随机过程讲义(南开大学内部)

合集下载

随机过程讲义4

随机过程讲义4

随机过程讲义
§4.1 平稳过程
一、两种平稳过程
1. 严平稳过程: 严平稳过程: 特别: 为同分布过程, 特别: { X ( t ) } 为同分布过程, 即:F ( t;x ) = FX ( x ) 但一般而言,确定随机过程的有限维分布是 但一般而言, 困难的,不过其数字特征(特别是一、 困难的,不过其数字特征(特别是一、二阶 矩)在工程实际中较易近似得到,它反映了 在工程实际中较易近似得到, 该过程的基本特征。 该过程的基本特征。若只考虑这些特征的平 稳性,就可引出宽平稳过程。 稳性,就可引出宽平稳过程。
随机过程讲义
第四章 平稳随机过程
随机过程讲义
§4.0 内积空间
一、内积空间
1. 意义: 意义: 分析性能 <—— 极限 <—— 距离 <—— 内积 2. H 空间: 空间:
( Ω , F , Ρ ) 上具有二阶矩的(复)随机变量之全 上具有二阶矩的(
体,记为 H. 注:若 X,Y ∈ H ,且 P ( X = Y ) = 1,则记 = X ,则记Y
n→ ∞
随机过程讲义
§4.3
2. 四种收敛: 四种收敛:
随机分析
二、四种收敛性(极限) 四种收敛性(极限)
c. m . s . (均方)收敛 均方)
Xn → X :
m .s .
lim 均有二阶矩, 若 { Xn }, Xn 均有二阶矩,且 n → ∞ E { X n − X } = 0
2
记做 l.i.m Xn = X
随机过程讲义
§4.0 内积空间
一、内积空间
6. 范数: 对变量自身的一种度量 范数:
X = ( X,X )1 2 ∀X ∈ H ,记

随机过程课件第二章

随机过程课件第二章

复随机过程的性质
复随机过程{XT,,t∈T}的协方差函数B(s,t)具有性质: (1)对称性(埃米特性), B(s, t ) = B(t, s) (2)非负定性,对任意ti ∈T及复数ai,i=1,2, …,n,n≥1,有
n i , j =1
∑ B (t Βιβλιοθήκη tij)ai a j ≥ 0
说明: 1. 如果函数f(s,t)具有非负定性,那么它必具有埃米特性。 2. 若f(s,t)为一非负定函数,则必存在一个二阶矩过程(并可要 求它为正态过程)以给定的f(s,t)为协方差函数。
两个复随机过程{Xt},{Yt}的互相关函数定义为
R XY ( s , t ) = E ( X s Yt )
互协方差函数定义为
B XY ( s , t ) = E [ X s m X ( s )] [Yt m Y ( t )]
例题2.9 2.9 设随机过程 Zt =
n

k =1
X k ei kt , t ≥ 0 ,其中X1,X2, …,Xn是相互独立的,且
两个随机过程{X(t),t∈T}与{Y(t), t∈T}的互不相关定义
B XY ( s , t ) = 0
互协方差函数与互相关函数之间的关系
B XY ( s , t ) = R XY ( s , t ) m X ( s ) m Y ( t )
例题2.7 设有两个随机过程X(t)=g1(t+ε)和Y(t)=g2(t+ε),其中g1(t)和g2(t)都是周期 为L的周期方波,ε是在(0,L)上服从均匀分布的随机变量,求互相关函 数RXY(t,t+τ)的表达式。 例题2.8: 设X(t)为信号过程,Y(t)为噪声过程,令W(t)=X(t)+Y(t),求W(t)的均值 函数和相关函数。

随机过程课程讲义

随机过程课程讲义
对每一固定的时刻t, X (t) cos(t )是随机变量的函数, 从而也是随机变量。它的状态空间是[- , ]. 在(0, 2 )内随机取一数 ,相应的就得到一个样本函数 x(t) cos(t ), 这族样本函数的差异在于它们相位的不同,
故这一过程称为随机相位正弦波。
6
例3:设X (t) Vcost t , 其中是常数;
一般地,FX (x1, x2 , xn;t1, t2 , tn ), n 1, 2, ti T 称为随机过程X (t),t T的有限维分布函数族
它完全确定了随机过程的统计特性
下面分别给出它们的一条样本函数:
xn
6
(1)
5
4
3
2
yn
6
xn
5
4
3
2
(2)
yn
1
1
1 2 3 45 678
n
1 2 3 45 678
n
随机过程的分类:
随机过程可根据参数集T和任一时刻的状态分为四类,参数集T 可分为离散集和连续集两种情况,任一时刻的状态分别为离散型随 机变量和连续型随机变量两种:
10
§2 随机过程的统计描述
两种描述
分布函数 特征数
(一) 随机过程的分布函数族
设随机过程X (t),t T, 对每一固定的t T , FX (x,t) PX (t) x,x R,称为随机过程X (t),t T的一维分布函数 FX (x,t),t T称为一维分布函数族
一般地,对任意n(n 2,3, )个不同的时刻,t1,t2, tn T
1. 连续参数连续型的随机过程,如例2,例3 2. 连续参数离散型的随机过程,如例1,例4 3. 离散参数离散型的随机过程,如例5 4. 离散参数连续型的随机过程时间集T t, 2 t, n t, 上观察X (t),就得到 随机序列X1, X 2 , , X n , , X n X (n t)是连续型随机变量。

随机过程讲义(第二章)(PDF)

随机过程讲义(第二章)(PDF)

第二章 随机过程的一般概念2.1 随机过程的基本概念和例子定义2.1.1:设(P ,,F )Ω为概率空间,T 是某参数集,若对每一个,是该概率空间上的随机变量,则称为随机过程(Stochastic Process)。

T t ∈),(w t X ),w t (X 随机过程就是定义在同一概率空间上的一族随机变量。

随机过程可以看成定义在),(w t X Ω×T 上的二元函数,固定Ω∈0w ,即对于一个特定的随机试验,称为样本路径(Sample Path),或实现(realization),这是通常所观测到的过程;另一方面,固定,是一个随机变量,按某个概率分布随机取值。

),(0w t X T t ∈0),(0w t X抽象一点:令,即∏∈=Tt T R R T R 中的元素为),(T t x X t t ∈=,为其Borel域(插乘)(T R B σ域),随机过程实质上是()F ,Ω到())(,T T R R B 上的一个可测映射,在())(,T TR RB 上诱导出一个概率测度:T P ()B X P B P R B T T T ∈=∈∀)(),(B 。

一般代表的是时间。

根据参数集T 的性质,随机过程可以分为两大类: t 1)为可数集,如T {}L ,2,1,0=T 或{}L L ,1,0,1,−=T ,称为离散参数随机过程,也称为随机序列;2)为不可数集,如T {}0≥=t t T 或{}∞<<∞−=t t T ,称为连续参数随机过程。

随机过程的取值称为过程所处的状态(State),所有状态的全体称为状态空间(State Space)。

通常以表示随机过程的状态空间。

根据状态空间的特征,一般把随机过程分为两大类:T t t X ∈),(S 1) 离散状态,即取一些离散的值; )(t X 2)连续状态,即的取值范围是连续的。

)(t X离散参数离散状态随机过程: Markov 链 连续参数离散状态随机过程: Poisson 过程 离散参数连续状态随机过程: *Markov 序列连续参数连续状态随机过程: Gauss 过程,Brown 运动例2.1.1:一醉汉在路上行走,以的概率向前迈一步,以q 的概率向后迈一步,以p r 的概率在原地不动,1=++r q p ,选定某个初始时刻,若以记它在时刻的位置,则就是直线上的随机游动(Random Walk)。

随机过程讲义

随机过程讲义
n U U{N (t ) = n − l , N (t + h) − N (t ) = l} l =2
故有:
Pn (t + h) = Pn (t )(1 − λh − ο (h)) + Pn −1 (t )(λh + ο (h)) + ο (h)
化简并令 h → 0 得:
Pn′(t ) = −λPn (t ) + λPn −1 (t )
∀ n ∈ N , t i ∈ T , 1 ≤ i ≤ n ,有随机过程 X (t ) 的增量: X (t 2 ) − X (t1 ), X (t 3 ) − X (t 2 ),L, X (t n ) − X (t n−1 )
相互独立,则称随机过程 { X (t ), t ∈ T } 是独立增量过程。 注意:若独立增量过程的参数集 T = [ a, b), a > −∞ ,一般假定 X ( a ) = 0 , 则 独 立 增 量 过 程 是 一 马 氏 过 程 。 特 别 地 , 当 X ( 0) = 0 时 , 独 立 增 量 过 程
两边同乘以 e ,移项后有:
λt
d λt λt [e Pn (t )] = λ e Pn −1 (t ) dt Pn (0) = P{N (0) = n} = 0
当 n = 1 时,有:
d λt [e P1 (t )] = λ , P1 (0) = 0 ⇒ P1 (t ) = (λ t )e −λ t dt
由归纳法可得:
(λ t ) n − λ t Pn (t ) = e , n ∈ N0 n!
注意: E{N (t )} = λ t 现的平均次数。 注意:Poission 过程的转移率矩阵(Q 矩阵)的表示,并用上一章讲过的方 法求解 Poission 过程的一维分布。

随机过程讲义(第3-4讲)

随机过程讲义(第3-4讲)

(i ≥ 1) ( j ≠ i + 1, i − 1; i ≥ 1)
pi i −1 = q = 1 − p (i ≥ 1)
( j ≠ 0,1)
(5) 带有二个反射壁的随机游动: 此时的状态空间为 S = {0,1,2,L, a} ,它的一步转移概率矩阵为:
q q 0 P= 0 0
中科院研究生院 2009~2010 第一学期
随机过程讲稿
孙应飞
率矩阵,简称为转移矩阵。 注 3:对于马氏链 { X ( n); n ≥ 0} ,我们有:
P{ X (0) = i0 , X (1) = i1 ,L, X (n) = in } = = P{ X (n) = in X (0) = i0 , X (1) = i1 ,L, X (n − 1) = in−1} ⋅ ⋅ P{ X (0) = i0 , X (1) = i1 ,L, X (n − 1) = in −1 } = P{ X (n) = in X (n − 1) = in−1} ⋅ P{ X (0) = i0 , X (1) = i1 ,L, X (n − 1) = in −1} =L = P{ X (n) = in X (n − 1) = in−1} ⋅ P{ X (n − 1) = in−1 X (n − 2) = in− 2 } ⋅ L ⋅ ⋅ P{ X (1) = i1 X (0) = i0 } ⋅ P{ X (0) = i0 } = pi
其中: P
(1)
=P
由此可知:对于齐次马氏链,如果知道了它的初始分布 π (0) 和一步转移矩 阵 P ,就可以求得 X ( n) 的所有有限维概率分布。即有:
= ∑ pi( n i− n
k
P{ X (n1 ) = i1 , X (n2 ) = i2 ,L, X (nk ) = ik } =

随机过程讲义 第一章

随机过程讲义 第一章

第一章 随机过程及其分类在概率论中,我们研究了随机变量,n 维随机向量。

在极限定理中我们研究了无穷多个随机变量,但只局限在它们之间相互独立的情形。

将上述情形加以推广,即研究一族无穷多个、相互有关的随机变量,这就是随机过程。

1. 随机过程的概念定义:设),,(P ∑Ω是一概率空间,对每一个参数T t ∈,),(ωt X 是一定义在概率空间),,(P ∑Ω上的随机变量,则称随机变量族});,({T t t X X T ∈=ω为该概率空间上的一随机过程。

其中R T ⊂是一实数集,称为指标集或参数集。

随机过程的两种描述方法: 用映射表示T X ,R T t X →Ω⨯:),(ω即),(⋅⋅X 是一定义在Ω⨯T 上的二元单值函数,固定T t ∈,),(⋅t X 是一定义在样本空间Ω上的函数,即为一随机变量;对于固定的Ω∈ω,),(ω⋅X 是一个关于参数T t ∈的函数,通常称为样本函数,或称随机过程的一次实现,所有样本函数的集合确定一随机过程。

记号),(ωt X 有时记为)(ωt X 或简记为)(t X 。

参数T 一般表示时间或空间。

常用的参数一般有:(1)},2,1,0{0 ==N T ;(2)},2,1,0{ ±±=T ;(3)],[b a T =,其中a 可以取0或∞-,b 可以取∞+。

当参数取可列集时,一般称随机过程为随机序列。

随机过程});({T t t X ∈可能取值的全体所构成的集合称为此随机过程的状态空间,记作S 。

S 中的元素称为状态。

状态空间可以由复数、实数或更一般的抽象空间构成。

实际应用中,随机过程的状态一般都具有特定的物理意义。

例1:抛掷一枚硬币,样本空间为},{T H =Ω,借此定义:⎩⎨⎧=时当出现,时当出现T 2H ,cos )(t t t X π ),(∞+-∞∈t 其中2/1}{}{==T P H P ,则)},(,)({∞+-∞∈t t X 是一随机过程。

《随机过程》课程教学大纲

《随机过程》课程教学大纲

《随机过程》课程教学大纲课程名称随机过程课程编码131510019 课程类型(学院内)跨专业课程适用范围数学与应用数学学分数 3 先修课程数学分析,概率论学时数48 其中实验学时其中实践学时考核方式考试制定单位数学与信息科学学院执笔者审核者一、教学大纲说明(一)课程的性质、地位、作用和任务随机过程理论在自然科学、社会科学和工程技术的多个领域得到广泛的应用。

本课程是作为数学专业本科生基地班的专业基础课而开的。

该课程通过讲述随机过程的基本理论,介绍若干常用的随机过程,使学生掌握随机过程的基本工具和基本方法,从而为进一步学习随机分析以及随机过程的专业领域应用打下理论基础。

(二)教学目的和要求通过本课程的学习,应使学生对随机过程的基本理论有一个全面的认识,能够利用随机过程的理论和方法解决一些实际中遇到的相关问题。

学习本课程后,要求学生了解随机过程的基本概念和若干基本类型,理解不同类型随机过程在不同领域的应用,掌握随机过程理论的基本工具和基本方法,重点掌握几种在理论和实际应用都占有重要地位的特殊随机过程:泊松过程、布朗运动、马尔可夫过程、鞅过程等。

(三)课程教学方法与手段利用数学软件对随机过程进行绘图和动态模拟,加强学生对抽象随机过程的直观认识,培养学生对数学概念的直觉思考能力。

(四)课程与其它课程的联系随机过程的研究对象为随时间变化的随机现象,即随时间不断变化的随机变量,通常被视为概率论的动态部分,因此本课程是先修课程概率论在理论上的深化,也可看做先修课程数学分析在概率论中的深入应用。

数学分析中的积分和傅里叶变换是学习随机过程必备的基本理论工具。

随机过程是后继课程随机分析、随机微分方程的直接基础,这些后继课程以随机过程为基本研究对象,特别是以布朗运动、马尔可夫过程、鞅过程等基本随机过程为基础,进一步应用分析工具得到更加深刻的理论结果。

(五)教材与教学参考书1.方兆本、缪柏其,随机过程,科学出版社,2011年.2.何声武,随机过程引论,高等教育出版社,1999 年.3.张波、张景肖,应用随机过程,清华大学出版社,2004年.4.杜雪樵、惠军,随机过程,合肥工业大学出版社,2006.二、课程的教学内容、重点和难点第一章随机过程的基本概念和统计描述1.1 基本概念和例子.1.2 有限维分布和数字特征.1.3 平稳过程和独立增量过程.第二章两个重要的基本随机过程2.1 布朗运动及其变换.(重点)2.2 泊松过程及其推广.(重点)第三章马尔可夫链3.1 马尔可夫性及其概率刻画.3.2 转移矩阵和多步转移概率的确定.(重点)3.3 极限定理与平稳分布.(重点)3.4 分支过程.第四章鞅论初步4.1 条件数学期望.4.2 鞅的定义和例子.4.3 鞅的停时定理.(难点)4.4 鞅的收敛定理.(难点)四、课内实践教学安排无。

随机过程讲义

随机过程讲义

随机过程讲义
随机过程是一种抽象概念,它表示一个连续的或离散的时间点上发生的一系列事件或值的集合。

它主要用于表示不确定性和不确定性,在工程领域中有着广泛的应用。

本文将从定义和性质出发,论述随机过程的基本概念。

随机过程可以分为离散和连续两类。

离散随机过程是指在一定时间间隔内,其值只能在有限的取值集合中取值的变量。

例如,随机游戏的获胜概率可以用离散随机过程来表示。

连续随机过程是指在一定时间间隔内,其值可以取任何实数值的变量。

例如,温度变化可以用连续随机过程来表示。

随机过程有几个基本性质,如期望值、方差、协方差、自相关系数、相关系数和谱密度等。

期望值是指在一定时间间隔内,一个随机变量的预期值;方差表示变量的变化范围;协方差表示两个变量的关联性;自相关系数表示一个变量的变化,对另一个变量的影响;相关系数表示两个变量之间的相关性;谱密度表示变量的频率分布。

随机过程的应用非常广泛,它可以用于统计学、信号处理、系统建模和控制等领域。

它可以用于模拟不确定性或不确定性的系统,并分析系统的性质,以及系统响应的变化。

它还可以用于分析信号传输系统中的信号噪声,以及与环境变量相关的随机变量。

总之,随机过程是一种抽象概念,它表示一个连续的或离散的时间点上发生的一系列事件或值的集合。

它有几个基本性质,可以用于模拟不确定性或不确定性的系统,它在工程领域有着广泛的应用,可以用于控制、分析、模拟等众多方面。

随机过程讲义(第一章)

随机过程讲义(第一章)

P (Ω ) = 1 ;
对任意两两不交的至多可数集 {An } ⊂ F , P⎛ ⎜ U An ⎞ ⎟ = P ( An ) ⎝n ⎠ ∑ n
称 P(⋅) 为 F 上的概率测度, (Ω, F , P) 称为概率空间。
1
1.4 随机变量的概念 定义:设 (Ω, F , P ) 为一概率空间, X = X ( w) 为 Ω 上的一个实值函数,若对 任意实数 x ,X −1 ((−∞, x) ) ∈ F , 则称 X 为 (Ω, F , P ) 上的一个 (实) 随机变量。 称 F ( x) = P( X < x ) = P( X ∈ (−∞, x)) = P X −1 ((−∞, x) ) 为随机变量 X 的 分布 函数。 随 机 变 量 实 质 上 是 (Ω, F ) 到 (R, B ( R ) ) 上 的 一 个 可 测 映 射 ( 函 数 ) 。 记
_______
2
α 1 , α 2 Lα m , ∑∑ ϕ (t l − t k )α l α k ≥ 0 ;
l =1 k =1
m
m
5) ϕ ( w) 为 R n 上的连续函数。 6) 有限多个独立随机变量和的特征函数等于各自特征函数的乘积; 7) 设 X = (ξ1 , Lξ n ) 为 n 维 随 机 向 量 , 特 征 函 数 为 ϕ ( w1 ,L wn ) , 则
n→∞
敛到随机变量 X ;
2)
若 E X n 存在, 且 lim E X n − X
n→∞
p
p
则称 X 1 , X 2 , L X n ,L p 阶收敛到 = 0,
随机变量 X ,特别当 p = 2 ,称为均方收敛。
3) 4)
若 P lim X n = X = 1 ,称 X 1 , X 2 , L X n ,L 几乎必然收敛到随机变量 X 。

随机过程课件

随机过程课件

。每个可能取的值称为一个状态。
对随机过程 {X (t) , t T} 进行一次试验 (即在 T 上进行一次全程观测) , 其结果是 t 的函数, 记为
x(t) , t T , 称它为随机过程的一个 样 本 函 数 或 样本曲线 .
所有不同的试验结果构成一族样本函数.
随机过程 总体
样本函数 个体
(4)连续参数、连续状态的随机过程。如例3,T=[0,∞], 状态空间为[-∞,∞]。
离散参数的随机过程亦称为随机序列。
四、随机过程的分布函数族
给定随机过程 {X (t),t T}.
对固定的 t T, 随机变量 X (t) 的分布函数一 般与 t 有关, 记为 FX (x,t) P{X (t) x}, x R.
1 0.5
-4
-2
-0.5
2
4
-1
当t固定时,X(t)是随机变量,故{X(t), t>0}是一族随机变量。
另一方面,对随机变量 做一φ次试验得一个试验值 ,
就是一条样本曲线。X (t) a cos(0t )
二、随机过程的概念
1 定义 参数集:设T是实数轴 (, )上的一个子集,且包含无限多
个数。随机过程是一族随机变量,可用 {X (t),t T} 来表示。T称为 随机过程的参数集。
在次概数率是论一中个曾随指机出变,量在,单记位X时(t间)为内[0一,t]电内话的站呼接叫到次的数呼唤 次数可用一离散型随机变量 X()表示,且有
P{X() k} k e , k 0, 1,2, ,( 0)
k! 在[0,t]时间内接到的呼唤次数,这一随机变量可记为X(t)。
P{X(t) k} (t)k et , k 0, 1,2, ,( 0)

随机过程讲义(南开大学内部)

随机过程讲义(南开大学内部)

舮 舮 舮 舮 舮 舮 舮 舮 舮 舮
舮 舮 舮 舮 舮 舮 舮 舮 舮 舮
舮 舮 舮 舮 舮 舮 舮 舮 舮 舮
舮 舮 舮 舮 舮 舮 舮 舮 舮 舮
舮 舮 舮 舮 舮 舮 舮 舮 舮 舮
舮 舮 舮 舮 舮 舮 舮 舮 舮 舮
舮 舮 舮 舮 舮 舮 舮 舮 舮 舮
舮 舮 舮 舮 舮 舮 舮 舮 舮 舮
舮 舮 舮 舮 舮 舮 舮 舮
舮 舮 舮 舮 舮 舮 舮 舮
舮 舮 舮 舮 舮 舮 舮 舮
舮 舮 舮 舮 舮 舮 舮 舮
舮 舮 舮 舮 舮 舮 舮 舮
舭艩舭
第一章 艐良艩艳艳良艮 过程
第一章
Poisson 过程
k
称随机变量 X 服从参数为 λ 的 艐良艩艳艳良艮 分布,若 P (X = k ) = e−λ λ 般 k = 0, 1, . . .舮 k! −λt 称随机变量 X 服从参数为 λ 的指数分布,若 P (X > t) = e 舮 此时,X 的密度 函数为 λe−λt 般 t > 0般 分布函数为 1 − e−λt 般 t > 0舮 指数分布满足无记忆性,即 P (X > t + s) = P (X > t)P (X > s). 引理 1.1 设随机变量 X , Y 独立,f : R × R → R 有界可测。令 g (x) = E [f (x, Y )]. 则 g (X ) 可积,且 E [f (X, Y )] = E [g (X )]. 称 {N (t), t ≥ 0} 为 计 数 过 程 , 若 N (t) 表 示 在 时 刻 t 之 前 发 生 事件 的 次 数 。 因 此,计数过程 N (t) 满足: 舨艩舩 N (t) ≥ 0舻 舨艩艩舩 N (t) 为整数值; 舨艩艩艩舩 对 0 ≥ s ≤ t般 N (s) ≤ N (t)舻 舨艩艶舩 对 0 ≤ s < t般 N (t) − N (s) 表在区间 (s, t] 发生事件的次数。

随机过程课件第1讲

随机过程课件第1讲

如:
1/2
pj
-1
1
x
2)时间离散——样本函数 xi (t ) 在时间t上也是离散的(序列)。
) X i(t
+1
取值离散
t
-1
二、按随机过程的概率分布或性质来分类 1)、高斯过程、泊松过程、维纳过程——其每一个状态Xj 均为高斯分布、泊松分布、维纳分布。 2)、平稳随机过程——过程的一阶,二阶矩不随时间的变 化而变化 3)、独立增量过程——每一个状态的增量之间相互独立。 三、按随机过程的样本函数的可确定性来分类 1)、确定的随机过程 2)、不确定的随机过程
随机过程的基本概念
1. 随机信号的概念
确定信号--随时间做有规律的、已知的变化。可以用确定的时间函 数来描述。如:方波、锯齿波。人们可以准确地预测它 未来的变化,即:这次测出的是这种波形,下次测出的 还是这种波形。 随机信号--随时间做无规律的、未知的、“随机”的变化。无法用 确定的时间函数来描述,无法准确地预测它未来的变化。 这次测出的是这种波形,下次测出的会是另一种波形。
k
0
j
t
2)状态连续——状态取值连续,即幅度上也连续。当t固定时,其 状态Xj是连续型随机变量。 如其概率密度
fj(xj)
xj
2
离散型随机过程 X(t,ζ)
1)状态离散——当t固定时,状态Xj取值离散如(-1,1),其 状态是离散型随机变量。其概率分布如:
Pj 1 2
−1
0
1
xj
2)时间连续——当ζ固定时,其样本函数 xk (t) 是时间t的连续函 数如: xk (t)
随机信号分析与处理是一门研究随机信号的特点与规律 的学科。 随机信号处理已是现代信号处理的重要理论基础和有效 方法之一。

第1章随机过程简介

第1章随机过程简介
31
精品PPT
第1章 随机过程简介
对于(duìyú)马尔可夫链,如果n时刻的k步转移概率满 足
即从i状态转到j状态的概率和时刻n无关,就称这类MC为时 齐马尔可夫链,或齐次马尔可夫链,有时也说它是具有平 稳转移概率的马尔可夫链。通常考虑状态空间是有限的齐 次马尔可夫链。
32
精品PPT
第1章 随机过程简介
6
精品PPT
第1章 随机过程简介
图1.3 电话交换站呼叫(hū jiào)计数
7
精品PPT
第1章 随机过程简介
例1.4 纺纱机纺出长度为l的细纱(xìshā) 若对一个纺 纱机进行n次长时间测量,同时记录每一次纺纱机纺出细纱 (xìshā)长度的曲线,并以{X(u), u∈[0,∞)}表示纺纱机 纺出细纱(xìshā)的长度,则X(u)是一个随机变量,如图1.4 所示。
k步转移(zhuǎnyí)概率矩阵记为P(k)。
30
精品PPT
第1章 随机过程简介
本课程研究时间齐次马尔可夫过程(guòchéng),简称时 齐马尔 可夫过程(guòchéng)。它满足
P{X(t)≤x|X(tn)=xn}=P{X(t-tn)≤x|X(0)=xn} 其中假定系统的行为不依赖于观测的时间,即马尔可夫过 程(guòchéng)中的条件分布函数不随观察起始时刻的变化而 变化,我们可以任选时间轴的起点。
43
精品PPT
第1章 随机过程简介
设Xn=X(nΔt)表示时刻 nΔt时,系统(xìtǒng)内的顾客数, 即系统(xìtǒng)的状态。{Xn,n=0,1,2,…}是一随机过 程,状态空间I={0,1,2,3},而且仿照例1.6、例1.7的分 析,可知它是一个齐次马尔可夫链。下面来计算此马尔可 夫链的一步转移概率。

随机过程课件chapter6随机过程概念

随机过程课件chapter6随机过程概念

的有限维分布函数族.
17
2.3 二维随机过程
(1) 互相关函数: RXY s, t
E
[X s Y t ].
,参数集 T , ,如果对于每个 ,总
有一个普通的时间函数 X , t , t T 与之对应,这样对
于所有的 ,就可得到一族时间 t 的函数,称函数
族 X , t , 是参数为 T 的随机过程,族中每一函
数称为该随机过程的样本函数.
为 T 的普通函数,那么, X , t , t T 是一族样本函数.
把 X , t , , t T 所有可能的取值的全体称为
随机过程的状态空间或相空间.当 t 1 随机过程的概念
几个随机过程的实例.
例 1.1 考虑抛掷一颗骰子的实验,设 X n 是第 n 次抛掷的点
因 A, B 独立,故 E AB E A E B 0 ,则
BUPT
4
3
X t 1, RX s, t st , s, t T .
13
2.2数字特征
例 2.2 设 X t A cos 0t B sin 0t , t R, R是实数集 ,
称为 X t , t T 的有限维分布函数族. X t 的有限维分布函
数族 F 完整地确定了该过程的统计特性.
BUPT
9
2.2数字特征
定 义 2.2 设 X t , t T 为 随 机 过 程 , 若 对 任 意 的
t T,E[ X 2 t ]< ,则称 X t 为二阶矩过程.
论深刻、应用又及其广泛的学科.
BUPT
1
1 .1 随机过程的概念

《随机过程》课件 (2)

《随机过程》课件 (2)

随机过程在实际应用中的重要 性
随机过程在许多领域中起到重要的作用,例如金融学、通信工程、物理学、 天气预报等。通过建立和分析随机过程模型,我们可以更好地理解和预测复 杂系统中的随机变化。
2 连续时间
随机过程在连续的时间范围内进行观测和分析。这包括连续的时间流逝和可能具有连续 状态值的过程。
随机过程的性质和特征
随机性
随机过程的结果是不确定的,无法预测每个时间点的具体数值。
时序关联
随机过程的值在时间上相互关联,前一时刻的值对后一时刻的值具有一定的影响。
统计稳定
随机过程具有一定的平稳性质,即其统计性质在时间上保持不变。
《随机过程》PPT课件 (2)用随机过程的例子解释概率论基本概念。随机过程的定义
随机过程是指一种随着时间的推移而产生变化的数学模型。它可以描述在不 同时间发生的随机事件,并提供了一种分析和预测的方法。
随机过程的分类
1 离散时间
随机过程在离散时间点上进行观测和分析。这包括离散的时间步长和离散的状态值。

《随机过程》课件

《随机过程》课件

泊松过程
定义
泊松过程是一种计数随机过程,其事件的发生是 相互独立的,且具有恒定的平均发生率。
例子
放射性衰变、电话呼叫次数、交通事故等。
应用领域
物理学、工程学、保险学等。
03
随机过程的变换与函数
随机过程的线性变换
线性变换的定义
线性变换是指对随机过程中的每个时间点,将该点的随机变量或随机向量乘以一个常数 或矩阵,并加上另一个常数或矩阵。
应用
微分在随机过程的理论和应用中非常重要,例如在金融 领域中,可以通过计算股票价格的导数来预测股票价格 的变动趋势。
积分的定义
随机过程的积分是指对随机过程中的每个时间点,将该 点的随机变量进行积分。
积分的性质
积分运算可以改变随机过程的统计特性,例如期望、方 差和协方差等。
应用
积分在随机过程的理论和应用中也有重要应用,例如在 信号处理中,可以通过对信号进行积分来提取信号的特 征或进行信号的合成。
连续随机过程
01
定义
连续随机过程是在时间或空间上 连续取值的随机现象的数学模型 。
02
03
例子
应用领域
电子信号、温度波动、随机漫步 等。
物理、工程、金融等。
马尔可夫过程
定义
马尔可夫过程是一种特殊的随机过程,其未来状态只依赖于当前 状态,与过去状态无关。
例子
赌徒输赢的过程、天气变化等。
应用领域
统计学、计算机科学、人工智能等。
将随机信号视为随时间变化的随机变量序列,具有时间和概率的统 计特性。
随机模型
根据实际需求建立信号的随机模型,如高斯过程、马尔可夫过程等 。
信号的滤波与预测
滤波器设计
根据随机模型设计滤波 器,用于提取有用信号 或抑制噪声。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

舱舮舴 复合艐良艩艳艳良艮过程及应用 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舷
舱舮舴舮舱 复合艐良艩艳艳良艮过程 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舷
舱舮舴舮舲 复合艐良艩艳艳良艮过程在保险风险理论中的应用 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舸
3 连续时间马氏链
33
舳舮舱 定义 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舳舳
舳舮舱舮舱 马氏性与等价条件 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舳舳
对 h > 0般 有
pn(t
+
h) h

pn(t)
=
−λpn(t)
+
λpn−1(t)
+
o(h) ,
h
从而 pn(t) 在 t 的右导数为 −λpn(t) + λpn−1(t)舮 类似的可知 pn(t) 的左导数也存在。
这样
pn(t) = −λpn(t) + λpn−1(t), pn(0) = 0, n ≥ 1.
舱舮舵 艐良艩艳艳良艮 过程的其它扩展 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舱舰
舱舮舵舮舱 非齐次 艐良艩艳艳良艮 过程 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舱舰
舱舮舵舮舲 条件 艐良艩艳艳良艮 过程 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舱舰
舱舮舳 艐良艩艳艳良艮过程的其它性质 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舵
舱舮舳舮舱 顺序统计量 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舵
舱舮舳舮舲 过程的稀疏 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舶
舲舮舲舮舳 状态的周期性 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舲舰
舲舮舳 不变测度和平稳分布 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舲舰
舲舮舴 极限定理 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舲舳
定理 1.3 Tn, n = 1, 2, . . . 独立同分布且服从参数 λ 的指数分布。
证明 由
P (T1 > t) = P (N (t) = 0) = e−λt,
T1 服从参数为 λ 的指数分布。对 0 < t1 < t2 和充分小的 h1般 h2 > 0般
P (t1 − h1 < S1 ≤ t1 + h1, t2 − h2 < S2 ≤ t2 + h2) =P (N (t1 − h1) = 0, N (t1 + h1) − N (t1 − h1) = 1, N (t2 − h2) − N (t1 + h1) = 0,
P (X > t + s) = P (X > t)P (X > s).
引理 1.1 设随机变量 X, Y 独立,f : R × R → R 有界可测。令 g(x) = E[f (x, Y )]. 则 g(X) 可积,且
E[f (X, Y )] = E[g(X)].
称 {N (t), t ≥ 0} 为计数过程,若 N (t) 表示在时刻 t 之前发生事件的次数。因 此,计数过程 N (t) 满足:
p0(h) = P (N (h) = 0) = 1 − P (N (h) = 1) − P (N (h) ≥ 2) = 1 − λh + o(h),
得 p0(t + h) − p0(t) = (1 − p0(h))p0(t) = λhp0(t) + o(h).
从而 p0(t) 在 t 右可导,且右导数为 −λp0(t)舮 而
舨艩舩 N (t) ≥ 0舻 舨艩艩舩 N (t) 为整数值; 舨艩艩艩舩 对 0 ≥ s ≤ t般 N (s) ≤ N (t)舻 舨艩艶舩 对 0 ≤ s < t般 N (t) − N (s) 表在区间 (s, t] 发生事件的次数。
§1.1 定义
定义 1.1 称 {N (t), t ≥ 0} 为参数为 λ 的(齐次) Poisson 过程,若
N (t2 + h2) − N (t2 − h2) = 1) =e−λ(t1−h1) · λ2h1e−2λh1 · e−λ(t2−h2−t1−h1) · λ2h2e−2λh2 =4λ2h1h2e−λ(t2+h2).
所以,(S1, S2) 的联合密度函数为
g(s1, s2) =
λ2e−λs2, 0 < s1 < s2;
随机过程讲义 (内部交流)
目录
目录
1 Poisson 过程
1
舱舮舱 定义 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舱
舱舮舲 另一个等价定义 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舳
上面方程等价于
(eλtpn(t)) = eλtpn−1(t).
容易得到
pn(t)
=
e−λt
(λt)n n!
.
舭舲舭
第一章 艐良艩艳艳良艮 过程
这样,艐良艩艳艳良艮 过程有如下的等价定义。 定义 1.2 称 {N (t), t ≥ 0} 为参数为 λ 的 Poisson 过程,若
(i) N (t) 是计数过程,且 N (0) = 0; (ii) N (t) 是独立增量过程; (iii) 对任意的 t ≥ 0, h > 0, 有
舱舮舵舮舳 艐良艩艳艳良艮 随机测度 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舱舱
2 离散时间马氏链
12
舲舮舱 定义与例 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舱舲
舭艩舭

第一章 艐良艩艳艳良艮 过程
第一章 Poisson 过程
称随机变量
X
服从参数为
λ

艐良艩艳艳良艮
分布,若
P (X
=
k)
=
e−λ
λk k!

k
=
0, 1, . . .舮
称随机变量 X 服从参数为 λ 的指数分布,若 P (X > t) = e−λt舮 此时,X 的密度
函数为 λe−λt般 t > 0般 分布函数为 1 − e−λt般 t > 0舮 指数分布满足无记忆性,即
舲舮舲 状态分类 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舱舴
舲舮舲舮舱 状态空间的分解 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舱舴
舲舮舲舮舲 状态的常返 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舱舵
(i) N (t)是计数过程,N (0) = 0;
(ii) N (t) 具有平稳独立增量,即对任意的 0 ≤ t0 < t1 < · · · < tn, t ≥ 0, h > 0, 有 N (t1) − N (t0), . . ., N (tn) − N (tn−1) 独立,且 N (t + h) − N (t) 与 N (h) 同分布;
舳舮舴 向前与向后微分方程组 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舴舳
舳舮舵 一类马氏链的构造 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舴舶
舳舮舶 强马氏性 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舴舸
舲舮舴舮舱 极限分布 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舲舳
舲舮舴舮舲 比率定理 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舲舶
舲舮舵 一些例子 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舲舷
舳舮舱舮舲 转移概率 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舳舵
舳舮舲 标准转移矩阵的分析性质 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舮 舳舶
相关文档
最新文档