材料科学基础第三章晶体缺陷

合集下载

3_《材料科学基础》第三章_晶体结构缺陷((上)

3_《材料科学基础》第三章_晶体结构缺陷((上)

点缺陷(零维缺陷)--原子尺度的偏离.
按 缺
例:空位、间隙原子、杂质原子等
陷 线缺陷(一维缺陷)--原子行列的偏离.

例:位错等
几 何
面缺陷(二维缺陷)--表面、界面处原子排列混乱.

例:表面、晶界、堆积层错、镶嵌结构等
态 体缺陷(三维缺陷)--局部的三维空间偏离理想晶体的周期性
例:异相夹杂物、孔洞、亚结构等
1、 固溶体的分类
(1) 按杂质原子的位置分: 置换型固溶体—杂质原子进入晶格中正常结点位置而取代基
质中的原子。例MgO-CoO形成Mg1-xCoxO固溶体。 间隙型固溶体—杂质原子进入晶格中的间隙位置。
有时俩
(2)按杂质原子的固溶度x分: 无限(连续)固溶体—溶质和溶剂任意比例固溶(x=0~1)。
多相系统
均一单相系统
Compounds AmBn
原子间相互反应生成
均一单相系统
结构
各自有各自的结构
A structure
structure
+ B structure
结构与基质相同 A structure
结构既不同于A也不同于B New structure
化学计量 A/B
不定
固溶比例不定
m:n 整数比或接近整数比的一定范围内
四、固溶体Solid solution(杂质缺陷)
1、固溶体的分类 2、置换型固溶体 3、间隙型固溶体 4、形成固溶体后对晶体性质的影响 5、固溶体的研究方法
①固溶体:含有外来杂质原子的单一均匀的晶态固体。 例:MgO晶体中含有FeO杂质 → Mg1-xFexO
基质 溶剂 主晶相
杂质 溶质 掺杂剂
萤石CaF2(F-空位)

上海交通大学 材料科学基础第三章 晶体缺陷ppt课件

上海交通大学 材料科学基础第三章 晶体缺陷ppt课件
ppt课件 23
混合位错
混合位错:滑移矢量既不平行业不垂直于位错线, 而是与位 错线相交成任意角度。 一般混合位错为曲线形式, 故每一点的滑移矢量 式相同的, 但其与位错线的交角却不同。 ppt课件
24
各种位错的柏氏矢量
ppt课件
25
柏氏矢量的物理意义
1。反映位错周围点阵畸变的总积累(包括强度 和取向) 2。 该矢量的方向表示位错运动导致晶体滑移 的方向, 而该矢量的模表示畸变的程度称为位 错的强度。 (strength of dislocation)
ppt课件
G tm 0.1G 2
13
t m 0.01 0.1G
计算中的假设
• 1。完整晶体,没有缺陷 • 2。整体滑动 • 3。正弦曲线(0.01-0.1G)
问题出在假设1和2上!应是局部滑移!
日常生活和大自然的启示=〉
ppt课件 14
有缺陷晶体的局部滑动
小宝移大毯!
毛毛虫的蠕动
面缺陷 (plane defect) 在一个方向上尺寸很小
ppt课件 二维缺陷 (two-dimensional defect) 3
课程安排
点缺陷 课 程 安 排 (第1周)
位错几何 (第1、2周)
位错力学
(第2周)
位错运动、实际晶体中的位错(第3、4周) 表面与界面 (第4、5周) 课堂讨论 (第5周)
Ee e W
Ees
m e
R
r
x z dr t dx
0 r r
b
R
b
0
Gx Gb 2 R zdr x dx ln 2 1 4 1 r0
Gb R ln 4 r0
e e s e

材料科学基础第3章

材料科学基础第3章

3.2 位错
晶体在结晶时受到杂质、温度变化或振动产
生的应力作用,或由于晶体受到打击、切削、 研磨等机械应力的作用,使晶体内部质点排列 变形,原子行列间相互滑移,即不再符合理想 晶格的有序排列,由此形成的缺陷称位错。
3.2.1 位错的基本类型和特征
刃型位错 螺型位错
刃型位错结构的特点: 1) 刃型位错有一个额外的半原子面。一般把多出的半原子面在滑移面 上边的称为正刃型位错,记为“┻”;而把多出在下边的称为负刃 型位错,记为“┳”。
螺型位错
a. 位错中心附近的原子移动小于一个原子间距的距离。 b. 位错线在滑移面上向左移动了一个原子间距。
c. d. e. 当位错线沿滑移面滑移通过整个晶体时,就会在晶体表面沿柏氏矢 量方向产生宽度为一个柏氏矢量大小的台阶。 螺型位错的运动方向始终垂直位错线并垂直于柏氏矢量。 螺型位错线与柏氏矢量平行,故其滑移不限于单一的滑移面上,所 有包含位错线的晶面都可成为其滑移面。
晶体中的位错环
晶体中的位错网络
3.柏氏矢量的表示法
•柏氏矢量的大小和方向可用与它同向的 晶向指数来表示。
[
a a a [2 2 2 ]
]
a [1 1 1] 2
例如:
在体心立方中, 柏氏矢量等于从体心 立方晶体的原点到体 心的矢量。
b=
a [1 1 1] 2
a •一般立方晶系中柏氏矢量可表示为b= n <u v w>
4)
5)
2.螺型位错
设立方晶体右侧受到切 应力的作用,其右侧上 下两部分晶体沿滑移面 ABCD发生了错动,如图 所示。这时已滑移区和 未滑移区的边界线 bb´(位错线)不是垂直而 是平行于滑移方向。
F
C D

《材料科学基础》 第03章 晶体缺陷

《材料科学基础》 第03章 晶体缺陷

第三节 位错的基本概念
三、位错的运动
刃位错的攀移运动:刃型位错在垂直于滑移面方向上的运动。 刃位错发生攀移运动时相当于半原子面的伸长或缩短,通常把 半原子面缩短称为正攀移,反之为负攀移。 滑移时不涉及单个原子迁移,即扩散。刃型位错发生正攀 移将有原子多余,大部分是由于晶体中空位运动到位错线上的 结果,从而会造成空位的消失;而负攀移则需要外来原子,无 外来原子将在晶体中产生新的空位。空位的迁移速度随温度的 升高而加快,因此刃型位错的攀移一般发生在温度较高时;另 外,温度的变化将引起晶体的平衡空位浓度的变化,这种空位 的变化往往和刃位错的攀移相关。切应力对刃位错的攀移是无 效的,正应力的存在有助于攀移(压应力有助正攀移,拉应力 有助负攀移),但对攀移的总体作用甚小。
第一节 材料的实际晶体结构
二、晶体中的缺陷概论
晶体缺陷按范围分类:
1. 点缺陷 在三维空间各方向上尺寸都很小,在原 子尺寸大小的晶体缺陷。
2. 线缺陷 在三维空间的一个方向上的尺寸很大(晶 粒数量级),另外两个方向上的尺寸很小(原子尺 寸大小)的晶体缺陷。其具体形式就是晶体中的 位错Dislocation 。
说明:这是一个并不十分准确的定义方法。柏氏矢量的方向与位错线方向的定义有关,应该首 先定义位错线的方向,再依据位错线的方向来定柏氏回路的方向,再确定柏氏矢量的方 向。在专门的位错理论中还会纠正。
第三节 位错的基本概念
二、柏氏矢量
柏氏矢量与位错类型的关系:
刃型位错 柏氏矢量与位错线相互垂直。(依方向关系可 分正刃和负刃型位错) 螺型位错 柏氏矢量与位错线相互平行。(依方向关系可 分左螺和右螺型位错) 混合位错 柏氏矢量与位错线的夹角非0或90度。
过饱和空位 晶体中含点缺陷的数目明显超过平衡 值。如高温下停留平衡时晶体中存在一平衡空位, 快速冷却到一较低的温度,晶体中的空位来不及移 出晶体,就会造成晶体中的空位浓度超过这时的平 衡值。过饱和空位的存在是一非平衡状态,有恢复 到平衡态的热力学趋势,在动力学上要到达平衡态 还要一时间过程。

材料科学基础 第三章 晶体缺陷 (七)解读

材料科学基础 第三章 晶体缺陷 (七)解读

图 离子晶体表面的双电层
3.3.1 外 表 面
表面 (crystal surface)
偏离平衡位置的并造成表层点阵畸变的且影响到邻 近的能量比内部高的几层高能量的原子层。
表面能(γ):晶体表面单位面积自由能的增加
dW dS
T L
被割断的结合键数目 能量 形成单位新表面 每个键
根据晶界两侧晶粒位相差的不同可分为小角度晶界和 大角度晶界。亚晶界属于小角度晶界。
图 晶界与亚晶界示意图
3.3.2 晶界和亚晶界
确定晶界位置用:二维点阵中晶界位置可用 两个晶粒的位向差 θ和晶界相对于一个点阵某 一平面的夹角 φ来确定。根据相邻晶粒之间位 向差θ角的大小不同可将晶界分为两类: 按θ的大小分类: 小角度晶界θ<10º 大角度晶界θ>10º
依附界面,长大依靠界面迁移;因此,界面的结构和特性
影响凝固和相变过程; 由于界面的重要影响,受到广泛的重视,成为材料科学的 重要组成内容。
3.3.3 孪晶界
孪晶( twin )的定义:
孪晶是指两个晶体(或一个晶体
的两部分)沿一个公共晶面构成 镜面对称的位向关系,这两个 晶体就称为“孪晶(twin)”,此 公共晶面就称孪晶面。
(7)晶界具有不同与晶内的物理性质。
亚晶界属与小角度晶界,为各种亚结构的交界,大小 和尺寸与热加工条件有关。
亚晶界
5、界面对材料性能的影响
界面是晶体中的面缺陷,对晶体材料的性质和转变过程有重要影响;
界面阻碍位错运动,引起界面强化,提高材料的强度。界面阻碍变
形,使变形分布均匀、提高材料的塑性,强度、塑性的提高相应使 材料韧性也得到改善。因此,界面的增加,得到细晶组织,可大大 改善材料的力学性能; 界面具有高的能量,化学介质不稳定,产生晶界腐蚀,故影响材料

第3章点缺陷、位错的基本类型和特征_材料科学基础

第3章点缺陷、位错的基本类型和特征_材料科学基础



陷,如Fe1-xO、Zn1+xO等晶体中的缺陷。
特点:其化学组成随周围气氛的性质及其分压大
小而变化。是一种半导体材料。
4. 其它原因,如电荷缺陷,辐照缺陷等
6


3.1 点缺陷

1. 基本概念:如果在任何方向上缺陷区的尺寸


都远小于晶体或晶粒的线度,因而可以忽略

不计,那么这种缺陷就叫做点缺陷。 点缺陷
T 100K 300K 500K 700K 900K 1000K n/N 10-57 10-19 10-11 10-8.1 10-6.3 10-5.7
14
3.1
点 4. 点缺陷的产生

陷 ➢ 平衡点缺陷:热振动中的能力起伏。 ➢ 过饱和点缺陷:外来作用,如高温淬火、辐 照、冷加工等。
15
3.1
点 5. 点缺陷的运动:迁移、复合-浓度降低;聚集
需的能量,叫空位移动能Em。自扩散激活能 相当于空位形成能与移动能的总和。
17
3.1
6. 点缺陷与材料行为

缺 (1)结构变化:晶格畸变(如空位引起晶格收

缩,间隙原子引起晶格膨胀,置换原子可引
起收缩或膨胀。);形成其他晶体缺陷(如
过饱和的空位可集中形成内部的空洞,集中
一片的塌陷形成位错。)
(2)性能变化:物理性能:如电阻率增大,密 度减小。力学性能:屈服强度提高(间隙原 子和异类原子的存在会增加位错的运动阻 力。)加快原子的扩散迁移
位错运动导致晶体滑移的方向;该矢量的模|b|表示
了畸变的程度,即位错强度。
② 柏氏矢量的守恒性:柏氏矢量与回路起点及其具体途 径无关。一根不分岔的位错线,不论其形状如何变化 (直线、曲折线或闭合的环状),也不管位错线上各 处的位错类型是否相同,其各部位的柏氏矢量都相同; 而且当位错在晶体中运动或者改变方向时,其柏氏矢 量不变,即一根位错线具有唯一的柏氏矢量。

材料科学基础第三章 晶体缺陷

材料科学基础第三章 晶体缺陷

贵州师范大学
化学与材料科学学院
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学
化学与材料科学学院
二、点缺陷的产生 1. 平衡点缺陷及其浓度 虽然点缺陷的存在使晶体的内能增高,但 同时也使熵增加,从而使晶体的能量下降。因 此,点缺陷是晶体中热力学平衡的缺陷。 等温等容条件下,点缺陷使晶体的亥姆霍 A U T S 兹自由能变化为:
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学
化学与材料科学学院
三、点缺陷与材料行为 1. 点缺陷的运动 1)空位的运动
2)间隙原子的运动 3)空位片的形成
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学
化学与材料科学学院
第三章 晶体缺陷
CRYSTAL DEFECTS
点缺陷 位错的基本概念 位错的弹性性质 作用在位错线上的力 实际晶体结构中的位错 晶体中的界面
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY
贵州师范大学
化学与材料科学学院
一、点缺陷的类型
点缺陷的类型: (a) Schottky 空位; (b) Frenkel 缺陷; (c) 异类间隙原子; (d) 小置换原子; (e) 大置换原子
SCHOOL OF CHEMISTRY AND MATERIAL SCIENCE OF GUIZHOU NORMAL UNIVERSITY

晶体缺陷【材料科学基础】

晶体缺陷【材料科学基础】

14
大角度晶界
¾ ¾ 9 9
大角度晶界的结构较复杂,其中原子排列较不规则。 有关大角度晶界的结构,人们曾提出许多模型: 早期:认为晶界是由一层很薄(几个原子间距)的非晶 质组成。 后来: 过渡结构模型:晶界原子分布同时受两相邻晶粒位向的 影响,处于折中位置。 小岛结构模型:晶界中的一部分原子与其相邻两边界的 点阵匹配排列,成为好区;有的部分(岛屿)原子排列 较混乱,成为坏区。好区与坏区交替相间组成晶界。

相界能低(畸变非常小)。
36
半共格相界
定义:两相结构相近而原子 间距相差较大,在相界面上 出现了一些刃位错。(界面 上两相原子部分匹配) 相界能较高(有畸变)。相 界面上的原子共格关系主要 通过一组刃位错调整和维持。

37

半共格相界上位错间距D取决于相界处两相匹配晶 面的错配度(δ) 。 相界两侧原子的不匹配程度
19
晶界的性质
晶界能:形成单位面积晶界时所增加的能量。 ¾ 小角度晶界的晶界能: 小角度晶界的能量主要来自位错能量(形成位错的 能量和将位错排成有关组态所作的功),而位错密 度又决定于晶粒间的位向差,所以,小角度晶界能 也和位向差有关:

20
可见,小角度晶界的界面能随位向差增加而增大。
21
大角度晶界的晶界能: 9 基本恒定,约在0.25~1.0J/m2范围内,与晶粒 之间的位向差无关。 9 晶界能可以界面张力的形式来表现,且可以通过界 面交角的测定求出它的相对值。三个晶粒相交于一 点,界面张力达到平衡时:
9
界面结构:溶质原子在大角度晶界中偏聚严重。
27
¾ ¾ ¾ ¾ ¾
晶界的其它特性: 晶界的扩散激活能约为晶内的一半,晶界处原子的 扩散速度比在晶内快得多。 随温度升高,保温时间延长,晶界发生迁移,晶粒 要长大,晶界平直化;晶界可能熔化(过烧)。 新相易在晶界处优先形核(晶界能量高,原子活动 能力大)。 晶界具有较低的抗腐蚀能力。 晶界阻碍位错运动,使金属具有较高的塑变抗力。

材料科学基础第三章晶体缺陷

材料科学基础第三章晶体缺陷
和缺陷数量变化呈非线与振动熵有关的常数玻尔兹曼常数变化每增加一个空位的能量阵点总数平衡空位数exp点缺陷并非固定不动而是处在不断改变位置的运动过程空位周围的原子由于热振动能量的起伏有可能获得足够的能量而跳入空位并占据这个平衡位置这时在这个原子的原来位置上就形成一个空位
材料科学基础第三章晶体缺陷
本章要求掌握的主要内容
b. 由于存在着这两个互为矛盾的因素,晶体中的点缺陷在一定温度下有一定的平衡数目,这时点 缺陷的浓度就称为它们在该温度下的热力学平衡浓度。
c. 在一定温度下有一定的热力学平衡浓度,这是点缺 陷区别于其它类型晶体缺陷的重要特点。
图 空位-体系能量曲线
1.形成缺陷带来晶格应变,内能U增加,一个缺陷带来的内能
过饱和点缺陷(如淬火空位、辐照缺陷)还提高了 金属的屈服强度。
例1:Cu晶体的空位形成能Ev为1.44×10-19J/atom, 材料常数A取为1,波尔兹曼常数为k=1.38×10-23J/K, 计算:
1)在500℃下,每立方米Cu中的空位数目; 2)500℃下的平衡空位浓度。 (已知Cu的摩尔质量63.54,500℃ Cu的密度为 8.96×106g/m3)
增加为u,所以内能增加
,故内能增加是线性的。
Unu
2.缺陷存在使体系的混乱度增加,引起熵值增加,缺陷存在使 体系排列方式增加,即熵值显著增加。和缺陷数量变化呈非线 性的。
C
n N
A exp( Ev / kT )
n 平衡空位数
N 阵点总数
Ev 每增加一个空位的能量 变化 K 玻尔兹曼常数
A 与振动熵有关的常数
晶体结构的特点是长程有序。结构基元或者构成物体的粒子(原子、离子或分子等)完全按照空间点阵 规则排列的晶体叫理想晶体。 在实际晶体中,粒子的排列不可能这样规则和完整,而是或多或少地存在着偏离理想结构的区域,出 现了不完整性。 把实际晶体中偏离理想点阵结构的区域称为晶体缺陷。 实际晶体中虽然有晶体缺陷存在,但偏离平衡位置很大的粒子数目是很少的,从总的来看,其结构仍 可以认为是接近完整的。

无机材料科学基础第三章晶体结构缺陷

无机材料科学基础第三章晶体结构缺陷
• 点缺陷的存在会引起性能的变化: (1)物理性质、如V、ρ 等; (2)力学性能:采用高温急冷(如淬火 quenching),大 量 的 冷 变 形 (cold working), 高 能 粒 子 辐 照 (radiation)等方法可获得过饱和点缺陷,如使屈服强 度σS提高; ( 3 ) 影 响 固 态 相 变 , 化 学 热 处 理 (chemical heat treatment)等。
(4)溶质原子(杂质原子):
LM 表示溶质L占据了M的位置。如:CaNa SX 表示S溶质占据了X位置。 (5)自由电子及电子空穴:
有些情况下,价电子并不一定属于某个特定位置的原子,在光、电、热 的作用下可以在晶体中运动,原固定位置称次自由电子(符号e/ )。同 样可以出现缺少电子,而出现电子空穴(符号h. ),它也不属于某个特定 的原子位置。
(5)热缺陷与晶体的离子导电性
纯净MX晶体:只有本征缺陷(即热缺陷) 能斯特-爱因斯坦(Nernst-Einstein)方程:
n k 2 e 2 z T [a 2cex k E c p ) T a ( 2a ex k E a p )T ]( n k 2 e 2 z T D
式中 D —— 带电粒子在晶体中的扩散系数; n —— 单位体积的电荷载流子数,即单位体 积的缺陷数。 下标c、a —— 阳离子、阴离子
离子晶体中:CaF2型结构。
从形成缺陷的能量来分析——
Schttky缺陷的形成能量小,Frankel 缺陷的 形成能量大,因此对于大多数晶体来说, Schttky 缺陷是主要的。
(4) 点缺陷对结构和性能的影响
• 点缺陷引起晶格畸变(distortion of lattice),能量升 高,结构不稳定,易发生转变。

材料科学基础第3-4章小结及习题课讲解

材料科学基础第3-4章小结及习题课讲解
表示 ,模的大小表示该晶向上原子间的距离。
b a u2 v2 w2 n
六方晶系中: b=(a/n)[uvtw]
同一晶体中,柏氏矢量愈大,表明该位错导致点阵畸变愈 严重,它所在处的能量也愈高。
3.2.3 位错的运动
基本形式:滑移和攀移
滑移(slip):三种位错的滑移过程 攀移(climb):在垂直于滑移面方向上运动,
第三章 晶体缺陷
晶体缺陷分类及特征(几何形态、相对于晶体的尺寸、影响范围) :
1. 点缺陷:特征是三维空间的各个方面上尺寸都很小,尺寸
范围约为一个或几个原子尺度,包括空位、间隙原子、杂质 和溶质原子。
2. 线缺陷:特征是在两个方向上尺寸很小,另外一个方面上
很大,如各类位错。
3. 面缺陷:特征是在一个方向上尺寸很小,另外两个方向上
晶界:属于同一固相但位向不同的晶粒之间的界面 称为晶界。
亚晶界:每个晶粒有时又由若干个位向稍有差异的 亚晶粒所组成,相邻亚晶粒间的界面称为亚晶界。
确定晶界位置方法: (1)两晶粒的位向差θ (2)晶界相对于一个点阵某一平面的夹角φ。
晶界分类(按θ的大小): 小角度晶界θ<10º 大角度晶界θ>10º
(3)刃型位错标记 正刃型位错用“⊥”表示,负刃型位错用“┬”表示;其
正负只是相对而言。
(4)刃型位错特征: ① 有一额外的半原子面,分正和负刃型位错;
② 可理解为是已滑移区与未滑移区的边界线,可是直线也 可是折线和曲线,但它们必与滑移方向和滑移矢量垂直;
③ 只能在同时包含有位错线和滑移矢量的滑移平面上滑移; ④ 位错周围点阵发生弹性畸变,有切应变,也有正应变;
表面能(γ):产生单位面积新表面所做的功。 表示法:①γ= dw/ds ②γ= T/L (N/m) ③γ= [被割断的结合键数/形成单位新表面]×[能量/每个键] 影响γ的因素: (1)晶体表面原子排列的致密程度。 (2)晶体表面曲率。 (3)外部介质的性质。 (4)晶体性质。

材料科学基础点缺陷

材料科学基础点缺陷
11
第 三 章
点缺陷的平衡浓度
2 点缺陷的平衡浓度 ( 1 )点缺陷是热力学平衡的缺陷- 在一定温度下, 晶体中总是存在着一定数量的点缺陷(空位),这时体系 的能量最低-具有平衡点缺陷的晶体比理想晶体在热力学 上更为稳定。(原因:晶体中形成点缺陷时,体系内能的 增加将使自由能升高,但体系熵值也增加了,这一因素又 使自由能降低。其结果是在G-n曲线上出现了最低值,对 应的n值即为平衡空位数。) (2)点缺陷的平衡浓度 C=Aexp(-∆Ev/kT)
6
(c) 2003 Brooks/Cole Publishing / Thomson Learning
第三章 晶体结构缺陷
一 点缺陷
第 一 节 点 缺 陷
第 三 章
7
第 三 章
第三章 晶体结构缺陷
一 点缺陷
肖脱基空位 弗兰克尔空位
第 一 节 点 缺 陷
8
第 三 章
点缺陷的形成
构成晶体的所有原子总是以其平衡位置为中心 进行热振动 原子热振动的平均能量与晶体所 处的温度有关,温度越高,平均能量越大。当 温度一定时,原子热振动的平均能量是一定的 但是各原子在同一瞬间的热振动能量并不相同, 面且同一原子在不同瞬间的能量也不相同,也 就是说各原子的能量总是处于不断起伏变化之 中,这种现象称为能量起伏.由于能量起伏, 总有一些原子的能量大到足以克服周围原子对 它的束缚,就有可能迁移到别处,这样在原来 的平衡位置上出现空结点,称为“空位”。
9
其它点缺陷
晶体中的点缺陷除了包括空位、 间隙原子、置换原子外,还包括 由这些基本点缺陷组成的三维方 向上的尺寸都很小的复杂缺陷, 例如空位对或空位片等.
10
点缺陷对晶体结构的影响
空位和间隙原子都将使周围原子间作 用力失去平衡,点阵产生弹性畸变, 形成应力场,引起晶体内能升高。 点缺陷形成能:点缺陷的引入使得晶 体内能升高,这部分增加的能量称为 点缺陷形成能。通常空位引起的晶格 畸变小于间隙原子的晶格畸变,空位 形成能也小于间隙原子形成能。

材料科学基础 第 三 章 晶 体 缺 陷 (三)

材料科学基础 第 三 章  晶 体 缺 陷 (三)
烟台大学 秦连杰 教授 E-mail:lianjieqin@
3.2.3 位错的运动
晶体宏观的塑性变形是通过位错运动来实现,并且晶体的 力学性能如强度、塑韧性和断裂等均与位错的运动有关。 原因:位错运动是因它沿受力方向改变位置会使系统自由 能减少,位错实现运动要求它所受的力足以克服运动阻力。 位错运动的两种基本形式:保守运动-滑移(slip)和非保 守运动-攀移(climb)。
1、 位错的滑移
位错的滑移(slipping of disloction): 位错的滑移是在外加切应力作用下,通过位错 中心附近的原子沿柏氏矢量方向在滑移面上不断地 作少量位移(小于一个原子间距)而逐步实现的。 如图3-13 刃型位错的滑移过程, 图3-14 螺型位错的滑移过程, 图3-15 混合型位错的滑移过程所示。
攀移(climb):刃型位错的位错线还可以沿着 垂直于滑移面的方向移动,刃型位错的这种运动称 为攀移。也就是说只有刃位错才有攀移。 *非保守运动,并引起位错的半原子面扩大 和缩小,因此攀移总是伴随着点缺陷的输运。 除滑移和攀移还有交割(cross/interaction) 和扭折(kink)
a、 位错的滑移之刃位错
刃型位错: 对含刃型位错的晶体加切应力,切应力方向平行于柏 氏矢量,位错周围原子只要移动很小距离,就使位错由位 置(a)移动到位置(b)。 当位错运动到晶体表面时,整个上半部晶体相对下半 部移动了一个柏氏矢量晶体表面产生了高度为b的台阶。 刃型位错的柏氏矢量 b 与位错线 互相垂直,故滑 移面为 b 与 决定的平面,它是唯一确定的。刃型位错 移动的方向与 b 方向一致,和位错线垂直。
混合 位错
(1)可以通过柏氏矢量和位错线的关系来判断位 错特征。b⊥ξ 时为刃型位错,b∥ξ 为螺型位错, 对于混合型位错,b和τ的角度在0º 和90º 。

武汉理工大学考研材料科学基础重点 第3章-晶体结构缺陷

武汉理工大学考研材料科学基础重点 第3章-晶体结构缺陷

第二章晶体结构缺陷缺陷的含义:通常把晶体点阵结构中周期性势场的畸变称为晶体的结构缺陷。

理想晶体:质点严格按照空间点阵排列的晶体。

实际晶体:存在着各种各样的结构的不完整性。

本章主要内容:2.1 晶体结构缺陷的类型2.2 点缺陷2.3 线缺陷2.4 面缺陷2.5 固溶体2.6 非化学计量化合物⏹ 2.1 晶体结构缺陷的类型分类方式:几何形态:点缺陷、线缺陷、面缺陷和体缺陷等形成原因:热缺陷、杂质缺陷、非化学计量缺陷、电荷缺陷和辐照缺陷等●一、按缺陷的几何形态分类1. 点缺陷(零维缺陷)缺陷尺寸处于原子大小的数量级上,即三维方向上缺陷的尺寸都很小。

包括:空位:正常结点没有被质点占据,成为空结点间隙质点:质点进入正常晶格的间隙位置,成为间隙质点错位原子或离子杂质质点:指外来质点进入正常结点位置或晶格间隙,形成杂质缺陷双空位等复合体点缺陷与材料的电学性质、光学性质、材料的高温动力学过程等有关。

2. 线缺陷(一维缺陷)位错指在一维方向上偏离理想晶体中的周期性、规则性排列所产生的缺陷,即缺陷尺寸在一维方向较长,另外二维方向上很短,如各种位错。

线缺陷的产生及运动与材料的韧性、脆性密切相关。

3.面缺陷面缺陷又称为二维缺陷,是指在二维方向上偏离理想晶体中的周期性、规则性排列而产生的缺陷,即缺陷尺寸在二维方向上延伸,在第三维方向上很小。

如晶界、表面、堆积层错、镶嵌结构等。

面缺陷的取向及分布与材料的断裂韧性有关。

4.体缺陷体缺陷亦称为三维缺陷,是指在局部的三维空间偏离理想晶体的周期性、规则性排列而产生的缺陷。

如第二相粒子团、空位团等。

体缺陷与物系的分相、偏聚等过程有关。

●二、按缺陷产生的原因分类1. 热缺陷定义:热缺陷亦称为本征缺陷,是指由热起伏的原因所产生的空位或间隙质点(原子或离子)。

类型:弗仑克尔缺陷和肖特基缺陷。

弗伦克尔缺陷是质点离开正常格点后进入到晶格间隙位置,其特征是空位和间隙质点成对出现。

肖特基缺陷是质点由表面位置迁移到新表面位置,在晶体表面形成新的一层,同时在晶体内部留下空位。

材料科学基础 第 三 章 晶 体 缺 陷 (二)资料讲解

材料科学基础  第 三 章  晶 体 缺 陷 (二)资料讲解

综合而言刃型位错具有以下几个重要特征:
(1) 刃形位错有一个额外半原子面;
(2) 刃形位错线是一个具有一定宽度的细长 晶格畸变管道,其中既有正应变,又有切应变;
(3) 位错线与晶体滑移的方向垂直,即位错 线运动的方向垂直于位错线。
➢ Burgers vector b is perpendicular to line dislocation vector ξ. ➢ The slip plane is unique.
➢ Burgers vector b is parallel to the line vector ξ of the dislocation. ➢ The slip plane cannot be defined uniquely. ➢ Slip direction is parallel to b. ➢ Dislocation line moves perpendicular to b.
完整晶体滑移的理 论剪切强度要远高于实 际晶体滑移的对应强度, 从而促进了位错理论的 产生和发展。
刃位错的原子模型
(2) 刃型位错定义
晶体中已滑移区与未滑移区的边界线(即位错线)若垂 直于滑移方向,则会存在一多余半排原子面,它象一把刀刃 插入晶体中,使此处上下两部分晶体产生原子错排,这种晶 体缺陷称为刃型位错(edge dislocation)。多余半排原子面在 滑移面上方的称正刃型位错,记为“┻”;相反,半排原子 面在滑移面下方的称负刃型位错,记为“┳”。
滑移矢量
*滑移矢量之 伯氏矢量表示法
➢用来描述位错区域原子的畸变特征(包括畸 变发生在什么晶向以及畸变有多大)的物理 参量,称为伯氏矢量(Burgers Vector);
➢它是一个矢量,1939年由伯格斯(J. M. Burgers)率先提出。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

够的能量而跳入空位,并占据这个平衡位置,这时在这个原 子的原来位置上,就形成一个空位。这一过程可以看作是空 位向邻近结点的迁移。
在运动过程中,当间隙原子与一个空位相遇时,它将落入
这个空位,而使两者都消失,这一过程称为复合,或湮没。
(a)原来位置;
(b)中间位置;
(c)迁移后位置
图 空位从位置A迁移到B
2 Ar a 3 N A 8.57 (3.294108 )3 6.0231023 x 1 2 Ar 2 92.91 7.1766103 106 7.1766103 7176 .6(个) 所以, 106 个Nb中有7176 .6个空位。
a NA
作业:
二.本章重点及难点 1、点缺陷的形成与平衡浓度 2、位错类型的判断及其特征、伯氏矢量的特征和物理意义 3、位错源、位错的增殖(F-R源、双交滑移机制等)和运动、 交割
4、关于位错的应力场可作为一般了解
5、晶界的特性(大、小角度晶界)、孪晶界、相界的类型
维纳斯“无臂” 之美更深入人心
处处留心皆学问
2.点缺陷的形成(本征缺陷的形成)
点缺陷形成最重要的环节是原子的振动 原子的热振动
(以一定的频率和振幅作振动)
原子被束缚在它的平衡位置上,但原子却在做着挣脱
束缚的努力
点缺陷形成的驱动力:温度、离子轰击、冷加工
在外界驱动力作用下,哪个原子能够挣脱束缚,脱离
平衡位置是不确定的,宏观上说这是一种几率分布
刃型位错的特点:
1).刃型位错有一个额外的半原子面。其实正、负之分只具 相对意义而无本质的区别。 2).刃型位错线可理解为晶体中已滑移区与未滑移区的边界 线。它不一定是直线,也可以是折线或曲线,但它必与滑移 方向相垂直,也垂直于滑移矢量。
图 不同形状的刃型位错
3).滑移面必定是同时包含有位错线和滑移矢量的平面,在 其它面上不能滑移。由于在刃型位错中,位错线与滑移矢量 互相垂直,因此,由它们所构成的平面只有一个。 4).晶体中存在刃型位错之后,位错周围的点阵发生弹性畸 变,既有切应变,又有正应变。就正刃型位错而言,滑移面 上方点阵受到压应力,下方点阵受到拉应力;负刃型位错与 此相反。 5).在位错线周围的过渡区(畸变区)每个原子具有较大的 平均能量。但该区只有几个原子间距宽,畸变区是狭长的管 道,所以刃型位错是线缺陷。
2)计算空位浓度
ne 1.4410 Ce exp 23 N 1.3810 773
19
e
13.5 6
1.4 10
即在500℃时,每106个原子中才有1.4个空位。
例2:Nb的晶体结构为bcc,其晶格常 数为0.3294nm, 密度为8.57g/cm3,试求每106Nb中 解:设单个晶胞内空位分数为x, 所含的空位数目。 2(1 x) Ar 3

晶体中的点缺陷(a) 肖特基空位
(b) 弗仑克尔空位
空位的两种类型:
离位原子迁移到晶体的表面上,这样形成的空位通常称为肖
特基缺陷;
可迁移到晶体点阵的间隙中,这样的空位称弗仑克尔缺陷。
§3.1.2 点缺陷的运动及平衡浓度
1.点缺陷的平衡浓度
a.
晶体中点缺陷的存在,一方面造成点阵畸变,使晶
体的内能升高,增大了晶体的热力学不稳定性;另一 方面,由于增大了原子排列的混乱程度,并改变了其 周围原子的振动频率,又使晶体的熵值增大。熵值越 大,晶体便越稳定。
Ev Ev ne N A exp N exp kT kT
19 1.4410 28 8.4910 exp / m 3 1.381023 773
1.2 10 / m
23
3
2.位错的基本类型

位错可分为刃性位错和螺型位错。
图 刃型位错与螺型位错
(1)刃型位错
图 含有刃型位错的晶体
刃型位错的概念:
在某一水平面以上多出了垂直方向的原子面,犹如插入的
刀刃一样,EF称为刃型位错线。位错线附近区域发生了原子 错排,因此称为“刃型位错” 。 把多余半原子面在滑移面以上的位错称为正刃型位错,用 符号“┻”表示,反之为负刃型位错,用“┳”表示。 含有多余半原子面的晶体受压,原子间距小于正常点阵常 数;不含多余半原子面的晶体受张力,原子间距大于正常点 阵常数。 位错在晶体中引起的畸变在位错线中心处最大,随着离位 错中心距离的增大,晶体的畸变逐渐减小 。
点缺陷的存在使晶体体积膨胀,密度减小。
点缺陷引起电阻的增加,这是由于晶体中存在点缺陷
时,对传导电子产生了附加的电子散射,使电阻增大。
空位对金属的许多过程有着影响,特别是对高温下进
行的过程起着重要的作用。
金属的扩散、高温塑性变形的断裂、退火、沉淀、 表面化学热处理、表面氧化、烧结等过程都与空位的
存在和运动有着密切的联系。
过饱和点缺陷(如淬火空位、辐照缺陷)还提高了 金属的屈服强度。
例1:Cu晶体的空位形成能Ev为1.44×10-19J/atom, 材料常数A取为1,波尔兹曼常数为k=1.38×10-23J/K, 计算: 1)在500℃下,每立方米Cu中的空位数目; 2)500℃下的平衡空位浓度。 (已知Cu的摩尔质量63.54,500℃ Cu的密度为
第一节 点缺陷
§3.1.1 点缺陷的类型及形成
点缺陷的定义
点缺陷:在三维方向上尺寸都很小(远小于晶体或晶粒的
线度)的缺陷。
1.点缺陷的类型
常见的基本点缺陷有空位、间隙原子和置换(杂质)原子。 1.空位:正常结点位置出现的原子或离子的空缺;
2.间隙原子:指原子进入正常格点位置之间的空隙位置; 3. 置换原子:位于晶体点阵位置的异类原子 。
主讲:赵建果
本章要求掌握的主要内容
一.需掌握的概念和术语 1、点缺陷、Schottky空位、Frankel空位、间隙原子、置换 原子 2、线缺陷、刃型位错、螺型位错、混合型位错、伯氏矢量、 位错运动、滑移、(双)交滑移、多滑移、攀移、交割、割 阶、扭折、塞积;位错应力场、应变能、线张力、作用在 位错上的力、位错密度、位错源、位错生成、位错增殖、 位错分解与合成、位错反应、全位错、不全位错、堆垛层 错 3、面缺陷、表面、界面、界面能、晶界、相界 4、关于位错的应力场、位错的应变能、线张力等可作为一 般了解 5、晶界的特性(大、小角度晶界)、孪晶界、相界的类型
第二节 线缺陷



线缺陷就是在两个方向上尺寸很小,在一个方向上尺 寸很大的缺陷。 线缺陷是各种类型的位错。 位错是晶体内部一种有规律的管状畸变区。原子发生 错排的范围,在一个方向上尺寸较大,而另外两个方 向上尺寸较小,是一个直径为3~5个原子间距,长几 百到几万个原子间距的管状原子畸变区。 最简单的位错是刃型位错和螺型位错。
(2)螺型位错
(a)立体图; (b)顶视图 图 螺型位错的原子组态

螺型位错原子模型及其形成示意
螺型位错的结构特征 无额外的半原子面,原子错排呈轴对称,分右旋和左旋螺 型位错; 位错线一定是直线,与滑移矢量平行,位错线移动方向与 晶体滑移方向垂直; 滑移面不是唯一的,包含螺型位错线的平面都可以作为它 的滑移面; 位错周围点阵也发生弹性畸变,但只有平行于位错线的切 应变而无正应变,即不引起体积的膨胀和收缩; 位错畸变区也是几个原子间距宽度,同样是线位错。
螺型位错与刃型位错的区别
(1)螺型位错中不存在多余半原子面,而是垂直于 位错线的原子平面发生了螺旋状的扭曲。 (2)螺位错线的b与其位错线相平行,而刃位错线的 b与其位错线相互垂直,这是区别螺位错与刃位的主 要依据。 (3)螺型位错可分为左螺型位错和右螺型位错,与 正负刃位错不同,左右螺型位错是不能相互转化的, 不管从哪个方向看,旋转的方向是不会变的。 (4)刃型位错的位错线可以是直线、折线和缺陷而 螺型位错的位错线只能是直线。
n C A exp(Ev / kT ) N n 平衡空位数 N 阵点总数 Ev 每增加一个空位的能量 变化 K 玻尔兹曼常数 A 与振动熵有关的常数
2.点缺陷的运动
点缺陷并非固定不动,而是处在不断改变位置的运动过程
中。
空位周围的原子,由于热振动能量的起伏,有可能获得足
b. 由于存在着这两个互为矛盾的因素,晶体中的点 缺陷在一定温度下有一定的平衡数目,这时点缺陷的
浓度就称为它们在该温度下的热力学平衡浓度。
c. 在一定温度下有一定的热力学平衡浓度,这是点缺
陷区别于其它类型晶体缺陷的重要特点。

空位-体系能量曲线
1.形成缺陷带来晶格应变,内能U增加,一个缺陷带来的内能 增加为u,所以内能增加 U nu ,故内能增加是线性的。 2.缺陷存在使体系的混乱度增加,引起熵值增加,缺陷存在使 体系排列方式增加,即熵值显著增加。和缺陷数量变化呈非线 性的。
点缺陷从一个平衡位置到另一个平衡位置的移动,必须 获得足够的能量来克服周围势垒的障碍,故称这一增大 的能量为点缺陷的迁移能 E 。
m
Sm Em 0 Z exp( ) exp( ) kT k
0 为点缺陷周围原子的振动频率
Z 为点缺陷周围原子的配位数
S m 为点缺陷的迁移熵
§3.1.3 点缺陷对性能的影响
图 理想晶体的滑移模型和刃型位错的滑移过程





1939年伯格斯提出用伯氏矢量来表征位错的特性,同 时引入螺型位错。 1947年柯垂耳利用溶质原子与位错的交互作用解释了 低碳钢的屈服现象。 1950年弗兰克与瑞德同时提出了位错增殖机制F—R 位错源。 50年代后,透射电镜直接观测到了晶体中位错的存在、 运动、增殖。 今天,位错理论已经成为塑性变形及强化的理论基础。
8.96×106g/m3)
解:首先确定1m3体积内原子Cu原子总数 (已知Cu的摩尔质量MCu=63.54g/mol, 500 ℃ 下Cu的密度为8.96×106g/m3).
相关文档
最新文档