聚乙二醇在新型药物制剂中的应用

合集下载

聚乙二醇在医药制剂中的新用途

聚乙二醇在医药制剂中的新用途

聚乙二醇在医药制剂中的新用途聚乙二醇(PEG)系一种常用药用辅料,世界各国的均收载有PEG条目。

聚乙醇的制备十分简单。

将环氧乙烷与单乙二醇(或双乙二醇)在碱性催化剂催化之下经聚合而形成聚乙二醇。

只要适当改变聚合条件即可使PEG的分子量发生变化。

目前生产的PEG的分子量通常在200~35000之间。

PEG的性质随分子量而变化。

分子量在400以下的PEG在室温中为非挥发性液体。

而PEG600的熔点为17~22℃,当温度低于这一界限时PEG600呈油膏状。

分子量在800~2000的PEG通常为膏状体;分子量超过3000的PEG则为固体(片状或粉末状物质)。

分子量大于35000的PEG目前在工业上暂时还无法合成。

随着分子量的增加,PEG的硬度也随之增加,但无论PEG分子量有多大,其熔点最多只有60℃左右。

所有PEG(不论呈液体、膏状体或固体)均有良好水溶性,即使大分子量PEG 其水溶性亦能达50%左右,故PEG在各行各业(尤其医药工业)中有着广泛的用途。

例如一些常用药剂如滴眼药水和栓剂均使用PEG作为药物赋形剂,使主药能更顺畅地进入眼内(或体内)。

PEG对人体无毒无害,亦无致癌、致畸(胎)和基因突变等不良副作用,故PEG近几年来在医药工业中用途不断扩大。

在过去10年里PEG主要用作液体制剂(如眼药水)中的稠化剂以便增加其与眼粘膜的接触时间。

其次,PEG还可用作软膏剂的基质。

大分子量固体PEG与小分子量液体PEG按比例混合后可作为难溶药物的助溶剂以此提高后者的溶解度从而可增加药物的体内生物利用度。

药片等固体药物制剂配方中如加入适量大分子PEG可增加打片时药物的流动性,并提高主药的胃内溶解性最终有助于增加生物利用度。

90年代中,欧美医药研究人员发现:PEG分子末端的2个羟基可与醇类物质或蛋白质/多肽物质耦合成为一种新型混合物。

此外,研究人员还发现:PEG 在药物制剂中的功能之一是延长药物在体内的释放时间。

这是因为主药与PEG组成的耦合体进入体内会因酶的作用而慢慢降解,主药从PEG的羟基上脱落进入血液循环从而可“延时释放”主药发挥缓释作用,故PEG也可视为一种缓释助剂。

新型药物制剂研发技术现状及发展趋势

新型药物制剂研发技术现状及发展趋势

新型药物制剂研发技术现状及发展趋势随着医学科技的不断进步,治疗药物的需求也在不断地增加。

与此同时,药物研发技术也在不断发展。

新型药物制剂的研发成为药物行业发展的一个重要方向。

本文将介绍新型药物制剂研发技术的现状及未来发展趋势。

一、现有的药物制剂研发技术1. 脂质体技术脂质体技术是一种利用天然或合成的脂质体作为药物传递系统的技术。

这种技术可以将药物包裹在人造的脂质双层膜中,增加药物的稳定性和溶解度,并提高药物的生物利用度和靶向性。

脂质体技术已经被广泛用于肝癌和肺癌的药物治疗。

但是,目前仍需要对该技术进行进一步的优化和改进。

2. 聚乙二醇化技术聚乙二醇化技术是一种将药物包裹在聚乙二醇单体(PEG)中的技术,以提高药物性能,并延长其在体内的半衰期。

该技术的应用范围非常广泛,已被用于肿瘤治疗、抗病毒和抗炎等方面。

3. 微粒子技术微粒子技术是一种利用微粒子将药物包裹在内部的技术。

这样药物可以被控制释放,从而增强药物的效果,并减少副作用。

目前微粒子技术主要应用于抗癌、心血管和呼吸系统疾病的治疗中。

4. 组织工程学技术组织工程学技术是一种将药物植入体内生长新组织的技术。

它已被广泛应用于心血管、神经和骨科疾病的治疗中。

组织工程学技术可以帮助重建损伤的组织,并改善患者的生活质量。

二、未来的药物制剂研发技术趋势1. 靶向治疗未来的药物制剂研发技术将更多地关注靶向治疗。

这意味着药物将被设计成只攻击患者体内的癌细胞或细胞。

这样,药物将不会攻击健康的细胞,从而减轻治疗期间的副作用。

2. 基因疗法基因疗法是一种利用基因工程来治疗疾病的技术。

未来的药物制剂研发技术将更多地关注基因疗法的研究和应用。

这将包括使用基因疗法治疗癌症、心脏病、血液病等。

3. 纳米技术纳米技术是一种将物质缩小到纳米尺寸的技术。

未来的药物制剂研发技术将更多地依赖于纳米技术来开发更加复杂、精确的药物制剂。

利用纳米技术可以更好地将药物传递到患者体内的靶点,同时减少药物的毒副作用。

聚乙二醇单辛基苯基醚

聚乙二醇单辛基苯基醚

聚乙二醇单辛基苯基醚
聚乙二醇单辛基苯基醚是一种新型的工业化学品,表现出了极高的化学稳定性和生物相容性。

聚乙二醇单辛基苯基醚的化学结构中含有丰富的羟基和醚键结构,可以与生物大分子例如蛋白质和DNA等发生氢键和疏水相互作用,因此被广泛应用于生物医药领域中。

聚乙二醇单辛基苯基醚在药物制剂中主要被用作增溶剂、包封材料和缓释剂。

通过加入聚乙二醇单辛基苯基醚,可以改善药物制剂的可溶性和生物利用度,延长药物在体内的半衰期,并减少对机体产生的毒副作用。

同时,聚乙二醇单辛基苯基醚还可以作为生物活性物质的保护剂,防止其在制备过程中发生构象改变或者降解。

聚乙二醇单辛基苯基醚在化妆品领域中也有广泛的应用。

由于其良好的表面张力控制能力和对肌肤的低刺激性,聚乙二醇单辛基苯基醚被用作化妆品中的乳化剂、渗透增强剂、抗氧化剂和稳定剂。

与其他传统的化妆品成分相比,聚乙二醇单辛基苯基醚不仅能提高化妆品产品质量,而且还具有更低的过敏性和毒性。

总之,聚乙二醇单辛基苯基醚作为一种新型的化学品,对于提高药物制剂和化妆品的品质和性能具有重要的意义。

作为从事相关领域工作的研究者,应该充分掌握聚乙二醇单辛基苯基醚的特性和应用,为推动相关领域的发展做出积极贡献。

聚乙二醇在药物制剂中的应用

聚乙二醇在药物制剂中的应用
剂 有 三 方 面 的作 用 i 1 1 : ( 1 ) 增 加 难 溶 性 药 物 的溶 解度。( 2 ) 提高 遇水 易分 解破 坏 的药物 的稳定 性 。
收 稿 日期 : 2 0 1 3 — 0 8 — 2 5
散 介 质 中形 成 的非 均匀 相 的液 体 制 剂 , 低相 对 分
x射 线粉 末衍 射证 实药 物 以分子状 态分 散于 载体
中, 该 肠溶 缓 释 固体 分散 体性 质稳 定, 可 显著 提高 药物 在人 T肠 液 中的溶 出速度 l 7 I 。
4 在 栓 剂 及 其 它 方 面 的 应 用
于治 疗 冈化 疗 或 先 天 原 冈导 致 的 血 液 中性 粒 细
与 稳定 性实 验 , 表 明该 缓 释 片不 仅能 达 到缓 释 目


性 著下 降 。 徐静 等人 报道l t o t , 粒细胞 集落 刺激 因
子( G — C S F ) 主要作 用于 中性粒 细胞 系造 血 细胞 的 增殖 , 分化和活化 ; 另 外它 还 有 刺 激 成 熟 中 性 粒 细胞 从 骨髓 中释放 出并 激 活 中性 粒细 胞 的功 能 。
用 琥 珀 酸 酐 及 琥 珀 酰 亚 胺两 步活 化 的单 甲氧 基 聚 乙二醇 对 大肠 杆菌 L 一天冬 酰胺 酶 进行 化 学修 饰, 修 饰反 应 的酶活 同收 率保 持在 4 0 %以上 , 修饰 酶 的抗 热 、 抗 胰 蛋 白酶水 解 能 力有 所 提 高 , 抗 原
备1 5 1 。孙 淑英等 I I 用熔 融法 或溶 剂法 将硝 苯地平 与 P E G固体先 制成 固体 分散 物,再 与亲 水性 高分 子 材料 羟 丙 甲纤 维素 等 制成 缓 释片 剂 , 通 过 释放 度

聚乙二醇在药剂学中的应用

聚乙二醇在药剂学中的应用

聚乙二醇在药剂学中的应用聚乙二醇,听起来是不是有点科学怪人?其实它在药剂学里的应用可谓是“神通广大”。

想象一下,你喝水的时候,水流畅地进入你的身体,然后你就觉得神清气爽。

聚乙二醇就是那种让药物在你体内流畅进入的好帮手,简直是药剂界的“顺风车”。

它的结构像个“海绵”,能吸水又能包裹药物,形成一种温柔的保护膜,帮助药物稳定释放。

这样一来,药效就能慢慢发挥,真是“细水长流”啊!再说了,聚乙二醇在制药中的一大魅力就是它的亲水性。

想想,很多药物在体内待不久,像个小白兔,转眼就跑了。

聚乙二醇就像个“粘人精”,把药物牢牢地吸附住,不让它们轻易逃跑。

通过这种方式,药效能持久,效果倍儿棒!特别是对于那些需要长时间释放的药物,比如慢性病患者用的药,聚乙二醇的作用更是显而易见。

它让患者的生活质量大大提升,真是药品中的“超级英雄”。

然后,聚乙二醇还有个让人惊讶的好处,那就是它的安全性。

它在身体里不会引发过多的副作用,反而可以让药物更温和地进入体内。

就像一位贴心的朋友,永远在你身边,守护着你的健康。

这种材料不仅可以用在口服药物里,甚至还能用在注射剂中。

比如说一些生物制药,聚乙二醇还可以帮助它们更好地“隐身”,让药物在体内不容易被免疫系统发现,增加了疗效。

想想,这就像是给药物加了一层“隐形斗篷”,偷偷完成它们的使命。

此外,聚乙二醇的应用还不仅限于药物。

它在医学中也扮演了重要角色。

比如,做手术时,医生们常常需要用到聚乙二醇来制作某些材料,以确保手术过程的顺利进行。

这些材料能帮助伤口更快愈合,就像是给伤口包了一层“暖暖的被子”,让它们在恢复过程中倍感温暖和舒适。

不得不提的是,聚乙二醇在制药工业中的“调味料”作用。

药物的口感、外观和稳定性,这些都能通过聚乙二醇的调配来改变。

想象一下,原本苦涩的药物,加上一点聚乙二醇,瞬间变得“口感绝佳”。

孩子们再也不会对吃药感到恐惧,真是“药到病除”的绝佳体验!这样一来,不仅患者更乐意服药,连家长的心里也轻松多了,何乐而不为呢?聚乙二醇还在持续改进和创新。

聚乙二醇在药物制剂中的应用

聚乙二醇在药物制剂中的应用

聚乙二醇在药物制剂中的应用聚乙二醇别名聚氧乙烯醇或聚氧乙烯二醇,系环氧乙烷与单乙二醇或双乙二醇在碱性催化剂催化之下聚合而成,分子质量因聚合度不同而异,通常在200~35 000之间,PEG 的性质随分子质量而变化,目前常见的PEG种类有PEG200、PEG300、PEG400、PEG600、PEG2000、PEG4000、PEG6000、PEG8000等;药物溶剂PEG200、PEG300、PEG400、PEG600 系无色、略有微臭的粘性液体,化学性质稳定,安全低毒,故常作为药物的溶剂;另外,为了增加难溶性药物的溶解度,常使用潜溶剂即乙醇、甘油、丙二醇、苯甲醇、聚乙二醇等与水组成的混合溶剂;用于软胶囊剂软胶囊剂的囊材多以一定比例的明胶、增塑剂和水等组成,因此对蛋白质性质无影响的药物和附加剂均可填充;如各种油类、液态药物、药物溶液、药物混悬液和固体药物等;由于低分子质量PEG 能与水混溶,故是水溶性药物和某些有机药物很好的溶剂,如硝苯地平软胶囊;目前,软胶囊剂多为固体药物粉末混悬在油性或非油性PEG400 等分散介质中包制而成;另有报道,水合氯醛应用聚乙二醇作为溶剂可大大降低它对明胶蛋白的分解作用用于注射剂由于PEG200~PEG600 可提高难溶性药物的溶解度且对水不稳定药物有稳定作用,故可作为注射用溶剂;单一以PEG 作为注射用溶剂的注射剂并不多见,如噻替哌注射液以PEG400 或PEG600作为溶剂,可避免噻替哌在水中的聚结沉降作用;盐酸苄去氢骆驼莲碱注射液以 PEG200 作为溶剂,安全稳定,贮放 2 a 保持不变;但一般多用混合溶剂潜溶剂,如以V PEG300: V苯甲醇: V 丙二醇 = 80:5:15 时可作为质量分数为5 % 黄体酮或睾丸酮注射液的混合溶剂,此2 种注射液经肌肉注射后,与体液接触即在局部析出药物沉淀,形成药物仓库,逐渐从组织中释放,具有长效作用,售商品有病毒灵注射液、安乃近注射液、痢菌净注射液、穿心莲注射液、菌毒杀星注射液等;用于滴眼剂研究表明,以PEG400 为溶剂,可制成吲哚美辛滴眼剂;对此滴眼剂进行的稳定性研究结果表明,PEG400 处方优于Span80 处方;另外,PEG 可作为滴眼剂中的增稠剂,增加粘度,使药物在眼内停留时间延长,从而增加药效,减少刺激作用;润滑剂与粘合剂PEG4 000、PEG6 000是片剂中水溶性润滑剂的典型代表,在片剂处方中可直接加入适量聚乙二醇进行整粒,也可将其先配成醇溶液、混悬液或乳液进行制粒,润滑效果不变;利用聚乙二醇制得片剂的崩解和溶出不受影响,可提高主药在胃内的溶解性,最终有助于增加生物利用度;近年来,聚乙二醇在片剂中的使用越来越广泛,它们不仅可用作润滑剂,还可作为粘合剂,以PEG4 000最为常用;如以 PEG4 000为粘合剂熔点较低,在高速搅拌下呈熔融态,α -乳糖为填充剂,交联聚乙烯吡咯烷酮为崩解剂,硬脂酸镁为润滑剂,采用熔融制粒法可制备卡马西平速释片另外对于热不稳定药物,若采用 PEG4 000为粘合剂,可在干燥状态下进行粉末直接压片,效果较为理想;市售商品主要有痢菌净片、多钙片、钙中钙片、痢特灵片等;药物载体PEG 随分子量的增加则由液体逐渐呈半固体至固体,熔点也随之升高;由于PEG 对人体无毒无害,亦无致畸,致癌和基因突变等副作用,且可增加某些药物的溶出速率,提高药物的生物利用度,故是最常用的水溶性载体之一;基质PEG 是一类亲水性基质,其性质稳定,对皮肤无刺激性,而具有润滑性,故广泛应用于软膏剂、栓剂、凝胶剂、滴丸剂、乃至胶囊剂;如水硫软膏基质系由PEG300 与PEG4 000质量比为 2:1 时于70 ℃水浴熔合而成;复方磺胺甲恶唑SMZ栓以mPEG6 000 : mPEG4 000:m水=57:33:10 为基质,其融变时限和体外药物溶出速率均优于可可豆酯、半合成脂肪酸酯等基质;以PEG 为基质,加入主药和一些药物赋形剂可制备水凝胶剂,如氯硝西泮水凝胶,擦在病人身体上可使药物快速透过皮肤进入血液循环从而发挥抗惊厥作用;另外,PEG400、1 500、4 000~20 000 均可作为半固体基质,将硬胶囊改装液体或半固体药液,如硝苯地平1 份、液体 PEG 5 ~25份、PVP ~10 份混合药液罐装的硬胶囊剂具有长效作用,可广泛用于心绞痛的治疗聚乙二醇作为软膏剂水溶性基质,市售的品种有百多邦莫匹罗星、环丙沙星霜等;作为栓剂基质,市售的品种有制霉菌素栓、甲硝唑栓、新霉素栓等;固体分散材料固体分散体系指药物以分子、胶态、无定型、微晶等状态均匀分散在某一固体载体物质中所形成的分散体系;PEG 分子质量为1 000~20 000 是一类常用的水溶性载体材料,可用于增加药物的溶出速率,如以 PEG6 000作为载体,采用熔融法制备格列苯脲固体分散体,其溶出速率和生物利用度与市售达安宁片相比显着提高PEG 也可作为缓释固体分散体的载体材料,如采用熔融法,将药物溶解于熔化的PEG 中,将药液装入硬胶囊中,室温下药液固化,药物按溶蚀机制缓慢释放,故具有缓释作用;另外,药物从PEG 载体中溶出的快慢主要受PEG 分子质量的影响,一般随着 PEG分子质量增大,药物溶出速率会降低;当药物为油类时,宜用分子质量更大的 PEG 类作为载体,如PEG12 000 或PEG6 000与PEG20 000 的混合物,若单用 PEG6 000作载体,固体分散体会变软,特别是在温度高时载体会发粘稳定剂目前,蛋白质类药物制剂的主要问题是药物稳定性差;对于液体剂型蛋白质类药物,可通过加入辅料稳定剂如聚乙二醇、糖类、盐类、表面活性剂等改变其性质增加稳定性;高浓度的PEG常作为蛋白质的低温保护剂和沉淀/ 结晶剂,它可与蛋白质的疏水链作用;研究表明,不同分子量的PEG 作用不同,如 PEG300 质量分数为 %或2 % 可抑制rhKGF 重组人角化细胞生长因子的聚集;PEG200、400、600 和1 000可稳定 BSA 和溶菌酶;PEG4 000不同质量分数可高达质量分数15 %可抑制低分子量尿激酶的热聚集此外,复合型乳剂稳定性差也是妨碍其广泛应用的主要原因;W/O/W型复乳常见的问题是分层,不过发生了分层的复乳经振摇后可复原;油膜破裂使内水相外溢是W/O/W型复乳不稳定的主要原因;若在内外水相中加入高分子物质作为稳定剂可增加其稳定性,如在外水相中加入PEG 、泊洛沙姆等可使复乳的粘度增大,降低复乳乳化膜的流动性,这对减小W/O/W型复乳的分层是有利的,且不影响其倾倒性和通针性;增塑剂与致孔剂PEG 是亲水性高分子物质,可作为增塑剂以改变聚合物的物理机械性质,使其更具柔顺性、塑性;如为了使明胶微囊具有良好的可塑性,不粘连且分散性好,常需加入增塑剂如聚乙二醇,山梨醇,丙二醇,甘油等;研究表明,在单凝聚法制备明胶微囊时,加入增塑剂可减少微囊聚集,降低囊壁厚度,且加入增塑剂的量同释药半衰期之间呈负相关;PEG 作为增塑剂也广泛应用于薄膜包衣材料中,PEG 带有羟基,可作为某些纤维素衣材的增塑剂,如以醋酸纤维素为膜材,PEG400 为增塑剂,阿拉伯胶为渗透压活性物质和助悬剂所制备的难溶性药物萘普生的单室单层渗透泵上下面均有释药小孔以零级速率释药,药物在12 h 的累积释放率可达 81 %;此外,PEG 作为增塑剂在膜剂和涂膜剂中也有应用;PEG 是能与水互溶的聚合物分子,所以 PEG 可作为膜控型缓控释药物的致孔剂;PEG 这类致孔剂能很快溶于介质中,形成较大的孔道,随着孔道的增加,外部溶剂很容易扩散穿过控释膜,加速了药物的释放;因而通过选择合适的聚合物衣膜和致孔材料可使药物达到恒速释放;如头孢氨苄缓释小丸以乙基纤维素为包衣材料,PEG6 000为致孔剂,此缓释胶囊包衣增质量 30 %,在 7 h内表现为药物零级释放,释药重现性良好;又如伪麻黄碱渗透泵无释药小孔以醋酸纤维素为膜材,酞酸二乙酯和PEG400 为致孔剂,碳酸氢钠为渗透压活性物质,其在12 h 内遵循零级释药规律修饰材料聚乙二醇类PEG 修饰剂是 pH中性、无毒、水溶性的聚合物,具有高度的亲水性和良好的生物相容性及血液相容性,并且没有免疫原性;故采用PEG 进行结构修饰可改善药物的以下性质:1 增加稳定性,降低酶降解作用;2 改善药物动力学性质,如延长血浆半衰期、降低最大血药浓度、血药浓度波动减小等;3 降低免疫原性和抗原性;4降低毒性,提高体内活性;5改善体内药物分布,靶向性增强;6 减少用药频率,提高病人依从性用于修饰脂质体传统脂质体和免疫脂质体易被网状内皮系统RES 的细胞识别并摄取,导致血循环半衰期很短通常低于30 min,到达靶器官之前即被清除,故应用很受限制;若在脂质体膜表面引入亲水性聚合物分子PEG ,可在脂质体表面形成一层水化膜,掩盖脂质体表面的疏水性结合位点,阻碍血浆成分接近脂质体,从而降低RES 对脂质体的识别和摄取,延长脂质体的血循环时间;PEG 修饰脂质体可以在病变部位如肿瘤、感染、心肌梗死等区域通过所谓的“被动靶向” 或代偿滤过机制缓慢积累,并促进药物在这些区域的转运;如PEG 修饰的多柔比星脂质体在动物实验及人体临床试验中均取得显着效果,且已有产品长效脂质体多柔比星Doxil 上市;此外,PEG 修饰的阿霉素脂质体与传统的阿霉素脂质体相比,药代动力学特征显着变化,抗肿瘤活性明显增强,毒性有所降低;这表明了PEG 修饰脂质体是一种很有前景的药物传递系统;用于修饰乳剂长循环乳剂是指对静脉注射用脂肪乳剂表面进行适当的修饰,以避免单核吞噬细胞系统MPS 的吞噬,延长体循环时间的乳剂;乳滴表面被柔顺而亲水的 PEG 链覆盖,亲水性增强,减少血浆蛋白与其相互作用的几率,降低被 MPS 吞噬的可能性;以二棕榈酰磷脂酰胆碱为乳化剂,助乳化剂,三油酸甘油酯为油相,加入适量PEG 修饰的二硬脂酰磷脂酰乙醇胺DSPE-PEG,可制得粒径为44 nm 的微乳,静注后在血中的清除率比未经修饰的微乳明显降低布洛芬溶解度极小,市售只有其衍生物氟布洛芬酯的乳剂,Park 等以油酸乙酯为油相、卵磷脂为乳化剂、DSPE-PEG 为助乳化剂制备了氟布洛芬微乳,与前者相比,t1/2、AUC、MRT都显着增加,同时可降低MPS的吞噬;另外,据文献23 报道,以 PEG 和叶酸修饰的阿柔比星微乳对于癌细胞具有显着的靶向性;用于修饰纳米粒和微球可生物降解的聚合物纳米粒作为药物输送载体有很多优势,如可控释、靶向、低毒等;但是,由于聚合物纳米粒经静脉给药后,数秒或数分钟内会被RES 清除而无法普遍应用;为克服这一缺点,可引入亲水性聚合物PEG 对聚合物进行修饰;研究表明,亲水性PEG 修饰的纳米粒,用于静脉给药时,血液清除和RES 摄取显着减小,并且PEG 引入会影响纳米粒的生物降解行为,调节释药方式;如Ruxandra 等以乳化溶剂蒸发法制备的环孢酶素CyA PLA-PEG共聚物纳米粒粒径分布很窄,呈单峰分布,且此分散体系性质稳定,包封率很高83 ℅ ~96 ℅ ,其体外释药符合扩散机制;另外,PEG 修饰的吲哚美辛脂质微球与传统的脂质微球相比,体内总清除率明显降低,药物靶向性显着提高,药物动力学参数如t1/2、AUC、MRT都显着增加用于修饰多肽和蛋白类药物 PEG 末端的醇羟基化学性质不活泼,为保证其与药物活性基团间有适宜的反应速率,需对醇羟基进行活化,以利于与蛋白质的α-和ε-氨基的反应;按PEG 与蛋白质氨基形成的连接键类型,活化PEG 可分为以下两类:1 烷基化 PEG ,如醛基化 PEG 、PEG-三氟乙基磺酸酯PEG-T 等;2 酰化 PEG ,如 PEG 琥珀酰亚胺基琥珀酸酯PEG-SS、PEG 琥珀酰亚胺基碳酸酯PEG-SC等;蛋白质和多肽类药物主要包括酶、细胞因子等一些具有特殊功能的蛋白质,其PEG 的修饰即PEG 化,是将活化的 PEG 通过化学方法偶联到蛋白质和多肽上;PEG 修饰蛋白药物可以延长药物的半衰期、降低免疫原性和毒副作用,同时最大限度地保留其生物活性;自从1991 年第一种用 PEG 修饰的腺苷脱氨基酶PEG-ADA被 FDA 批准上市后, PEG 修饰药物蛋白的技术飞速发展,近几年上市的还有PEG-干扰素、PEG-GSF、PEG-生长抑素;如普通干扰素α-2b 的半衰期只有 4 h,而经过聚乙二醇化的干扰素α-2b 的半衰期达 40 h ,可在体内持续作用168 h,刚好满足1 周1 次给药;故聚乙二醇干扰素又叫长效干扰素商品名:佩乐能;另外,PEG 修饰的重组人粒细胞集落刺激因子也已经上市,其体内半衰期显着延长,临床上用于治疗化疗引起的嗜中性白血球减少症;目前处于临床前研究的 PEG 修饰的蛋白药物有几十种,处于临床实验的有:超氧化物歧化酶即将上市,美国Enzon 公司、白介素-2 Ⅱ期临床,挪威Chiron 公司、水蛭素Ⅱ期临床,德国 BASF AG公司、抗-TNFα抗体片段Ⅲ期临床,瑞典Pharmacia公司、牛血红蛋白Ⅰ期临床,美国Enzon 公司、抗-PDGF 抗体片段Ⅱ期临床,英国Celltech公司等;渗透促进剂渗透促进剂是指能可逆的改变皮肤角质层的屏障功能,又不损伤任何活性细胞的化学物质;理想的渗透促进剂应无药理活性、无毒、无刺激性、无致敏性,与药物、基质和皮肤有良好的相容性,无臭无味;常见的渗透促进剂有亚砜类、表面活性剂类、多醇类、吡咯酮类等;多醇类化合物有乙醇、丙二醇、聚乙二醇、异丙醇和丙三醇等;多元醇类的作用机制是使角蛋白溶剂化,占据蛋白质的氢键结合部位,减少药物与组织间结合,增加并用的其他渗透促进剂在角质层的分配;Chaudhuri等比较了心得安在 5 种介质中的人体透皮速率,结果 PEG > 二乙醇 > pH 磷酸盐缓冲液 > 辛醇 > 肉豆蔻酸异丙酯;据 Touitou等报道,包含油酸、PEG 等基质能使茶碱对大鼠的透皮吸收增强260 倍;另有研究表明,在1 % 普萘洛尔水溶液中各加 5 % 的促渗剂,对 5 种渗透促进剂促渗效果进行了比较,结果二甲基亚砜 > PEG400 ,油酸 > 丙三醇 > Span80 ;综上,PEG 在透皮吸收制剂中的作用并不亚于油酸;但据研究报道,PEG 由于含有大量的醚氧原子,与药物产生氢键结合可能性很大,这势必降低药物的热力学活性;同时,由于 PEG 本身粘度较大,故会增加载体微环境的的粘度,这样不仅抑制了角质层的水合,而且角质层会因其高渗作用发生脱水,促渗效果并不理想;因此,PEG 应与油酸、氮酮、丙二醇等促渗剂联合应用应用局限性聚乙二醇有以下缺点:作为软膏基质时,长期应用可引起皮肤干燥;可与一些药物如苯甲酸、水杨酸、鞣酸、苯酚等络合,导致基质过度软化,也会降低酚类防腐剂的活性;聚乙二醇作为软胶囊填充剂时,由于选择性吸收胶囊壳内水分,导致囊壳硬化,从而影响药物释放速率;制备栓剂易出现孔洞影响外观;随高分子量的聚乙二醇加入量增加,水溶性药物的释放率减小;对粘膜的刺激性比脂肪性基质大;聚乙二醇的不良反应已有报道:局部用药可能引起过敏反应,包括荨麻疹和延迟性过敏反应;最严重的不良发应在烧伤病人局部应用聚乙二醇产生的高渗性,代谢物的酸中毒和肾功能减退;低分子量的聚乙二醇毒性最大,但二醇类毒性是相当低的;。

聚乙二醇在药剂学方面的应用

聚乙二醇在药剂学方面的应用

聚乙二醇在药剂学方面的应用综述之答禄夫天创作摘要本文就聚乙二醇在药剂学方面的近5年研究与应用方面的文献进行综述,同时深化个人对聚乙二醇在药剂学方面重要作用的理解与掌控。

关键词聚乙二醇(PEG)药剂学应用引言聚乙二醇(polyethylene glycol,PEG)是一种pH中性,无毒,水溶性较高的亲水聚合物,其呈线性或支化链状结构。

聚乙二醇是迄今为止已知聚合物中蛋白和细胞吸收水平最低的聚合物,由于聚乙二醇无毒及良好的生物相容性,聚乙二醇已被FDA批准可作为体内注射药用聚合物[1]。

目前,聚乙二醇已经广泛的应用于药剂学领域,本文主要对近5年聚乙二醇在药剂学领域研究与应用的相关文章进行综述。

聚乙二醇由于其聚合度差别,分子量通常在200~35 000之间,其化学通式为HOCH2(CH2 OCH2)n CH2OH。

总的说来,在药剂学方面聚乙二醇主要可被用作为药物溶剂,药物附加剂或辅料,增塑剂和致孔剂,药物载体,修饰资料和渗透促进剂等[2,3]。

由此我们就可以看出聚乙二醇的在药剂学上的广泛用途,不但如此,聚乙二醇在其他领域也有广泛的应用,如临床、生化和药用植物等方面[4]。

下面就对聚乙二醇在药剂学各方面的应用分点举例论述。

1.聚乙二醇用作药物溶剂PEG200~PEG600分歧浓度的水溶液是良好的溶剂,可提高难溶性药物的溶解度且对水不稳定的药物有稳定作用,故可用作为注射用溶剂[3]。

如盐酸苄去氢骆驼莲碱注射液以PEG200作为溶剂,平平稳定,贮放2a坚持性质不变。

另有研究标明,以PEG400为溶剂制成的吲哚美辛滴眼剂,其稳定性优于Span80处方[2]。

2.聚乙二醇作为附加剂或辅料2.1 潜溶剂聚乙二醇在液体附加剂中可以与水形成潜溶剂,提高难溶性药物的溶解度,个人认为聚乙二醇水溶液的溶剂作用包含了潜溶作用,如聚乙二醇的水溶液可以溶解许多水不溶性有机药物[3],也就提高了药物在水中的溶解度。

2.2 黏合剂和润滑剂PEG4000、PEG6000是片剂中经常使用的水溶性黏合剂和润滑剂,用聚乙二醇作为黏合剂制得的颗粒,其成形性好,片剂不变硬,适合于水溶性与水不溶性物料的制粒[3]。

聚乙二醇辅料作用

聚乙二醇辅料作用

聚乙二醇辅料作用聚乙二醇辅料作用聚乙二醇(Polyethylene Glycol,简称PEG)被广泛应用于药物研发和制备中,其中最常见的是作为辅料。

PEG具有多种特性和功能,可以提高药物的稳定性、溶解度和生物可利用性,同时还可以改善口感、延长保质期和减少毒性等影响。

1.增加溶解度:药物分子通常包含极性基团和非极性基团,极性基团的药物在水中容易溶解,但非极性基团会影响药物在水中的溶解度。

PEG可以作为溶剂、增溶剂或包覆剂来增加药物的溶解度,特别是对于脂溶性药物,PEG在提高其生物利用度方面有很好的效果。

2.保护药物:PEG可以作为保护剂,防止药物在制备过程中的分解或者在环境中的氧化等影响。

PEG可以作为保护剂来保持药物的稳定性。

这是因为PEG的弱亲和力和不活泼的化学性质,使得其有利于形成复杂的高分子体系,从而保护药物。

3.控制释放速度:压片制剂或制成胶囊、片剂等无需立即释放的控释剂可以利用PEG的特性加以实现。

PEG可以形成有利于药物控制释放的复合体显著地减缓药物的释放速度,并且能够更长时间地积存于体内,达到长时间控制释放的效果。

4.改善口感:药物制剂中添加PEG还可以显著改善口感,特别是对于含有糖酸盐和苦味化合物的药物。

PEG能够分散苦味化合物和糖酸盐,从而改善口感。

5.增加可制剂数量:PEG具有良好的渗透性,可以减少表面质量和粘附性到容器上的机会,从而减少变造、断裂和浸润剂的使用,提高药物的制剂质量和数量,从而降低药品制造的成本。

6.减少毒性:PEG是一种非常安全的化合物,可以用于减少药物的毒性和副作用。

PEG能够减少药物的刺激性,并且有效地减缓或减少一些药物的副作用。

PEG不与人体内分泌系统中的激素反应,并被人体的肝脏和肾脏很好地代谢和清除出体外。

在药物制剂中,PEG的作用是多重的,它可以提高药物的稳定性、溶解度和生物可利用性,保护药物、控制释放速度、改善口感、增加可制剂数量和减少毒性等。

通过PEG的运用,能够提高药品的质量和效果,进而使得药物的治疗作用更加显著,药品质量更高,成本更低,使社会公众获益更为明显。

聚乙二醇在药物制剂中的应用

聚乙二醇在药物制剂中的应用

聚乙二醇在药物制剂中的应用发表时间:2017-07-25T16:54:08.693Z 来源:《健康世界》2017年第9期作者:孙均[导读] 本文综述了聚乙二醇在纳米给药系统、微粒载体给药系统、靶向给药系统、、控释制剂、蛋白药物中的应用。

哈尔滨三联药业股份有限公司 150025摘要:本文综述了聚乙二醇在纳米给药系统、微粒载体给药系统、靶向给药系统、、控释制剂、蛋白药物中的应用。

关键词:聚乙二醇;药物制剂;应用引言分子量聚乙二醇(PEG)是一个相对比200年- 8000年或8000年的乙二醇聚合物的总称,是一个一步一步与水或乙二醇环氧乙烷加成聚合反应得到小分子量的一种水溶性聚醚、聚乙二醇(PEG)PEG200,PEG300,PEG400,PEG600,PEG1000,PEG4000,PEG6000,PEG10000等等。

在室温下,相对分子量的聚乙二醇200 ~ 600是液体,和相对分子量为1000以上是固体。

在中国药典和其他许多国家药典中,聚乙二醇被广泛用于医药产品的制备,被用作药物的补充。

正文一、聚乙二醇在液体制剂和注射剂中的应用1.聚乙二醇(PEG)是一种溶剂:聚乙二醇的相对分子量为1.1低,具有无色液体、化学稳定性、安全性、低毒性,可作为一种溶剂使用,有水、乙醇、甘油、丙二醇、混合苯甲醇作为复合溶剂。

聚乙二醇作为一种溶剂有三个功能:(1)增加不溶性药物的溶解度。

(2)提高容易分解水的药物的稳定性。

(3)当注射乙二醇作为溶剂时,药物可用于延长药物持续时间的时间。

现在已经有更多的药物可以由聚乙二醇作为溶剂或溶液的注射来制备。

液体聚乙二醇对人体的毒性较小,其毒性大于口服药物,尤其在高浓度和静脉注射液中。

2.聚乙二醇是一种溶解度聚乙二醇是一种高分子化合物,含有聚氧乙烯基、含羟基的分子结构,具有更大的水溶性,能提高水溶性难溶性药物的溶解度。

聚乙二醇(聚乙二醇)在溶解过程中,也可增加制剂的稳定性,提高物理性能,经常腐烂的味道掩蔽,减少刺激,提高吸收,增加药理作用。

聚乙二醇辅料作用

聚乙二醇辅料作用

聚乙二醇辅料作用聚乙二醇辅料在许多领域中发挥着重要的作用。

聚乙二醇是一种无色、无味、无毒的高分子化合物,具有良好的溶解性和稳定性。

它被广泛应用于药物制剂、化妆品、食品、润滑剂等领域。

在本文中,我们将探讨聚乙二醇辅料在以上领域中的作用和应用。

一、药物制剂中的聚乙二醇辅料聚乙二醇在药物制剂中具有多种作用。

首先,它可以作为溶剂,帮助药物溶解并提高其生物利用度。

其次,聚乙二醇还可以作为稳定剂,保护药物免受光、热和氧化的影响。

此外,聚乙二醇还可以作为增稠剂,调整药物的黏度和流动性。

除此之外,聚乙二醇还具有一定的降解性,可以降低药物的毒性和副作用。

二、化妆品中的聚乙二醇辅料聚乙二醇在化妆品中起到了重要的作用。

首先,它可以作为保湿剂,增加产品的湿润度并防止水分流失。

其次,聚乙二醇还可以作为乳化剂或乳化剂的助剂,帮助不相溶的物质混合并提高产品的稳定性。

此外,聚乙二醇还可以作为溶剂、增稠剂和调节剂等辅料,改善产品的质感和使用体验。

三、食品中的聚乙二醇辅料聚乙二醇在食品中的应用也十分广泛。

首先,它可以作为增稠剂和稳定剂,改善食品的质地和口感。

其次,聚乙二醇还可以作为润滑剂,使食品更易于加工和包装。

此外,聚乙二醇还可以作为食品添加剂,用于增强食品的营养价值和保鲜效果。

四、润滑剂中的聚乙二醇辅料聚乙二醇在润滑剂中起到了重要的作用。

首先,它可以作为润滑剂的主要成分,降低物体表面的摩擦系数,减少摩擦损耗和磨损。

其次,聚乙二醇还可以作为抗氧化剂和防锈剂,保护机械设备免受氧化和腐蚀的侵害。

此外,聚乙二醇还可以作为冷却剂和防冻剂,提高润滑剂的使用温度范围和性能稳定性。

总结起来,聚乙二醇辅料在药物制剂、化妆品、食品、润滑剂等领域中发挥着重要的作用。

它具有多种功能,可以起到溶剂、稳定剂、增稠剂、保湿剂、乳化剂等作用。

聚乙二醇辅料具有良好的溶解性和稳定性,对人体无害,被广泛应用于各个领域。

随着科技的进步和人们对品质的要求不断提高,聚乙二醇辅料的应用前景将更加广阔。

聚乙二醇在制剂中的应用

聚乙二醇在制剂中的应用

聚乙二醇在制剂中的应用
聚乙二醇(Polyethylene glycol,简称PEG)是一种常用的高分子化合物,在制剂中有广泛的应用。

它具有良好的生物相容性和生物降解性,因此被广泛用于药物制剂、化妆品、食品和医疗器械等领域。

在药物制剂中,聚乙二醇可以用作溶剂、增稠剂、分散剂、乳化剂等。

由于其良好的溶解性和稳定性,聚乙二醇可以将一些溶解度较低的药物溶解,并提高药物的稳定性,从而增强药物的吸收和疗效。

此外,聚乙二醇还可以用于调整制剂的黏度和流变性,使药物更易于使用和储存。

在化妆品中,聚乙二醇主要用作稠化剂和保湿剂。

由于其良好的保湿性能和渗透性,聚乙二醇可以有效地锁住皮肤的水分,保持皮肤的湿润和柔软。

同时,聚乙二醇还可以提高化妆品的稳定性和质感,使其更易于涂抹和吸收。

在食品中,聚乙二醇被用作食品添加剂,主要用于增稠、乳化和保湿。

由于其良好的溶解性和稳定性,聚乙二醇可以提高食品的质感和口感,改善食品的口感和保湿性,延长食品的保质期。

在医疗器械中,聚乙二醇常用于制备生物材料和医用涂层。

由于其良好的生物相容性和生物可降解性,聚乙二醇可以与生物体组织相容,并在体内逐渐降解释放。

这使得聚乙二醇成为制备生物可降解
材料和控释药物的理想选择。

总的来说,聚乙二醇在制剂中具有广泛的应用。

它的溶解性、稳定性和生物相容性使其成为一种理想的高分子材料,为制药、化妆品、食品和医疗器械等领域的发展提供了重要支持。

聚乙二醇在药物制剂中的应用

聚乙二醇在药物制剂中的应用

聚乙二醇在药物制剂中的应用聚乙二醇别名聚氧乙烯醇或聚氧乙烯二醇,系环氧乙烷与单乙二醇(或双乙二醇)在碱性催化剂催化之下聚合而成,分子质量因聚合度不同而异,通常在200~35 000 之间,PEG 的性质随分子质量而变化,目前常见的PEG 种类有PEG200、PEG300、PEG400、PEG600、PEG2000、PEG4000、PEG6000、PEG8000 等。

药物溶剂PEG200、PEG300、PEG400、PEG600 系无色、略有微臭的粘性液体,化学性质稳定,安全低毒,故常作为药物的溶剂。

另外,为了增加难溶性药物的溶解度,常使用潜溶剂即乙醇、甘油、丙二醇、苯甲醇、聚乙二醇等与水组成的混合溶剂。

用于软胶囊剂软胶囊剂的囊材多以一定比例的明胶、增塑剂和水等组成,因此对蛋白质性质无影响的药物和附加剂均可填充。

如各种油类、液态药物、药物溶液、药物混悬液和固体药物等。

由于低分子质量PEG 能与水混溶,故是水溶性药物和某些有机药物很好的溶剂,如硝苯地平软胶囊。

目前,软胶囊剂多为固体药物粉末混悬在油性或非油性(PEG400 等)分散介质中包制而成。

另有报道,水合氯醛应用聚乙二醇作为溶剂可大大降低它对明胶蛋白的分解作用用于注射剂由于PEG200~PEG600 可提高难溶性药物的溶解度且对水不稳定药物有稳定作用,故可作为注射用溶剂。

单一以PEG 作为注射用溶剂的注射剂并不多见,如噻替哌注射液以PEG400 或PEG600 作为溶剂,可避免噻替哌在水中的聚结沉降作用;盐酸苄去氢骆驼莲碱注射液以PEG200 作为溶剂,安全稳定,贮放 2 a 保持不变。

但一般多用混合溶剂(潜溶剂),如以V (PEG300): V( 苯甲醇): V ( 丙二醇) = 80:5:15 时可作为质量分数为 5 % 黄体酮或睾丸酮注射液的混合溶剂,此 2 种注射液经肌肉注射后,与体液接触即在局部析出药物沉淀,形成药物仓库,逐渐从组织中释放,具有长效作用,售商品有病毒灵注射液、安乃近注射液、痢菌净注射液、穿心莲注射液、菌毒杀星注射液等。

聚乙二醇在新型药物制剂中的应用

聚乙二醇在新型药物制剂中的应用

聚乙二醇在新型药物制剂中的应用【摘要】聚乙二醇的英文名称缩写为PEG,其主要成分为环氧乙烷和水或者是乙醇组合而成,该梼杌是一种低分子量的水溶性聚醚。

聚乙二醇是中性无毒的高分子聚合物,自身具有着特殊的物理化和良好的生物相溶性,该药物主要被应用在药品的辅料当中,中英美等国家对其的应用是非常多的,除此之外该成分还被十分广泛的应用在制剂中。

下面文章主要就聚乙二醇在新型药物制剂中的应用进行详细的阐述。

【关键词】聚乙二醇;药物制剂;应用研究聚乙二醇在实际应用中最常见的几种类型为PEG-200、PEG-400、PEG-600、PEG-4000、PEG-6000等,该物质被广泛的引用在新型药剂的制备当中,但是在对其进行应用的同时却也存在着相应的缺点就是当化学物质和蛋白质、多肽类的药物进行一起使用时将会对分子空间构造产生一定的影响,同时对生物化学性质也会带来相应的改变,使其体内半衰期得到了延长,让药物的溶水性提高,造成原来的免疫力下降,对药代动力和药效性质具有改良作用,有效提高了临床单位和应用效果。

1聚乙二醇的基本概念聚乙二醇(polyethylene glycol,PEG),其是由环氧乙烷与水或乙醇混合在一起形成一种分子量极低的一类水溶性聚醚。

结构式为:聚乙二醇是相对分子量在200~8000或者8000以上的乙二醇高聚物的总称,是用环氧乙烷与水或用乙二醇逐步加成聚合得到一种分子量极小的水溶性聚醚。

聚乙二醇既已溶于水中又可溶于很多的有机溶剂中,另外有很好的生物相容性。

另外,聚乙二醇在化学方面比较懒惰,可是通过端羟基激活后可直接键合蛋白质,键合之后可在修饰物质上体现出很多的优异特性。

2聚乙二醇修饰药物的优势剖析聚乙二醇修饰又叫做分子的PEG化(PEGylation),聚乙二醇装饰是以高分子材料的药物传递系统(DDS)为基础的,它在现代治疗学中成为不可缺少的一部分。

近几年我国一直加大力度来研究共轭化合物或纳米制剂,它是以高分子材料为基础的,被称作“聚合物治疗”。

聚乙二醇在医药方面的应用及其研究进展

聚乙二醇在医药方面的应用及其研究进展

聚乙二醇在医药方面的应用及其研究进展林宏涛; 李培源【期刊名称】《《广州化工》》【年(卷),期】2019(047)020【总页数】3页(P23-25)【关键词】聚乙二醇; 医学; 药学; 研究进展【作者】林宏涛; 李培源【作者单位】广西中医药大学药学院广西南宁 530001; 广西中医药大学赛恩斯新医药学院广西南宁 530001【正文语种】中文【中图分类】TQ46聚乙二醇 (polyethylene glycol,PEG) 是由重复的氧乙烯基组成的直链或具有支链的聚醚,有2个末端羟基。

聚乙二醇作为修饰剂时 pH为中性,是一种无毒、水溶性的聚合物。

PEG具有线性的(相对分子量5000~30000)或枝化的(相对分子量40000~60000)链状结构,其中聚乙二醇及其衍生物由于具有下述的优良性质而在化学修饰中应用最多:①PEG具有水溶性,可溶解于大多数的有机溶剂;②PEG类产品无毒,免疫原性低,其生物相容性也已通过美国 FDA 认证;③PEG具有很多种不同分子量的分子,应用广泛;④PEG给它修饰后的生物分子赋予很多优良特性。

1 PEG的制备方法1.1 PEG聚乙二醇是由环氧乙烷与水或乙二醇逐步加成而制得。

其反应要经引发、增长、终止三个阶段才能获得产品。

引发剂可用乙二醇或水,也可使用含一个活性官能团的其他化合物。

该方法只能合成分子量较低的聚乙二醇产品,而用分子量低的聚乙二醇作引发剂,又可制造出高分子量的产品。

聚合的方法有液相法和气相聚合法等。

制出来的聚乙二醇不仅具有水溶、润滑、低毒、稳定、难挥发、易互溶等特性,而且分子量可调节,适用于药物、医学等领域。

1.2 PEG复合材料1.2.1 物理共混张树鹏[1]研究发现石墨烯/PEG (GO/PEG) 填充的PEG4000基复合材料,组分间的较强界面相互作用协同增强了GO/PEG复合材料的热稳定性能。

同时,Kobayashia等[2]通过向人工滑液添加PEG发现,PEG似乎具有润滑作用能显著降低UHMWPE的磨损。

PEG在辅料中的应用

PEG在辅料中的应用

聚乙二醇的应用聚乙二醇(polyethylene glycol,PEG),是由环氧乙烷与水或乙二醇逐步加成聚合而得到的一类分子量较低的水溶性聚醚,聚乙二醇由于其聚合度差异,分子量通常在200~35 000之间,其化学通式为HOCH2(CH2OCH2)nCH2OH。

总的说来,在药剂学方面聚乙二醇主要可被用作为药物溶剂,药物附加剂或辅料,增塑剂和致孔剂,药物载体,修饰材料和渗透促进剂等。

聚乙二醇具有良好的生物相容性和两亲性,由此我们就可以看出聚乙二醇的在药剂学上的广泛用途。

作为一种两亲性聚合物,PEG既可溶于水,又可溶于绝大多数的有机溶剂,且具有生物相容性好、无毒、免疫原性低等特点,可通过肾排出体外,在体内不会有积累。

此外,PEG具有一定的化学惰性,但在端羟基进行活化后又易于和蛋白质等物质进行键合,键合后,PEG可将其许多优异性能赋予被修饰的物质。

作为表面修饰材料,聚乙二醇在体循环中的优点还有能防止与血液接触时血小板在材料表面的沉积,有效延长被修饰物在体内的半衰期,提高药物传递效果。

PEG获得了FDA的认可,被中、美、英等许多国家药典收载作为药用辅料。

长期以来,PEG在软(乳)膏剂、栓剂、滴丸剂、硬胶囊、滴眼剂、注射剂、片剂等各种药剂中有着广泛应用。

从上个世纪90年代开始,PEG在新型药物制剂中的应用的研究越来越多。

1 PEG修饰的纳米给药系统纳米给药系统,也称纳米控释系统,包括纳米微球(Nanospheres)和纳米胶(Nanocapsules),它们是直径在10~500nm之间的固状胶态粒子,活性组分(药物和生物活性材料等)通过溶解、包裹作用置于纳米粒的内部,或者通过吸附、附着作用置于纳米粒表面。

纳米给药系统具有降低药物毒副作用、防止药物失活、控制药物释放速率和靶向给药的效果,从而既可提高病灶部位的药物浓度,又可减少对机体其它部位的损害,提高药物的有效利用度,因而成为较理想的药物传输体系。

目前,纳米给药系统的载体材料一般为可生物降解聚合物,如以聚乳酸(PLA)、聚己内酯(PCL)、聚癸二酸酐(PSA)为代表的聚酯、聚酸酐、聚氰基丙烯酸酯、聚氨基酸、聚原酸酯等具有良好生物相容性和可生物降解性的聚合物。

聚乙二醇(PEG)系列应用指南

聚乙二醇(PEG)系列应用指南

聚乙二醇(PEG)系列应用指南北京国人逸康科技有限公司是以生产药用聚乙二醇(PEG)为主的,专业生产厂家,在国内拥有最先进的高质量聚乙二醇(PEG)的聚合技术的所生产的药用聚乙二醇(PEG)系列产品,分子量准确,色泽无色或洁白。

各项指标均达到国外、同类产品质量标准,其中高分子量药用聚乙二醇(PEG)(8000—20000)尚属国内独家产生。

北京国人逸康科技有限公司的药用聚乙二醇(PEG)系列包括十二个分子量从200到20000的标准牌号产品,同时,国人逸康也可根据用户的特殊要求生产各种特殊规格的产品,还可生产高数目药用聚乙二醇(PEG)100目—300目(适用于薄膜衣技术)。

无论单独使用、混合使用、以水溶液形式使用,还是在表面活性剂、润滑剂和增塑剂的生产中作为中间体,这些产品将是您得到最满意的选择。

一、聚乙二醇(PEG)的性质聚乙二醇(PEG)最突出的特性是它具有与各种容积的广泛相容性,广泛的年度范围和吸湿性。

聚乙二醇(PEG)也具有良好的润滑性、热稳定性并以低毒性、难挥发性、很前的颜色深受欢迎。

低分子量聚乙二醇(PEG)的吸湿性和乙二醇差不多。

但当分子量增加时其吸湿性很快降低,聚乙二醇(PEG)4000和聚乙二醇(PEG)6000得吸湿性很低,但对温度仍很敏感。

为了得到广泛的吸湿性,可以通过聚乙二醇(PEG)间的混合或聚乙二醇(PEG)与乙醇的混合而得到。

聚乙二醇(PEG)在水中的溶解性很大,液体聚乙二醇(PEG)可以以任何比例雨水混溶,甚至高分子量聚乙二醇(PEG)在水中溶解度可达50%以上,聚乙二醇(PEG)溶液属非离子性。

聚乙二醇(PEG)可溶于乙醇、乙醛、烷醇酰胺、氨化物、胺、氯化烃、芳香烃、酯、乙二醇酯、乙二醇醚酯、酮、有机酸、酸酐和苯酚等多种有机溶剂中。

一般来说,多高分子量聚乙二醇(PEG)其溶解度和溶解能力比较低,但随着温度的升高,其溶解度和溶解能力都得到提高,所以,中等加热可以迅速提高固体聚乙二醇(PEG)的溶解度。

聚乙二醇的应用

聚乙二醇的应用

聚乙二醇聚乙二醇(PEG),也称聚乙二醇醚,英文名: Polyethylene Glycol CAS No. 25322-68-3,化学结构式为HO(CH2CH2O)nH,是以环氧乙烷与水或乙二醇为原料通过逐步加成反应而制备的,其原材料主要来源于石油制品。

随着聚合度的增大,聚乙二醇的物理外观和性质均逐渐发生变化:相对分子量在200-600者在常温下是液体,相对分子量在600以上者逐渐变为半固体。

随着分子量的增大,从无色无臭粘稠液体转变至蜡状固体,其吸湿能力相应降低。

具有醇的化学性质,与脂肪酸能发生酯化反应生成酯。

可溶于水、乙醇和多种有机溶剂。

对热、酸、碱稳定,与许多化学品不起作用。

具有良好的吸湿性、黏结性、润滑性。

无毒,无刺激。

对人畜无害。

聚乙二醇(PEG )具有很强的吸水性,在常温条件下可从空气中吸收水分,液体可与水任意比例混溶,当温度升高后,任何级分的固体聚乙二醇均能与水任意比例互溶,当温度高至水的沸点是,聚合物会沉淀出来,析出温度取决于聚合物的分子量和浓度。

聚乙二醇(PEG)属非离子型聚合物,在正常条件下是稳定的,在120℃或更高温度下能与空气中的氧发生氧化作用,用二氧化碳或氮等惰性气体保护,在200~240℃也不发生变化,当升至300℃左右,分子链节发生断裂而降解。

按照聚乙二醇的聚合度划分,其应用基本可以概括为:(1)、聚乙二醇系列产品可用于药剂。

相对分子量较低的聚乙二醇可用作溶剂、助溶剂,分散剂、o/w 型乳化剂和稳定剂,用于制作水泥悬剂、乳剂、注射剂等,也用作水溶性软膏基质和栓剂基质,相对分子量高的固体蜡状聚乙二醇常用于增加低分子量液体 PEG 的粘度和成固性,以及外偿其他药物;对于水中不易溶解的药物,本品可作固体分散剂的载体,以达到固体分散目的, PEG4000 、PEG6000 是良好的包衣材料,亲水抛光材料、膜材和囊材、增塑剂、润滑剂和滴丸基质,用于制备片剂、丸剂、胶囊剂、微囊剂等。

聚乙二醇4000散功能用法-概述说明以及解释

聚乙二醇4000散功能用法-概述说明以及解释

聚乙二醇4000散功能用法-概述说明以及解释1.引言1.1 概述聚乙二醇4000(Polyethylene Glycol 4000,简称PEG 4000)是一种高分子化合物,由乙二醇和氧化乙烯经聚合反应得到。

它具有无色、无味、无毒的特性,是一种常用的溶剂和增稠剂。

聚乙二醇4000在许多领域都有广泛的应用。

首先,在药物制剂中,它通常被用作一种溶剂和稳定剂。

由于其具有良好的溶解性和稳定性,聚乙二醇4000可以用来溶解一些水溶性药物,并增强其口服或注射吸收的效果。

此外,PEG 4000还可以通过调节溶解度,改善药物的稳定性,延长药物的作用时间,并减轻药物对胃肠道和组织的刺激。

因此,在制备胶囊、溶液、注射剂等各种药物制剂中,聚乙二醇4000都是一种常用的辅助成分。

除了医药行业,聚乙二醇4000还在化妆品领域得到了广泛的应用。

它常被用作湿润剂、增稠剂、稠化剂和润滑剂等。

由于其良好的润滑性和渗透性,聚乙二醇4000可以帮助化妆品更好地在皮肤表面涂抹和吸收,使产品更易于推开和延展。

此外,PEG 4000还可以增加化妆品的粘度,增强其黏附性,使其更加稠密和持久。

因此,聚乙二醇4000常被添加在乳液、面膜、润肤霜和护发产品等各种化妆品中。

总而言之,聚乙二醇4000作为一种功能性化合物,具有多种用途。

在医药制剂中,它可以提高药物的溶解度和稳定性,改善其吸收和作用效果;在化妆品中,它可以增加产品的润滑性、稠度和持久性,提升使用体验。

随着科学技术的不断发展和人们对品质要求的提升,聚乙二醇4000在未来的应用前景将更加广阔。

1.2文章结构文章结构部分的内容可以包括以下几点:1.2 文章结构本篇长文将分为三个主要部分:引言、正文和结论。

引言部分将提供关于聚乙二醇4000散功能用法的概述、文章结构和目的的介绍。

正文部分将详细探讨聚乙二醇4000的基本特性和用途,以及其在化妆品中的应用。

其中,将包括聚乙二醇4000的物理化学性质、制备方法、主要用途等内容。

聚乙二醇在中药制剂中的应用研究进展

聚乙二醇在中药制剂中的应用研究进展

聚乙二醇在中药制剂中的应用研究进展江丽慧;闫雪生;孙丹丹;于蓓蓓;杜庆伟【摘要】目的对聚乙二醇在中药制剂中的应用研究进展进行综述.方法查阅国内外文献,汇总近十几年聚乙二醇在中药制剂中的应用.结果聚乙二醇被用于软胶囊剂、注射剂、栓剂、片剂、软膏剂、滴丸剂、巴布剂等多种中药制剂中,应用广泛,作用优良.结论重要水溶性药用辅料聚乙二醇涉及各类中药制剂的制备,可安全、有效地提高中药制剂的质量.【期刊名称】《中国药业》【年(卷),期】2018(027)013【总页数】5页(P1-5)【关键词】聚乙二醇;中药制剂;药用辅料【作者】江丽慧;闫雪生;孙丹丹;于蓓蓓;杜庆伟【作者单位】山东中医药大学,山东济南 250355;山东省中医药研究院,山东济南250014;山东省中医药研究院,山东济南 250014;山东省中医药研究院,山东济南250014;山东中医药大学,山东济南 250355【正文语种】中文【中图分类】R283.2聚乙二醇(polyethylene glycol,PEG)又名聚乙烯二醇或聚氧乙烯二醇,为多元醇的聚合物,由环氧乙烷与水或乙二醇逐步加成聚合得到的以羟基结尾的线性或分支状聚醚高分子化合物。

聚合度的不同引起相对分子质量、性质、用途的差异可对反应条件加以控制,获得不同相对分子质量的聚乙二醇聚合物。

相对分子质量会影响PEG的性状,随着相对分子质量的增加,其性状呈现由无色无臭的黏稠液体到蜡状固体的变化。

制剂用PEG为混合物,PEG200,PEG300,PEG400,PEG600,PEG2000,PEG4000,PEG6000,PEG8000,PEG20000 等在中药制剂中应用广泛,且适应性好。

现介绍如下。

1 药物溶剂1.1 中药软胶囊剂相对分子质量为200~600的PEG在常温下呈液体状态,此状态下PEG具有与水完全混溶性[1],在水溶液中有较大的水动力学体积,且能与各种溶剂广泛相容,略有吸湿性,是良好的中药软胶囊溶剂、稀释剂和增溶剂。

聚乙二醇在医药制剂中的新用途

聚乙二醇在医药制剂中的新用途

聚乙二醇在医药制剂中的新用途聚乙二醇(Polyethylene glycol,简称PEG)是一种无色、无味、低毒的高分子化合物,已经广泛应用于药物制剂中,其用途也在不断扩展。

本文将介绍一些聚乙二醇在医药制剂中的新用途。

1.增强水溶性:聚乙二醇可以作为增溶剂,在溶解性差的药物中起到增溶作用。

例如,聚乙二醇可以与水溶性小的药物形成水合物,增强其水溶性,改善其溶解度和生物利用度。

2.缓释控制释药:聚乙二醇可以用于制备控释制剂,通过调整聚乙二醇的分子量和结构设计,实现对药物的缓释和控制释放。

聚乙二醇可以形成稳定的三维网络结构,在药物释放过程中,通过聚乙二醇分子链的渗透和扩散控制药物的释放速率。

3.包裹和保护药物:聚乙二醇可以作为包裹剂,用来包埋或包裹药物,形成聚乙二醇修饰的药物纳米粒子。

这些聚乙二醇修饰的药物纳米粒子在生物体内具有较长的血液循环寿命和较高的稳定性,减少药物的免疫反应和代谢,提高药物的疗效和安全性。

4.体外诊断:聚乙二醇可以用于体外诊断领域。

聚乙二醇可以修饰生物传感器和生物芯片表面,增强其生物相容性和抗污染性能,提高检测灵敏度和选择性。

5.靶向传递:聚乙二醇可以作为靶向传递药物的载体,增加药物在靶细胞上的富集程度,减少对非靶细胞的损伤。

聚乙二醇可以修饰药物分子表面,形成聚乙二醇修饰的药物纳米粒子,利用被体内组分识别的机制,实现针对性的药物传递和释放。

6.生物材料:聚乙二醇可以作为生物材料,在组织工程和再生医学领域中应用。

聚乙二醇可以用于制备人工血管、人工心脏瓣膜、组织修复支架等材料,具有良好的生物相容性和生物降解性能。

综上所述,聚乙二醇在医药制剂中的新用途主要包括增强水溶性、缓释控制释药、包裹和保护药物、体外诊断、靶向传递和生物材料等方面。

随着科技的不断进步和药物研发的需要,聚乙二醇的应用前景将更加广阔。

希望这些新的应用能够为医药领域的研究和药物创新提供更多的可能性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

聚乙二醇在新型药物制剂中的应用【摘要】:聚乙二醇具有良好的生物相容性和两亲性,在生物医药领域中有着广泛的应用,卒文就聚乙二醇在新型药物制剂中的应用进行综述,主要包括纳米给药系统、蛋白质药物修饰和疏水性药物的前药等。

【Abstract】Poly (ethylene glycol) excellent biocompatibility and amphiphilic in biological pharmaceutical sector has the widespread application, jailer. Wen.Poly (ethylene glycol) in new drug preparation applications were reviewed, mainly including nano dosing system, protein drugs modified and hydrophobic medicineThings before medicine, etc.【关键词】:聚乙二醇;纳米给药系统;修饰;蛋白质药物;前药【Key words】:Polyethylene glycol, Nano dosing system, Modify, Protein drugs, Before medicine聚乙二醇(polyethylene glycol,PEG),是由环氧乙烷与水或乙二醇逐步加成聚合而得到的一类分子量较低的水溶性聚醚,作为一种两亲性聚合物,PEG既可溶于水,又可溶于绝大多数的有机溶剂,且具有生物相容性好、无毒、免疫原性低等特点,可通过肾排出体外,在体内不会有积累。

此外,PEG具有一定的化学惰性,但在端羟基进行活化后又易于和蛋白质等物质进行键合,键合后,PEG可将其许多优异性能赋予被修饰的物质。

作为表面修饰材料,聚乙二醇在体循环中的优点还有能防止与血液接触时血小板在材料表面的沉积,有效延长被修饰物在体内的半衰期,提高药物传递效果[1,2]。

PEG获得了FDA的认可,被中、美、英等许多国家药典收载作为药用辅料。

长期以来,PEG在软(乳)膏剂、栓剂、滴丸剂、硬胶囊、滴眼剂、注射剂、片剂等各种药剂中有着广泛应用。

从上个世纪90年代开始,PEG在新型药物制剂中的应用的研究越来越多。

本文主要综述PEG在纳米给药系统、蛋白质药物及疏水性药物的前药等几种新型药物制剂中的应用。

1 PEG修饰的纳米给药系统纳米给药系统,也称纳米控释系统,包括纳米微球(Nanospheres)和纳米胶(Nanocapsules),它们是直径在10~500nm之间的固状胶态粒子,活性组分(药物和生物活性材料等)通过溶解、包裹作用置于纳米粒的内部,或者通过吸附、附着作用置于纳米粒表面。

纳米给药系统具有降低药物毒副作用、防止药物失活、控制药物释放速率和靶向给药的效果,从而既可提高病灶部位的药物浓度,又可减少对机体其它部位的损害,提高药物的有效利用度,因而成为较理想的药物传输体系。

目前,纳米给药系统的载体材料一般为可生物降解聚合物,如以聚乳酸(PLA)、聚己内酯(PCL)、聚癸二酸酐(PSA)为代表的聚酯、聚酸酐、聚氰基丙烯酸酯、聚氨基酸、聚原酸酯等具有良好生物相容性和可生物降解性的聚合物。

可生物降解聚合物作为药物缓释、控释的优良载体极大地促进了药物制剂的发展,尤其是这类聚合物的微粒或纳米粒制备技术的开发应用,为具有更好药物控释性能及靶向新制剂的开发奠定了基础。

但这些可生物降解聚合物大多是疏水性的,形成的纳米粒易被蛋白质吸附和被网状内皮系统捕捉,因而进行表面修饰延长聚合物纳米粒在体内的循环时间很有必要。

PEG具有亲水等许多优点且得到FDA认可,近年来将PEG作为亲水组分引入聚合物载体的研究很多,通过嵌段或接枝的方法,使亲水的PEG链段键接在纳米粒的表面,可以改善其亲水性。

由于PEG链段处于粒子表面,伸向水中,并能够在水中摇摆,一方面使粒子间产生足够大的斥力以克服范德华引力作用,使粒子具有很好的稳定性而不聚集;另一方面能够阻止蛋白质的吸附和躲避网状内皮系统的捕捉,延长纳米粒在体内的循环时间,提高药物的生物利用度。

人们把PEG的亲水性、防止蛋白质吸附性质与可生物降解聚合物相结合,制备了多种PEG嵌段或接枝共聚物,如PEG—PLA、PEG—Pc卜PEG嵌段共聚物、PEG接枝的聚氰基丙烯酸酯等两亲性共聚物,并由此开发了药物的纳米制剂。

Peracchia[2]等用不同分子量的PEG分别和PLA、PCL、PSA共聚,制备出一系列两亲性嵌段共聚物及它们的载药纳米粒,证明疏水部分的化学组成、PEG链段的分子量、纳米粒表面PEG链段的密度是影响PEG纳米粒药物控释性能的关键因素。

Shin等以透析法制备了消炎痛IMC的PEG-PCL共聚物纳米粒,其体外释放符合持续释放模型。

Gref等以乳化/溶剂蒸发法制备了环孢酶素(CyA)的PLA—PEG共聚物纳米粒,其体外释放符合双相动力学模型。

Yoo[6]等通过化学结合的方法把阿霉素(DOX)结合在PLGA-PEG上,制备了DOX—PLGA-PEG共聚物纳米粒。

最近研究较多的还有PEG与离子型聚合物如壳聚糖、聚氨基酸的共聚物[7,8]。

PEG与壳聚糖、聚氨基酸的共聚物的制备方法通常是先通过PEG或聚乙二醇单甲醚上的羟基的反应活性,接上能够容易与一NI{2反应的活性端基,然后再与壳聚糖或聚氨基酸上的一NH2反应制得PEG改性的壳聚糖或聚氨基酸。

表1给出了几种PEG衍生物及与含一NH2的聚合物的反应产物的结构[2]。

利用不同嵌段(或接枝)溶解或带电性能的差异,通过适当方法,可获得共聚物的纳米粒或胶束,这种纳米粒具有较稳定的核壳结构,疏水部分位于内部,形成内核,而亲水的PEG链段处于表面,形成壳层。

药物被包裹于内核或吸附于表面,以扩散释放或融蚀释放的形式释放并发挥药效。

PEG修饰的共聚物纳米粒的制备方法除了前面提到的透析法和乳化,溶剂蒸发法外,还有沉淀/溶剂蒸发法、复乳法、离聚物复合法(PIC法)等。

为使PEG修饰的共聚物纳米粒成为较理想的药物传输体系,首先要保持纳米粒的稳定性,其次要求纳米粒具有一定的载药能力,第三要调整聚合物的组成和比例,使其具有良好的控释性能,此外还要尽量降低载药纳米粒的毒性。

PEG修饰的共聚物纳米粒与游离药物或传统剂型相比,表现出高效低毒的优点。

Kim等[9]体外细胞毒性试验表明,人纤维细胞在携带消炎痛(IMC)的PEO—PP0一PEO—PCL共聚物纳米粒中,3d存活率为8O%,而在游离IMC中小于5%。

并且随药物IMC浓度上升,这种趋势增大。

作者所在课题组采用熔融缩聚法合成了聚乙二醇单甲醚/聚乳酸两亲性二嵌段共聚物,并以紫杉醇为模型药物制备了载药纳米粒(PMT),以生理盐水注射为空白实验,Taxol。

注射为对照实验,考察PMT对昆明鼠肝癌H22的疗效。

结果表明,Taxol。

和PMT对肿瘤均有抑制作用,且随着剂量的增大,抑制效果越明显。

但在相同剂量条件下,PMT抑制肿瘤生长的效果明显优于Taxol0,当PMT的剂量为10mg /kg时,肿瘤重量几为空白实验的一半,抑制率高达39.1%,说明PMT对昆明鼠肝癌H22的生长具有很好的抑制作用[10]。

2 蛋白质药物的PEG修饰随着基因工程及化学合成技术的发展,越来越多的蛋白质药物被研制出来并在临床应用中表现出许多独特的疗效。

与传统的小分子药物相比,这类药物具有在体内半衰期短、易降解、易失活、在胃肠道内不易被吸收及需要大量服用以维持药效等缺点,使其应用受到限制。

1977年,Abu.chowski等发现用PEG修饰过的蛋白质比未修饰的蛋白质更加有效。

药用蛋白质经PEG修饰后提高了水溶性,降低或消除了免疫原性,有效地延长了半衰期,很大程度上保留生物活性,大大提高药用蛋白质的生物利用度。

这主要是由于覆盖在蛋白质表面的PEG链阻止了免疫细胞与蛋白质之间的作用并防止蛋白质水解失活。

在过去的近30年中,蛋白质的PEG修饰技术得到了快速发展,自1991年PEG修饰的腺昔脱氢酶(PEG—ADA)首次获FDA认可以来,迄今已有4o多个PEG修饰的蛋白质药物被用于临床治疗各种疾病。

PEG末端的羟基是其化学反应的功能基团,但必须在较激烈的条件下才能与其它基团发生反应。

为使蛋白质能在温和条件下,以较高的速率与PEG偶联,须先对PEG进行活化,将其端羟基转变为其它活性基团。

活化方法很多,如醛化(PEG.CHO)、胺化(PEG-NrI2)、叠氮化(PEG—N )、异氰酸酯化(PEG—NCO)、羧基化(PEG.COOH)、端烯基化和易离去基团活化法(如PEG—CI)等。

活化的PEG与蛋白质分子侧链上的活性基团进行反应,这些活性基团主要包括氨基、巯基和羧基[11]。

在修饰蛋白质时,PEG可有选择的与活性基团进行反应,从而使得被修饰的蛋白质具有更良好的性能[12]。

目前,为了避免在修饰过程中发生交联和团聚,聚乙二醇修饰普遍采用的是单甲氧基聚乙二醇(mPEG),其性能和PEG相似。

PEG与蛋白质偶合时有三种方式[13],分别是单个大分子量PEG修饰蛋白质的单一位点,星形PEG(两个或更多的中等分子量PEG通过交联连接在一起)修饰蛋白质的单一位点,及几个小分子量PEG修饰蛋白质的多个位点。

理论上,由于在受体结合域内受体与PEG结合的机会减少,因此多位点的PEG修饰往往会导致蛋白质部分甚至全部失去生物活性,而单一位点被PEG修饰的蛋白质应该具有较高的活性。

被修饰的蛋白质的半衰期皆有明显提高,Nucci等”[14]报道每个酶分子接有多个PEG一5000链段的酶,在老鼠体内的半衰期为未经修饰酶的6.4倍。

影响PEG修饰过程的主要因素[15]有:蛋白质浓度、蛋白质与PEG修饰剂的摩尔比、修饰反应的pH值和离子强度、修饰反应温度、修饰反应持续时间等。

一般说来,修饰率越高,蛋白质抗原性降低越明显,活性损失也越大。

通过正交实验设计,选择适宜的修饰反应条件,同时对一个或多个影响因素进行控制,可得到所需的经PEG修饰的蛋白质药物。

3 疏水性药物的PEG前药许多优良的疏水性药物,如紫杉醇,由于极难溶于水和毒性大而限制了其在l缶床上的应用。

通过前药化,可以解决上述问题,因此,疏水性药物的水溶性前药的研究开发越来越受到人们的重视。

前药是指活性原药的化学衍生物,一般是无活性的,它在体内经酶促或非酶促反应释放出原药而发挥疗效,其目的在于提高药物生物利用度,增加药物稳定性,减小毒副作用,促使药物长效化,掩饰不适异味等[21]。

PEG与药物的键合方式有永久键合和非永久键合两种。

蛋白质药物的修饰中PEG与药物的键合属永久键合,药物发挥药效无需也不能使键合断裂。

相关文档
最新文档