基于单片机的直流电机控制系统设计

合集下载

基于单片机的无刷直流电机控制系统设计

基于单片机的无刷直流电机控制系统设计

基于单片机的无刷直流电机控制系统设计下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

基于单片机的无刷直流电机控制系统设计该文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document 基于单片机的无刷直流电机控制系统设计 can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop providesyou with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to knowdifferent data formats and writing methods, please pay attention!无刷直流电机是一种流行的电机类型,具有高效率、低噪音和长寿命等优点,被广泛应用于各种领域,如家电、汽车等。

基于单片机的直流电机调速系统设计

基于单片机的直流电机调速系统设计

直流电机转速 :
根据基尔霍夫第二定律,得到电枢电压电动势平衡方程式 U=Ea+Ia(Ra+Rc)……………式1
式1中,Ra为电枢回路电阻,电枢回路串联保绕阻与电刷 接触电阻的总和;Rc是外接在电枢回路中的调节电阻
由此可得到直流电机的转速公式为:
n=(Ua-IR)/CeΦ ………………………式2
式2中, Ce为电动势常数, Φ是磁通量。 由1式和2式得
n=Ea/CeΦ ……………………………式3
由式3中可以看出, 对于一个已经制造好的电机, 当励磁电压和 负载转矩恒定时, 它的转速由回在电枢两端的电压Ea决定, 电 枢电压越高, 电机转速就越快, 电枢电压降低到0V时, 电机就 停止转动;改变电枢电压的极性, 电机就反转。
PWM脉宽调速
PWM(脉冲宽度调制)是通过控制固定电压的 直流电源开关频率, 改变负载两端的电压, 从 而达到控制要求的一种电压调整方法。在PWM 驱动控制的调整系统中, 按一个固定的频率 来接通和断开电源, 并且根据需要改变一个 周期内“接通”和“断开”时间的长短。通 过改变直流电机电枢上电压的“占空比”来 达到改变平均电压大小的目的, 从而来控制 电动机的转速。也正因为如此, PWM又被称为 “开关驱动装置”。
, 软件简单。但每个按键需要占用一个输入口线, 在 按键数量较多时, 需要较多的输入口线且电路结构复杂, 故此种键盘适用于按键较少或操作速度较高的场合。
数码管显示部分 本设计使用的是一种比较常用的是四位数码 管, 内部的4个数码管共用a~dp这8根数据线, 为使用提供了方便, 因为里面有4个数码管, 所以它有4个公共端, 加上a~dp, 共有12个引 脚, 下面便是一个共阴的四位数码管的内部 结构图(共阳的与之相反)

基于stm32单片机的直流电机调速系统设计

基于stm32单片机的直流电机调速系统设计

基于stm32单片机的直流电机调速系统设计
本文介绍一种基于STM32单片机的直流电机调速系统设计,主要包括硬件电路设计和软件程序设计两部分。

硬件电路设计:
该电机调速系统的主要硬件电路包括电源模块、STM32单片机控制电路、直流电机驱动电路和反馈电路。

1. 电源模块
电源模块包括AC/DC变换模块和稳压模块,用于将输入的AC电压转换为适宜单片机和电机工作的DC电压。

2. STM32单片机控制电路
STM32单片机控制电路包括主控芯片STM32单片机、晶振、复位电路和下载程序电路等。

3. 直流电机驱动电路
直流电机驱动电路包括电机驱动芯片(如L298N)和电机,用于控制电机的转
速和方向。

4. 反馈电路
反馈电路包括编码器和光电传感器等,用于实现电机转速的反馈和闭环控制。

软件程序设计:
该电机调速系统的软件程序采用C语言编写,主要包括定时器计数、PWM输出控制、编码器读取、PID算法控制等模块。

1. 定时器计数
通过STM32单片机内部定时器计数来实现电机转速的测量和控制。

2. PWM输出控制
采用STM32单片机内部PWM输出控制模块控制电机的转速,并实现电机方向的控制。

3. 编码器读取
通过编码器读取电机的转速信息,并反馈到单片机进行控制和显示。

4. PID算法控制
采用PID(比例、积分、微分)算法控制电机的转速,实现闭环控制,提高控制精度。

总之,基于STM32单片机的直流电机调速系统设计,既可以提高电机运行的效率和精度,又可以简化电路结构和减小系统成本,具有较好的应用前景。

基于单片机的直流电机控制系统

基于单片机的直流电机控制系统

摘要本设计首先介绍了AT89S52单片机,L298驱动电路及直流电机的基本原理与功能;其次,设计直流电机实现转向、速度的控制方案;再次,在这些器件功能与特点的基础上,拟出设计思路,构建系统的总体框架,并利用LED数码管对测试结果进行显示;最后利用Proteus软件绘出电路图,同时写出设计系统的运行流程和相关程序。

整个系统通过写入单片机中的程序分配好控制字的存储单元以及相应的内存地址赋值;启动系统后,从单片机的I/O口输出控制脉冲,经过L298驱动电路对脉冲进行处理,输出能直接控制直流电机的脉冲信号。

本系统采用了低成本的AT89S52单片机芯片作为控制芯片,以按键做为输入达到对直流电机的启停、速度和方向的精确控制。

直流电机的驱动采用的是达林顿集成管L298,并且采用LED的进行显示。

在设计中,采用了PWM技术对电机进行控制,通过对占空比的计算达到精确调速的目的。

总之,本次设计出了操作简单、显示直观的直流电机控制系统。

关键字: AT89S52单片机;L298驱动芯片;直流电机。

AbstractThe design first introduced the AT89S52 single-chip microcomputer, L298 drive circuit and dc motor of the basic principle and function; Second, the design of dc motor to realize, the speed control scheme; and Again, in these devices based on the characteristics of the function and, draw up the design idea, construction of the whole system framework, and use of LED digital tube the results shows; Finally, using the Proteus software draw circuit diagram, at the same time, write design the operation of the system process and procedures. The whole system by writing to the single chip microcomputer program allocation good control of the word and the corresponding storage unit of the memory address assignment; Reboot your system, from single chip I/O mouth output control pulse, after L298 driving circuit pulse processing, the output can directly control dc motor of the pulse signal. This system USES a low cost AT89S52 single-chip microcomputer chip as control chip, with button as input to the keyboard to dc motor of the rev. Stop, speed and direction of the accurate control. Dc motor driver uses is the integration of L298 tube, and using the LED displayed. In the design, adopted PWM technology of motor control, through to the occupies emptiescompared to achieve the purpose of accurate calculation speed. All in all, this design out the operation is simple, direct display of dc motor control system.Key word:AT89S52 single-chip microcomputer; L298 driving chip; DC motor.目录1 绪论 (1)1.1 直流电机调速系统的发展 (1)1.2 开发背景 (2)1.3 选题的目的及意义 (3)1.4 研究方法 (4)2 系统方案设计 (5)2.1 概述 (5)2.2 总体设计任务 (5)2.3 系统总体设计方案论证 (6)2.4 系统总体设计方框图 (7)2.5 直流电机调速概述 (8)2.5.1 直流电机简介 (8)2.5.2 直流电机调速原理 (9)2.5.3 直流调速系统实现方式论证 (9)3 电机调速驱动设计 (11)3.1 PWM控制方式 (11)3.2 PWM控制的基本原理 (11)3.3 PWM 发生电路的设计 (13)3.4 功率放大驱动电路 (16)3.4.1 芯片L 298 性能及特点....................... ..163.4.2 L298芯片引脚的电气特性及功能 (17)3.4.3 L298驱动电机的逻辑功能 (19)4 硬件电路设计 (21)4.1 AT89S52的最小系统电路 (21)4.1.1 单片机芯片AT89S52介绍 (21)4.1.2单片机管脚说明 (22)4.1.3 时钟电路 (25)4.1.4 复位电路 (26)4.2 数码管显示 (27)4.3 排阻的简介 (27)4.4 显示电路与AT89S52单片机接口电路设计 (28)4.5 键盘与AT89S52单片机接口电路设计 (30)4.6 驱动电路与AT89S52单片机接口电路设计 (30)5 系统软件设计 (32)5.1 主程序设计 (33)5.2 子程序设计 (34)5.2.1 键盘子程序设计 (34)5.2.2显示子程序设计 (35)5.2.3 P W M控制程序设计 (36)5.3 系统仿真 (36)5.4 Proteus的简单使用 (37)6 设计总结 (39)致谢 (40)参考文献 (41)附录1 程序清单 (42)附录2 系统总图 (50)绪论1.1 直流电机调速系统的发展直流电气传动系统中需要有专门的可控直流电源,常用的可控直流电源有以下几种: 第一,最初的直流调速系统是采用恒定的直流电压向直流电动机电枢供电,通过改变电枢回路中的电阻来实现调速。

基于单片机的直流电机调速系统的课程设计

基于单片机的直流电机调速系统的课程设计

一、总体设计概述本设计基于8051单片机为主控芯片,霍尔元件为测速元件, L298N为直流伺服电机的驱动芯片,利用 PWM调速方式控制直流电机转动的速度,同时可通过矩阵键盘控制电机的启动、加速、减速、反转、制动等操作,并由LCD显示速度的变化值。

二、直流电机调速原理根据直流电动机根据励磁方式不同,分为自励和它励两种类型,其机械特性曲线有所不同。

但是对于直流电动机的转速,总满足下式:式中U——电压;Ra——励磁绕组本身的内阻;——每极磁通(wb );Ce——电势常数;Ct——转矩常数。

由上式可知,直流电机的速度控制既可以采用电枢控制法也可以采用磁场控制法。

磁场控制法控制磁通,其控制功率虽然较小,但是低速时受到磁场和磁极饱和的限制,高速时受到换向火花和换向器结构强度的限制,而且由于励磁线圈电感较大,动态响应较差,所以在工业生产过程中常用的方法是电枢控制法。

电枢控制法在励磁电压不变的情况下,把控制电压信号加到电机的电枢上来控制电机的转速。

传统的改变电压方法是在电枢回路中串连一个电阻,通过调节电阻改变电枢电压,达到调速的目的,这种方法效率低,平滑度差,由于串联电阻上要消耗电功率,因而经济效益低,而且转速越慢,能耗越大。

随着电力电子的发展,出现了许多新的电枢电压控制法。

如:由交流电源供电,使用晶闸管整流器进行相控调压;脉宽调制(PWM)调压等。

调压调速法具有平滑度高、能耗低、精度高等优点,在工业生产中广泛使用,其中PWM应用更广泛。

脉宽调速利用一个固定的频率来控制电源的接通或断开,并通过改变一个周期内“接通”和“断开”时间的长短,即改变直流电机电枢上的电压的“占空比”来改变平均电.压的大小,从而控制电动机的转速,因此,PWM又被称为“开关驱动装置”。

如果电机始终接通电源是,电机转速最大为Vmax,占空比为D=t1/t,则电机的平均转速:Vd=Vmax*D,可见只要改变占空比D,就可以调整电机的速度。

平均转速Vd与占空比的函数曲线近似为直线。

基于单片机的直流电机PWM调速控制系统的设计

基于单片机的直流电机PWM调速控制系统的设计

基于单片机的直流电机PWM调速控制系统的设计第一章:前言1.1前言:直流电机的定义:将直流电能转换成机械能(直流电动机)或将机械能转换成直流电能(直流发电机)的旋转电机。

近年来,随着科技的进步,直流电机得到了越来越广泛的应用,直流具有优良的调速特性,调速平滑,方便,调速范围广,过载能力强,能承受频繁的冲击负载,可实现频繁的无极快速起动、制动和反转,需要满足生产过程自动化系统各种不同的特殊要求,从而对直流电机提出了较高的要求,改变电枢回路电阻调速、改变电压调速等技术已远远不能满足现代科技的要求,这是通过PWM方式控制直流电机调速的方法就应运而生。

采取传统的调速系统主要有以下的缺陷:模拟电路容易随时间飘移,会产生一些不必要的热损耗,以及对噪声敏感等。

而用PWM技术后,避免上述的缺点,实现了数字式控制模拟信号,可以大幅度减低成本和功耗。

并且PWM调速系统开关频率较高,仅靠电枢电感的滤波作用就可以获得平滑的直流电流,低速特性好;同时,开关频率高,快响应特性好,动态抗干扰能力强,可获很宽的频带;开关元件只需工作在开关状态,主电路损耗小,装置的效率高,具有节约空间、经济好等特点。

随着我国经济和文化事业的发展,在很多场合,都要求有直流电机PWM调速系统来进行调速,诸如汽车行业中的各种风扇、刮水器、喷水泵、熄火器、反视镜、宾馆中的自动门、自动门锁、自动窗帘、自动给水系统、柔巾机、导弹、火炮、人造卫星、宇宙飞船、舰艇、飞机、坦克、火箭、雷达、战车等场合。

1.2本设计任务:任务: 单片机为控制核心的直流电机PWM调速控制系统设计的主要内容以及技术参数:功能主要包括:1)直流电机的正转;2)直流电机的反转;3)直流电机的加速;4)直流电机的减速;5)直流电机的转速在数码管上显示;6)直流电机的启动;7)直流电机的停止;第二章:总体设计方案总体设计方案的硬件部分详细框图如图一所示。

示数码管显PWM单片机按键控制电机驱动基于单片机的直流电机PWM调速控制系统的设计键盘向单片机输入相应控制指令,由单片机通过P1.0与P1.1其中一口输出与转速相应的PWM脉冲,另一口输出低电平,经过信号放大、光耦传递,驱动H型桥式电动机控制电路,实现电动机转向与转速的控制。

基于STM32的直流电机PID调速系统设计

基于STM32的直流电机PID调速系统设计

基于STM32的直流电机PID调速系统设计一、引言直流电机调速系统是现代工业自动化系统中最常用的电机调速方式之一、它具有调速范围广、响应快、控制精度高等优点,被广泛应用于电力、机械、石化、轻工等领域。

本文将介绍基于STM32单片机的直流电机PID调速系统的设计。

二、系统设计直流电机PID调速系统主要由STM32单片机、直流电机、编码器、输入和输出接口电路等组成。

系统的设计流程如下:1.采集反馈信号设计中应通过编码器等方式采集到反馈信号,反应电机的转速。

采集到的脉冲信号经过处理后输入给STM32单片机。

2.设计PID算法PID调节器是一种经典的控制算法,由比例(P)、积分(I)和微分(D)三个部分组成,可以根据实际情况调整各个参数的大小。

PID算法的目标是根据反馈信号使电机达到期望的转速。

3.控制电机速度根据PID算法计算出的偏差值,通过调节电机的占空比,实现对电机速度的控制。

当偏差较大时,增大占空比以加速电机;当偏差较小时,减小占空比以减速电机。

4.界面设计与控制设计一个人机交互界面,通过该界面可以设置电机的期望转速以及其他参数。

通过输入接口电路将相应的信号输入给STM32单片机,实现对电机的远程控制。

5.系统保护在电机工作过程中,需要保护电机,防止出现过流、超速等问题。

设计一个保护系统,能够监测电机的工作状态,在出现异常情况时及时停止电机工作,避免损坏。

6.调试与优化对系统进行调试,通过实验和测试优化PID参数,以获得更好的控制效果。

三、系统实现系统实现时,首先需要进行硬件设计,包括STM32单片机的选型与外围电路设计,以及输入输出接口电路的设计。

根据实际情况选择合适的编码器和直流电机。

接着,编写相应的软件代码。

根据系统设计流程中所述,编写STM32单片机的控制程序,包括采集反馈信号、PID算法实现、控制电机速度等。

最后,进行系统调试与优化。

根据系统的实际情况,调试PID参数,通过实验和测试验证系统的性能,并进行优化,以实现较好的控制效果。

基于单片机的直流电机控制系统设计的文献综述

基于单片机的直流电机控制系统设计的文献综述

基于单片机的直流电机控制系统设计的文献综述随着科技的不断发展,单片机的应用越来越广泛。

在电机控制领域,单片机的应用也得到了广泛的关注。

本文综述了基于单片机的直流电机控制系统设计的相关文献,包括控制系统的设计、控制算法的选择、硬件设计和软件设计等方面。

通过对文献的分析,总结出了单片机在直流电机控制系统中的优点和缺点,并展望了未来的发展方向。

关键词:单片机、直流电机控制、控制算法、硬件设计、软件设计一、引言直流电机是一种常见的电动机,广泛应用于各种机械设备中。

在控制直流电机时,需要使用控制系统来实现对电机的转速、转向等参数的控制。

随着科技的不断发展,单片机的应用越来越广泛。

在直流电机控制领域,单片机的应用也得到了广泛的关注。

本文综述了基于单片机的直流电机控制系统设计的相关文献。

首先介绍了控制系统的设计,包括控制算法的选择、硬件设计和软件设计等方面。

然后对文献进行了分析,总结出了单片机在直流电机控制系统中的优点和缺点。

最后,展望了未来的发展方向。

二、控制系统的设计1. 控制算法的选择直流电机控制系统中常用的控制算法有PID算法、模糊控制算法和神经网络控制算法等。

PID算法是一种经典的控制算法,具有简单、易于实现等特点。

模糊控制算法则能够应对非线性系统的控制问题,具有较强的鲁棒性。

神经网络控制算法则能够学习系统的动态特性,适用于非线性系统的控制。

2. 硬件设计直流电机控制系统的硬件设计包括电机驱动电路、传感器接口电路、单片机接口电路等。

电机驱动电路是直流电机控制系统中最关键的部分,常用的驱动电路包括H桥驱动电路、MOSFET驱动电路等。

传感器接口电路则用于接收电机的参数信号,常用的传感器包括编码器、霍尔传感器等。

单片机接口电路则用于连接单片机和其他模块,常用的接口包括串口、I2C接口等。

3. 软件设计直流电机控制系统的软件设计包括单片机程序设计和上位机程序设计两部分。

单片机程序设计主要是实现控制算法和控制信号的生成,并与硬件电路进行交互。

基于STM32单片机的直流电机调速系统设计

基于STM32单片机的直流电机调速系统设计

基于STM32单片机的直流电机调速系统设计直流电机调速系统是电子控制技术在实际生产中的应用之一,利用数字信号处理器(DSP)和单片机(MCU)等嵌入式系统,通过变换输出电压、调整周期和频率等方式实现对电机运行状态的控制。

本文将介绍一种基于STM32单片机的直流电机调速系统设计方案。

1. 系统设计方案系统设计主要分为硬件方案和软件方案两部分。

1.1 硬件方案设计:硬件主要包括STM32单片机模块、电机模块、电源模块、继电器模块。

STM32单片机模块采用STM32F103C8T6芯片,拥有高性能、低功耗、低成本和丰富的外设资源,为系统开发提供了最佳解决方案。

电机模块采用直流电机,电源模块采用可调电源模块,可以输出0-36V的电压。

继电器模块用于控制电机正反转。

1.2 软件方案设计:软件设计主要涉及编程语言和控制算法的选择。

控制算法采用PID控制算法,以实现对电流、转速、转矩等参数的调节。

2. 系统实现过程2.1 电机驱动设计:电机驱动采用PWM调制技术,控制电机转速。

具体过程为:由程序控制产生一个PWM波,通过适当调整占空比,使电机输出电压和电机转速成正比关系。

2.2 PID控制算法设计:PID控制器通过测量实际变量值及其与期望值之间的误差,并将其输入到控制系统中进行计算,以调节输出信号。

在本系统中,设置了三个参数Kp、Ki、Kd分别对应比例、积分和微分系数。

根据实际情况,分别调整这三个参数,可以让电机达到稳定的运行状态。

2.3 系统运行流程:启动系统后,首先进行硬件模块的初始化,然后进入主函数,通过读取控制输入参数,比如速度、电流等参数,交由PID控制器计算得出PWM输出信号,送给电机驱动模块,以产生不同的控制效果。

同时,还可以通过设置按钮来切换电机正反转方向,以便实现更精确的控制效果。

3. 总结本系统设计基于STM32单片机,采用PWM驱动技术和PID 控制算法,实现了对直流电机转速、转矩、电流等运行状态参数的精确调节。

基于51单片机的直流电机PWM调速控制系统设计

基于51单片机的直流电机PWM调速控制系统设计

基于51单片机的直流电机PWM调速控制系统设计I摘要本文主要研究了利用MCS-51系列单片机控制PWM信号从而实现对直流电机转速进行控制的方法。

本文中采用了三极管组成了PWM信号的驱动系统,并且对PWM信号的原理、产生方法以及如何通过软件编程对PWM信号占空比进行调节,从而控制其输入信号波形等均作了详细的阐述。

另外,本系统中使用了霍尔元件对直流电机的转速进行测量,经过处理后,将测量值送到液晶显示出来。

关键词:PWM信号,霍尔元件,液晶显示,直流电动机II目录目录 (III)1 引言 (1)1.1 课题背景 (1)1.1.2 开发背景 (1)1.1.3 选题意义 (2)1.2 研究方法及调速原理 (2)1.2.1 直流调速系统实现方式 (4)1.2.2 控制程序的设计 (5)2 系统硬件电路的设计 (6)2.1 系统总体设计框图及单片机系统的设计 (6)2.2 STC89C51单片机简介 (6)2.2.1 STC89C51单片机的组成 (6)2.2.2 CPU及部分部件的作用和功能 (6)2.2.3 STC89C51单片机引脚图 (7)2.2.4 STC89C51引脚功能 (7)3 PWM信号发生电路设计 (10)3.1 PWM的基本原理 (10)3.2 系统的硬件电路设计与分析 (10)3.3 H桥的驱动电路设计方案 (11)5 主电路设计 (13)5.1 单片机最小系统 (13)5.2 液晶电路 (13)5.2.1 LCD 1602功能介绍 (14)5.2.2 LCD 1602性能参数 (15)5.2.3 LCD 1602与单片机连接 (17)5.2.4 LCD 1602的显示与控制命令 (18)5.3 按键电路 (19)5.4 霍尔元件电路 (20)III5.4.1 A3144霍尔开关的工作原理及应用说明 (21)5.4.2 霍尔传感器测量原理 (22)6 系统功能调试 (23)总结 (24)致谢 (25)参考文献 (26)IV1 引言1.1 课题背景1.1.2 开发背景在现代电子产品中,自动控制系统,电子仪器设备、家用电器、电子玩具等等方面,直流电机都得到了广泛的应用。

基于单片机设计直流电机控制系统

基于单片机设计直流电机控制系统

基于单片机设计直流电机控制系统一、本文概述本文将详细介绍基于单片机的直流电机控制系统的设计过程。

随着科技的不断发展,电机控制在许多领域,如工业自动化、机器人技术、家用电器等,都发挥着重要的作用。

单片机作为一种高效、可靠的微控制器,具有集成度高、功耗低、控制精度高等优点,因此,基于单片机的直流电机控制系统设计成为了研究的热点。

本文将首先介绍直流电机的基本原理和控制方式,然后详细阐述如何利用单片机实现直流电机的精确控制。

在设计中,我们将考虑电机的启动、停止、正反转、调速等基本功能,并探讨如何通过编程实现这些功能。

我们还将讨论系统的硬件设计和软件设计,包括单片机的选型、电机的驱动电路、传感器的选择以及控制算法的实现等。

通过本文的阐述,读者将能够深入了解基于单片机的直流电机控制系统的设计过程,掌握相关的理论知识和实践技能,为实际应用提供有益的参考。

二、直流电机基本原理及特性直流电机是一种将电能转换为机械能的装置,其基本原理基于安培环路定律和电磁感应定律。

直流电机主要由定子、转子、电刷和换向器等部分组成。

定子通常由电磁铁构成,用于产生磁场;转子则是一个带有绕组的圆柱形结构,当通电时,在定子的磁场作用下产生转矩,从而使电机旋转。

调速性能好:通过改变电枢电压、磁场强度或电枢回路中的电阻,可以有效地调节直流电机的转速。

这使得直流电机在需要精确控制转速的场合,如精密机械、自动化设备中得到广泛应用。

启动转矩大:直流电机在启动瞬间,由于电枢电流较大,可以产生较大的启动转矩,使其具有良好的启动性能。

良好的调速动态性能:直流电机在调速过程中,转矩和转速的动态响应较快,能够满足一些对动态性能要求较高的应用需求。

控制方便:直流电机的控制相对简单,可以通过改变输入电压、电流或磁场强度来实现对电机转速和转向的控制。

通过改变电刷的位置,还可以实现电机的正反转切换。

然而,直流电机也存在一些局限性,如结构复杂、维护成本较高以及电刷和换向器易磨损等问题。

基于单片机的直流电机控制系统设计的文献综述

基于单片机的直流电机控制系统设计的文献综述

基于单片机的直流电机控制系统设计的文献综述随着科技的不断发展,单片机技术在电机控制系统中的应用越来越普遍。

本文综述了基于单片机的直流电机控制系统的设计与实现,包括硬件设计、软件设计、电机控制策略等方面。

结果表明,基于单片机的直流电机控制系统具有控制精度高、响应速度快、可靠性强等优点,是一种高效、实用的电机控制方法。

关键词:单片机;直流电机;控制系统;硬件设计;软件设计;控制策略一、引言直流电机广泛应用于工业生产、家电、交通运输等领域,其控制系统的设计和实现对于提高电机的性能和效率具有重要意义。

随着单片机技术的不断发展,基于单片机的电机控制系统成为了研究热点。

本文综述了基于单片机的直流电机控制系统的研究进展和应用现状,以期为相关研究提供参考和借鉴。

二、硬件设计基于单片机的直流电机控制系统的硬件设计包括电机驱动模块、传感器模块、单片机模块和电源模块等部分。

其中,电机驱动模块是整个系统的核心部分,其设计直接影响了系统的性能和稳定性。

电机驱动模块的设计需要考虑电机的电压、电流、转速等参数,以及驱动电路的稳定性和可靠性。

常用的电机驱动器包括PWM调速器、H桥驱动器、单向驱动器等。

另外,传感器模块用于检测电机的位置、速度、转向等信息,常用的传感器包括霍尔传感器、编码器、光电传感器等。

三、软件设计基于单片机的直流电机控制系统的软件设计包括控制算法、驱动程序和用户界面等部分。

其中,控制算法是整个系统的核心部分,其设计直接影响了系统的控制精度和响应速度。

常用的控制算法包括PID控制算法、模糊控制算法、神经网络控制算法等。

驱动程序用于实现电机控制算法,包括PWM输出、速度控制、位置控制等功能。

用户界面用于显示电机的运行状态和控制参数,包括LCD显示屏、LED指示灯等。

四、电机控制策略基于单片机的直流电机控制系统的电机控制策略包括速度控制、位置控制、转向控制等方面。

其中,速度控制是电机控制的基本功能,其目的是保持电机在指定的转速范围内运转。

基于单片机的直流电机控制系统设计

基于单片机的直流电机控制系统设计

基于单片机的直流电机控制系统设计一、设计目标设计一个基于单片机的直流电机控制系统,能够实现对直流电机的速度和方向的控制。

二、设计方案1.硬件设计(1)电源电路:通过适配器将交流电转换为直流电以供系统使用。

(2)单片机选择:选择一款适合该应用的单片机,如STC89C52系列。

(3)直流电机驱动电路:使用H桥驱动电路来控制直流电机的速度和方向。

(4)编码器:使用编码器来进行速度反馈,可以根据反馈信号来调整电机的转速。

2.软件设计(1)系统初始化:对单片机进行初始化配置,包括IO口的设置、定时器的配置等。

(2)速度控制算法:设计一个控制算法,根据期望速度和实际速度的差距来调整PWM波的占空比,从而控制电机转速。

(3)方向控制算法:设计一个方向控制算法,通过改变H桥电路的输入信号来改变电机的转向。

(4)编码器反馈处理:读取编码器的信号,计算出实际速度,并与期望速度进行比较。

(5)用户接口设计:可以通过按键或者外部PWM输入调节期望速度和方向,实现用户对电机的控制。

三、系统实现1.硬件实现根据硬件设计方案,按照电路原理图进行电路连接和焊接。

确保电源电路正常工作,单片机可以正常工作,H桥驱动电路可以正常控制电机的转向和速度。

连接编码器并确保能够正常读取速度反馈信号。

2.软件实现(1)编写单片机初始化程序,进行必要的配置。

(2)编写速度控制算法,根据期望速度和实际速度的差距来调整PWM波的占空比。

(3)编写方向控制算法,根据用户输入的方向来改变H桥电路的输入信号。

(4)编写编码器反馈处理程序,读取编码器的信号并计算实际速度。

(5)编写用户接口程序,可以通过按键或者外部PWM输入来调节期望速度和方向。

四、系统测试与优化1.对系统进行功能测试,确保可以通过用户接口控制电机的转向和速度。

2.对编码器反馈进行测试,验证实际速度计算的准确性。

3.对速度和方向控制进行测试,确保系统能够按照期望速度和方向进行控制。

4.如果发现问题,对系统进行优化和修改,改进算法和调整参数。

基于单片机的直流电机控制电路设计

基于单片机的直流电机控制电路设计

基于单片机的直流电机控制电路设计1.电机驱动电路:电机驱动电路用于控制直流电机的启停、正反转和速度调节。

常见的驱动电路有H桥电路和PWM调速电路。

-H桥电路:H桥电路由四个开关管组成,可以控制电流的流动方向,从而实现正反转功能。

在单片机的控制下,通过控制开关管的导通与断开,可以实现电机的正转和反转。

-PWM调速电路:PWM调速电路通过控制脉冲宽度来调节电机的速度。

单片机产生一个固定频率的PWM信号,通过改变脉冲宽度的占空比,控制电机的速度。

占空比越大,电机转动的速度越快。

2.单片机控制电路:单片机控制电路主要实现对电机的控制和监测功能。

通过单片机的IO口输出控制信号,实现电机的启停、正反转和调速。

同时,通过AD转换接口可以实现对电机的速度、电流等参数的监控。

3.电源电路:电源电路为整个系统提供稳定的直流电源。

常见的电源电路有开关电源和线性电源。

-开关电源:开关电源通过开关器件的开关操作,实现对输入电压的调整,从而输出稳定的直流电压。

开关电源具有体积小、效率高、稳定性好等优点,是直流电机控制电路中常用的电源方式。

-线性电源:线性电源通过线性调节器件,将输入的交流电压转换为稳定的直流电压。

线性电源具有设计简单、成本低等优点,但效率较低,一般用于对电流要求较低的应用场景。

总结:基于单片机的直流电机控制电路通过驱动电路,实现对电机的启停、正反转和速度调节。

通过单片机控制电路,实现对电机的控制和监测功能。

同时,为了保证电路的正常工作,需要提供稳定的直流电源。

以上是一个基本的电机控制电路设计,具体电路设计和参数设置需根据具体的应用场景和要求来确定。

基于单片机的直流电机控制风扇系统设计

基于单片机的直流电机控制风扇系统设计

基于单片机的直流电机控制风扇系统设计摘要:本文针对直流电机控制的风扇系统设计,采用单片机来实现控制功能。

本文首先介绍了直流电机的控制原理和常用的驱动方式,然后介绍了单片机的选择和控制算法设计,最后给出了具体的硬件设计和软件实现方案。

关键词:直流电机控制、单片机、驱动方式、算法设计、系统设计一、引言随着空调价格的下降和生活水平的提高,越来越多的人开始使用空调来调节室温。

但是空调的能耗较高,而且对环境的影响较大。

与之相比,风扇具有价格低廉、能耗小、使用方便等优点,在夏季调节室温时也是一种不错的选择。

为了提高风扇的使用效率和便利性,本文针对直流电机控制的风扇系统进行设计。

通过单片机实现对风扇的控制,可以实现多种控制方式和控制算法,增加风扇系统的智能化程度。

二、直流电机控制原理及驱动方式直流电机是一种最基本的电动机,它的转速和输出扭矩都与电机的电流成正比。

在直流电机控制中,常用的驱动方式有PWM调速和H 桥驱动。

PWM调速是通过改变占空比来改变电机的输出扭矩和转速。

在PWM调速中,需要将电机的速度信号反馈给单片机,并通过调整PWM输出的占空比来实现速度控制。

H桥驱动则是通过开关控制来改变电机正反转和速度。

在H桥驱动中,需要将电机的正反转信号和调速信号反馈给单片机,并通过控制H桥的开关状态来实现电机的控制。

三、单片机的选择和控制算法设计单片机的选择需根据具体控制要求来确定。

在本文中,采用STC单片机,其优点是有完善的周边设备和开发工具,可以快速完成控制算法设计和实现。

在控制算法设计中,需要考虑到风扇的启动特性和负载变化对电机转速的影响。

本文采用PID控制算法,实现对风扇转速的精确控制。

在控制过程中,需要对风扇的转速反馈信号进行滤波处理,避免由于噪声和干扰带来的控制误差。

四、系统设计在硬件设计中,需要选用适当的功率放大器和H桥驱动芯片,并根据调速和控制信号的特点来设计滤波器和保护电路。

在软件实现中,需要编写一系列的控制程序和驱动程序,通过串口通信和PC机进行交互,实现对风扇的智能控制和监测。

基于单片机的无刷直流电机控制系统设计毕业设计

基于单片机的无刷直流电机控制系统设计毕业设计

基于单片机的无刷直流电机控制系统设计毕业设计一、引言哎呀,小伙伴们,今天我们来聊聊一个非常有趣的话题,那就是基于单片机的无刷直流电机控制系统设计毕业设计。

这个话题可是关系到我们的未来哦,所以大家一定要认真听讲,不要走神哦!让我们来简单了解一下什么是无刷直流电机。

哎呀,别看这个词挺高大上的,其实就是一种不用刷子的直流电机。

它的特点是效率高、噪音小、寿命长,所以在很多领域都有广泛的应用,比如电动车、空调、风扇等等。

那么,如何设计一个基于单片机的无刷直流电机控制系统呢?这可是一个相当复杂的问题。

不过没关系,我们会一步一步地来讲解,让大家轻松掌握这个技能。

二、单片机的基本知识我们要了解一些单片机的基本知识。

哎呀,单片机可不是什么神秘的东西,它就是一种集成了处理器、存储器和输入输出接口的微型计算机。

它的功能可强大了,可以控制各种外设,实现各种各样的功能。

现在市面上有很多种单片机,比如51系列、ARM系列、AVR系列等等。

它们的性能和价格都有所不同,我们要根据自己的需求来选择合适的单片机。

三、无刷直流电机的基本原理接下来,我们要了解无刷直流电机的基本原理。

哎呀,这个原理可不像我们平时看到的旋转木马那么简单哦。

无刷直流电机是由定子、转子和霍尔传感器组成的。

定子上有很多槽,转子上有永磁体。

当电流通过定子和转子时,就会产生磁场,从而使转子旋转。

霍尔传感器的作用是检测转子的位置,从而控制单片机的输出信号,实现对电机的控制。

四、基于单片机的无刷直流电机控制系统设计现在我们已经了解了单片机和无刷直流电机的基本知识,接下来我们就要开始设计我们的控制系统了。

哎呀,这个过程可是个大工程哦,需要我们分步骤来进行。

我们需要选择合适的单片机。

根据前面的介绍,我们可以选择51系列、ARM系列或AVR系列的单片机。

然后,我们需要编写程序来控制单片机的工作。

这个程序要包括初始化、定时器设置、PWM波形生成等功能。

接下来,我们需要连接电源、定子和转子。

基于单片机的PWM直流电机调速系统设计论文(附电路图、程序清单)

基于单片机的PWM直流电机调速系统设计论文(附电路图、程序清单)

图 2.2 直流电机原理图
2.2 直流电机的调速方法
根据直流电机的基本原理,由感应电势、电磁转矩以及机械特性方程式可知,直 流电动机的调速方法有三种: (1)调节电枢供电电压 U。改变电枢电压主要是从额定电压往下降低电枢电压, 从电动机额定转速向下变速,属恒转矩调速方法。对于要求在一定范围内无级平滑调 速的系统来说,这种方法最好。 大容量可调直流电源。 (2)改变电动机主磁通 。改变磁通可以实现无级平滑调速,但只能减弱磁通进 变化时间 变化遇到的时间常数较小,能快速响应,但是需要
第1章 引 1.1 概况

现代工业的电力拖动一般都要求局部或全部的自动化,因此必然要与各种控制元 件组成的自动控制系统联系起来,而电力拖动则可视为自动化电力拖动系统的简称。 在这一系统中可对生产机械进行自动控制。 随着近代电力电子技术和计算机技术的发展以及现代控制理论的应用,自动化电 力拖动正朝着计算机控制的生产过程自动化的方向迈进。以达到高速、优质、高效率 地生产。在大多数综合自动化系统中,自动化的电力拖动系统仍然是不可缺少的组成 部分。另外,低成本自动化技术与设备的开发,越来越引起国内外的注意。特别对于 小型企业,应用适用技术的设备,不仅有益于获得经济效益,而且能提高生产率、可 靠性与柔性,还有易于应用的优点。自动化的电力拖动系统更是低成本自动化系统的 重要组成部分。 在如今的现实生活中,自动化控制系统已在各行各业得到广泛的应用和发展,其 中自动调速系统的应用则起着尤为重要的作用。虽然直流电机不如交流电机那样结构 简单、价格便宜、制造方便、容易维护,但是它具有良好的起、制动性能,宜于在广 泛的范围内平滑调速,所以直流调速系统至今仍是自动调速系统中的主要形式。现在 电动机的控制从简单走向复杂,并逐渐成熟成为主流。其应用领域极为广泛,例如: 军事和宇航方面的雷达天线、火炮瞄准、惯性导航等的控制;工业方面的数控机床、 工业机器人、印刷机械等设备的控制;计算机外围设备和办公设备中的打印机、传真 机、复印机、扫描仪等的控制;音像设备和家用电器中的录音机、数码相机、洗衣机、 空调等的控制。 随着电力电子技术的发展, 开关速度更快、 控制更容易的全控型功率器件MOSFET 和IGBT成为主流,脉宽调制技术表现出较大的优越性:主电路线路简单,需要用的功 率元件少;开关频率高,电流容易连续,谐波少,电机损耗和发热都较小;低速性能 好,稳速精度高,因而调速范围宽;系统快速响应性能好,动态抗扰能力强;主电路 元件工作在开关状态,导通损耗小,装置效率较高;近年来,微型计算机技术发展速

基于51单片机控制直流电机的设计

基于51单片机控制直流电机的设计

基于51单片机控制直流电机的设计设计目标:1.实现电机的正反转控制。

2.实现电机的速度控制。

3.实现电机的位置控制。

硬件设计:1.51单片机控制器:选择一款性能较好的51单片机,如STC89C522.直流电机:选择合适的直流电机,根据设计需求确定功率和转速。

3.驱动电路:为直流电机提供合适的驱动电路,可以选择H桥驱动芯片,如L298N。

4.传感器:根据设计需求,选用合适的传感器,如编码器、讯号灯等。

软件设计:1.系统初始化:对51单片机进行初始化设置,包括端口方向、定时器等配置。

2.速度控制:设计PID算法,实现对直流电机的速度控制。

通过读取传感器反馈的速度信息,与设定值进行比较,输出控制信号控制电机速度。

3.正反转控制:设计控制程序,读取输入信号控制直流电机的正反转。

可以通过输入按键、外部信号或者串口通信来实现控制。

4.位置控制:通过编码器等传感器读取直流电机的位置信息,与设定值进行比较,输出控制信号控制电机运动到目标位置。

5.通信功能:如果需要与其他设备进行通信,可以使用串口、蓝牙等通信模块实现数据传输。

设计步骤:1.确定设计需求:根据具体应用场景,确定控制电机的功能需求,包括速度控制、正反转控制和位置控制等。

2.硬件搭建:按照设计需求,选取合适的电机、驱动电路和传感器,并进行搭建和连接。

3.软件开发:根据设计目标,编写相应的程序代码,实现功能要求。

5.优化改进:根据实际使用情况,对系统进行优化改进,提高系统的性能和稳定性。

总结:基于51单片机控制直流电机的设计是一种常见的嵌入式系统开发方案。

通过合理选择硬件和设计软件,可以实现控制电机的速度、方向和位置等功能。

在实际应用中,还可以根据具体需求进行优化改进,使系统更加稳定和可靠。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.引言1.1 概况在如今的现实生活中,自动化控制系统已在各行各业得到广泛的应用和发展,其中自动调速系统的应用则起着尤为重要的作用。

虽然直流电机不如交流电机那样结构简单、价格便宜、制造方便、容易维护,但是它具有良好的起、制动性能,宜于在广泛的范围内平滑调速,所以直流调速系统至今仍是自动调速系统中的主要形式。

现在电动机的控制从简单走向复杂,并逐渐成熟成为主流。

其应用领域极为广泛,例如:军事和宇航方面的雷达天线、火炮瞄准、惯性导航等的控制;工业方面的数控机床、工业机器人、印刷机械等设备的控制;计算机外围设备和办公设备中的打印机、传真机、复印机、扫描仪等的控制;音像设备和家用电器中的录音机、数码相机、洗衣机、空调等的控制。

随着电力电子技术的发展,开关速度更快、控制更容易的全控型功率器件MOSFET和IGBT成为主流,脉宽调制技术表现出较大的优越性:主电路线路简单,需要用的功率元件少;开关频率高,电流容易连续,谐波少,电机损耗和发热都较小;低速性能好,稳速精度高,因而调速范围宽;系统快速响应性能好,动态抗扰能力强;主电路元件工作在开关状态,导通损耗小,装置效率较高;近年来,微型计算机技术发展速度飞快,以计算机为主导的信息技术作为一崭新的生产力,正向社会的各个领域渗透,直流调速系统向数字化方向发展成为趋势。

1.2 设计目的和意义本设计以AT89C51单片机为核心,系统主电路采用大功率GTR为开关器件、H桥单极式电路为功率放大电路的结构,以键盘作为输入达到控制直流电机的启停、速度和方向,完成了基本要求和发挥部分的要求。

在设计中,采用了PWM技术对电机进行控制,通过对占空比的计算达到精确调速的目的。

本文介绍了直流电机的工作原理和数学模型、脉宽调制(PWM)控制原理和H桥电路基本原理设计了驱动电路的总体结构,根据模型,利用PROTEUS软件对各个子电路及整体电路进行了仿真,确保设计的电路能够满足性能指标要求,并给出了仿真结果。

2.直流电机控制系统概述2.1 直流电机的工作原理直流电动机,多年来一直用作基本的换能器。

绝大多数的直流电动机都是由电磁力形成一种方向不变的转矩而实现连续的旋转运动的。

图2-1为直流电机的物理模型图,其中,固定部分(定子)由磁铁(称为主磁极)和电刷组成;转动部分(转子)由环形铁心和绕在环形铁心上的绕组组成,定子与转子之间有一气隙。

在电枢铁心上放置了由A和B两根导体连成的电枢线圈,线圈的首端和末端分别连到两个圆弧形的铜片上,此铜片称为换向片。

换向片之间互相绝缘,由换向片构成的整体称为换向器。

换向器固定在转轴上,换向片与转轴之间亦互相绝缘。

在换向片上放置着一对固定不动的电刷B1和B2,当电枢旋转时,电枢线圈通过换向器和电刷与外电路接通。

图2.1直流电机的物理模型图直流电动机的工作原理如图2-2所示。

给两个电刷加上直流电源,如图2-2(a)所示,有直流电流从电刷A流入,经过线圈abcd,从电刷B流出,根据电磁力定律,载流导体ab和cd收到电磁力的作用,其方向可由左手定则判定,两段导体受到的力形成了一个转矩,使得转子逆时针转动;如果转子转到图2-2(b)所示的位置,电刷A和换向片2接触,电刷B和换向片1接触,直流电流从电刷A 流入,在线圈中的流动方向是dcba,从电刷B流出。

此时载流导体ab和cd受到电磁力的作用方向同样可由左手定则判定,它们产生的转矩仍然使得转子逆时针转动。

电枢一经转动,由于换向器配合电刷对电流的换向作用,直流电流交替地由线圈边ab和cd流入,使线圈边只要处于N极下,其中通过电流的方向总是由电刷A流入的方向,而在S极下时,总是从电刷B流出的方向,这就保证了每个磁极下线圈边中的电流始终是一个方向,这样的结构,就可使电动机连续旋转。

图2.2直流电机原理图2.2 直流电机的调速方法采用晶闸管的直流斩波器基本原理与整流电路不同的是,晶闸管不受相位控制,而是工作在开关状态。

当晶闸管被触发导通时,电源电压加到电动机上,当晶闸管关断时,直流电源与电动机断开,电动机经二极管续流,两端电压接近于零。

脉冲宽度调制(Pulse Width Modulation),简称PWM。

脉冲周期不变,只改变晶闸管的导通时间,即通过改变脉冲宽度来进行直流调速。

2.3 H桥电机驱动电路采用PWM进行直流电机调速,其实就是把波形作用于电机驱动电路的使用端,因此有必要对电机驱动电路进行介绍。

图2.3 H桥式电机驱动电路上图所示为一个典型的直流电机控制电路。

电路得名于“H桥式驱动电路”是因为它的形状酷似字母H。

4个三极管组成H的4条垂直腿,而电机就是H中的横杠(上图及随后的两个图都只是示意图,而不是完整的电路图)。

电路中,H 桥式电机驱动电路包括4个三极管和一个电机。

要使电机运转,必须导通对角线上的一对三极管。

根据不同三极管对的导通情况,电流可能会从左至右或从右至左流过电机,从而控制电机的转向。

图2.4 H桥式驱动电机顺时针转动如上图所示,当Q1管和Q4管导通时,电流就从电源正极经Q1从左至右穿过电机,然后再经Q4回到电源负极。

按图中电流箭头所示,该流向的电流将驱动电机顺时针转动。

当三极管Q1和Q4导通时,电流将从左至右流过电机,从而驱动电机按特定方向转动(电机周围的箭头指示为顺时针方向)。

当三极管Q2和Q3导通时,电流将从右至左流过电机,从而驱动电机沿另一方向转动(电机周围的箭头表示为逆时针方向)。

图2.5 H桥式驱动电机逆时针转动3.方案论证和选择型,额定功率1.1KW,额定电压220V,额本次设计选用的电动机型号Z2-32定电流6.58A,额定转速1000r/min, 励磁电压220V,运转方式连续。

3.1 稳压电源的选择稳压电源的设计可以通过几种方法实现,根据具体的设计要求,通过比较论证确定采用以下方案:采用模拟的分立元件,通过电源变压器、整流滤波电路以及稳压电路,实现稳压电源稳定输出+5V、±12V、+24V并能可调输出 1.2~24电压。

如图1.1所示。

但由于模拟分立元件的分散性较大,各电阻电容之间的影响很大,因此所设计的指标不高,而且使用的器件较多,连接复杂,体积较大,供耗也大,给焊接带来了麻烦,同时焊点和线路较多,使成品的稳定性和精度也受到影响。

图3.1 直流稳压电源基本组成框图由上可知,该方案是利用纯硬件来实现其功能的,采用软硬件结合来实现的。

成本低,性价比高;但是方案的稳定性和精度不高,设计人员可以充分利用VHDL 硬件描述语言方便的编程,提高开发效率,缩短研发周期,易于进行功能的扩展,实现方法灵活,调试方便,修改容易。

但考虑到稳压电源的实用性,虽然方案的精度和稳定度不及用FPGA 来实现的精度和稳定度高,但是用于做稳压电源已足够了。

3.2 电机调速控制模块采用由三极管组成的H 型PWM 电路。

用单片机控制三极管使之工作在占空比可调的开关状态,精确调整电动机转速。

这种电路由于工作在管子的饱和截止模式下,效率非常高;H 型电路保证了可以简单地实现转速和方向的控制;电子开关的速度很快,稳定性也极佳,是一种广泛采用的PWM 调速技术。

该方案调速特性优良、调整平滑、调速范围广、过载能力大,因此采用该方案。

3.3 PWM 调速工作方式调速方式有双极性跟单极性两种,本设计采用单极性工作制,因为单极性工作制电压波开中的交流成分比双极性工作制的小,其电流的最大波动也比双极性工作制的小。

单极性工作制是单片机控制口一端置低电平,另一端输出PWM 信号,两口的输出切换和对PWM 的占空比调节决定电动机的转向和转速。

+5v +12v +24v-12v3.4 PWM调脉宽方式调脉宽的方式有三种:定频调宽、定宽调频和调宽调频。

我们采用了定频调宽方式,因为采用这种方式,电动机在运转时比较稳定;并且在采用单片机产生PWM脉冲的软件实现上比较方便。

3.5 PWM软件实现方式采用定时器做为脉宽控制的定时方式,这一方式产生的脉冲宽度极其精确,误差只在几个us。

4.系统硬件电路设计硬件电路设计框图如下图所示,硬件电路结构初步设想由以下4部分组成:时钟电路、复位电路、单片机、驱动电路。

驱动电路部分采用了以GTR为可控开关元件、H桥电路为功率放大电路所构成的电路结构。

控制部分采用汇编语言编程控制,AT89C51芯片的定时器产生PWM脉冲波形,通过调节波形的宽度来控制H电路中的GTR通断时间,便能够实现对电机速度的控制。

根据硬件系统电路设计框图,对各部分模块的原理进行分析,编写个子模块程序,最终将其组合。

图4.1硬件系统电路设计框图4.1 稳压电源电路电池放电时内阻稳定的增大,电压则稳定的减小,而且接上大功率的负载时电压会瞬时降低,不能用于提供固定的电压,对于各种IC芯片需要的稳定电压,需要专门的稳压器件,或者稳压电路,基本的稳压器有两种:线性(LDO)和开关(DCDC),其中前者只能降压使用,而前者还可以升压使用而且效率很高。

控制芯片89C51的标准供电电压是5V,可以选择使用线性电压调整芯片稳压,如:7805:最大输出电流 1.5A,内部过热保护,内部短路电流限制,典型输入电压7~20V,输出电压4.9~5.1V,静态电流典型值4.2mA,压差(输出与输入的差)至少2V。

LM317(电压可调):输出电流可达1.5A,输出电压1.2V~37V,内部过热保护等。

选用7805,一方面简单;另一方面比较常用且比较便宜。

LM78系列是美国国家半导体公司的固定输出三端正稳压器集成电路。

我国和世界各大集成电路生产商均有同类产品可供选用,是使用极为广泛的一类串联集成稳压器。

内置过热保护电路,无需外部器件,输出晶体管安全范围保护,内置短路电流限制电路。

对于滤波电容的选择,需要注意整流管的压降。

稳压电源由电源变压器、整流电路、滤波电路和稳压电路组成,a.整流和滤波电路:整流作用是将交流电压变换成脉动电压。

滤波电路一般由电容组成,其作用是脉动电压中的大部分纹波加以滤除,以得到较平滑的直流电压。

b.稳压电路:由于得到的输出电压受负载、输入电压和温度的影响不稳定,为了得到更为稳定电压添加了稳压电路,从而得到稳定的电压。

图4.2稳压电源电路三端集成稳压器LM7805正常工作时,输入、输出电压差2~3V。

C1为输入稳定电容,其作用是减小纹波、消振、抑制高频和脉冲干扰,C1一般为0.1~0.47μf。

C2为输出稳定电容,其作用是改善负载的瞬态响应,C2一般为1μF。

使用三端稳压器时注意一定要加散热器,否则是不能工作到额定电流。

二极管IN4007用来卸掉C2上的储存电能,防止反向击穿LM7805。

查相关资料该芯片的最大承受电流为0.1A,因此输入端必须界限流电阻R1,R1=(12*0.9-5)/0.1=58Ω,取近似值,选用70Ω的电阻。

相关文档
最新文档