函数的周期性解读

合集下载

函数的周期性-高中数学知识点讲解

函数的周期性-高中数学知识点讲解

函数的周期性
1.函数的周期性
【知识点的认识】
函数的周期性定义为若T 为非零常数,对于定义域内的任一x,使f(x)=f(x+T)恒成立,则f(x)叫做周期函数,T 叫做这个函数的一个周期.常函数为周期函数,但无最小正周期,其周期为任意实数.
【解题方法点拨】
周期函数一般和偶函数,函数的对称性以及它的图象相结合,考查的内容比较丰富.
①求最小正周期的解法,尽量重复的按照所给的式子多写几个,
例:求f(x)=
1
푓(푥―
2)的最小正周期.
解:由题意可知,f(x+2)=
1
푓(푥)=f(x﹣2)⇒T=4
②与对称函数或者偶函数相结合求函数与x 轴的交点个数.如已知函数在某个小区间与x 轴有n 个交点,求函数在更大的区间与x 轴的交点个数.
思路:第一,这一般是个周期函数,所以先求出周期T;第二,结合函数图象判断交点个数;第三,注意端点的值.
【命题方向】
周期函数、奇偶函数都是高考的常考点,学习是要善于总结并进行归类,灵活运用解题的基本方法,为了高考将仍然以小题为主.
1/ 1。

函数的周期性

函数的周期性

函数的周期性
函数的周期性是指当自变量的值增加或减小一个特定的数值时,函数的值会发生重复的变化。

在数学中,周期性是函数的一个重要性质。

周期性可以应用于多个不同的数学对象,如三角函数、周期矩阵和周期函数。

其中,最常见的就是三角函数的周期性。

三角函数的周期性
三角函数是一类特殊的周期函数,其中包括正弦函数、余弦函数和正切函数等。

这类函数的周期性非常明显,它们的图像在一个特定的区间内重复出现。

以正弦函数为例,其周期性是指当自变量的值增加或减小2π时,函数的取值会发生重复的变化。

正弦函数的图像在一个周期内呈现出上升和下降的趋势,而在周期的不同区间内则重复这种趋势。

周期矩阵的周期性
周期矩阵也具有周期性。

周期矩阵是一个二维的矩阵,其中的元素具有周期性的变化。

这意味着当一个元素的索引增加或减小一个特定的数值时,元素的值会发生重复的变化。

周期函数的周期性
周期函数是指在某一特定的区间内,函数的值会以一定的规律进行重复。

这种周期性的现象往往与周期矩阵类似,当自变量的值增加或减小一个特定的数值时,函数的值会发生重复的变化。

周期函数可以用数学公式表示,其中包括正弦函数、余弦函数和周期指数函数等。

这些函数在一定的区间内重复出现,具有明显的周期性。

总结
函数的周期性是函数的一个重要性质,可以应用于三角函数、周期矩阵和周期函数等数学对象上。

在这些对象中,函数的值会以一定的规律进行重复,当自变量的值增加或减小一个特定的数值时,函数的值会发生相同的变化。

通过研究函数的周期性,我们可以更好地理解函数的变化规律和特点。

函数周期性总结

函数周期性总结

函数周期性总结1. 什么是函数周期性?函数周期性指的是函数在一定区间内具有重复的特点或性质。

在一个周期内,函数的值和特征会重复出现。

周期性可以用来描述很多现象,比如天气变化、心脏跳动等。

2. 函数周期性的判断条件要判断一个函数是否具有周期性,需要满足以下条件:- 函数必须在某个区间内有定义。

- 函数在该区间内必须是有界的。

- 函数必须满足 f(x + T) = f(x),其中 T 是周期。

3. 常见的函数周期性类型3.1 周期函数周期函数是指具有周期性的函数。

常见的周期函数有正弦函数、余弦函数等。

它们在一个周期内的值会不断重复。

3.2 奇函数和偶函数奇函数和偶函数是特殊的周期函数。

- 奇函数满足 f(-x) = -f(x),即关于原点对称。

- 偶函数满足 f(-x) = f(x),即关于 y 轴对称。

3.3 周期为2π 的函数周期为2π 的函数在每个周期内的值是相同的。

它们是一类特殊的周期函数,包括正弦函数和余弦函数。

4. 为什么函数周期性重要?函数周期性在数学和工程等领域中具有广泛的应用。

- 在数学中,周期性是研究函数特征和行为的重要工具。

通过研究函数的周期性,可以得到函数的性质和规律。

- 在工程中,周期性可以用来描述循环和重复的现象。

例如,电流的周期性可以用来描述交流电信号。

5. 总结函数周期性是函数在一定区间内重复出现的特点。

判断函数周期性需要满足一定条件。

常见的函数周期性类型包括周期函数、奇函数和偶函数,以及周期为2π 的函数。

函数周期性在数学和工程领域中具有重要的应用价值。

高中数学函数的周期性

高中数学函数的周期性

高中数学函数的周期性一、函数周期性的认识周期性是函数的一个重要性质,指的是函数在一定的时间间隔内重复出现的规律性。

在函数图像上,这种周期性表现为函数图像的重复形状或模式。

函数周期性的理解对于解决与函数相关的数学问题有着重要的意义。

二、函数周期性的判断判断函数是否具有周期性,可以通过以下步骤进行:1、观察函数的图像,看是否存在重复的模式或形状;2、计算函数值之间的差值,看是否存在固定的差值;3、确定函数的定义域,看是否具有周期性;4、根据函数的性质,确定函数的周期。

三、函数周期性的应用函数周期性在数学中有着广泛的应用。

例如,在三角函数中,正弦函数和余弦函数都是具有周期性的函数,它们的周期与角度有关。

函数周期性在信号处理、图像处理等领域也有着广泛的应用。

四、函数周期性的意义函数周期性是数学中一个重要的概念,它反映了函数变化的规律性。

通过对函数周期性的理解和应用,我们可以更好地理解函数的性质和变化规律,为解决与函数相关的数学问题提供帮助。

函数周期性的概念也渗透到了自然科学和社会科学的各个领域,对于这些领域的研究和发展也有着重要的意义。

高中数学函数的周期性是一个非常重要的概念,对于我们理解函数的性质和解决与函数相关的数学问题都有着重要的作用。

在未来的学习和研究中,我们还需要进一步深入理解和应用函数周期性的概念。

原函数与导函数周期性和奇偶性联系的探究标题:原函数与导函数周期性和奇偶性的探究一、引言在数学分析中,函数的周期性和奇偶性是两个非常重要的性质。

对于一个函数来说,如果其值在每隔一定的区间内重复出现,那么这个函数就被称为具有周期性。

而如果一个函数在与其原点的对称点处的值相等,那么这个函数就被称为具有奇偶性。

这两个性质在很多领域都有广泛的应用,包括物理学、工程学、经济学等。

对于周期函数和奇偶函数,其原函数和导函数之间存在一些有趣的和相互影响。

本文将对此进行深入的探究和分析。

二、原函数与导函数的周期性首先,我们观察一个函数与其导函数之间的周期性关系。

函数的周期性(解析版)

函数的周期性(解析版)

函数周期性基础知识1.函数周期定义:给定函数()f x ,对于定义域中的任意x ,存在不为0的常数T ,恒有()()f x T f x +=,则()f x 为周期函数,T 为它的周期,且nT 亦为周期。

2.常考周期有:①对于定义域中的任意x ,恒有()()f x T f x +=-,则()f x 为周期函数,且周期为2T ; ②对于定义域中的任意x ,恒有1()()f x T f x +=,则()f x 为周期函数,且周期为2T ; ③对于定义域中的任意x ,恒有1()()f x T f x +=-,则()f x 为周期函数,且周期为2T ; ④对于定义域中的任意x ,恒有1()()1()f x f x T f x ++=-,则()f x 为周期函数,且周期为T 4; ⑤对于定义域中的任意x ,恒有1()()1()f x f x T f x -+=+,则()f x 为周期函数,且周期为T 2; ⑥如果()f x 有两条对称轴,,x a x b b a ==>,则()f x 为周期函数,且周期为2()b a -; ⑦如果()f x 关于点(,0)a 对称,又关于直线x b =对称,则()f x 为周期函数,且周期为4()b a -; 3:真题练习1. 已知()f x 在R 上是奇函数,且)()4(x f x f =+,当(0,2)x ∈时,22)(x x f =,)7(f = ( )A.-2B.2C.-98D.98【解析】:4=T ,(7)(3)(1)(1)2f f f f ==-=-=-,选A 。

2. 已知函数()f x 是(,)-∞+∞上的偶函数,若对于0x ≥,都有(2()f x f x +=),且当[0,2)x ∈时,2()log (1f x x =+),则(2021)(2022)f f -+的值为 ( )A.2-B.1-C.1D.2【解析】:2=T ,(2021)(2021)(1)1,f f f -===(2022)(0)0f f ==,选C 。

初中数学解读函数像中的周期性

初中数学解读函数像中的周期性

初中数学解读函数像中的周期性函数是数学中的一个重要概念,它描述了自变量和因变量之间的关系。

函数的周期性是指函数在一定范围内呈现出重复的性质。

本文将对初中数学中的函数的周期性进行解读。

初中数学中,函数的周期性是一个基本的概念。

周期性可以分为两种情况,即有界周期与无界周期。

有界周期是指函数在一个固定的区间内呈现出重复的性质。

例如,正弦函数y=sin(x)就是一个有界周期函数。

它的周期是2π,即在一个周期内,函数的取值会重复地经历上升和下降的过程。

这意味着在一个周期内,y=sin(x)的图像会呈现出一条波浪线。

在初中数学中,学生会通过绘制函数的图像来观察函数的周期性。

无界周期是指函数在整个实数轴上呈现出重复的性质。

例如,指数函数y=2^x就是一个无界周期函数。

它的周期是无穷大,即在整个实数轴上,函数的取值会重复地经历增长和减小的过程。

这意味着在整个实数轴上,y=2^x的图像会呈现出指数递增的形态。

在初中数学中,学生会通过求解方程2^x=2^(x+T)来确定函数的周期。

周期性在数学中有着广泛的应用。

例如,在物理学中,周期性的概念可以用来描述运动的规律。

例如,一个物体做匀速圆周运动时,它的位置可以用一个正弦函数来描述,这个函数就具有周期性。

在经济学中,周期性的概念可以用来描述经济的波动。

例如,经济学家会通过观察经济指标的周期性变化来预测经济的发展趋势。

总结起来,初中数学中的函数周期性是指函数在一定范围内或者整个实数轴上呈现出重复的性质。

周期性可以分为有界周期和无界周期。

周期性在数学以及其他学科中具有广泛的应用。

通过对函数周期性的解读,我们可以更好地理解数学中的函数概念,提高数学的学习效果。

函数的周期性

函数的周期性
1
S=4S△OAB=4×(2 ×2×1)=4.
(3)f(0)=0,f(2)=0,f(1)=1,f(3)=-1. 又f(x)是周期为4的周期函数, ∴f(0)+f(1)+f(2)+f(3)=f(4)+f(5)+f(6)+f(7) =…=f(2 008)+f(2 009)+f(2 010)+f(2 011)=0. ∴f(0)+f(1)+f(2)+…+f(2 013)=f(0)+f(1)=0+1=1.
业 , 多 么 刺 眼的一 个词儿 。 8.努 力 吧 ! 为 了以后 好日子 必须幸 苦一阵 子。 9.各 奔 东 西 后 才知 ,一别 也许就 是一世 、 10.据 说 这 是 最 早的呻 吟体: …… 密 ……封 ……线 ……内 ……不 ……要 ……答 ……题 …… 11.可 不 可 以 不 要让毕
雪 白 的 花 象 心一样 纯洁也 许你酷 爱太阳 的火力 开一朵 火红的 花象梦 一样美 丽! 2.我 们 都 曾 在 人生 的海洋 中相遇 ,岁月 飘忽, 必然会 改变许 多东西 。也许 ,时间
会 使 许 多 绚 烂归于 平淡。 但是, 对你的 怀念却 是永久 的。不 变的, 只有这 份真挚 的 情 谊 。 3.水 不 因 石 而阻友 谊不因 远而疏 愿友谊 长存, 以最真 诚的心 祝福你 年 年 平 安 。 4.有 一 首 歌 曾轻 声地唱 过,在 年轻的 岁月中 ,或许 时间带 走一切 拥 有 过 的 季 节…… 5.我 笑 那 些 想毕 业却又 在将来 后悔的 青年 6.真 的有那么 一 个 女 孩 , 和我一 起上课 偷吃零 食,迟 到一起 罚站, 戴一副 耳机听 歌。 7.毕

关于周期函数的几个重要性质

关于周期函数的几个重要性质

关于周期函数的几个重要性质周期函数是一类在数学中非常常见的函数,具有一些重要的性质。

以下是关于周期函数的几个重要性质的详细介绍。

1.周期性:周期函数以一定的间隔重复自己。

形式地说,对于函数f(x)来说,如果存在正实数T,使得对于所有的x,有f(x+T)=f(x),那么函数f(x)就是周期函数,其中T称为函数f(x)的周期。

周期性是周期函数最基本的性质,使得我们可以通过研究函数的一个周期就可以推导出整个函数的性质。

2. 周期的唯一性:如果一个函数是周期函数,那么它的周期可以有很多个,但这些周期之间必然存在其中一种数学关系。

具体来说,如果T和T'是函数f(x)的两个周期,那么必有T'-T是f(x)的周期。

这意味着,两个周期的差值也是函数的一个周期,也就是说,周期的差值可以是无限的。

例如,sin(x)的周期是2π,而cos(x)的周期也是2π,它们的差值2π-(-2π) = 4π也是它们的周期。

3. 最小正周期:对于周期函数来说,最小正周期指的是所有周期中最小的一个。

最小正周期是周期函数中最常用的一个概念,因为它可以通过最小正周期来推导出其他的周期。

例如,sin(x)和cos(x)的最小正周期都是2π。

4.奇偶性:周期函数可以根据其奇偶性进行分类。

一个函数如果满足f(x)=f(-x),那么它被称为偶函数;如果满足f(x)=-f(-x),那么它被称为奇函数。

周期函数中的任何周期都可以是偶函数或奇函数,因为周期性使得函数的对称性得到了保持。

5.周期函数的图像性质:周期函数的图像具有一些特殊的性质。

例如,周期函数的图像在一个周期内是有限的,也就是说,函数在一个周期内不会有无穷大或无穷小的值。

此外,周期函数的图像具有对称性,在一个周期内可以有多个对称轴。

6.周期函数的傅里叶级数展开:由于周期性,周期函数可以使用傅里叶级数进行展开。

傅里叶级数是一种表达任意周期函数的方法,通过将周期函数分解为一系列正弦和余弦函数的线性组合来表示。

【高中数学函数专题】函数的周期性(解析版)

【高中数学函数专题】函数的周期性(解析版)

函数的周期专题六性1.周期函数的定义对于函数y =f (x ),如果存在一个非零常数T ,使得当x 取定义域内的任何值时,都有f (x +T )=f (x ),那么就称函数y =f (x )为周期函数,称T 为这个函数的周期.如果T 是函数y =f (x )的周期,则kT (k ∈Z 且k ≠0)也是y =f (x )的周期,即f (x +kT )=f (x );如果在周期函数f (x )的所有周期中存在一个最小的正数,那么这个最小正数就叫做f (x )的最小正周期.2.函数周期性常用的结论结论1:若f (x +a )=f (x -a ),则f (x )的一个周期为2a ;结论2:若f (x +a )=-f (x ),则f (x )的一个周期为2a ;结论3:若f (x +a )+f (x )=c (a ≠0),则f (x )的一个周期为2a ;结论4:若f (x )=f (x +a )+f (x -a )(a ≠0),则f (x )的一个周期为6a ;结论5:若f (x +a )=1f (x ),则f (x )的一个周期为2a ;结论6:若f (x +a )=-1f (x ),则f (x )的一个周期为2a ;结论7:若函数f (x )关于直线x =a 与x =b 对称,则f (x )的一个周期为2|b -a |.结论8:若函数f (x )关于点(a ,0)对称,又关于点(b ,0)对称,则f (x )的一个周期为2|b -a |.结论9:若函数f (x )关于直线x =a 对称,又关于点(b ,0)对称,则f (x )的一个周期为4|b -a |.结论7—结论9的记忆:两次对称成周期,两轴两心二倍差,一轴一心四倍差.总规律:在函数的奇偶性、对称性、周期性中,知二断一.即这三条性质中,只要已知两条,则第三条一定成立.考点一已知函数的周期性(显性的),求函数值【方法总结】利用函数的周期性,可将其他区间上的求值等问题,转化到已知区间上,进而解决问题.【例题选讲】[例1](1)若f (x )是R 上周期为2的函数,且满足f (1)=1,f (2)=2,则f (3)-f (4)=__________.答案-1解析由f (x +2)=f (x )可得f (3)-f (4)=f (1)-f (2)=1-2=-1.(2)设f (x )是定义在R 上的周期为3的函数,当x ∈[-2,1)时,f (x )x 2-2,-2≤x ≤0,,0<x <1,则=________.答案14解析由题意可得-2=14,=14.(3)设f (x )是定义在R 上且周期为2的函数,在区间[-1,1)上,f (x )+a ,-1≤x <0,|25-x|,0≤x <1,其中a ∈R .若5(2f -=9(2f ,则f (5a )的值是________.答案-25解析:由题意可得5()2f -==-12+a,9()2f =|25-12|=110,则-12+a =110,a =35,故f (5a )=f (3)=f (-1)=-1+35=-25.【高中数学函数专题】(4)函数f(x)满足f(x+4)=f(x)(x∈R),且在区间(-2,2]上,f(x)cosπx2,0<x≤2,x+12|,-2<x≤0,则f(f(15))的值为________.答案22解析由函数f(x)满足f(x+4)=f(x)(x∈R),可知函数f(x)的周期是4,所以f(15)=f(-1)=|-1+12|=12,所以f(f(15))=cosπ4=22.(5)定义在R上的函数f(x),满足f(x+5)=f(x),当x∈(-3,0]时,f(x)=-x-1,当x∈(0,2]时,f(x)=log2x,则f(1)+f(2)+f(3)+…+f(2019)的值等于()A.403B.405C.806D.809答案B解析定义在R上的函数f(x),满足f(x+5)=f(x),即函数f(x)的周期为5.又当x∈(0,2]时,f(x)=log2x,所以f(1)=log21=0,f(2)=log22=1.当x∈(-3,0]时,f(x)=-x-1,所以f(3)=f(-2)=1,f(4)=f(-1)=0,f(5)=f(0)=-1.故f(1)+f(2)+f(3)+…+f(2019)=403×[f(1)+f(2)+f(3)+f(4)+f(5)]+f(2016)+f(2017)+f(2018)+f(2019)=403×1+f(1)+f(2)+f(3)+f(4)=403+0+1+1+0=405.【对点训练】1.已知f(x)是R上最小正周期为2的周期函数,且当0≤x<2时,f(x)=x3-x,则函数y=f(x)的图象在区间[0,6]上与x轴的交点个数为________.1.答案7解析因为当0≤x<2时,f(x)=x3-x.又f(x)是R上最小正周期为2的周期函数,且f(0)=0,则f(6)=f(4)=f(2)=f(0)=0.又f(1)=0,∴f(3)=f(5)=f(1)=0,故函数y=f(x)的图象在区间[0,6]上与x轴的交点有7个.2.设f(x)是定义在R上且周期为2的函数,在区间[-1,1]上,f(x)1≤x<0,0≤x≤1,其中a,b∈R.若=a+3b的值为________.2.答案-10解析因为f(x)是定义在R上且周期为2的函数,所以f f(-1)=f(1),故=,从而12b+212+1=-12a+1,即3a+2b=-2,①.由f(-1)=f(1),得-a+1=b+22,即b=-2a,②.由①②得a=2,b=-4,从而a+3b=-10.3.已知函数f(x)(1-x),0≤x≤1,-1,1<x≤2,如果对任意的n∈N*,定义f n(x)={[()]}n ff f f x⋅⋅⋅个,那么f2019(2)的值为()A.0B.1C.2D.33.答案C解析∵f1(2)=f(2)=1,f2(2)=f(1)=0,f3(2)=f(0)=2,f4(2)=f(2)=1,∴f n(2)的值具有周期性,且周期为3,∴f2019(2)=f3×673(2)=f3(2)=2,故选C.4.定义在R上的函数f(x)满足f(x+6)=f(x).当-3≤x<-1时,f(x)=-(x+2)2;当-1≤x<3时,f(x)=x.则f(1)+f(2)+f(3)+…+f(2022)=__________.4.答案337解析由f(x+6)=f(x)可知,函数f(x)的周期为6,由已知条件可得f(1)=1,f(2)=2,f(3)=f(-3)=-1,f(4)=f(-2)=0,f(5)=f(-1)=-1,f(6)=f(0)=0,所以在一个周期内有f(1)+f(2)+f(3)+…+f(6)=1+2-1+0-1+0=1,所以f(1)+f(2)+…+f(2022)=337×1=337.5.已知函数f(x)的定义域为R.当x<0时,f(x)=x3-1;当-1≤x≤1时,f(-x)=-f(x);当x>12时,f(6)=()A.-2B.-1C.0D.25.答案D解析当x>12时,由可得当x>0时,f(x)=f(x+1),所以f(6)=f(1),而f(1)=-f(-1),f(-1)=(-1)3-1=-2,所以f(6)=f(1)=2,故选D.6.对任意的实数x都有f(x+2)-f(x)=2f(1),若y=f(x-1)的图象关于x=1对称,且f(0)=2,则f(2019)+f(2020)=()A.0B.2C.3D.46.答案B解析∵y=f(x-1)的图象关于x=1对称,则函数y=f(x)的图象关于x=0对称,即函数f(x)是偶函数.令x=-1,则f(-1+2)-f(-1)=2f(1),即f(1)-f(1)=2f(1)=0,即f(1)=0.则f(x+2)-f(x)=2f(1)=0,即f(x+2)=f(x),即函数的周期是2,又f(0)=2,则f(2019)+f(2020)=f(1)+f(0)=0+2=2,故选B.考点二已知函数的周期性(隐性1),求函数值【方法总结】已知函数的周期性(隐性1),可利用周期性的性质结论1到结论6,先明确了周期再将其他区间上的求值转化到已知区间上,进而解决问题.【例题选讲】[例2](1)已知定义在R上的函数f(x)满足f(x+1)=-f(x),且f(x),-1<x≤0,1,0<x≤1,则下列函数值为1的是()A.f(2.5)B.f(f(2.5))C.f(f(1.5))D.f(2)答案D解析由f(x+1)=-f(x)知f(x+2)=-f(x+1)=f(x),于是f(x)是以2为周期的周期函数,从而f(2.5)=f(0.5)=-1,f(f(2.5))=f(-1)=f(1)=-1,f(f(1.5))=f(f(-0.5))=f(1)=-1,f(2)=f(0)=1,故选D.(2)已知定义在R上的函数f(x),对任意x∈R,都有f(x+4)=f(x)+f(2)成立,若函数y=f(x+1)的图象关于直线x=-1对称,则f(2018)的值为()A.2018B.-2018C.0D.4答案C解析依题意得,函数y=f(x)的图象关于直线x=0对称,因此函数y=f(x)是偶函数,且f(-2+4)=f(-2)+f(2),即f(2)=f(2)+f(2),所以f(2)=0,所以f(x+4)=f(x),即函数y=f(x)是以4为周期的函数,f(2018)=f(4×504+2)=f(2)=0.(3)已知f(x)是定义在R上的函数,并且f(x+2)=1f(x),当2≤x≤3时,f(x)=x,则f(2022)=__________.答案2解析由f(x+2)=1f(x)得f(x+4)=1f(x+2)=f(x),所以T=4,f(2022)=f(4×505+2)=f(2)=2.(4)已知定义在R上的函数f(x)满足f(2)=2-3,且对任意的x都有f(x+2)=1-f(x),则f(2020)=________.答案-2-3解析由f(x+2)=1-f(x),得f(x+4)=1-f(x+2)=f(x),所以函数f(x)的周期为4,所以f (2020)=f (4).因为f (2+2)=1-f (2),所以f (4)=-1f (2)=-12-3=-2- 3.故f (2020)=-2-3.(5)已知定义在R 上的函数满足f (x +2)=-1f (x ),当x ∈(0,2]时,f (x )=2x -1.则f (1)+f (2)+f (3)+…+f (2018)的值为________.答案1348解析∵f (x +2)=-1f (x ),∴f (x +4)=-1f (x +2)=f (x ),∴函数y =f (x )的周期T =4.又x ∈(0,2]时,f (x )=2x -1,∴f (1)=1,f (2)=3,f (3)=-1f (1)=-1,f (4)=-1f (2)=-13.∴f (1)+f (2)+f (3)+…+f (2018)=504[f (1)+f (2)+f (3)+f (4)]+f (504×4+1)+f (504×4+2)=+3-11+3=1348.【对点训练】7.函数f (x )满足f (x +1)=-f (x ),且当0≤x ≤1时,f (x )=2x (1-x ),则5(2f 的值为()A .12B .14C .-14D .-127.答案A解析由f (x +1)=-f (x )得f (x +2)=f (x ),即函数f (x )的周期为2,则5()2f =2×12×=12,故选A .8.已知f (x )是定义在R 上的函数,且f (x +2)=-f (x ).当x ∈(0,2)时,f (x )=2x 2,则f (7)=()A .-2B .2C .-98D .988.答案A解析由f (x +2)=-f (x ),得f (7)=-f (5)=f (3)=-f (1)=-2.故选A .9.已知定义在R 上的函数f (x )满足f (x )=-f (x +2),当x ∈(0,2]时,f (x )=2x +log 2x ,则f (2019)=()A .5B .12C .2D .-29.答案D解析由f (x )=-f (x +2),得f (x +4)=f (x ),所以函数f (x )是周期为4的周期函数,所以f (2019)=f (504×4+3)=f (3)=f (1+2)=-f (1)=-(2+0)=-2.10.已知函数f (x )对任意x ∈R ,都有f (x +6)+f (x )=0,y =f (x -1)的图象关于点(1,0)对称,且f (2)=4,则f (2014)=()A .0B .-4C .-8D .-1610.答案B解析由题意可知,函数f (x )对任意x ∈R ,都有f (x +6)=-f (x ),∴f (x +12)=f [(x +6)+6]=-f (x +6)=f (x ),∴函数f (x )的周期T =12.把y =f (x -1)的图象向左平移1个单位得y =f (x -1+1)=f (x )的图象,关于点(0,0)对称,因此函数f (x )为奇函数,∴f (2014)=f (167×12+10)=f (10)=f (10-12)=f (-2)=-f (2)=-4.故选B .11.已知定义在R 上的函数f (x )满足f (4)=2-3,且对任意的x 都有f (x +2)=1-f (x ),则f (2018)=()A .-2-3B .-2+3C .2-3D .2+311.答案A解析由f (x +2)=1-f (x )得f (x +4)=f (x ).所以函数f (x )的周期为4,所以f (2018)=f (2).又f (4)=f (2+2)=1-f (2)=2-3,所以-f (2)=12-3=2+3,即f (2)=-2-3,故选A .12.已知f (x )是定义在R 上的函数,且满足f (x +2)=-1f (x ),当2≤x ≤3时,f (x )=x ,则________.12.答案52解析∵f (x +2)=-1f (x ),∴f (x +4)=f (x ),∴2≤x ≤3时,f (x )=x ,∴=52,∴=52.考点三已知函数的周期性(隐性2),求函数值【方法总结】已知函数的周期性(隐性2),可利用周期性的性质结论7到结论9,先明确了周期再将其他区间上的求值转化到已知区间上,进而解决问题.【例题选讲】[例3](1)已知函数y =f (x )满足y =f (-x )和y =f (x +2)是偶函数,且f (1)=π3,设F (x )=f (x )+f (-x ),则F (3)=()A .π3B .2π3C .πD .4π3答案B解析由y =f (-x )和y =f (x +2)是偶函数知f (-x )=f (x ),且f (x +2)=f (-x +2),则f (x +2)=f (x -2).∴f (x +4)=f (x ),则y =f (x )的周期为4.所以F (3)=f (3)+f (-3)=2f (3)=2f (-1)=2f (1)=2π3.(2)函数f (x )的定义域为R ,且满足:f (x )是偶函数,f (x -1)是奇函数,若f (0.5)=9,则f (8.5)等于()A .-9B .9C .-3D .0答案B解析因为f (x -1)是奇函数,所以f (-x -1)=-f (x -1),即f (-x )=-f (x -2).又因为f (x )是偶函数,所以f (x )=-f (x -2)=f (x -4),故f (x )的周期为4,所以f (0.5)=f (8.5)=9.故选B .(3)奇函数f (x )的定义域为R ,若f (x +1)为偶函数,且f (1)=2,则f (4)+f (5)的值为()A .2B .1C .-1D .-2解析:设g (x )=f (x +1),∵f (x +1)为偶函数,则g (-x )=g (x ),即f (-x +1)=f (x +1).∵f (x )是奇函数,∴f (-x +1)=f (x +1)=-f (x -1),∴f (x +2)=-f (x ),f (x +4)=f (x +2+2)=-f (x +2)=f (x ),则f (4)=f (0)=0,f (5)=f (1)=2,∴f (4)+f (5)=0+2=2,故选A .(4)已知f (x )是定义在R 上的奇函数,f (x +1)是偶函数,当x ∈(2,4)时,f (x )=|x -3|,则f (1)+f (2)+f (3)+f (4)+…+f (2020)=________.答案解析因为f (x )为奇函数,f (x +1)为偶函数,所以f (x +1)=f (-x +1)=-f (x -1),所以f (x+2)=-f (x ),所以f (x +4)=-f (x +2)=f (x ),所以函数f (x )的周期为4,所以f (4)=f (0)=0,f (3)=f (-1)=-f (1).在f (x +1)=f (-x +1)中,令x =1,可得f (2)=f (0)=0,所以f (1)+f (2)+f (3)+f (4)=0,所以f (1)+f (2)+f (3)+f (4)+…+f (2020)=0.(5)设函数f (x )是定义在R 上的奇函数,对任意实数x 有33()()22f x f x +=--成立.若f (1)=2,则f (2)+f (3)=________.答案-2解析由33()()22f x f x +=--,且f (-x )=-f (x ),知f (3+x )=f 32+-f 32-=-f (-x )=f (x ),所以y =f (x )是周期函数,且T =3是其一个周期.因为f (x )为定义在R 上的奇函数,所以f (0)=0,且f (-1)=-f (1)=-2,又T =3是y =f (x )的一个周期,所以f (2)+f (3)=f (-1)+f (0)=-2+0=-2.(6)已知f (x )是定义域为(-∞,+∞)的奇函数,满足f (1-x )=f (1+x ).若f (1)=2,则f (1)+f (2)+f (3)+…+f(50)等于()A.-50B.0C.2D.50答案C解析∵f(x)是奇函数,∴f(-x)=-f(x),∴f(1-x)=-f(x-1).∵f(1-x)=f(1+x),∴-f(x -1)=f(x+1),∴f(x+2)=-f(x),∴f(x+4)=-f(x+2)=-[-f(x)]=f(x),∴函数f(x)是周期为4的周期函数.由f(x)为奇函数且定义域为R得f(0)=0,又∵f(1-x)=f(1+x),∴f(x)的图象关于直线x=1对称,∴f(2)=f(0)=0,∴f(-2)=0.又f(1)=2,∴f(-1)=-2,∴f(1)+f(2)+f(3)+f(4)=f(1)+f(2)+f(-1)+f(0)=2+0-2+0=0,∴f(1)+f(2)+f(3)+f(4)+…+f(49)+f(50)=0×12+f(49)+f(50)=f(1)+f(2)=2+0=2,故选C.【对点训练】13.定义在R上的奇函数f(x)满足f(x+1)是偶函数,且当x∈[0,1]时,f(x)=x(3-2x),则()A.12B.-12C.-1D.113.答案C解析∵y=f(x)是定义在R上的奇函数,∴f(-x)=-f(x),∵函数y=f(x+1)是定义在R上的偶函数,∴f(-x+1)=f(x+1)=-f(x-1),f(x+2)=-f(x),可得f(x+4)=-f(x+2)=f(x),则f(x)的周期是4,∴f-12=-=-12·(3-1)=-1,故选C.14.已知偶函数f(x)的定义域为R,若f(x-1)为奇函数,且f(2)=3,则f(5)+f(6)的值为() A.-3B.-2C.2D.314.答案D解析因为f(x-1)是奇函数,所以f(-x-1)=-f(x-1),即f(-x)=-f(x-2).又因为f(x)是偶函数,所以f(x)=-f(x-2)=f(x-4),故f(x)的周期为4,所以f(5)+f(6)=f(1)+f(2)=0+3=3.选D.15.偶函数y=f(x)的图象关于直线x=2对称,f(3)=3,则f(-1)=________.15.答案3解析解析:因为f(x)的图象关于直线x=2对称,所以f(x)=f(4-x),f(-x)=f(4+x).又f(-x)=f(x),所以f(x)=f(4+x),则f(-1)=f(4-1)=f(3)=3.16.已知奇函数f(x)的图象关于直线x=3对称,当x∈[0,3]时,f(x)=-x,则f(-16)=________.16.答案2解析根据题意,函数f(x)的图象关于直线x=3对称,则有f(x)=f(6-x),又由函数为奇函数,则f(-x)=-f(x),则有f(x)=-f(6-x)=f(x-12),则f(x)的最小正周期是12,故f(-16)=f(-4)=-f(4)=-f(2)=-(-2)=2.17.已知f(x)是定义在R上的奇函数,满足f(1+x)=f(1-x),且f(1)=a,则f(2)+f(3)+f(4)=() A.0B.-a C.a D.3a17.答案B解析因为函数f(x)满足f(1+x)=f(1-x),所以f(x)关于直线x=1对称,所以f(2)=f(0),f(3)=f(-1),又f(x)是定义在R上的奇函数,所以f(0)=0,又由f(1+x)=f(1-x)可得f(x+1)=f(1-x)=-f(x-1),所以f(x+2)=-f(x),故f(x+4)=-f(x+2)=f(x),因此,函数f(x)是以4为周期的周期函数,所以f(4)=f(0),又f(1)=a,因此f(2)+f(3)+f(4)=f(0)+f(-1)+f(0)=-f(1)=-a.故选B.18.函数y=f(x)满足对任意x∈R都有f(x+2)=f(-x)成立,且函数y=f(x-1)的图象关于点(1,0)对称,f(1)=4,则f(2016)+f(2017)+f(2018)的值为________.18.答案4解析∵函数y=f(x-1)的图象关于点(1,0)对称,∴f(x)是R上的奇函数,又f(x+2)=-f(x),∴f(x+4)=-f(x+2)=f(x),故f(x)的周期为4,∴f(2017)=f(504×4+1)=f(1)=4,∴f(2016)+f(2018)=f(2016)+f(2016+2)=f(2016)-f(2016)=0,∴f(2016)+f(2017)+f(2018)=4.。

函数周期性总结

函数周期性总结

函数周期性总结
函数周期性是指函数在一定区间或时间内重复出现的特点。

在数学和工程学中,函数周期性是一种经常出现的现象,它具有广泛的应用和重要性。

函数周期性的特点包括以下几个方面:
1. 周期长度:函数周期性的主要特征是它在一定的区间或时间内重复出现。

这个区间或时间被称为函数的周期。

周期长度可以是固定的,也可以是不固定的。

2. 重复性:函数周期性还表现为其值在周期内的重复性。

即在周期内的任意一点,函数的值与其他周期对应点的值是相同的。

3. 周期性函数的图像:周期性函数在坐标系中的图像呈现出重复出现的形式。

通过观察函数图像的周期性特点,可以进一步分析和推导出函数的性质和规律。

函数周期性在实际应用中具有重要意义:
1. 信号处理:函数周期性在信号处理中起到至关重要的作用。

周期性信号的分析可以帮助我们理解和处理一些重要的信号,如音
频信号、视频信号等。

2. 通信系统:通信系统中的信号往往具有周期性。

通过对周期
性信号进行分析和处理,可以实现有效的信号传输和通信。

3. 物理学和工程学:在物理学和工程学中,周期性函数广泛应
用于建模和理论分析。

例如,正弦函数是一种常见的周期性函数,
在电路分析和振动理论中经常使用。

总之,函数周期性是数学和工程学中重要的概念之一。

它的理
解和应用对于解决实际问题和推动科学和技术的发展具有重要意义。

函数周期性—搜狗百科

函数周期性—搜狗百科

函数周期性—搜狗百科1.概念的提出:将日历中“星期”随日期变化的周期性的出现和正弦函数值随角的变化周期性的出现进行对比,寻求出两者实质:当“自变量”增大某一个值时,“函数值”有规律的重复出现。

出示函数周期性的定义:对于函数y=f(x),假如存在一个非零常数T,使得当x取定义域内的任何值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期。

“当自变量增大某一个值时,函数值有规律的重复出现”这句话用数学语言的表达.2.定义:对于函数y=f(x),如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)概念的具体化:当定义中的f(x)=sinx或cosx时,思考T的取值。

T=2kπ(k∈Z且k≠0)所以正弦函数和余弦函数均为周期函数,且周期为T=2kπ(k∈Z 且k≠0)展示正、余弦函数的图象。

周期函数的图象的形状随x的变化周期性的变化。

(用课件加以说明。

)强调定义中的“当x取定义域内的每一个值”令(x+T)2=x2,则x2+2xT+T2=x2所以2xT+T2=0, 即T(2x+T)=0所以T=0或T=-2x强调定义中的“非零”和“常数”。

例:三角函数sin(x+T)=sinxcos(x+T)=cosx中的T取2π3.最小正周期的概念:对于一个函数f(x),如果它所有的周期中存在一个最小的正数,那么这个最小正数叫f(x)的最小正周期。

对于正弦函数y=sinx, 自变量x只要并且至少增加到x+2π时,函数值才能重复取得。

所以正弦函数和余弦函数的最小正周期是2π。

(说明:如果以后无特殊说明,周期指的就是最小正周期。

)在函数图象上,最小正周期是函数图象重复出现需要的最短距离。

4.例:求下列函数的周期:(1)y=3cosx分析:cosx中的自变量只要且至少增加到x+2π时,函数cosx的值才重复出现,因而函数3cosx的值也才重复出现,因此y=3cosx的周期是2π.(说明cosx前面的系数和周期无关。

函数的周期性与奇偶性

函数的周期性与奇偶性

函数的周期性与奇偶性函数是数学中非常重要的概念之一,它描述了一种规律性的映射关系。

函数的周期性和奇偶性是函数性质中的两个重要方面。

本文将就函数的周期性和奇偶性展开论述。

一、函数的周期性周期性是函数在某个区间内具有相似性质的重复性。

若对于函数f(x)存在一个正数T,使得对于任意的x∈R,有f(x+T) = f(x),则称函数f(x)是周期函数,T称为函数的周期。

周期函数是一类具有固定重复规律的函数。

常见的周期函数有三角函数和指数函数。

以三角函数为例,正弦函数和余弦函数就是周期为2π的函数。

它们的图像在每个周期内重复出现相同的形状。

在数学中,我们可以通过函数图像的观察或者计算来确定周期。

对于三角函数而言,周期往往是已知的,如正弦函数的周期为2π。

而对于其他函数,我们可以观察函数图像是否在一个特定区间内重复。

函数的周期性可以帮助我们更好地理解函数的性质和特点。

很多实际问题中的规律性变化都可以用周期函数来描述,比如天体运动、电流的变化等。

二、函数的奇偶性奇偶性是函数在坐标系中对称性的一种表现。

若对于任意的x∈R,有f(-x) = f(x) 或者f(-x) = -f(x),则称函数f(x)是偶函数或奇函数。

偶函数的图像关于y轴对称,即在y轴上的每个点关于原点有对应的相等点。

典型的偶函数有多项式中的偶次幂函数,如x²、x⁴等。

奇函数的图像关于坐标原点对称,即在原点关于x轴和y轴的每个点有对应的相等点。

典型的奇函数有多项式中的奇次幂函数,如x³、x⁵等。

在数学中,我们可以通过对函数进行代数计算来判断函数的奇偶性。

比如,若函数f(x)满足f(-x) = f(x),则可以判定f(x)是偶函数;若函数f(x)满足f(-x) = -f(x),则可以判定f(x)是奇函数。

同时,我们也可以通过观察函数图像来确定函数的奇偶性。

函数的奇偶性是函数图像的一种对称性,它在数学运算和函数性质研究中有重要的应用。

函数周期性的五类特性分析

函数周期性的五类特性分析

函数周期性的五类特性分析函数的周期性是指函数在一定范围内以一定的规律重复出现。

下面将对函数周期性的五类特性进行分析。

1. 周期长度周期长度是指函数的一个周期所占据的长度或时间跨度。

对于周期函数,其周期长度是固定的。

周期函数中常见的周期长度有:常数周期、正弦周期、余弦周期等。

2. 周期性的数学表示周期函数可以用数学表达式进行表示,从而体现其周期性。

常见的周期函数的数学表达式有:- 常数周期函数:$f(x) = C$,其中C为常数。

- 正弦函数:$f(x) = A\sin(Bx + C)$,其中A为振幅,B为角频率,C为相位。

- 余弦函数:$f(x) = A\cos(Bx + C)$,其中A为振幅,B为角频率,C为相位。

3. 周期性的图像特点周期函数的图像在一个周期内具有一定的规律性。

常见的周期函数的图像特点有:- 常数周期函数:图像为一条水平线段。

- 正弦函数:图像为连续的波形,振幅决定了波形的高度,角频率决定了波形的周期。

- 余弦函数:图像也为连续的波形,振幅决定了波形的高度,角频率决定了波形的周期,相位决定了波形在横向上的位置。

4. 周期性的应用周期函数的周期性特点在许多应用中起到重要作用。

例如,在物理学中,周期函数可以用来描述物体的振动或波动;在电子技术中,周期函数可以用来描述电流和电压的变化。

5. 周期性的拓展除了常见的周期函数外,还存在其他类型的周期函数,如三角函数的变种,指数函数的周期性等。

这些拓展的周期函数在实际问题的模型建立中也会起到重要作用。

以上是对函数周期性的五类特性的分析。

通过理解函数的周期性特点,我们可以更好地理解和应用周期函数。

概周期函数及其主要性质

概周期函数及其主要性质

概周期函数及其主要性质周期函数是指在一定的周期内,函数值以固定规律重复出现的函数。

具体来说,对于周期函数f(x),存在一个正数T,使得对于任意的x,都有f(x+T)=f(x)。

其中,T被称为函数f(x)的周期。

周期函数具有以下几个主要性质:1.周期性:周期函数的最主要的性质就是周期性,即函数值以一定周期重复出现。

在周期T内,函数f(x)的值会按照相同的规律重复出现。

2.对称性:周期函数通常具有对称性。

其中一种常见的对称性是奇偶性。

若对于任意的x,有f(-x)=f(x),则称函数f(x)为偶函数;若对于任意的x,有f(-x)=-f(x),则称函数f(x)为奇函数。

3.平移性:周期函数在水平方向具有平移性。

对于周期为T的函数f(x),如果a是一个实数,则对于任意的x,有f(x+a)=f(x)。

也就是说,函数f(x)在水平方向上平移了a个单位长度。

4.有界性:周期函数是有界函数。

由于函数值在一个周期内重复出现,且周期的长度是有限的,因此函数f(x)的值是有界的。

也就是说,存在一个实数M,使得对于任意的x,有,f(x),≤M。

5. 周期函数的积分为常数:周期函数的积分是一个常数。

具体来说,对于周期函数f(x)和其周期为T,有∫f(x)dx = C,其中C是一个常数。

6. 周期函数的傅里叶级数展开:周期函数可以用傅里叶级数展开。

根据傅里叶级数的理论,任意一个周期为T的函数f(x)都可以表示为一系列三角函数的和。

这种展开形式为f(x) = a₀ + ∑(n=1至∞)[aₙcos(2πnx/T) + bₙsin(2πnx/T)],其中a₀、aₙ和bₙ是展开系数。

7.周期函数的奇偶分解:周期函数可以分解为奇偶函数的和。

对于一个周期为T的函数f(x),可以分解为f(x)=fₑ(x)+fₒ(x),其中fₑ(x)是偶函数,fₒ(x)是奇函数。

8.周期函数的峰谷交替:周期函数的峰值和谷值交替出现。

在一个周期内,函数f(x)的最大值和最小值会交替出现,并且在这些点上导数为0。

解读函数的周期性

解读函数的周期性
周期函数是数学中的一个重要概念,它指的是对于函数f(z),如果存在一个非零的常数Tห้องสมุดไป่ตู้使得对于定义域内的任意一个z的值,都有f(z+T)=f(z),那么函数f(z)就叫做周期函数,非零常数T叫做这个函数的周期。这个定义反映了函数值重复出现的特性,是周期函数的本质。学习这个定义时,需要注意几点:首先,表达式f(z+T)=f(z)是周期函数的核心,它反映了函数值的重复性,是周期函数的必要条件;其次,这个等式是定义域内的恒等式,即对于定义域内任意z都成立,而不是对某些特定的z值成立;最后,周期函数的周期不只有一个,如果T是周期,那么kT(k是整数且k≠0)也一定是周期。了解这些,有助于更深入地理解和掌握周期函数的概念。

高一数学函数周期性知识点

高一数学函数周期性知识点

高一数学函数周期性知识点函数是数学中的重要概念,而函数的周期性是数学函数中一个重要的性质。

下面将介绍高一数学中与函数周期性相关的知识点。

一、周期函数的定义和性质周期函数是指满足f(x + T) = f(x)的函数,其中T为正实数,称为函数的周期。

例如,正弦函数和余弦函数都是周期为2π的函数。

周期函数的性质有以下几个方面:1. 周期函数的值在一个周期内是重复的,即f(x) = f(x ± nT),其中n为整数。

2. 周期为T的函数,在一个周期内有无穷多个周期点,即f(x)= f(x + nT)。

3. 函数的图像在一个周期内是对称的,即f(x) = f(2a - x),其中a为周期中心。

二、正弦函数和余弦函数的周期性正弦函数和余弦函数是高中数学中常见的周期函数。

1. 正弦函数的周期性:正弦函数y = sin x的周期是2π,即sin(x + 2π) = sin x。

正弦函数的图像在一个周期内以原点为对称中心。

2. 余弦函数的周期性:余弦函数y = cos x的周期是2π,即cos(x + 2π) = cos x。

余弦函数的图像在一个周期内以y轴的中点为对称中心。

三、常见函数的周期性除了正弦函数和余弦函数,还有其他一些常见函数具有周期性。

1. 周期为T的正弦函数的性质:y = A*sin(Bx + C) + D是一个周期为T = |2π/B|的函数。

其中,A为振幅,B为频率,C为初相位,D为纵坐标平移量。

2. 周期为T的余弦函数的性质:y = A*cos(Bx + C) + D是一个周期为T = |2π/B|的函数。

其中,A为振幅,B为频率,C为初相位,D为纵坐标平移量。

3. 其他函数的周期性:除了三角函数,指数函数、对数函数等也可以具有周期性,其周期的计算方法与三角函数类似。

四、函数周期性的应用函数周期性的应用广泛,尤其在信号处理、物理学、工程等领域。

1. 信号处理:在通信系统中,许多信号都具有周期性,利用函数周期性的性质可以对信号进行分析和处理。

函数周期性规律及公式

函数周期性规律及公式

函数周期性规律及公式函数是数学中的一个重要概念,它描述了一种输入输出的关系。

在实际问题中,很多现象具有一定的周期性规律,而函数周期性规律及公式恰好可以描述这种周期性。

本文将介绍函数的周期性规律以及常见的周期性函数的公式。

一、函数的周期性规律函数的周期性是指函数图像在一定区间内重复出现相同的模式。

具体来说,对于一个周期为T的函数,当自变量x从一个周期的起点变化到终点时,函数的取值会出现一个循环,然后再从起点开始重新循环。

周期性是一种重复性,可以将函数图像想象成一个周期性图像,不断重复。

函数的周期性规律可以由函数的公式来确定。

实际上,函数的周期性规律与函数的周期相关。

周期是函数重复性的基本特征,同时也决定了函数的重复间隔。

对于周期性函数来说,周期性规律可以表达成数学公式,这些公式可以用来描述函数图像的重复性。

二、常见的周期性函数公式1. 正弦函数(Sine Function)正弦函数是最常见的周期性函数之一。

它的图像可以描述成一条连续的曲线,沿着x轴周期性地上下振动。

正弦函数的周期是2π,公式为:y = A * sin(B * x + C) + D其中,A代表振幅(即最大纵向距离),B代表频率(即单位区间内的周期数),C代表相位偏移(即图像的水平位移),D代表垂直位移(即图像在y轴上的位置)。

2. 余弦函数(Cosine Function)余弦函数与正弦函数非常相似,只是相位偏移不同。

余弦函数的周期也是2π,公式为:y = A * cos(B * x + C) + D其中,A、B、C和D的含义与正弦函数相同。

3. 正切函数(Tangent Function)正切函数是另一种常见的周期性函数。

它的图像具有一系列无限多个垂直渐近线,周期为π,公式为:y = A * tan(B * x + C) + D同样,A、B、C和D分别代表振幅、频率、相位偏移和垂直位移。

除了上述三个函数以外,还有很多其他的周期性函数,如指数函数、对数函数等等。

周期函数知识点总结

周期函数知识点总结

周期函数知识点总结周期函数是指满足$f(x) = f(x+T)$的函数。

其中,$T$为正数,称为周期。

周期函数具有很多特性和应用,本文将就周期函数的定义、性质、图像和应用等方面进行深入探讨和总结。

一、周期函数的定义和性质1. 周期函数的定义一个函数$f(x)$满足:对于任意一个实数$x$,都有$f(x)=f(x+T)$,其中$T$是大于零的一个常数,我们就称$f(x)$为一个周期函数,$T$称为这个函数的周期。

2. 周期函数的性质(1)若函数$f(x)$是周期为$T$的周期函数,则其图像在$x$轴上任选一点$a$,向左平移或向右平移若干个周期长度$T$,其图像不发生改变。

(2)若函数$f(x)$是周期为$T$的周期函数,则其图像在$x$轴上任选一点$a$,向右平移$kT$个单位长度,向下平移$m(T)$个单位长度,则对于任意实数$x$,都有$f(x+kT+mT)=f(x)$。

(3)若函数$f(x)$是周期为$T$的周期函数,则对于不同正整数$n$,$k$,$f(x+nT)$与$f(x+kT)$具有相同的值。

即函数$f(x)$在一个周期$[0,T]$内的函数值是相等的。

二、周期函数的图像1. 周期函数图像的基本特征周期函数的图像具有以下基本特征:(1)周期性:函数图像的形状在每一个周期重复出现。

(2)偶函数性质:若函数$f(x)$是周期为$T$的周期函数,且满足$f(-x)=f(x)$,则$f(x)$是偶函数。

例如,$f(x)=\sin x$在$[-\pi,\pi]$上是周期函数,且$f(-x)=\sin(-x)=-\sin x=f(x)$,故$f(x)$是偶函数。

(3)奇函数性质:若函数$f(x)$是周期为$T$的周期函数,且满足$f(-x)=-f(x)$,则$f(x)$是奇函数。

例如,$f(x)=\cos x$在$[-\pi,\pi]$上是周期函数,且$f(-x)=\cos(-x)=\cos x=f(x)$,故$f(x)$是偶函数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

函数的周期性一、正弦函数的周期三角函数,以正弦函数 y = sin x 为代表,是典型的周期函数. 幂函数 y = x α 无周期性,指数函数 y = a x 无周期性,对数函数 y =log a x 无周期,一次函数 y = kx +b 、二次函数 y = ax 2+bx +c 、三次函数 y = ax 3+bx 2 + cx +d 也无周期性.周期性是三角函数独有的特性.1、正弦函数 y =sin x 的最小正周期在单位圆中,设任意角α的正弦线为有向线段MP . 正弦函数的周期性动点P 每旋转一周,正弦线MP 的即时位置和变化方向重现一次. 同时还看到,当P 的旋转量不到一周时,正弦线的即时位置包括变化方向不会重现.因此,正弦函数y =sin x 的最小正周期2π.2、y =sin (ωx )的最小正周期设ω>0,y =sin (ωx )的最小正周期设为L .按定义 y = sin ω(x +L ) = sin (ωx + ωL ) = sin ωx . 令ωx = x ' 则有 sin (x ' + ωL ) = sin x ' 因为sin x 最小正周期是2π,所以有ωωπ2π2=⇒=L L例如 sin2x 的最小正周期为π2π2= sin2x 的最小正周期为π421π2=3、正弦函数 y =sin (ωx +φ) 的周期性对正弦函数sin x 的自变量作“一次替代”后,成形式y = sin (ωx +φ). 它的最小正周期与y = sin ωx 的最小正周期相同,都是ωπ2=L .如⎪⎭⎫⎝⎛+=2π3sin x y 的最小周期与 y = sin (3x )相同,都是3π2.于是,余弦函数⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛-==2πsin 2πsin cos x x x y 的最小正周期与sin x 的最小正周期相同,都是2π.二、复合函数的周期性将正弦函数 y = sin x 进行周期变换x →ωx ,sin x →sin ωx后者周期变为)0(π2>ωω而在以下的各种变换中,如(1)初相变换sin ωx → si n ( ωx +φ);(2)振幅变换sin (ωx +φ)→ A sin ( ωx +φ);(3)纵移变换 A si n ( ωx +φ) → A si n ( ωx +φ)+m ;后者周期都不变,亦即 A si n ( ωx +φ) +m 与si n (ωx )的周期相同,都是ωπ2.而对复合函数 f (sin x )的周期性,由具体问题确定.1、复合函数 f (sin x ) 的周期性 【例题】 研究以下函数的周期性: (1)2 sin x ; (2)x sin(2)x sin 的定义域为[2k π,2k π+π],值域为[0,1],作图可知, 它是最小正周期为2π的周期函数.【解答】 (1)2sin x 的定义域为R ,值域为⎥⎦⎤⎢⎣⎡2 ,21,作图可知,它是最小正周期为2π的周期函数. 【说明】 从基本函数的定义域,值域和单调性出发,通过作图,还可确定,log a x ,sin x ,xsin 1, sin (sin x )都是最小正周期2π的周期函数.2、y = sin 3 x 的周期性对于y = sin 3x =(sin x )3,L =2π肯定是它的周期,但它是否还有更小的周期呢? 我们可以通过作图判断,分别列表作图如下.图上看到,y = sin 3x 没有比2π更小的周期,故最小正周期为2π.3、y = sin 2 x 的周期性对于y = sin 2x = (sin x )2,L =2π肯定是它的周期,但它的最小正周期是否为2π? 可以通过作图判定,分别列表作图如下.图上看到,y = sin 2x 的最小正周期为π,不是2π.4、sin 2n x 和sin 2n -1 x 的周期性y = sin2x 的最小正周期为π,还可通过另外一种复合方式得到. 因为 cos2x 的周期是π,故 sin 2x 的周期也是π.sin 2x 的周期,由cos x 的2π变为sin 2x 的π. 就是因为符号法“负负得正”所致.因此,正弦函数sin x 的幂符合函数sin m x ,当m =2n 时,sin m x 的最小正周期为π;m = 2n –1时,sin m x 的最小正周期是2π.5、幂复合函数举例【例1】 求 y =|sin x |的最小正周期.【解答】 x x y 2sin |sin |==最小正周期为π.【例2】 35)(sin x y =求的最小正周期.【解答】 5335)(sin )(sin x x =最小正周期为2π.【例3】 求52)(sin x y =的最小正周期.【解答】5252)(sin )(sin x x =最小正周期为π.【说明】 正弦函数sin x 的幂复合函数pq x )(sin . 当q 为奇数时,周期为2π;q 为偶数时,周期为π.三、周期函数的和函数两个周期函数,如 sin x 和 cos x ,它们最小正周期相同,都是 2π. 那么它们的和函数,即 si nx + cos x 的最小正周期如何?)4πsin(2cos sin +=+x x x和函数的周期与原有函数的周期保持不变. 这个结论符合一般情况.对于另一种情况,当相加的两个函数的最小正周期不相同,情况将会如何?1、函数 sin x + sin2 x 的周期性sin x 的最小正周期为2π,sin2x 的最小正周期是π,它们之间谁依赖谁,或依赖一个第三者? 列表如下.表上看到函数sin x +sin2x 的最小正周期是2π.2、函数 sin x + sin2x 的周期性依据上表,作sin x +sin2x 的图像如右.从图上看到,函数的最小正周期为2π. 由si nx ,sin2x 的最小正周期中的大者决定,因为前者是后者的2倍.从图上看到,sin x +sin2x 仍然是个“振动函数”,但振幅已经不是常数了.3、函数sin x +sin32x 的周期性 sin x 的最小正周期为2π,sin 32x 的最小正周期是3π. 它们之间的和sin x + sin 32x 的最小正周期也由“较大的”决定吗?即“和函数”的周期为3π吗?不妨按周期定义进行检验. 设2π0=x 则x 0 +3π=π32π+ 2312π32sin 2πsin 2π)(0+=⎪⎭⎫⎝⎛∙+=⎪⎭⎫ ⎝⎛=f x f )(23127π32sin 27πsin π32ππ)3(00x f f x f ≠+-=⎪⎭⎫⎝⎛∙+=⎪⎭⎫ ⎝⎛+=+因此3π不是sin x + sin32x 的最小正周期.通过作图、直观看到,sin x +sin32x 的最小正周期为6π,即sin x 和sin 32x 最小正周期的最小倍数.四、周期函数在高考中三角函数是高考命题的重要板块之一,小题考,大题也考,比分约占高考总分的七分之一,与立体几何相当. 与立几不同的是,它还与函数、方程、不等式、数列、向量等内容综合.正弦函数是三角函数的代表,而周期性又是正弦函数的特性. 关系到正弦函数的试题,有2种形式. (1)直接考,求正弦函数的最小正周期.(2)间接考,考周期在正弦函数性质中的应用. 求单调区间,求最值,简单方程的通解等.1、求正弦函数的周期【例1】 函数 y =|sin 2x|的最小正周期为 (A )2π(B )π (C )2π (D )4π 【解答】 2sin |2sin |2x x y == 最小正周期是2sinx最小正周期的一半,即2π. 答案为(C ) 【说明】 图象法判定最简便,|sin x |的图象是将sin x 的图象在x 轴下方部分折到x 轴上方去. 倍角法定判定最麻烦 x xy cos 212sin2-== 【解答】 (1)y = 2cos2x + 1的最小正周期由cos2x 决定2、求正弦函数的周期【例2】 (1)y =2cos 2x +1的最小正周期为 .(2)y =|sin x + cos x |的最小正周期为 .【解答】 (1)y = 2cos 2x + 1的最小正周期由cos 2x 决定,故答案为π.(2))(sin 2|)sin(|2|cos sin |2ϕϕ+=+=+x x x x 故答案为π.【说明】 )(sin cos 22ϕ+x x 都可看作sin x 的幂函数的复合函数.3、函数周期性应用于求值【例题】 f (x )是R 上的偶函数,且是最小正周期为π的周期函数.【解答】 ⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛3π 3π 32π 35π f f f f 233πsin == 【说明】 周期性应用于区域转化. 将“无解析式”的区域函数转化到“有解析式”的区间上求值.若 时 f (x ) = si nx 试求 的值.4、函数周期性应用于求单调区间【例题】 x ∈R ,求函数 y =sin 2x + 3sin x cos x +2cos 2x 的单调增区间.【解答】 )2cos 1(2sin 2322cos 1x x x y +++-=23)6π2sin(232cos 212sin 23++=++=x x x 函数的最小正周期为π. 令 2π6π22π≤+≤-x 得 6π3π≤≤-x 因为函数周期为π,故函数的单调增区间为⎥⎦⎤⎢⎣⎡+-6ππ ,3ππk k .【说明】 先求包含零点的增区间,再用最小正周期求单调增区间的集合.周期函数在高考中5、周期性应用于求函数零点【例题】 已知函数412sin 2cos sin cos sin )(2244--++=x x x x x x f .【解答】 41)cos sin 1(2cos sin 1412sin 2cos sin cos sin )(222244---=--++=x x x x x x x x x x fx x 2sin 4141412sin 4121+=-+=令 02s i n4141=+x 得 4π=x 故交点横坐标的值的集合为4π=x .【说明】 先求绝对值最小的解,再利用最小正周期求“通解”.五、高考史上的周期大难题高考史上第一次“周期大难题”出现在恢复高考后的第3年,即1980年的理科数学卷上.本题排在该卷的第六大题上. 在有十个大题的试卷上,这是个中间位置,然而,从当年的得分情况来看,本题的难度超过了包括压轴题和附加题在内的所有题目. 这点为命题人事先未能预料. 后来分析,该题的难点有三 .(1)函数抽象,导致周期中含有参数;(2)求参数范围,与解不等式综合;(3)求最小正整数解,连命题人自拟的“标答”都含糊不清. 20多年来数学界质疑不断.【考题】设三角函数)3π5πsin()(+=k x f ,其中k ≠0.(1)写出 f (x )极大值M 、极小值m 与最小正周期;(2)试求最小的正整数k ,使得当自变量x 在任意两个整数间(包括整数本身)变化时,函数 f (x )至少有一个值是M 与一个值是m .【解答】 (1) M =1,m = -1,k k T π10π25=⨯=.(2)f (x )在它的每一个周期中都恰好有一个值是M 与一个值是m .而任意两个整数间的距离都≥1因此要使任意两个整数间函数f (x )至少有一个值是M 与一个值是m ,必须且只须使 f (x )的周期≤1即:k =32就是这样的最小正整数. .4.31 π10 ,1 π10 =≥≤k k六、高考史上的周期大错题中学教材上的周期函数,一般都是简单和具体的函数. 关于最小正周期的求法,也是一些感性的结果;没有系统和完整“最小正周期”的系统研究.然而,随着“抽象函数”的不断升温,对周期函数周期的考点要求越来越高. 2006年福建理数卷出现的“周期大错题”正是这种盲目拔高的必然结果.【例题】 f (x )是定义在R 上的以3为周期的奇函数,且f (2)=0,则方程f (x )=0在区间(0,6)内解的个数的最小值是A.2B.3C.4D.5【说明】 这是2005年福建卷(理)第12题,命题组提供的答案是D ,即答案为5. 答案D 从何而来?以下,就是“D”的一种解法.【解答】 f (x )周期为3,由 f (2)=0,得 f (5) = f (2)=0,得 f (-1)= f (2-3) = f (2)=0,得 f (-4) = f (2-6) = f (2)=0f (x )为奇函数,得 f (1) = - f (-1) =0 f (4)= - f (-4)=0,得 f (-0)= - f (0),得 f (0)=0 f (3)= f (3+0)= f (0)=0于是,求得 f (x )=0的解为:1、2、3、4、5. 共5个解,答案为D. 【讨论】 除了上述解法得 f (x )=0的5个解外,还有如下的解.根据方程 f (x )=0的定义, x = 1.5 和 x =4.5 也是方程的解,证明如下: 由 f (x )的周期性,知 f (-1.5)= f (1.5) (1) 由 f (x )的奇偶性,知 f (-1.5) = - f (1.5) (2) 从而有 f (1.5)=0,f (4.5) = f (1.5)=0.所以,1.5和4.5也是方程 f (x )=0的解.于是,方程的解共有7个:即是1、1.5、2、3、4、4.5、5. 【思考】 按上面讨论的结果,方程 f (x ) = 0的解至少有7个. 而原题的四个选项支中均没有这个答案. 命题人给定的答案D 是错的. 高考史上的周期大错题【实验检验】 f (x )同时满足4个条件:(1)定义在R 上;(2)奇函数;(3)周期为3;(4)f (2) =0. 据此,我们找到 f (x )的一个具体例子:x x x f 3π4sin 3π2sin)(+= 并在区间(0,6)上找到 f (x )=0的7个解,列表如下:这7个解即是1,1.5,2,3,4,4.5,5.函数x x x f 3π4sin 3π2sin)(+=在一个周期[0,3]上的图像如右. 图像与 x 轴有5个交点,故在[0,6]有9个交点,从而在(0,6)上有7个交点.【反思】 命题人的错误自然出在疏忽二字上. 实在地,本题较难,首先难倒了命题人自己.严格地讲,试题“超纲”. 对两个周期函数的和函数,其最小正周期是它们的“最小公倍数”——这本身就没有进行过证明,对某些具体函数可以具体分析,但对抽象函数来讲,却没有理论依据. 而本题,又恰恰是个抽象函数,而且是个综合问题. 命题出错似乎是必然的.。

相关文档
最新文档