弧形闸门启闭力计算
弧形闸门启闭力计算
弧形闸门启闭力计算弧形闸门是一种常见的水工结构,用于调节水流的流量和水位。
在弧形闸门的启闭过程中,需考虑到闸门所受到的启闭力。
启闭力的计算对于设计和施工具有重要意义,可以确保闸门的可靠性和安全性。
首先,要计算弧形闸门开启时所受到的启动力。
弧形闸门的启动力是由流体施加在闸门上的压力所引起的。
在闸门启动过程中,闸门顶部所受到的压力会引起一个向上的力矩,而闸门底部所受到的压力则会引起一个向下的力矩。
力矩的大小取决于水流的压力和闸门的几何形状。
在计算闸门上部的启动力时,可以利用以下公式:F1=P1*A1其中,F1是闸门上部所受到的启动力,P1是水流施加在闸门上的压力,A1是闸门上部面积。
在计算闸门下部的启动力时,可以利用以下公式:F2=P2*A2其中,F2是闸门下部所受到的启动力,P2是水流施加在闸门上的压力,A2是闸门下部面积。
在计算闸门的总启动力时,可以利用以下公式:F=F1+F2除了水流的压力,还需要考虑到闸门的重力。
闸门的重力可以通过以下公式计算:G=m*g其中,G是闸门的重力,m是闸门的质量,g是重力加速度。
当闸门启闭时,要保持闸门处于平衡状态,即启动力和重力要相等。
因此,可以利用以下公式计算闸门的启闭力:F=G将上述公式整理后得到以下计算公式:P1*A1+P2*A2=m*g通过上述计算公式,可以计算出弧形闸门在启闭过程中所受到的启闭力。
根据实际情况,可以选取合适的材料和设计参数,确保闸门能够承受所受到的力,保证其正常运行和安全性。
除了上述的力学计算,还要注意到实际工程中的其他因素,比如摩擦力、流体动压等。
这些因素也会对弧形闸门的启闭力产生影响,需要在设计和计算中进行综合考虑。
综上所述,弧形闸门的启闭力计算需要考虑水流压力和闸门重力,通过合适的公式和参数计算可以得到启闭力的估计值。
在实际工程中,还需要考虑其他因素的影响,确保闸门的可靠性和安全性。
闸门启闭力计算
上两式中:
f2—滑动支承的摩擦系数,钢板和橡胶取0.65;
P—作用在闸门上总水压力(t);
R—滚轮半径(cm);
f1—轴与轴套的滑动摩擦系数(铜合金轴套对钢轴为0.3,胶木轴套对钢轴为0.2)
r—轴的半径(cm)
f—滚轮的滚动摩擦系数,为0.1cm;
(3)对于止水摩擦阻力计算公式为:
Tzs—止水摩擦阻力(t);
n’G—计算启门力的门重修正系数,取1.1;
G—闸门活动部分的自重(t);
Ws—作用在闸门上的水柱压力(t);
nG—计算闭门力的门重修正系数,取0.9;
3、摩擦阻力计算公式:
(1)对于滑动支承摩擦阻力计算公式为:
Tzd=f2P
(2)对于滚动支承摩擦阻力计算公式为:
平面闸门的启闭力计算
按在动水中启闭的平面闸门计算
1、启门力计算公式为:
FQ=nT(Tzd+Tzs)+n’GG+Ws
2、闭门力计算公式为:
Fw=nT(Tzd+Tzs)-nGG
式中:FQ—启门力(t);
FW—闭门力(t);
nT—摩擦阻力的安全系数,一般取1.2;
Tzd—支承摩擦阻力(t);
闸门启闭力的计算:
启门力:F启=n·(F+W1+W2)
闭门力:F闭=n·(F-W1-W2)
式中:
W1-门体自重(T)
W2-丝杆自重(T)
n-系数1.1~1.3,闸门不经常操作时,取大值,反之取小值;
F-水压产生的阻力。
F=S·h·u(T)
S-闸门板面积(m2)
启闭力计算公式
启闭力计算公式 The latest revision on November 22, 2020闸门启闭力的计算:启门力:F启=n·(F+W1+W2)闭门力:F闭=n·(F-W1-W2)式中:W1-门体自重(T) W2-丝杆自重(T) n-系数1.1~1.3,闸门不经常操作时,取大值,反之取小值;F-水压产生的阻力。
F=S·h·u(T)S-闸门板面积(m2)方闸门:S=a·b a-闸门宽(m)b-闸门高(m) 圆闸门为:S=π·D2/4,D-闸门通径(m) h-闸孔中心至最高水位高度(m) u-密封面的摩擦系数,一般取0.3。
铸铁闸门采用铸铁浇铸、整体加工,具有耐腐蚀、易维护、安装简便、自行止水性能较好等优点,有平板型(MB系列)、拱面型(MG系列)、拼装型(MP系列)及不同水头要求的多种产品供用户选用,并承制用户特殊要求的铸铁闸门。
平面闸门的启闭力计算按在动水中启闭的平面闸门计算1、启门力计算公式为:FQ=nT(Tzd+Tzs)+n’GG+Ws2、闭门力计算公式为:Fw=nT(Tzd+Tzs)-nGG式中:FQ—启门力(t);FW—闭门力(t);nT—摩擦阻力的安全系数,一般取1.2;Tzd—支承摩擦阻力(t);Tzs—止水摩擦阻力(t);n’G—计算启门力的门重修正系数,取1.1;G—闸门活动部分的自重(t);Ws—作用在闸门上的水柱压力(t);nG—计算闭门力的门重修正系数,取0.9;3、摩擦阻力计算公式:(1)对于滑动支承摩擦阻力计算公式为:Tzd=f2P(2)对于滚动支承摩擦阻力计算公式为:Tzd=P/R(f1r+f)上两式中:f2—滑动支承的摩擦系数,钢板和橡胶取0.65;P—作用在闸门上总水压力(t);R—滚轮半径(cm);f1—轴与轴套的滑动摩擦系数(铜合金轴套对钢轴为0.3,胶木轴套对钢轴为0.2)r—轴的半径(cm)f—滚轮的滚动摩擦系数,为0.1cm;(3)对于止水摩擦阻力计算公式为:Tzs=f3Pzs式中:f3—止水与止水座的滑动摩擦系数(橡胶对钢板为0.65,橡胶对水泥砂浆面为0.7)Pzs—作用在止水上的水压力(t),为侧止水的顶止水的总长度乘以止水橡胶作用的宽度,再乘以平均水平均水头得出;。
闸门启闭力计算
f2-滑动磨擦系数 Tzs-止水摩阻力,=f3Pzs
f3-滑动磨擦系数
0.35 1.81944 T
0.7
计算 结果
Pzs-作用在止水上的压力 G-闸门自重 闭门力Fw= 持住力FT= 启门力FQ=
2.5992 T 31 T 支撑形式
-23.7279 T 30.62322 T 滚动 38.27214 T
暂不用
闭门力的计算
滚动
Fw=nT(Tzd+Tzs)-nGG+Pt
持住力的计算
FT=n'GG+Gj+Ws+Px-Pt-(Tzd+Tzs)
启门力的计算
FQ=nT(Tzd+Tzs)+Px+n'GG+Gj+Ws
nT-磨擦阻力的安全系数
1.2
nG-闸门自重修正系数(0.9~1.0)
0.9
Ws-作用在闸门上的水柱重量
0.692 m 10 m
1.657341 T 0.35
r-滚轮轴半径
110 mm
f-滚动磨擦力臂
Байду номын сангаас
1 mm
R-滚轮半径
400 mm
Tzd-滚动轴承的滚轮摩阻力,=P*f*(R1/d+1)/R R1-滚轮轴承的平均半径
d-滚动轴承的滚柱直径
Tzd-滑动支承摩阻力,=f2P
5.87412 T
P-总水压力
16.7832 T
0T
Pt-上托力
0T
n'G-闸门自重修正系数(1.0~1.1) Gj-加重块重量(T)
Px-下吸力(T)=pxD2Bzs px-闸门底缘D2部分的平均下吸强度 D2-闸门底缘止水至主梁下翼缘的距离
弧形钢闸门计算实例
弧形钢闸门计算实例一、基本资料和结构布置1.基本参数孔口形式:露顶式;孔口宽度:12.0m;底槛高程:323.865m;检修平台高程:337.0m;正常高水位(设计水位):335.0m;设计水头:11.135m;闸门高度:11.5m;孔口数量:3孔;操作条件:动水启闭;吊点间距:11.2m;启闭机:后拉式固定卷扬机。
2.基本结构布置闸门采用斜支臂双主横梁式焊接结构,其结构布置见图3-31。
孤门半径R=15.0m,支铰高度H2=5m。
垂直向设置五道实腹板式隔板及两道边梁,区格间距为1.9m,边梁距闸墩边线为0.3m;水平向除上、下主梁及顶、底次梁外,还设置了11根水平次梁,其中上主梁以上布置4根,两主梁之间布置7根。
支铰采用圆柱铰,侧水封为“L”形橡皮水封,底水封为“刀”形橡皮水封。
在闸门底主梁靠近边梁的位置设置两个吊耳,与启闭机吊具通过吊轴相连接。
采用2×500KN 固定式卷扬机操作。
本闸门结构设计按SL74-95《水利水电工程钢闸门设计规范》进行。
门叶结构材料采用Q235,支铰材料为铸钢ZG310-570。
材料容许应力(应力调整系数0.95):Q235第1组:[б]=150MPa ,[τ]=90 MPa ; 第2组:[б]=140MPa ,[τ]=85 MPa ; ZG310-570:[б]=150MPa ,[τ]=105 MPa 。
3.荷载计算闸门在关闭位置的静水压力,由水平压力和垂直水压力组成,如图1所示:水平水压力:()kN B H P s s 3.74390.12135.1110212122=⨯⨯⨯==γ垂直水压力:()()⎭⎬⎫⎩⎨⎧⎥⎦⎤⎢⎣⎡-----=212212221sin sin 2sin 2sin 180/21φφφφφφπφγB R V s式中:()471.19,3333333.0155sin 14224,409.0155135.11sin 222111======-==φφφφ所以所以R H 。
弧形闸门计算书
弧形闸门计算书-CAL-FENGHAI.-(YICAI)-Company One1目录1 计算目的与要求 ................................................................... 错误!未定义书签。
2 设计计算内容....................................................................... 错误!未定义书签。
3 设计依据 .............................................................................. 错误!未定义书签。
4 基本资料和结构布置............................................................ 错误!未定义书签。
基本参数 (3)基本结构布置 (4)荷载计算 (4)面板弧长 (6)主框架位置 (7)5 结构计算 .............................................................................. 错误!未定义书签。
面板....................................................................................... 错误!未定义书签。
水平次梁............................................................................... 错误!未定义书签。
中部垂直次梁(隔板)....................................................... 错误!未定义书签。
边梁....................................................................................... 错误!未定义书签。
弧形钢闸门计算实例
弧形钢闸门计算实例一、基本资料和结构布置1.基本参数孔口形式:露顶式;孔口宽度:12.0m;底槛高程:323.865m;检修平台高程:337.0m;正常高水位(设计水位):335.0m;设计水头:11.135m;闸门高度:11.5m;孔口数量:3孔;操作条件:动水启闭;吊点间距:11.2m;启闭机:后拉式固定卷扬机。
2.基本结构布置闸门采用斜支臂双主横梁式焊接结构,其结构布置见图3-31。
孤门半径R=15.0m,支铰高度H2=5m。
垂直向设置五道实腹板式隔板及两道边梁,区格间距为 1.9m,边梁距闸墩边线为0.3m;水平向除上、下主梁及顶、底次梁外,还设置了11根水平次梁,其中上主梁以上布置4根,两主梁之间布置7根。
支铰采用圆柱铰,侧水封为“L”形橡皮水封,底水封为“刀”形橡皮水封。
在闸门底主梁靠近边梁的位置设置两个吊耳,与启闭机吊具通过吊轴相连接。
采用2×500KN 固定式卷扬机操作。
本闸门结构设计按SL74-95《水利水电工程钢闸门设计规范》进行。
门叶结构材料采用Q235,支铰材料为铸钢ZG310-570。
材料容许应力(应力调整系数0.95):Q235第1组:[б]=150MPa ,[]=90 MPa ;第2组:[б]=140MPa ,[]=85 MPa ;ZG310-570:[б]=150MPa ,[]=105 MPa 。
3.荷载计算闸门在关闭位置的静水压力,由水平压力和垂直水压力组成,如图1所示:水平水压力:kNBHP ss3.74390.12135.1110212122垂直水压力:212212221sinsin 2sin2sin 180/21BR V s式中:471.19,3333333.0155sin14224,409.0155135.11sin 222111所以所以R H。
RH041.03355.2sin 21sin690.0613.43sin sin 0815.0671.4sin sin 629.0942.38sin 2sin 761.0180/613.432121221故kNV 7.649041.0690.020815.0629.0761.012151021222总水压力:kNV P Pss6.74677.6493.74392222总水压力作用方向:08734.03.74397.6490ssP V tg所以991.404.面板弧长闸门门叶垂直高度为11.5m ,支铰中心水平线以上弧形面板包角1'为679.2515/55.11sin11'总水压力作用线上、下的弧长L 上、L 下分别为:mrL 028.8991.4679.250.1501745.001745.00'1'上mrL 79.3991.4471.190.1501745.001745.00'2'下面板总弧长为L 总为L 总=L 上+L 下=8.028+3.79=11.818(m)5.主框架位置根据等荷载原则,闸门上、下主梁与支臂组成的主框架平面布置应与总水压力作用线对称,使两框架受力均匀。
弧形闸门启闭力计算
弧形闸门启闭力计算根据《水利水电工程钢闸门设计规范 SL74-95》,采用以下公式进行计算。
启门力计算式:[]412102)(1r P R G Gr n r T r T n R F X j zs zd T Q G ++++'= 式中:F Q ——启门力,KN ;R 1、R 2——分别为加重和启门力对弧形闸门的力臂,m ; T zd ——滑动支承摩擦阻力,KN; P f T zd 2=f 2——滑动摩擦系数,取0.6;P ——作用在闸门上的总水压力,KN ;22Z X P P P +=P X ——静水压力的水平分力,KN;P Z ——静水压力的铅直分力,KN ;R ——滚轮半径,mm ,R=100mm ,r ——滚轮轴半径,mm ,r=100mmT zs ——止水摩擦阻力,KN, ;zs zs P f T 3=f 3——滑动摩擦系数,取0.7;P zs ——作用在止水上的压力,KN;r 0、r 1、r 2、r 4——分别为转动轴摩阻力、止水摩阻力、闸门自重、下吸力对弧形闸门转动中心的力臂,m ;P X ——下吸力,KN,B H P X X 221γ=;H X ——闸门下游水深,m ;H X =0B ——闸门宽度,m ;B=8.0mB 1——止水总宽度,m ;B 1=0.09mn 'G ——计算持住力和启门力用的闸门自重修正系数,可采用1.0~1.1;G ——闸门自重,计算启门力时计入浮重,KN ;G=18×9.8=176.4KN G j ——加重块的重量,KN ;n T ——摩擦阻力安全系数,可采用1.2;该闸门不再加重,则G j =0,相应R 1=0,启门力的力臂R 2=10m ,转动轴摩阻力距r 0=0.1m ,止水摩阻力距r 1=10m ,闸门自重力矩r 2=10m 。
计算式考虑下游无水,则下吸力P X =0,相应r 4=0。
作用在闸门上静水压力的水平分力P x :KN B H P x 2509888.9212122=×××==γ 静水压力的铅直分力P z 为闸门排开水的重量KN P Z 94388.903.12=××= 则作用在闸门上静水总压力KN P P P Z X 268094325092222=+==+ 作用在止水上静水压力的水平分力P 止水x :KN B H P X 22.2809.088.921γ2122=×××==止水 静水压力的铅直分力P z 为闸门排开水的重量(可忽略)则作用在止水上静水总压力KN P zx 22.28=滑动支承摩擦阻力KN P f T zd 160826806.02=×==止水摩擦阻力KN P f T zs zs 75.1922.287.03=×==则启门力F Q :[][]KN r P R G Gr n r T r T n R F X j zs zd T Q G 23.2284.17605.110)19.751.01608(2.1101)(1412102=×××××==++++++'。
弧形闸门开度计算方法及应用
经验与技术30弧形闸门开度计算方法及应用文/丁东华摘要:以湖北汉江王甫洲水利枢纽泄水闸开度仪改造为例,根据闸门运动与液压油缸活塞的伸缩行程之间关系严格推导出闸门开度计算公式,并介绍了位置解码器SM338在该系统中的实际应用。
关键词:弧形闸门;开度计算;位置解码器SM338;自动控制一、引言湖北汉江王甫洲水利枢纽是一个以发电为主,结合航运,兼有灌溉、养殖、旅游等综合效益的大型水利工程。
位于湖北省老河口市汉江干流上,上距丹江口水利枢纽30km,老河口市市区下游约3km 处。
泄水闸位于主河道左岸、王甫洲右边滩地上,共23孔平底闸,闸孔净宽14.5m,高15.17m,闸室高18.97m,采用液压弧形工作门,根据运行要求,在闸面下游段上布置了12座启闭机房,2间变压器室,3座观测房以及备用电源房、配电房、集控室、起重门机等建筑物与设备。
在设计及校核水位条件下,最大下泄流量分别为16870m 3/s 和20800m 3/s。
二、闸门开度计算方法弧形闸门开度常用的一般有两种方法,一是采用分段折线(依据不同的闸门开度设定,折线段数有所不同),比如常见的与编码器配套的开度仪表计算闸门开度就是使用的15段折线,在每一段折线内都是用拟合直线的方法进行计算闸门开度,需要精确的专业测量仪器测量各个折线的拐点值,需要测量的数据多,并且要将闸门依次提到每个设定的折线拐点处,无论测量和操作上都比较麻烦,通过这种算法精度不够高,并且在折线拐点处可能会出现数据跳变的情况。
另外一种方法就是采用公式实时计算闸门开度,下面就弧形闸门的特点,对计算公式推导进行探讨(以液压门举例)。
三、位置结构说明液压闸门有两个关键的支撑点,分别叫油缸支点和支铰。
油缸在闸门提升过程中的伸缩和旋转是以油缸支点为中心进行旋转,而闸门的提升和降落围绕支铰进行旋转,如图一所示。
点E 为闸门的油缸支点,点B 为闸门的支铰,点A 为闸门着地点,即闸门底沿。
弧AD 为弧形闸门的门面,AB 和DB 为闸门的支撑臂,CE为闸门的油缸和活塞。
弧形钢闸门计算实例
弧形钢闸门计算实例弧形钢闸门是一种应用广泛的水工结构,通常被用于水坝、水电站和船闸等工程中。
它由一段弧形的钢板组成,可以随着水位的变化而升降。
在设计和计算弧形钢闸门时,需要考虑多个因素,包括水压、水位、重力等。
下面是一个弧形钢闸门的计算实例,用于说明设计和计算过程。
假设有一个用于船闸的弧形钢闸门,其跨度为15米,高度为5米。
为了使钢闸门能够顺利升降,我们需要计算当水位变化时所受到的水压力,以及钢闸门的重力。
然后,将两者进行比较,以确定钢闸门是否能够顺利升降。
首先,我们需要计算钢闸门所受到的水压力。
水压力可以通过下面的公式计算:P = ρgh其中,P为水压力,ρ为水的密度,g为重力加速度,h为水的高度。
假设水的密度为1000 kg/m³,重力加速度为9.81 m/s²。
在最大水位时,水高度为5米,那么水压力可以计算为:接下来,我们需要计算钢闸门的重力。
钢闸门由一段弧形的钢板组成,其面积可以通过下面的公式计算:A=(π/2)*r²其中,A为钢闸门的面积,r为钢闸门的半径。
由于钢闸门是弧形的,我们需要计算其半径。
假设弧形钢闸门的半径为10米,那么钢闸门的面积可以计算为:A=(π/2)*10²≈157.08m²钢闸门的重力可以通过下面的公式计算:F=m*g其中,F为重力,m为钢闸门的质量,g为重力加速度。
钢闸门的质量可以通过下面的公式计算:m=ρ*V其中,m为质量,ρ为钢闸门的密度,V为钢闸门的体积。
假设钢闸门的密度为7850 kg/m³,那么钢闸门的质量可以计算为:m = 7850 * 157.08 ≈ 1,230,234 kg钢闸门的重力可以计算为:F=1,230,234*9.81≈12,058,471.54N这个计算实例展示了如何计算弧形钢闸门所受到的水压力和重力,并比较二者以确定钢闸门的升降能力。
在实际设计和计算中,还需要考虑其他因素,如钢闸门的尺寸、材料强度等,以确保工程的安全和可靠性。
弧形闸门启门力和闭门力验算
弧形闸门启门力和闭门力验算————————————————————————————————作者: ————————————————————————————————日期:1.1.1 闸门启门力和闭门力验算泄洪闸弧形钢闸门闭门力和启门力,根据《水利水电工程钢闸门设计规范》(SL74-2013)第10.1.2条可知,闸门启闭力计算公式如下:1.闭门力计算公式:()01221W T zd zs t G F n T r T r P r n Gr kN R ⎡⎤=++-⎣⎦2.启门力计算公式:(),01221421W T zd zs t G j x F n T r T r P r n Gr G R P r kN R ⎡⎤=++-++⎣⎦以上两式中:T n ——摩擦阻力安全系数,可采用1.2;G n ——计算闭门力用的闸门自重修正系数,可采用0.9-1.0;,G n ——计算持住力和启门力用德尔闸门自重修正系数,可采用1.0-1.1; G ——闸门自重,kN,当有拉杆时应计入拉杆重量;计算闭门力时选用浮重j G ——加重块重量,kN ; R ——滚轮半径,mm1R ——加重对弧形闸门转动中心的力臂; 2R ——启门力对弧形闸门转动中心的力臂; t P ——上托力,kN,包括底缘上托力及止水上托力;x P ——下吸力,kN;zd T ——支撑摩阻力,k N; zs T ——止水摩阻力,kN;01234,,,,r r r r r ——分别为转动铰摩阻力、止水摩阻力、闸门自重、上托力和下吸力对弧形闸门转动中心的力臂,m ;泄洪闸闸门基本参数计算结果如下: 堰顶高程:46.0m; 门前最大水深Hs :4.5m;闸门宽度7.0m;静水压力Ps:708.75kN;转动半径R=6m;φ夹角:0.750;φ1水平线上夹角:0.349φ2水平线下夹角:0.401水重Vs:23.218kN;总水压力708.906kNﻬ弧形钢闸门闭门力计算成果表格表4 - 4弧形闸门闭门力计算表加重(或下压力)kN FW-49.005 加重(或下压力)对弧形闸门转动中心的力臂mR16.00 摩擦阻力安全系数n T1.2 滚动轴承的滚轮摩阻力kN Tzd 53.168作用在闸门上的总水压力kN P 708.906滚轮半径mm R 50 滚动摩擦力臂mm f 1 滚动轴承的平均半径mm R155滚动轴承的滚柱直径mm d 20 转动铰摩阻力对弧形闸门转动中心的力臂r00.15 止水摩阻力kNT zs 1.215滑动摩擦系数f30.6作用在止水上的压力kN PZS2.025上托力kN Pt27.010 闸门自重kNG83.229 闸门自重修正系数nG0.95闸门自重对弧形闸门转动中心的力臂m r26.00 止水摩阻力对弧形闸门转动中心的力臂m r16.00 上托力对弧形闸门转动中心的力臂mr3 6.00计算结果表明,弧形钢闸门闭门力为-49.005kN,说明弧形闸门无需加压,依靠自重即可闭门。
01弧门启闭力计算公式以10feet乘11feet为例
gH L/2
2
6.095914928
弧门启闭力计算公式(闭门)(以10×11Feet为例)依据SL74-1995 钢闸门设
公式 代号
Fw=(Nt×(Tzd×r0+Tzs×r1)+Pt×r3-NG×G×r2)÷R1 正值需加重, 取高值,红色需输入 计算公式 名称
摩擦阻力安全系数 滑动支撑摩擦阻力,KN 转动摩擦阻力力臂,m 止水摩擦阻力,KN 止水摩擦阻力力臂,m 上托力力,KN 上托力力臂,m 自重修正系数 闸门自重,KN 闸门自重力臂,m 加工块重量,KN 加工块力臂,m 下吸力,KN 下吸力力臂,m 弧门转动中心力臂,m 滑动摩擦系数
作用在闸门上的总水压力,KN 静水压力水平分布,KN 静水压力垂直分布,KN
Nt Tzd r0 Tzs r1 Pt r3 nG G r2 Gj R1 Px r4 R2 f2 P Py Pz g H B L Hx f3 Pzs
1.2 113.1234673 0.03 1.082491622 5.023 4.245181248 5.1 1.1 54.49 5.01 0 4.9 0 5.1 5.1 0.6 188.5391122 188.5391122 0 9.8 3.553 3.048 0.035 3 0.5 2.164983244 gH L/2
弧门启闭力计算公式(启门)(以10×11Feet为例)依据SL74-1995 钢闸门设计规范
公式 代号
FQ=(Nt×(Tzd×r0+Tzs×r1)+nG×G×r2+Gj×R1+Px×r4)÷R2 名称
摩擦阻力安全系数 滑动支撑摩擦阻力,KN 转动摩擦阻力力臂,m 止水摩擦阻力,KN 止水摩擦阻力力臂,m 自重修正系数 闸门自重,KN 闸门自重力臂,m 加工块重量,KN 加工块力臂,m 下吸力,KN 下吸力力臂,m 弧门转动中心力臂,m 滑动摩擦系数
弧形闸门 过流能力计算
弧形闸门过流能力计算摘要:一、弧形闸门概述二、弧形闸门过流能力计算方法1.基本公式2.影响因素3.局部开启时的考虑三、实例分析四、结论与建议正文:弧形闸门作为一种广泛应用于水电站、水库等水利工程中的结构物,其过流能力的计算至关重要。
本文将详细阐述弧形闸门过流能力的计算方法,以及影响因素和实际应用中的考虑,希望通过本文的阐述,能为相关领域的工程技术人员提供参考。
一、弧形闸门概述弧形闸门以其良好的泄洪能力、结构稳定性以及节能环保等优点在水电站、水库等水利工程中得到广泛应用。
弧形闸门的开启和关闭可以通过液压、电动等方式实现,其工作原理是利用闸门弧形面的水位差产生水压力,使闸门得以开启或关闭。
二、弧形闸门过流能力计算方法1.基本公式弧形闸门的过流能力主要取决于其开度、弧形面的高度以及水头。
其基本计算公式为:Q = π * r^2 * h * v其中,Q为过流能力(立方米/秒),r为弧形闸门半径(米),h为水头(米),v为水流速度(米/秒)。
2.影响因素在实际计算中,还需要考虑以下影响因素:(1)闸门开度:闸门开度越大,过流能力越大;(2)弧形面高度:弧形面高度越高,过流能力越大;(3)水头:水头越高,过流能力越大;(4)水流速度:水流速度越快,过流能力越大。
3.局部开启时的考虑当弧形闸门局部开启时,其过流能力的计算需要考虑闸前漩涡等水力特性。
局部开启时,闸门附近会产生漩涡,这会减小实际过流能力。
此时,需要通过实验或数值模拟等方法,研究闸前漩涡对过流能力的影响,从而得到更为准确的计算结果。
三、实例分析以某水电站为例,该水电站弧形闸门孔口尺寸为7m*9m,设计水位为175m,底坎高程为90m,设计水头为85m。
根据流体力学知识,最大水流速度约为35m/s。
据此计算,每孔泄洪流量为63平方米(闸门截面积)乘以35m/s(流速),即为2205立方米每秒。
四、结论与建议弧形闸门的过流能力计算是水利工程设计的重要环节。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
FQ R2 Gj R1 nT Tzd P R f R1 d r0 Tzs f3 PZS G nG r2 r1 Px
312.437 6 80 8 1.2 34.826 928.696 120 1 35 10 0.25 2.218 0.6 3.697 40.000 1.050 6.500 7.900 175.500
注:按公式在关门之前工况下计算,没有考力)KN 加重(或下压力)对弧形闸门转动中心的力臂m 摩擦阻力安全系数 滚动轴承的滚轮摩阻力KN 作用在闸门上的总水压力KN 滚轮半径mm 滚动摩擦力臂mm 滚动轴承的平均半径mm 滚动轴承的滚柱直径mm 转动胶摩阻力对弧形闸门转动中心的力臂 止水摩阻力KN 滑动摩擦系数 作用在止水上的压力KN 上托力KN 闸门自重KN 闸门自重修正系数 闸门自重对弧形闸门转动中心的力臂m 止水摩阻力对弧形闸门转动中心的力臂m 上托力对弧形闸门转动中心的力臂m 弧形闸门启门力计算 启门力KN 启门力对弧形闸门转动中心的力臂m 加重KN 加重(或下压力)对弧形闸门转动中心的力臂m 摩擦阻力安全系数 滚动轴承的滚轮摩阻力KN 作用在闸门上的总水压力KN 滚轮半径mm 滚动摩擦力臂mm 滚动轴承的平均半径mm 滚动轴承的滚柱直径mm 转动胶摩阻力对弧形闸门转动中心的力臂m 止水摩阻力KN 滑动摩擦系数 作用在止水上的压力KN 闸门自重KN 闸门自重修正系数 闸门自重对弧形闸门转动中心的力臂m 止水摩阻力对弧形闸门转动中心的力臂m 下吸力KN
水深HS 闸门宽B 9.98 10
FQ R2 Gj R1 nT Tzd P R f R1 d r0 Tzs f3 PZS G nG r2 r1 Px D2 ps r4
698.466 4.87 0 0 1.2 186.760 4980.278 120 1 35 10 0.25 5.976 0.6 9.960 200.000 1.050 8.400 3.950 175.500 0.975 20.000 8.850
闸门底缘止水至主梁下翼缘的距离m 平均下吸强度KN/m2 下吸力对弧形闸门转动中心的力臂m
D2 ps r4
0.975 20.000 5.300
注:按公式在关门之前工况下计算,没有考虑下吸力。
PS 4980.020
作用在闸门上的总水压力计算 转动半径R φ夹角 φ1水平线上夹角 φ2水平线下夹角 9 0.994 56.927 0.530 30.389 0.463 26.538
FW R1 nT Tzd P R f R1 d r0 Tzs f3 PZS Pt G nG r2 r1 r3
81.152 8 1.2 34.826 928.696 120 1 35 10 0.25 2.218 0.6 3.697 108.092 40.000 0.950 6.500 7.900 8
水深HS 闸门宽B 6.08 5
VS 50.656
总水压力P 4980.278
PS 924.160
作用在闸门上的总水压力计算 转动半径R φ夹角 φ1水平线上夹角 φ2水平线下夹角 9 0.723 41.398 0.000 0 0.847 48.548
VS 91.676
总水压力P 928.696
FW R1 nT Tzd P R f R1 d r0 Tzs f3 PZS Pt G nG r2 r1 r3
-90.359 9 1.2 186.760 4980.278 120 1 35 10 0.25 5.976 0.6 9.960 77.602 200.000 0.950 8.400 3.950 9
弧形闸门闭门力计算 加重(或下压力)KN 加重(或下压力)对弧形闸门转动中心的力臂m 摩擦阻力安全系数 滚动轴承的滚轮摩阻力KN 作用在闸门上的总水压力KN 滚轮半径mm 滚动摩擦力臂mm 滚动轴承的平均半径mm 滚动轴承的滚柱直径mm 转动胶摩阻力对弧形闸门转动中心的力臂 止水摩阻力KN 滑动摩擦系数 作用在止水上的压力KN 上托力KN 闸门自重KN 闸门自重修正系数 闸门自重对弧形闸门转动中心的力臂m 止水摩阻力对弧形闸门转动中心的力臂m 上托力对弧形闸门转动中心的力臂m 弧形闸门启门力计算 启门力KN 启门力对弧形闸门转动中心的力臂m 加重KN 加重(或下压力)对弧形闸门转动中心的力臂m 摩擦阻力安全系数 滚动轴承的滚轮摩阻力KN 作用在闸门上的总水压力KN 滚轮半径mm 滚动摩擦力臂mm 滚动轴承的平均半径mm 滚动轴承的滚柱直径mm 转动胶摩阻力对弧形闸门转动中心的力臂m 止水摩阻力KN 滑动摩擦系数 作用在止水上的压力KN 闸门自重KN 闸门自重修正系数 闸门自重对弧形闸门转动中心的力臂m 止水摩阻力对弧形闸门转动中心的力臂m 下吸力KN 闸门底缘止水至主梁下翼缘的距离m 平均下吸强度KN/m2 下吸力对弧形闸门转动中心的力臂m