛⎫== ⎪⎝⎭∑,211n n i i DX D X n σ=⎛⎫== ⎪⎝⎭∑.根据期望和方差的性质,1122222211111 3.4 3.4,11166.n nn i i i i n n nn i i i i i i n EX E X EX n n n n DX D X D X DX n n n n n μσ=====⎛⎫===== ⎪⎝⎭⎛⎫⎛⎫====== ⎪ ⎪⎝⎭⎝⎭∑∑∑∑∑所以,2116~(3.4,)n n i i X X N n n ==∑.把n X 标准化,~(0,1)X U N =. 从而,{}{}{}{}1.4X 5.4 1.4 3.4X 3.4 5.4 3.42X 3.42X 3.42210.95,P P P P P <<=-<-<-=-<-<=-<=<=Φ-≥⎝⎭⎪⎩⎭故0.975,3⎛⎫Φ≥⎪ ⎪⎝⎭查表得到 1.96,3≥即()21.96334.57,n ≥⨯≈所以n 至少应取35. 【相关知识点】1.对于随机变量X 与Y 均服从正态分布,则X 与Y 的线性组合亦服从正态分布.若X 与Y 相互独立,由数学期望和方差的性质,有()()()E aX bY c aE X bE Y c ++=++,22()()()D aX bY c a D X b D Y ++=+,其中,,a b c 为常数. 2.若2~(,)Z N u σ,则~(0,1)Z uN σ-十五、(本题满分4分)【解析】设该次考试的考生成绩为X ,则2~(,)X N μσ,设X 为从总体X 抽取的样本容量为n 的样本均值,S 为样本标准差,则在显著性水平0.05α=下建立检验假设:001:70,:70,H H μμμ==≠由于2σ未知,故用t 检验.选取检验统计量,X T ==在070μμ==时,2~(70,),~(35).X N T t σ 选择拒绝域为{}R T λ=≥,其中λ满足:{}0.05P T λ≥=,即{}0.9750.975,(35) 2.0301.P T t λλ≤===由0 36,66.5,70,15,n x s μ====可算得统计量T 的值:1.42.0301t ==<.所以接受假设0:70H μ=,即在显著性水平0.05下,可以认为这次考试全体考生的平均成绩为70分.1998 年全国硕士研究生入学统一考试数学二试题一、填空题(本题共5小题,每小题3分,满分15分,把答案填在题中横线上.)(1) 0x →= .(2) 曲线322y x x x =-++与x 轴所围成的图形的面积A = .(3)2ln sin sin xdx x =⎰ .(4) 设()f x 连续,则220()x d tf x t dt dx-=⎰ . (5) 曲线1ln()(0)y x e x x=+>的渐近线方程为 .二、选择题(本题共5小题,每小题3分,共15分.在每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内.)(1) 设数列n x 与n y 满足lim 0n n n x y →∞=,则下列断言正确的是 ( )(A) 若n x 发散,则n y 发散 (B) 若n x 无界,则n y 必有界 (C) 若n x 有界,则n y 必为无穷小 (D) 若1nx 为无穷小,则n y 必为无穷小 (2) 函数23()(2)f x x x x x =---的不可导点的个数是 ( )(A) 0 (B) 1 (C) 2 (D) 3 (3) 已知函数()y y x =在任意点x 处的增量2,1y xy xα∆∆=++其中α是比(0)x x ∆∆→高阶的无穷小,且(0),y π=,则(1)y = ( ) (A) 4e ππ (B) 2π (C) π (D) 4e π (4) 设函数()f x 在x a =的某个邻域内连续,且()f a 为其极大值,则存在0δ>,当(,)x a a δδ∈-+时,必有 ( )(A) ()[()()]0x a f x f a --≥ (B) ()[()()]0x a f x f a --≤(C) 2()()lim0()()t af t f x x a t x →-≥≠- (D) 2()()lim 0()()t a f t f x x a t x →-≤≠- (5) 设A 是任一(3)n n ≥阶方阵,A *是其伴随矩阵,又k 为常数,且0,1k ≠±,则必有()kA *= ( )(A) kA *(B) 1n k A -* (C) n k A * (D) 1k A -*三、(本题满分5分)求函数tan()4()(1)x x f x x π-=+在区间(0,2)π内的间断点,并判断其类型.四、(本题满分5分)确定常数,,a b c 的值,使30sin lim(0).ln(1)x x b ax xc c t dtt →-=≠+⎰五、(本题满分5分)利用代换cos u y x=将方程cos 2sin 3cos xy x y x y x e '''-+=化简,并求出原方程的通解.六、(本题满分6分)计算积分312⎰七、(本题满分6分)从船上向海中沉放某种探测仪器,按探测要求,需确定仪器的下沉深度y (从海平面算起)与下沉速度v 之间的函数关系.设仪器在重力作用下,从海平面由静止开始铅直下沉,在下沉过程中还受到阻力和浮力的作用.设仪器的质量为m ,体积为B ,海水比重为ρ,仪器所受的阻力与下沉速度成正比,比例系数为(0)k k >.试建立y 与v 所满足的微分方程,并求出函数关系式()y =f v .八、(本题满分8分)设()y f x =是区间[0,1]上的任一非负连续函数.(1) 试证存在0(0,1)x ∈,使得在区间0[0,]x 上以0()f x 为高的矩形面积,等于在0[,1]x 上以()y f x =为曲边的梯形面积.(2) 又设()f x 在区间(0,1)内可导,且2()()f x f x x'>-,证明(1)中的0x 是唯一的.九、(本题满分8分)设有曲线y =过原点作其切线,求由此曲线、切线及x 轴围成的平面图形绕x轴旋转一周所得到的旋转体的表面积.十、(本题满分8分)设()y y x =是一向上凸的连续曲线,其上任意一点(,)x y,且此曲线上点(0,1)处的切线方程为1y x =+,求该曲线的方程,并求函数()y y x =的极值.十一、(本题满分8分)设(0,1)x ∈,证明: (1) 22(1)ln (1);x x x ++< (2)11111.ln 2ln(1)2x x -<-<+十二、(本题满分5分)设11(2)TE C B A C ---=,其中E 是4阶单位矩阵,TA 是4阶矩阵A 的转置矩阵,1232120101230120,,0012001200010001B C --⎡⎤⎡⎤⎢⎥⎢⎥-⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦求A .十三、(本题满分8分)已知123(1,4,0,2),(2,7,1,3),(0,1,1,),(3,10,,4)T T T Ta b αααβ===-=,问:(1) ,a b 取何值时,β不能由123,,ααα线性表示?(2) ,a b 取何值时,β可由123,,ααα线性表示?并写出此表达式.1998年全国硕士研究生入学统一考试数学二试题解析一、填空题(本题共5小题,每小题3分,满分15分,把答案填在题中横线上.) (1)【答案】14-【解析】方法1:用四则运算将分子化简,再用等价无穷小替换,原式22x→=24x →-=)221lim4x x →=2220112112lim 24x x xx →-- =-.方法2:采用洛必达法则.原式)()022limx x →''洛0x →= 0x →=0x →=0x → 洛 14==-.方法3:将分子按佩亚诺余项泰勒公式展开至2x 项,()22111128x x o x =+-+()22211128x x o x =--+, 从而 原式()()2222122011111122828lim x x x o x x x o x x →+-++--+-= ()()222122014lim x x o x o x x →-++=14=-. (2)【答案】3712【分析】求曲线与x 轴围成的图形的面积,应分清楚位于x 轴上方还是下方,为此,要先求此曲线与x 轴交点.【解析】322y x x x =-++与x 轴的交点,即322(2)(1)0x x x x x x -++=--+=的根。

1998考研数四真题及解析[精品文档]

1998考研数四真题及解析[精品文档]

1998年全国硕士研究生入学统一考试数学四试题一、填空题(本题共5分,每小题3分,满分15分.)(1) 设曲线()nf x x =在点(1,1)处的切线与x 轴的交点为(,0)n ξ则lim ()n n f ξ→∞=________.(2)2ln 1x dx x -=⎰____________.(3) 设矩阵,A B 满足*28A BA BA E =-,其中100020001A ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦,E 为单位矩阵,*A 为A的伴随矩阵,则B =____________.(4) 设,A B 均为n 阶矩阵,2,3A B ==-,则*12A B -=____________.(5) 设一次试验成功的概率为p ,进行100次独立重复试验,当p =____________时,成功次数的标准差的值最大,其最大值为____________.(注:第一空2分,第二空1分)二、选择题(本题共5小题,每小题3分,满分15分.) (1) 设周期函数()f x 在(),-∞+∞内可导,周期为4,又0(1)(1)lim12x f f x x→--=-,则曲线()y f x =在点()5,(5)f 处的切线的斜率为 ( )(A)12(B) 0 (C) 1- (D) 2- (2) 设函数21()lim 1nn xf x x →∞+=+,讨论函数()f x 的间断点,其结论为 ( )(A) 不存在间断点 (B) 存在间断点1x = (C) 存在间断点0x = (D) 存在间断点1x =-(3) 若向量组,,αβγ线性无关,,,αβδ线性相关,则 ( )(A) α必可由,,βγδ线性表示 (B) β必不可由,,αγδ线性表示 (C) δ必可由,,αβγ线性表示 (D) δ必不可由,,αβγ线性表示 (4) 设,,A B C 是三个相互独立的随机事件,且0()1P C <<,则在下列给定的四对事件中不相互独立的是 ( ) (A) A B C +与 (B) AC C 与 (C) A B C -与 (D) AB C 与(5) 设1()F x 与2()F x 分别为随机变量12X X 与的分布函数.为使12()()()F x aF x bF x =-是某一随机变量的分布函数,在下列给定的各组数值中应取 ( )(A) 32,55a b ==- (B) 22,33a b == (C) 13,22a b =-= (D) 13,22a b ==-三、(本题满分6分)求21lim(tan )n n n n→∞(n 为自然数).四、(本题满分6分)设arctan22()y xz x y e-=+,求dz 与2zx y∂∂∂.五、(本题满分5分)设22{(,)|}D x y x y x =+≤,求D.六、(本题满分6分)设某酒厂有一批新酿的好酒,如果现在(假定0t =)就售出,总收入为0R (元).如果窖藏起来待来日按陈酒价格出售,t 年末总收入为0R R =.假定银行的年利率为r ,并以连续复利计算,试求窖藏多少年售出可使总收入的现值最大.并求0.06r =时的t 值.七、(本题满分6分)设()f x 在[,]a b 上连续,在(,)a b 内可导,且()()1f a f b ==,试证存在,(,)a b ξη∈,使得[()()]1e f f ηξηη-'+=.八、(本题满分9分)设直线y ax =与抛物线2y x =所围成图形的面积为1S ,它们与直线1x =所围成的图形面积为2S ,并且1a <.(1) 试确定a 的值,使12S S +达到最小,并求出最小值.(2) 求该最小值所对应的平面图形绕x 轴旋转一周所得旋转体的体积.九、(本题满分9分)设向量12(,,,)T n αααα=,12(,,,)T n b b b β=都是非零向量,且满足条件0T αβ=.记n 阶矩阵TA αβ=,求:(1) 2A ;(2) 矩阵A 的特征值和特征向量.十、(本题满分7分)已知下列非齐次线性方程组(Ⅰ) 1241234123264133x x x x x x x x x x --=-⎧⎪---=⎨⎪--=⎩ (Ⅱ) 123423434521121x mx x x nx x x x x t +--=-⎧⎪--=-⎨⎪-=-+⎩(1) 求解方程组(I),用其导出组的基础解系表示通解;(2) 当方程组(II)中的参数,,m n t 为何值时,方程组(I)与(II)同解.十一、(本题满分8分)设某种商品每周的需求量X 是服从区间[1030],上均匀分布的随机变量,而经销商店进货数量为区间[1030],中的某一整数,商店每销售一单位商品可获利500元;若供大于求则削价处理,每处理1单位商品亏损100元;若供不应求,则可从外部调剂供应,此时每1单位商品仅获利300元.为使商品所获利润期望值不少于9280元,试确定最少进货量.十二、(本题满分8分)某箱装有100件产品,其中一、二和三等品分别为80、10和10件,现在从中随机抽取一件,记1,(1,23)0,i i X i ⎧==⎨⎩若抽到等品,其他.,试求:(1) 随机变量1X 与2X 的联合分布;(2) 随机变量12X X 和的相关系数ρ.1998年全国硕士研究生入学统一考试数学四试题解析一、填空题(本题共5分,每小题3分,满分15分.) (1)【答案】1e【解析】曲线ny x =在点(1,1)处的切线斜率1x y ='()1nx x='=11n x n x n -===,根据点斜式,切线方程为:1(1).y n x -=-令0y =,代入1(1)y n x -=-,则11x n =-,即在x 轴上的截距为11n n ξ=-, lim ()n n f ξ→∞lim n n n ξ→∞=1lim(1)n n n →∞=-()()11lim(1)x x x --→∞=-1e=.(2)【答案】ln xC x-+【解析】由分部积分公式,2ln 1x dx x -⎰()1ln 1x dx x '⎛⎫=-- ⎪⎝⎭⎰()1ln 1x d x ⎛⎫=-- ⎪⎝⎭⎰ ln 11(ln 1)x d x x x - -+-⎰分部2ln 11x dx x x-=-+⎰ ln 11x dx x x '-⎛⎫=-- ⎪⎝⎭⎰ln 11x C x x -=--+ln x C x =-+. 【相关知识点】分部积分公式:假定()u u x =与()v v x =均具有连续的导函数,则,uv dx uv u vdx ''=-⎰⎰或者.udv uv vdu =-⎰⎰(3)【答案】200040002⎡⎤⎢⎥-⎢⎥⎢⎥⎣⎦【解析】由题设 *28A BA BA E =-,由于20A =-≠,所以A 可逆.上式两边左乘A ,右乘1A -,得*11128AA BAA ABAA AA ---=-28A B AB E =-(利用公式:*1,AA A E AA E -==) 28A B AB E -=-(移项)()28A E A B E -=-(矩阵乘法的运算法则)将2A =-代入上式,整理得()14E A B E +=. 由矩阵可逆的定义,知E A +,B 均可逆,且()114B E A --=+11002002401040100021002-⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥=-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦200040002⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦.(4)【答案】2123n --【解析】,A B 均为n 阶矩阵,且20,30A B =≠=-≠,故,A B 均为n 阶可逆矩阵,则有*12A B -*12A B -=(利用公式:AB A B =)*12n A B -=(利用公式:n kA k A =) 112n n AB --=(利用公式:1*n A A-=)112n n AB -=(利用公式:11B B-=) 2123n -=-.(代入2,3A B ==-)(5)【答案】1,52【解析】100次独立重复试验,每次试验结果不是成功就是失败,则成功次数X 服从二项分布(100,)B p ,X=因为()f x =在[0,)+∞上单调递增,所以求的最大值即是求()(1)g p p p =-的最大值,而()10g p p p '=--=⇒驻点为12p =.()20g p ''=-<,所以12p =为极大值点,由函数图像知12p =即为最大值点.此时11()24g =.5==.二、选择题(本题共5小题,每小题3分,满分15分.) (1)【答案】(D)【解析】根据导数定义:()0()()limx f x x f x f x x∆→+∆-'=∆0(1)(1)lim 2x f f x x →--01(1)(1)lim 2x f x f x →--=-1(1)2f '=1=- 所以 0(1)(1)(1)lim 2.x f x f f x→--'==--因为()f x 周期为4,()f x '的周期亦是4,即()(4)f x f x ''=+, 所以(5)f '(14)f '=+(1)2f '==-.所以曲线()y f x =在点()5,(5)f 处的切线的斜率为(5)f '(1)2f '==-.选(D). (2)【答案】(B)【分析】讨论由极限表示的函数的性质,应分两步走.先求出该()f x 的(分段)表达式,然后再讨论()f x 的性质.不能隔着极限号去讨论. 【解析】现求()f x 的(分段)表达式: 当1x >时,21()lim 1n n xf x x →∞+=+2122lim 1n n n n x x x ---→∞+=+()()2122lim 01lim 1n n n n n x x x --→∞-→∞+==+0=; 当1x =时,21()lim1n n x f x x →∞+=+211lim 11n n →∞+=+22=1=;当1x =-时,21()lim1n n x f x x →∞+=+()211lim 11n n →∞-=+-02=0=; 当1x <时,21()lim 1n n x f x x →∞+=+()()2lim 1lim 1n n n x x →∞→∞+=+2011n x x →+ 1x =+. 由此, 0,1,0,1,()1,1,1,1,0,1.x x f x x x x x <-⎧⎪=-⎪⎪=+<⎨⎪=⎪>⎪⎩当当当当当 即0,11,()1,1,1, 1.x x f x x x x ≤->⎧⎪=+ <⎨⎪ =⎩当或当当 再讨论函数()f x 的性质:在1x =-处,()1lim x f x +→-()1lim 1x x +→-=+11=-0=,()()1lim 10x f x f -→-=-=,所以,()()11lim lim 0x x f x f x +-→-→-==,函数()f x 在1x =-处连续,不是间断点.在1x =处,()1lim x f x +→1lim 0x +→=0=;()1lim x f x -→()1lim 1x x -→=+2=; 所以()1lim x f x +→()1lim x f x -→≠,函数()f x 在1x =处不连续,是第一类间断点.故选(B). (3)【答案】(C)【解析】方法1:由向量组,,αβγ线性无关,知,αβ线性无关.又因,,αβδ线性相关,故δ必可由,αβ线性表出,因此δ必可由,,αβγ线性表示,从而选(C).方法2:由题设向量组,,αβγ线性无关(),,3r αβγ⇔=,同时,由整体线性无关,任何部分也线性无关,知,αβ也线性无关(),2r αβ⇔=. 又由,,αβδ线性相关(),,3r αβδ⇔<,所以,(),,2r αβδ=. 故()(),,,,3r r αβγαβγδ=⎡⎤=⎣⎦,故方程组123x x x αβγδ++=有解,则δ可由,,αβγ线性表出. 【相关知识点】1、定理:若12,,,s ααα线性无关,12,,,,s αααβ线性相关,则β可由12,,,s ααα线性表出,且表示法唯一.2、整体线性无关,任何部分也线性无关.3、非齐次线性方程组有解的判定定理:设A 是m n ⨯矩阵,方程组Ax b =有唯一解()().r A r A n ⇔==4、定理:β能由12,,,s ααα线性表出⇔,1,2,,i i s αβ=为列向量的非齐次线性方程组1122s s x x x αααδ+++=有解.(4)【答案】B【解析】相互独立的随机事件12,,,n A A A 中任何一部分事件,包括它们的和、差、积、逆等运算的结果必与其他一部分事件或它们的运算结果都是相互独立的.所以(A)、(C)、(D)三对事件必为相互独立的.当{}{}1,0P C P AC <>时,如果AC 与C 独立,即AC 与C 也独立,则有{}{}{}P AC C P AC P C =,也就是说 {}{}{}{}P AC P ACC P AC P C ==.因为{}0P AC >,等式两边同除以{}P AC ⇒{}1P C =,与题目已知条件矛盾. 所以AC 与C 不独立. (5)【答案】A【解析】根据分布函数的性质,lim ()()1x F x F →+∞=+∞=,得121lim ()()()()x F x F aF bF a b →+∞==+∞=+∞-+∞=-.只有A 满足1a b -=,所以选A.【相关知识点】分布函数()F x 的性质: (1) ()F x 单调不减;(2) lim ()()0,lim ()()1;x x F x F F x F →-∞→+∞=-∞==+∞=(3) ()F x 是右连续的.三、(本题满分6分)【解析】此数列的极限可改为考虑函数的极限210tan lim x x x x +→⎛⎫⎪⎝⎭. 因为0tan lim 1,x x x+→=201lim x x +→=∞,故此为“1∞”型极限. 方法1: 21tan x x x ⎛⎫= ⎪⎝⎭21tan 11x x x ⎛⎫+- ⎪⎝⎭3tan tan tan 1x x xx x x x x x -⋅--⎛⎫=+ ⎪⎝⎭,而 223222000tan sec 11cos lim lim lim 33cos x x x x x x xx x x x+++→→→---=洛 2220sin lim 3cos x x x x +→=220sin lim 3x x x +→=220lim 3x x x +→ 等价13=, 根据重要极限()10lim 1xx x e →+=,所以tan 0tan lim 1xx xx x x x +-→-⎛⎫+ ⎪⎝⎭tan x xt x-=()10lim 1tt t →+e =所以,32tan 1tan 00tan tan lim lim 1x xx xx xxx x x x x x x ++--→→⎡⎤-⎛⎫⎛⎫⎢⎥=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦30tan limtan 0tan lim 1x x x x x x xx x x x +→+--→⎡⎤-⎛⎫⎢⎥=+ ⎪⎢⎥⎝⎭⎣⎦13e =所以, 21lim(tan )n n n n→∞210tan lim x x x x +→⎛⎫= ⎪⎝⎭13e =. 方法2: 210tan lim x x x x +→⎛⎫ ⎪⎝⎭12tan ln 0lim x x x x e +⎛⎫ ⎪⎝⎭→=21tan ln 0lim x x x x e +⎛⎫⎪⎝⎭→=201tan limln x x x x e+→⎛⎫⎪⎝⎭=其中 22001tan 1tan lim ln lim ln 1x x x x x x x x x ++→→-⎛⎫⎛⎫=+ ⎪ ⎪⎝⎭⎝⎭20tan tan ln 11tan lim x x x x x xxx x x x +→--+-⎛⎫⎛⎫ ⋅ ⎪⎪⎝⎭⎝⎭223222000tan sec 11cos lim lim lim 33cos x x x x x x xx x x x +++→→→---==洛 2220sin lim 3cos x x x x +→=220sin lim 3x x x +→=220lim 3x x x +→ 等价13=, 从而 21130tan lim ,x x x e x +→⎛⎫= ⎪⎝⎭2131lim(tan )n n n e n→∞=.【相关知识点】一般地,对于形如()()v x u x ()()()0,1u x u x >且不恒等于的函数,如果()()lim 0,lim u x a v x b => =,那么 ()()lim v x b u x a =.四、(本题满分6分) 【解析】 arctanarctan2222()()()y y xxdz ed x y x y d e--=+++[]arctan22arctan222arctan22arctan22()(arctan )122()()1()22(2)(2)y xyxy xy xy exdx ydy x y d x y exdx ydy x y d y x x xdy ydx e xdx ydy x x ex y dx y x dy ----⎡⎤=+++-⎢⎥⎣⎦⎡⎤⎢⎥=+-+⎢⎥⎢⎥+⎣⎦-⎡⎤=+-⋅⎢⎥⎣⎦=++-由全微分与偏微分的关系可知,其中dx 的系数就是z x∂∂,即arctan (2)yxz x y ex -∂=+∂.再对y 求偏导数,得222arctanarctanarctan 222211(2).1yyyxxxzy xy x e x y ee y x yxx y x ---⎛⎫⎪∂--=-+= ⎪∂∂+ ⎪+⎪⎝⎭五、(本题满分5分)【解析】22{(,)}D x y x y x =+≤表示圆心为1,02⎛⎫ ⎪⎝⎭,半径为12的圆及其内部,画出区域D ,如右图. 方法1:{(,)|01,D x y x y =≤≤≤≤所以, 1102D===⎰⎰⎰,t =,则21x t =-,2dx tdt =-,:10t →所以上式1350122210082(1)(2)4(1)43515t t t t t dt t t dt ⎛⎫=-⋅-=-=-= ⎪⎝⎭⎰⎰.方法2:引入极坐标系cos ,sin x r y r θθ= =,于是(,)|,0cos 22D r r ππθθθ⎧⎫=-≤≤≤≤⎨⎬⎩⎭,3cos cos 2222232048cos .515Dd r drd ππθθπππθθθθ--====⎰⎰⎰⎰⎰其中倒数第二步用了华里士公式:21342cos 1253n n n d n n πθθ--=⋅⋅⋅⋅⋅-⎰,其中n 为大于1的正奇数.六、(本题满分6分)【分析】根据连续复利公式,在年利率为r 的情况下,现时的A (元)在t 时的总收入为()e rt R t A =,反之,t 时总收入为()R t 的现值为()()ertA t R t -=,将0R R =入的现值与窖藏时间t 之间的关系式,从而可用微分法求其最大值.【解析】由连续复利公式知,这批酒在窖藏t 年末售出总收入R 的现值为()e rt A t R -=,而由题设,t 年末的总收入0R R =,据此可列出()A t :0()ert rtA t R R -==,令 dAdt 0rtd R dt ⎛⎫= ⎪⎝⎭00rtR r ⎫==⎪⎭, 得惟一驻点 02125t t r ==. 22d A dtd dA dt dt ⎛⎫= ⎪⎝⎭0rtd R r dt ⎛⎫⎫= ⎪⎪⎭⎝⎭00rtrtd d R r R r dt dt ⎛⎫⎫⎫=⋅-+- ⎪⎪⎪⎭⎭⎝⎭200rt rtR r R ⎛⎫⎫=-+ ⎪⎭⎝20rt R r ⎡⎤⎫=-⎢⎪⎭⎢⎣1232502(12.5)0r t td AR e r dt ==-<. 根据极值的第二充分条件,知:0t t =是()A t 的极大值点,又因驻点惟一,所以也是最大值点.故窖藏2125t r =年出售,总收入的现值最大.当0.06r =时, ()21250.06t =⋅100119=≈(年). 【相关知识点】极值的第二充分条件:设函数()f x 在0x 处具有二阶导数且0()0f x '=,0()0f x ''≠,当0()0f x ''<时,函数()f x 在0x 处取得极大值;当0()0f x ''>时,函数()f x 在0x 处取得极小值.七、(本题满分6分)【分析】本题中要证的结论中出现两个点ξ和η,这种问题一般要将含有ξ和η的分别移到等式两边,即本题只要证[()()]e f f e ηξηη'+=.由等式左端不难看出应考虑辅助函数()()x F x e f x =.【解析】方法一:令()()x F x e f x =,则()F x 在[],a b 上满足拉格朗日中值定理的条件,故存在(,)a b η∈,使[]()()()()()b a x x e f b e f a e f x e f f b aηηηη=-''⎡⎤==+⎣⎦-.由条件()()1f a f b ==,得[]()()b ae e ef f b aηηη-'=+-. 再令()x x e ϕ=,则()x ϕ在[],a b 上满足拉格朗日中值定理的条件,故存在(,)a b ξ∈,使得b ae e e b aξ-=-,从而有[]()()e e f f ξηηη'=+, 即 [()()]1e f f ηξηη-'+=.方法二:由于本题中没有作ξη≠的要求,因此,可取ξη=,即只要证明存在(,)a b η∈,使()()1f f ηη'+=即可.作()x ϕ使()x ϕ满足罗尔定理条件,即()x ϕ在闭区间[],a b 上连续,在开区间(),a b 内可导,()()a b ϕϕ=,且()()()1x f x f x ϕ''=+-,或()()()()1(),()0x f x f x x x ϕψψ''=+-≠.用“微分方程法”构造()x ϕ,将()()10f x f x '+-=看成一个微分方程,分离变量,得()()1df x dx f x =--,两边积分,得 1ln ()1,f x x C -=-+ 化简,得 1()1,C x f x e e --=去掉绝对值符号,并改写常数,得()()1x f x e C -=. 令 ()()()1x x f x e ϕ=-,则()()()()1x x e f x f x ϕ''=+-,符合当初设想的要求,又()()1f a f b ==,所以()()()()10,()()10,a b a f a e b f b e ϕϕ=-==-=满足罗尔定理条件,故存在(,)a b η∈使()0ϕη'=,即()()()10e f f ηηη'+-=,又0e η≠,所以()()10,f f ηη'+-=或写成()()1f f ηη'+=.令ξη=,01e e ηξ-==,于是有[()()]1e f f ηξηη-'+=.八、(本题满分9分)【分析】为解决(2)首先要求出(1)中的a .为求a ,需根据01a <<和0a ≤两种情况分别求出对应的1S 和2S ,利用导数方法判定12S S +的极小值点,然后比较两种情况下12S S +的最小值,从而确定a .【解析】(1)因为题中仅设1a <,所以还应分01a <<与0a ≤讨论.当01a <<时,如下图1,y ax =与2y x =的交点(0,0)与2(,)a a .()223310011236aaaS ax x dx x x a ⎡⎤=-=-=⎢⎥⎣⎦⎰,()1123232111,32326a a a a S x ax dx x x a ⎡⎤=-=-=-+⎢⎥⎣⎦⎰31211.323a S S S a =+=-+求S 的极值,令2102S a '=-=,得a =a =舍去)()01a <<.又0,S ''=>根据极值的第二充分条件,当a =S 为极小值.因驻点惟一,故当a =S 为最小.311min 33S S ==-+⎝⎭⎝⎭图1 图2再考虑0a ≤时的情况.如上图2,此时,()02233111,236a a aS ax x dx x x a ⎡⎤=-=-=⎢⎥⎣⎦⎰()1123220011,3232a a S x ax dx x x ⎡⎤=-=-=-⎢⎥⎣⎦⎰31211.326a S S S a =+=--22111(1)0,222S a a '=--=-+<因此,在0a ≤范围内,S 单调减,故当0a =时S 取最小值,()min 0S S =1010326=--⋅1.3=1,3<所以当a =S 取得最小值,. (2)当a =,计算该平面图形绕x 轴旋转一周所得旋转体的体积.根据旋转体体积公式,有()()1224401235523053553411,1556aa a a V ax x dx x ax dxa x x x a x a πππππππ⎡⎤⎡⎤=-+-⎣⎦⎣⎦⎛⎫⎛⎫=-+- ⎪ ⎪⎝⎭⎝⎭=+-⎰⎰其中2a =代入a ,经计算,V =. 【相关知识点】1、极值的第二充分条件:设函数()f x 在0x 处具有二阶导数且0()0f x '=,0()0f x ''≠,当0()0f x ''>时,函数()f x 在0x 处取得极小值.2、由连续曲线()y f x =、直线,x a x b ==及x 轴所围成的曲边梯形绕x 轴旋转一周所得的旋转体体积为:2()baV f x dx π=⎰.九、(本题满分9分)【解析】(1)对等式0Tαβ=两边取转置,有()0TTT αββα==,即0T βα=.利用0Tβα=及矩阵乘法的运算法则,有()22T T T A αβαβαβ==()00T T T T αβαβαβαβ===0=,即2A 是n 阶零矩阵.(2)设λ是A 的任一特征值,(0)ξξ≠是A 属于特征值λ的特征向量,即A ξλξ=.对上式两边左乘A 得2A ξ()()A A λξλξλλξ===2λξ=,由(1)的结果20A =,得220A λξξ==,因0ξ≠,故0λ=(n 重根),即矩阵的全部特征值为零.下面求A 的特征向量:先将A 写成矩阵形式[]1111212212221212,,,n n Tn n n n n n a a b a b a b a a b a b a b A b b b a a b a b a b αβ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥===⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦.不妨设110,0a b ≠≠,则有111212122212(0)n n n n n n a b a b a b a b a ba b E A a b a b a b ---⎡⎤⎢⎥---⎢⎥-=⎢⎥⎢⎥---⎣⎦12212221121()n n n n n n b b b a b a ba b a a b a b a b ⎡⎤⎢⎥---⎢⎥÷-⎢⎥⎢⎥---⎣⎦行1(2,,)i a i i n ⨯=行加到行1200000n b b b ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦于是得方程组(0)0E A x -=同解方程组11220n n b x b x b x +++=,这样基础解系所含向量个数为(0)1n r E A n --=-.选2,,n x x 为自由未知量,将它们的组值111(,0,,0),(0,,,0),(0,0,,)b b b 代入,可解得基础解系为12123111(,,0,,0),(,0,,,0),,(,0,0,,)n n b b b b b b ξξξ-=-=-=-则A 的属于0λ=的全部特征向量为112211n n k k k ξξξ--+++,其中121,,,n k k k -为不全为零的任意常数.十、(本题满分7分)【分析】所谓两个方程组(Ⅰ)与(Ⅱ)同解,即(Ⅰ)的解全是(Ⅱ)的解,(Ⅱ)的解也全是(Ⅰ)的解.若{(Ⅰ)的解}⊂{(Ⅱ)的解},且r {(Ⅰ)的解}=r {(Ⅱ)的解}s =,则r {(Ⅰ)的解,(Ⅱ)的解}s =,那么{(Ⅱ)的解}⊂{(Ⅰ)的解}.【解析】(1)对方程组(Ⅰ)的增广矩阵作初等行变换,有110264111131103A --⎡⎤⎢⎥=---⎢⎥⎢⎥--⎣⎦11026()0517********a --⎡⎤⎢⎥--⎢⎥⎢⎥--⎣⎦ 11026()01014041621b --⎡⎤⎢⎥-⎢⎥⎢⎥--⎣⎦ 11026()0101400125c --⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦其中,()a 变换:将第1行分别乘以(-4)、(-3)加到第2行、第3行;()b 变换:将第3行乘以(-1)加到第2行;()c 变换:将第2行乘以(-4)加到第3行.由于()()34r A r A ==<,则由非齐次线性方程组有解的判定定理知,方程组(Ⅰ)有无穷多解.方程组(Ⅰ)对应齐次方程组的同解方程组为124243420,0,20.x x x x x x x +-=⎧⎪-+=⎨⎪-+=⎩ 选4x 为自由未知量,取41x =,求得对应齐次方程的基础解系为[]1,1,2,1Tξ=;取40x =,求得方程组(Ⅰ)的特解为[]2,4,5,0Tη*=---.故方程组(Ⅰ)的通解为k ξη*+,其中k 是任意常数. (2) 将方程组(Ⅰ)的通解122144252510k k k k k k ξη*--⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥+=+=⎢⎥⎢⎥⎢⎥--⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦代入到方程组(Ⅱ)中,整理得(2)(4)0,(4)(4)0,6.m k n k t --=⎧⎪--=⎨⎪=⎩因为k 是任意常数,故2,4,6m n t ===.此时方程组(Ⅰ)的解全是方程组(Ⅱ)的解(任意常数k 无关).此时,方程组(Ⅱ)的增广矩阵1211504121100125B ---⎡⎤⎢⎥=---⎢⎥⎢⎥--⎣⎦,显然()()()()3r B r B r A r A ====.所以r {(Ⅰ)的解}=r {(Ⅱ)的解}=r {(Ⅰ)的解,(Ⅱ)的解}.因此,(Ⅱ)的解也必是(Ⅰ)的解,从而(Ⅰ)与(Ⅱ)同解. 【相关知识点】非齐次线性方程组有解的判定定理:设A 是m n ⨯矩阵,线性方程组Ax b =有解的充分必要条件是系数矩阵的秩等于增广矩阵()A A b =的秩,即是()()r A r A =(或者说,b 可由A 的列向量12,,,n ααα线表出,亦等同于12,,,n ααα与12,,,,n b ααα是等价向量组)设A 是m n ⨯矩阵,线性方程组Ax b =,则(1) 有唯一解 ⇔ ()().r A r A n == (2) 有无穷多解 ⇔ ()().r A r A n =< (3) 无解 ⇔ ()1().r A r A +=⇔ b 不能由A 的列向量12,,,n ααα线表出.十一、(本题满分8分)【解析】需求量X 在区间[10,30]上服从均匀分布,其概率密度为1,1030,()200,X x f x ⎧≤≤⎪=⎨⎪⎩其他. 设进货量为a ,则销售所得利润与需求量有关.当X a >时,进货量全售出得利润500a ,差额从外调剂获利润()300X a -; 当X a ≤时,销售得利润500X ,多余数量作削价处理亏损了()100a X -. 所以利润函数为:()()500300,30,(;)500100,10300200,30,600100,10a X a a X g X a X a X X a X a a X X a X a +-<≤⎧⎪=⎨--≤≤⎪⎩+<≤⎧=⎨-≤≤⎩..再求得数学期望为:[]()()30102(;)(;)()1160010030020020207.53505250.X aa E g X a g x a f x dxx a dx x a dx a a +∞-∞==-⋅++⋅=-++⎰⎰⎰由题意利润期望值不少于9280元,所以由27.535052509280a a -++≥,用因式分解法解此不等式有22026,3a ≤≤因为a 为整数,所以21a =为最小进货量.十二、(本题满分8分)【解析】(1)12(,)X X 是二维离散型随机变量,其可能的取值为(0,0),(0,1),(1,0),(1,1).当120,0X X ==时,说明随机抽取的一件不是一等品,也不是二等品,则必为三等品,所以事件概率 {}120,0P X X =={}310.1,P X === 类似地, {}{}1220,110.1;P X X P X ====={}{}1211,010.8;P X X P X ====={}{}121,10.P X X P ===∅=所以得到联合分布如下:(2) 由上知,1X ,2X 的边缘分布均为01-分布,由01-分布的数学期望和方差公式得1122111222{1}0.8,{1}0.1;{1}{0}0.80.20.16,{1}{0}0.10.90.09.EX P X EX P X DX P X P X DX P X P X ==========⨯=====⨯= 二者乘积的数学期望和协方差为:12()000.1010.1100.81100,E X X =⨯⨯+⨯⨯+⨯⨯+⨯⨯= 121212(,)()()()0.08,Cov X X E X X E X E X =-=-所以由相关系数公式得23ρ===-.2X1X0 1jp 0 1 0.1 0.1 0.8 0 i p0.9 0.10.2 0.8。

作业题第一章习题

作业题第一章习题

基础练习1、取干土500g ,通过筛分法和水分法测得其结果见表1-1。

表1-1 颗粒分析试验结果(1)绘制土的级配曲线;(2)确定不均匀系数和曲率系数,并判断其级配好坏。

2、环刀体积为60cm 3,重84g ,切取湿土后称重为180g ,从其中取湿土18g ,烘干后其重量为15g ,求土的重度、含水量和干重度,结果以3/kN m 表示。

3、用比重瓶法测定某土的三个土样,结果见表1-2,已知土样3的密度为 g/cm 3,试求(1)该土样的颗粒比重;(2)土样2的含水量和孔隙比;(3)土样的饱和度。

表1-2比重瓶试验结果4、求证以下关系式:/1s dsG G γγ-=1sde γγ=- 5、有一完全饱和的原状土样切满于容积为21.7cm 3的环刀内,称得总质量为72.49g , 经105℃烘干至恒重为61.28g ,已知环刀质量为32.54g ,土粒相对密度(比重)为, 试求该土样的湿密度、含水量、干密度及孔隙比(要求按三项比例指标定义求解)。

6、已知Gs=,1m 3土中土颗粒体积占 m 3。

(1)若水的体积为 m 3,求天然重度、干重度、含水率、孔隙比、孔隙率和饱和度。

(2)若水的体积为 m 3,求天然重度、干重度、含水率、孔隙比、孔隙率和饱和度。

7、某湿土样的密度为cm 3,含水量20%,Gs=,将土样烘干至恒重后体积比原来减小了10%。

求该土样烘干前和烘干后的孔隙比。

8、已知某饱和土的含水量为30%,Gs=求其孔隙比和干重度;9、已知某饱和土的干密度为 g/cm 3,含水量为20%,求饱和容重、颗粒比重和孔隙比。

10、某原状土样高76mm ,直径38mm ,重,土样完全烘干后重,已知Gs=,求该土样的饱和度。

11、某干砂的重度为 kN/m3,Gs=,加水后使饱和度为40%,求相应的重度和含水量。

12、某试验需制备含水率为65%的饱和土1m3,现有含水率为15%,Gs=的湿土,计算需多少湿土和多少水?13、取土样3000g,测得含水量5%,将其含水量提高到20%,需加水多少?14、同一天然土层降雨前取原状土测得重度16 kN/m3,含水量8%,降雨后测得重度为18 kN/m3,问降雨后含水量为多少?15、配置含水量35%的土样,取天然含水量12%的土重20t,已测定土粒相对密度为,问需加水多少?(同济大学1998年研究生入学考试试题)16、已知某粘性土有关数据如下:(1)天然重度 kN/m3,干重度 kN/m3;(2)液限试验,取湿土,烘干后重;(3)塑限试验,取湿土,烘干后重;求解:(1)确定土的天然含水率,塑限和液限含水量及塑限指数和液性指数;(2)确定土的名称和状态;(3)若(1)情况中土样是饱和的,确定其孔隙比,干重度,饱和重度和浮重度,已知Gs=。

2015年同济大学816工程热力学考研历年真题试题(1998-2014)共16套

2015年同济大学816工程热力学考研历年真题试题(1998-2014)共16套

2015年同济大学816工程热力学考研历年真题经典试题(1998-2014)目录1998年同济大学816工程热力学考研真题 (2)1999年同济大学816工程热力学考研真题 (3)2000年同济大学816工程热力学考研真题 (4)2001年同济大学816工程热力学考研真题 (5)2002年同济大学816工程热力学考研真题 (9)2003年同济大学816工程热力学考研真题 (13)2004年同济大学816工程热力学考研真题 (15)2005年同济大学816工程热力学考研真题 (17)2006年同济大学816工程热力学考研真题 (18)2007年同济大学816工程热力学考研真题 (21)2008年同济大学816工程热力学考研真题 (26)2009年同济大学816工程热力学考研真题 (27)2010年同济大学816工程热力学考研真题 (28)2011年同济大学816工程热力学考研真题 (29)2012年同济大学816工程热力学考研真题 (31)2013年同济大学816工程热力学考研真题 (33)2014年同济大学816工程热力学考研真题 (35)1998年同济大学816工程热力学考研真题1999年同济大学816工程热力学考研真题2002年同济大学816工程热力学考研真题2003年同济大学816工程热力学考研真题2004年同济大学816工程热力学考研真题2007年同济大学816工程热力学考研真题2008年同济大学816工程热力学考研真题2009年同济大学816工程热力学考研真题2012年同济大学816工程热力学考研真题2013年同济大学816工程热力学考研真题2014年同济大学816工程热力学考研真题。

同济大学传热学真题98-99

同济大学传热学真题98-99

同济大学传热学真题98-99同济大学1998年硕士研究生入学考试传热学试题一、概念题(20分)1、在换热器中,将肋装在换热系数小的一侧和装在换热系数大的一侧的目的是什么?2、试说明临界热流通量q max的确定对沸腾换热设备的安全或经济性有什么重要意义?3、试分析沿着竖平板自由对流时,由底部到顶部各处局部换热系数的变化,并分别分析平板温度高于和低于周围介质温度时的情况。

4、用相同的玻璃材料制成若干个不同直径的圆球,把它们加热到同样的温度。

此时,如圆球突然被温度为tf,对流换热系数为h的流体冷却,大直径的圆球破裂了。

试问:圆球的直径必须满足什么条件才能不破裂?二、计算题(30分)1、一无限大平壁的厚度为10cm,两侧壁温为100℃和500℃,平壁材料的导热和λ=f(t)两种情况下系数λ=0.099(1+0.002t)W/(m.k).试求在导热系数λ=λ均的平壁中心面温度t.2、由三块边宽都为2m的平板,组成一个截面为正三角形的长通道(即垂直于纸面方向的长度很大,以至于长通道两端面的辐射作用可以不计)。

每板的参数如下:板1 t1=300℃, ε1=0.6板2 t2=30℃ε2=1板3 绝热试求每单位长度板1的辐射散热量Q和板3的温度t3,并画出网络图。

同济大学1999年硕士研究生入学考试传热学试题一、概念题(20分)1、分析一个半无限大均质物体的一维非稳态导热问题。

已知常物性,导温系数为a,无内热源,具有均匀的初始温度t0。

边界条件有以下三类:(1)τ>0时,x=0处,温度升为t w,且恒定不变;(2)τ>0时,x=0处,有一个恒定辐射热源,热源强度为q w;(3)τ>0时,x=0处,有一股温度为t f的热流体流过,它的对流换热系数为h 试写出这三类问题的数学表达式,并定性的画出它们的温度分布变化的趋势。

2、已知在平板x位置处,热边界层内的温度分布t(y)=a-by+cy2,式中:a,b,c均为常数,试求局部对流换热系数h x.3、试述黑体、灰体和实际物体(固体)的辐射特性和吸收特性的异同。

同济大学工程热力学_模拟试题(附答案)

同济大学工程热力学_模拟试题(附答案)

全国硕士研究生入学统一考试工程热力学考试大纲真题及答案I 考查目标要求掌握热能与机械能相互转换的基本规律,并能够应用此规律对热力过程和热力循环进行分析和计算。

II 考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间180分钟。

二、答题方式答题方式为闭卷、笔试。

允许使用计算器(仅仅具备四则运算和开方运算功能的计算器),但不得使用带有公式和文本存储功能的计算器。

三、试卷内容与题型结构分为概念题和计算题两大类。

概念题包括:名词解释、填空题、判断题、作图分析题、简答题。

概念题和计算题分值各占50%左右。

III 考查内容1、基本概念:掌握热力系统、平衡状态、状态参数及其数学特征、理想气体状态方程、准静过程及可逆过程的概念并会用系统的状态参数的关系对可逆过程的功、热量进行计算等。

2、热力学第一定律:熟练掌握能量方程在不同条件下的表达形式,并对非稳定流动能量方程有初步认识;掌握系统储存能量、热力学能、焓的概念;掌握容积变化功、流动功、技术功和轴功的概念;能够正确应用热力学第一定律对能量转换过程进行分析、计算。

3、热力学第二定律:理解热力学第二定律的实质;掌握卡诺循环和卡诺定理;掌握熵的概念和孤立系统熵增原理,能够判别热力过程进行的方向及掌握能量耗散的计算方法;了解可用能的概念及计算方法。

4、理想气体的性质及热力过程:熟练掌握理想气体状态方程;理解理想气体比热容的概念并熟练掌握利用定值比热容计算过程中热量、热力学能、焓和熵变化;熟练掌握对四种基本热力过程及多变过程的分析,计算过程中状态参数的变化及与外界功量和热量的交换;能够将热力过程表示在p-v图和T-s图上,并判断过程的性质。

5、热力学一般关系式及实际气体的性质:了解热力学一般关系式;掌握范德瓦尔方程(包括各项物理意义);掌握对比态原理,会计算对比参数并能利用通用压缩因子图进行实际气体的计算。

6、水蒸气的性质及热力过程:掌握蒸气的各种术语及其意义;了解水蒸气的定压发生过程及其在p-v图和T-s图上的一点、两线、三区、五态;了解水蒸气图表的结构并会应用;掌握水蒸气热力过程的热量和功量的计算。

同济大学暖通专业硕士生入学考试试题.doc

同济大学暖通专业硕士生入学考试试题.doc

同济大学一九九五年硕士生入学考试试题考试科目:工程热力学与传热学一、工程热力学部分(50分)1、问答题(20分)(1)理想气体的初、终态z间的关系式pyjT\=pyjT2是否适用于不可逆过程,为什么?(2)可你过程有什么特征?为什么我们可以不管过稈的详细经过,而只凭其初、终二态的相互关系就能决定它是否可逆?(3)在外力场的作用下,以刚性封闭容器内的气体,在平衡态下的性质取决于什么?(4)在内燃机的两种循环(定容与定压)中,哪一种循环效率最高?在I-s图上标出并说明。

2、计算题(30分)(1 )、0.1kg空气进行补课你绝热压缩,由p = OAMpa , T、= 3000K增加到p2 = 03Mpa。

不可逆绝热压缩消耗的功是可逆压缩所消耗的功的1.1倍,求不可逆绝热压缩终了时的温度及爛的变化。

(2)、空气流进一喷管,入口处Pl = 6bar, T, = 1200/C ,出口截面处背压P b = 15bar ,喷管效率为0.96,若出口截面积为6.45cm20求:(“)出口流速和出口马赫数;(b)空气的质量流量。

二、传热学部分(50分)1、问答题(20分)(1)短圆柱体在加热炉屮被加热时,其最高温度和最低温度各在何处?可采用什么方法来确定这些地点的温度。

(2)试说明黑体、灰体和实际物体(固体)的辐射特性和吸收特性的异同。

(3)试绘岀顺流时,冷热流体沿换热面温度变化的曲线:(a)®C] > m2c2;(b)m A c} < m2c2;(C)“C] = oo;(d)/n2c2 = oo o(4)试就管内层流恒壁温工况,讨论在热充分发展段内,局部对流换热系数沿管长的变化情况,并分析其原因。

2、计算题(30分)(1)一水平蒸汽管外包有保温材料,保温材料的表面温度30°C,夕卜真径为200mm,远离蒸汽管的环境温度为10°C ,保温材料和周围环境Z间辐射换热的当量辐射换热系数(£〃=4.54W/m2.K4\试计算每m管长散失的热量为多少?已知:定性温度 g = 20°C 的空气物性参数2 = 2.83xlO-2W/m.^ ; u = 17.95x /$ . Pr = 0.698 ;横管由对流换热准则方程:Nu = 0.53(Gr.Pr),/4(2) 160°C的汕在伯璧套管式换热器屮冷却到60°C, 25 C的水作为冷却剂,汕和水的流量均为2kg/s,内管直径为0.5mo套管换热器的传热系数K = 250W/m2.K f油的比热容C\=226kjlkg.K ,水的比热容C2=4AJ4kj/kg.K,问达到油所要求的冷却温度时换热器所需的长度是多少?此换热器应如何布置才是。

作业题第一章习题

作业题第一章习题

作业题第一章习题-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII1.2.1 基础练习1、取干土500g ,通过筛分法和水分法测得其结果见表1-1。

表1-1 颗粒分析试验结果(1)绘制土的级配曲线;(2)确定不均匀系数和曲率系数,并判断其级配好坏。

2、环刀体积为60cm 3,重84g ,切取湿土后称重为180g ,从其中取湿土18g ,烘干后其重量为15g ,求土的重度、含水量和干重度,结果以3/kN m 表示。

3、用比重瓶法测定某土的三个土样,结果见表1-2,已知土样3的密度为1.98 g/cm 3,试求(1)该土样的颗粒比重;(2)土样2的含水量和孔隙比;(3)土样的饱和度。

表1-2比重瓶试验结果4、求证以下关系式:/1s dsG G γγ-=1sde γγ=- 5、有一完全饱和的原状土样切满于容积为21.7cm 3 的环刀内,称得总质量为72.49g , 经105℃烘干至恒重为61.28g ,已知环刀质量为32.54g ,土粒相对密度(比重)为2.74, 试求该土样的湿密度、含水量、干密度及孔隙比(要求按三项比例指标定义求解)。

6、已知Gs=2.70,1m 3土中土颗粒体积占0.5 m 3。

(1)若水的体积为0.3 m 3,求天然重度、干重度、含水率、孔隙比、孔隙率和饱和度。

(2)若水的体积为0.5 m3,求天然重度、干重度、含水率、孔隙比、孔隙率和饱和度。

7、某湿土样的密度为1.8g/cm3,含水量20%,Gs=2.70,将土样烘干至恒重后体积比原来减小了10%。

求该土样烘干前和烘干后的孔隙比。

8、已知某饱和土的含水量为30%,Gs=2.70求其孔隙比和干重度;9、已知某饱和土的干密度为1.62 g/cm3,含水量为20%,求饱和容重、颗粒比重和孔隙比。

10、某原状土样高76mm,直径38mm,重164.8g,土样完全烘干后重128.0g,已知Gs=2.73,求该土样的饱和度。

#同济大学硕士研究生入学统一考试98-06年工程热力学真题

#同济大学硕士研究生入学统一考试98-06年工程热力学真题

1998年同济大学招收攻读硕士研究生入学测试试题一、概念题1、何为准静态过程?2、开口系统同热力过程中的熵变化量S2-S1可由哪几部分组成?3、试分析提高蒸汽热力循环的途径或方法?4、在焓湿图上表示出湿空气的绝热加湿过程并作简单分析?5、试证明理想气体的定压摩尔比热和定压摩尔比热之差等于通用气体常数,即MCp—MCv=R。

6、比较开口系统和闭口系统焓的异同点7、如果进行高压比大流量的压缩制气过程,采用什么办法较为合理8、空气冷却塔中,用环境温度下的风可以将热水冷却到比环境温度更低温度的状态,试问是否违背热力学第二定律,为什么二、计算题1、某绝热不可逆循环空气压缩制气过程中,气体的压力由P1=0.1MPa升高到P2=1.2MPa,耗功率为35KW,设空气的定压质量比热Cp为常数,初温为20℃,气体流量为500Kg/h,求:排放气体的温度和过程的当量绝热指数(多变绝热指数)2、设有一热机至于大气压力下的有限热容量的热源和冷源之间,热源为1000Kg和90℃的水,冷源为50Kg和-5℃的冰,求:(1)热机的最大做功量和最终温度分别为多少?(2)如果热源和冷源直接接触,最终温度为多少?(C水=4.19KJ/kg.k,C冰=2.00KJ/kg.k,冰的溶解潜热r=333.27KJ/kg)3、空气压力p1=0.1Mpa、温度t1=20℃和流速为C1=250m/s,流经扩压管后的出口流速为C2=15m/s,求理想流动状态下的出口压力、出口温度和扩压管的类型。

4、证明任何两条准静态绝热线不相交三、计算题1、一个储气罐从压缩空气总管充气,总管内压缩空气参数恒定,P0=500Pa,25℃,充气开始时,罐内空气参数为50KPa,10℃。

求充气终了时罐内空气的温度,设充气过程是在绝热条件下进行的2、在高温热源T1=2000K及低温热源T2=600K之间进行一个不可逆循环,若工质在定温吸热过程中和热源T1存在60K温差,在定温放热过程中和冷源T2也存在60K温差,而其余两个为定熵膨胀和定熵压缩过程。

同济大学博士研究生入学考试(环境工程)试题

同济大学博士研究生入学考试(环境工程)试题

同济大学博士研究生入学考试(环境工程)试题1998年同济大学博士研究生入学考试《环境微生物》卷一、填空1.饮用水细菌总数不超过()个,不肠杆菌不超过()个。

2.配平方程式。

硬酯酸氧化CH3(CH2)10CO-SCoA + CoASH + FAD + NAD + H2O→3. 酶的分类()、()、()、()、()、()六类。

4.对碳源同化能力的不同,微生物分为()、()、()、()、()五类二、名词解释1.Nocardia & Zoogloca infudilerla2. PFU3. 铁卟啉4. 硝化细菌5.PHB & BIP三、问题1.1mol丙酮酸经TCA循环的反应过程,化学方程式以及能量平衡。

2.乙醇发酵反应过程,方程式及能量平衡。

3.氧对好氧菌及专性厌氧菌的关系,为什么?4.氮循环反应类型,图示说明。

5.厌氧三阶段理论,各阶段特点,细菌。

6.氯消毒机理,管网末端及水厂出口何保证一定的余气量,量为多少。

7.细菌及病毒遗传物质,何为遗传,举例说明。

8.生长曲线及各阶段特征。

1998年同济大学博士研究生入学考试《废水处理》卷1.何为截流倍数?R值选择小会有什么危害?2.废水检测中含Cl—>30mg/l即有干扰?问什么方法可除去这种干扰。

3.简述加氯消毒的原理?4.判断废水可生化降解的三种方法?5.活性污泥曝气池中7.气浮原理与在污水处理中的作用(举例)8.①什么是绿色产品与绿色技术,试述它对我国发展的前景与意义?②产生水体富养化的主要因素,并述消除?同济大学2000年11月水污染控制1.何为城市污水排水体制,有哪些?各在什么情况下应用?2.活性污泥法和生物膜法各自机理,有何区别?3.废水处理有何化学处理方法,原理,各处理什么水。

4.污水物、化、生物处理中产生污泥的特性及处理处置方法。

5.二沉池作用、原理,存在哪些沉淀过程。

6.城市污水深度处理方法及应用。

7.印染行业废水有何特征及处理方法。

《同济大学856政治经济学1998、2020年考研真题及答案解析》

《同济大学856政治经济学1998、2020年考研真题及答案解析》

目录Ⅰ历年考研真题试卷 (2)同济大学1998年招收攻读硕士研究生入学考试试卷 (2)同济大学2000年招收攻读硕士研究生入学考试试卷 (3)Ⅱ历年考研真题试卷答案解析 (4)同济大学1998年招收攻读硕士研究生入学考试试卷答案解析 (4)同济大学2000年招收攻读硕士研究生入学考试试卷答案解析 (10)Ⅰ历年考研真题试卷同济大学1998年招收攻读硕士研究生入学考试试卷科目代码:856科目名称:政治经济满分分值:150答题要求:1、答题一律做在答题纸上,做在试卷上无效。

2、考试时间180分钟。

3、本试卷不可带出考场,违反者作零分处理。

一、名词解释(每题4分,共40分)1、交换价值2、资本3、平均利润率4、资本有机构成5、绝对地租6、资本循环7、金融资本8、垄断利润9、社会主义市场经济10、按劳分配二、简答题(每题8分,共32分)1.价值与价格、供求关系与价格的关系如何?2、马克思的平均利润和生产价格学说有何意义?3、社会主义经济责任制的实质是什么?4、我国从粗放型经济增长转变为集约型经济增长,要实现哪几个方面转变?三、论述题(共28分)1、试述垄断资本主义经济发展的两种趋势。

(12分)2、试用生产力和生产关系的辩证原理,论述我国发展股份制经济的重要意义?(16分)同济大学2000年招收攻读硕士研究生入学考试试卷科目代码:856科目名称:政治经济满分分值:150答题要求:1、答题一律做在答题纸上,做在试卷上无效。

2、考试时间180分钟。

3、本试卷不可带出考场,违反者作零分处理。

一、简答题(每题9分,共54分)1.为什么说马克思的劳动价值论是科学的劳动价值理论?2.简述资本循环与资本周转的区别。

3.写出马克思社会总资本简单再生产的实现条件及扩大再生产的前提条件和实现条件的公式。

4.为什么说社会总资本再生产的核心是产品的实现问题?5.简述当前国家作出加强技术创新,发展高科技,实现产业化决定的理论依据及现实意义。

作业题第一章习题

作业题第一章习题

1.2.1 基础练习1、取干土500g ,通过筛分法和水分法测得其结果见表1-1。

表1-1 颗粒分析试验结果(1)绘制土的级配曲线;(2)确定不均匀系数和曲率系数,并判断其级配好坏。

2、环刀体积为60cm 3,重84g ,切取湿土后称重为180g ,从其中取湿土18g ,烘干后其重量为15g ,求土的重度、含水量和干重度,结果以3/kN m 表示。

3、用比重瓶法测定某土的三个土样,结果见表1-2,已知土样3的密度为1.98 g/cm 3,试求(1)该土样的颗粒比重;(2)土样2的含水量和孔隙比;(3)土样的饱和度。

表1-2比重瓶试验结果4、求证以下关系式:/1s d s G G γγ-= 1s de γγ=- 5、有一完全饱和的原状土样切满于容积为21.7cm 3 的环刀内,称得总质量为72.49g , 经105℃烘干至恒重为61.28g ,已知环刀质量为32.54g ,土粒相对密度(比重)为2.74, 试求该土样的湿密度、含水量、干密度及孔隙比(要求按三项比例指标定义求解)。

6、已知Gs=2.70,1m 3土中土颗粒体积占0.5 m 3。

(1)若水的体积为0.3 m 3,求天然重度、干重度、含水率、孔隙比、孔隙率和饱和度。

(2)若水的体积为0.5 m 3,求天然重度、干重度、含水率、孔隙比、孔隙率和饱和度。

7、某湿土样的密度为1.8g/cm 3,含水量20%,Gs=2.70,将土样烘干至恒重后体积比原来减小了10%。

求该土样烘干前和烘干后的孔隙比。

8、已知某饱和土的含水量为30%,Gs=2.70求其孔隙比和干重度;9、已知某饱和土的干密度为1.62 g/cm 3,含水量为20%,求饱和容重、颗粒比重和孔隙比。

10、某原状土样高76mm ,直径38mm ,重164.8g ,土样完全烘干后重128.0g ,已知Gs=2.73,求该土样的饱和度。

11、某干砂的重度为16.6 kN/m3,Gs=2.70,加水后使饱和度为40%,求相应的重度和含水量。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1998年同济大学招收攻读硕士研究生入学考试试题
一、概念题
1、何为准静态过程?
2、开口系统同热力过程中的熵变化量S2-S1可由哪几部分组成?
3、试分析提高蒸汽热力循环的途径或方法?
4、在焓湿图上表示出湿空气的绝热加湿过程并作简单分析?
5、试证明理想气体的定压摩尔比热与定压摩尔比热之差等于通用气体常数,即M P—
MCv=R。

6、比较开口系统和闭口系统焓的异同点
7、如果进行高压比大流量的压缩制气过程,采用什么办法较为合理
8、空气冷却塔中,用环境温度下的风可以将热水冷却到比环境温度更低温度的状态,试问
是否违背热力学第二定律,为什么
二、计算题
1、某绝热不可逆循环空气压缩制气过程中,气体的压力由P1=0.1MPa升高到P2=1.2MPa,
耗功率为35KW,设空气的定压质量比热Cp为常数,初温为20℃,气体流量为500Kg/h,求:排放气体的温度和过程的当量绝热指数(多变绝热指数)
2、设有一热机至于大气压力下的有限热容量的热源和冷源之间,热源为1000Kg和90℃的
水,冷源为50Kg和-5℃的冰,求:(1)热机的最大做功量和最终温度分别为多少?(2)如果热源和冷源直接接触,最终温度为多少?(C水=4.19Kg/kg.k,C冰=2.00Kg/kg.k,冰的溶解潜热r=333.27KJ/kg)
3、空气压力p1=0.1Mpa、温度t1=20℃和流速为250m/s,流经扩压管后的出口流速为15m/s,
求理想流动状态下的出口压力、出口温度和扩压管的类型。

4、证明任何两条准静态绝热线不相交
三、计算题
1、一个储气罐从压缩空气总管充气,总管内压缩空气参数恒定,P0=500Pa,25℃,充气开始
时,罐内空气参数为50KPa,10℃。

求充气终了时罐内空气的温度,设充气过程是在绝热条件下进行的
2、在高温热源T1=2000K及低温热源T2=600K之间进行一个不可逆循环,若工质在定温吸
热过程中与热源T1存在60K温差,在定温放热过程中与冷源T2也存在60K温差,而其余两个为定熵膨胀和定熵压缩过程。

试求:(1)循环热效率(2)若热源供给1000KJ的热量,则做功能力损失多少?
3、已知空气的初态为P1=0.6MPa,V1=0.236m3/kg,经过一个多变过程后状态变化为
P2=0.12MPa,v2=0.185 m3/kg,试求该过程的多变指数,以及每千克气体做的功,所吸收的热量及内能、焓和熵的变化。

4、渐缩喷管进口空气压力为P1=2.5MPa,温度t1=80 ℃,流速才=50m/s,喷管压力
Pb=0.1MPa,求喷管出口的气流速度c2,状态参数v2及T2,如喷管出口截面积s=1cm2,求质量流速
5、绝热刚性容器中有隔板将容器一分为二,左侧为0.05mol的300K、2.8MPa的高压空气,
右侧为真空,若抽出隔板,求容器中空气熵变。

相关文档
最新文档