1.电磁感应的发现
法拉第发现电磁感应定律
计量科普
123
法拉第发现电磁感应定律
1820年,丹麦科学家 HC奥斯特发现 了电流的磁效应,揭示了电可以转化为磁这 一现象。此后,不少物理学家都在试图探索 磁是否也能产生电,但无数次实验都未能成 功。英国杰出科学家法拉第也是这些研究 者之一。他比其他研究者更有耐心,坚持时 间更久。他坚信既然电能转化为磁,磁也应 该能够转化为电。一开始,他企图通过让静 止的磁力对线圈或导体产生作用来获得电 流,为此设计了各种各样的实验。这些实验都没有得到他想要的结果。经过近 10年的实验,1831年 8月 29 日,他终于发现,当绕着软铁环上相对独立的二组线圈 A和 B中一个线圈的电流接通或中断时,另一个线圈 中电流计的指针会发生偏转。实验的结果出乎预料,原来感应效应不是持续的而是短瞬的。以后他又做了 一系列实验,用来判明产生感应电流的条件和决定感应电流的因素。他观察了磁棒插入线圈和从线圈内移 出时的感应现象;他做了电源接通和断开时两个同轴线圈的感应实验,并用铁芯增强感应效应;他借用皇家 科学院大型磁铁增强感应效果,并用圆盘在磁场中的旋转获得连续的电流,这就是世界上第一台利用感应原 理制作的发电机。
法拉第电磁感应定律是电磁学的一条基本定律,它的发现具有重大意义。通过这个定律,人们进一步认 识到了电和磁之间的联系,从而为人们深入探索有关电和磁普遍联系的理论奠定了坚实基础。
【金版学案】2014-2015学年高中物理 第二章 第一节电磁感应现象的发现课件 粤教版选修1-1
例1 面积是S的矩形导线框,放在一磁感应强度为B的匀强磁
场中,线框平面与磁场方向平行,如图所示,则穿过导线框 所围面积的磁通量为( ) B A. S S B.B
栏 目 链 接
C.BS
D.0
解析:磁通量的公式Φ =BS,S是与磁场方向垂直的 面积,当导线框平面与磁场平行时磁通量为0,选D.
解析:不管电路是否闭合,只要穿过电路的磁通量 发生变化,电路中就有感应电动势,因此 A 、 C 选项错 误.电路中要有感应电流,则电路必须闭合,且穿过电 路的磁通量要发生变化,所以B选项正确,D选项错误.
答案:B
栏 目 链 接
(1)试分析说明产生磁悬浮现象的原因; (2)试分析这种列车能达到这样高速的原因.
栏 目 链 接
解答:(1)线圈B下降,磁通量发生变化,B中产生感 应电流,由于B为超导线圈,电阻极小,故电流极大且几 乎不会减小,它受到向上的安培力与重力平衡而处于悬浮 状态. (2)由于悬浮而受阻力极小.
关于感应电动势和感应电流,下列说法中正确的是( ) A.只有当电路闭合,且穿过电路的磁通量发生变化时,电 路中才有感应电动势 B.只有当电路闭合,且穿过电路的磁通量发生变化时,电 路中才有感应电流 C.不管电路是否闭合,只要有磁通量穿过电路,电路中就 栏 目 有感应电动势 链 D .不管电路是否闭合,只要穿过电路的磁通量发生变化,接 电路中就有感应电流
答案:D
栏 目 链 接
考点二
感应电流产生的条件
产生感应电流的条件是:闭合电路中磁通量发生变化, 这里应同时满足两个条件,即“闭合电路”和“磁通量 发生变化”.
栏 目 链 接
例2 如图所示,无限大磁场的方向垂直于纸面向里,A图 中线圈在纸面内由小变大 ( 由图中实线矩形变成虚线矩形 ) , B 图中线圈正绕 a 点在平面内旋转, C 图与 D 图中线圈正绕 OO′轴转动,则线圈中不能产生感应电流的是( )
高中物理教科版选修32课件:第一章 第1、2节 电磁感应的发现 感应电流产生的条件
(1)在闭合电路中是否产生感应电流,取决于穿过电路的 磁通量是否发生变化,而不是取决于电路有无磁通量。
(2)闭合电路的部分导体做切割磁感线运 动是引起电路磁通量变化的具体形式之一。但 闭合电路的部分导体做切割磁感线运动时,不 一定总会引起闭合电路的磁通量变化。如图所示,矩形线框 abcd 在范围足够大的匀强磁场中在垂直磁场的平面内向右平 动,虽然 ad、bc 边都切割磁感线,但穿过线框的磁通量没有 变化,因而没有产生感应电流。
(5)只要闭合电路内有磁通量,闭合电路中就有感应电流产生。(×)
(6)线框不闭合时,即使穿过线框的磁通量发生变化,线框中也没
有感应电流产生。
(√)
2.合作探究——议一议 (1)很多科学家致力于磁与电的关系的探索,为什么他们在磁生电的
研究中没有成功? 提示:很多科学家在实验中没有注意磁场的变化、导体与磁场 之间的相对运动等环节,只想把导体放入磁场中来获得电流, 这实际上违反了能量转化和守恒定律。 (2)怎样理解“电生磁”? 提示:电流周围存在磁场是无条件的,无论电流是恒定不变的, 还是变化的,只要有电流,它的周围就一定有磁场。
(3)S 内有不同方向的磁场时,应先分别计算不同方向磁场 的磁通量,然后规定从某个面穿入的磁通量为正,从该面穿出 的磁通量为负,最后求代数和。
(4)有多匝线圈时,因为穿过线圈的磁感线的条数不受匝数 影响,故磁通量的计算也与匝数无关。
2.求磁通量的变化的三种方法 方法一:当磁感应强度 B 不变,而磁感线穿过的有效面积 S 变化时,则穿过回路的磁通量的变化量 ΔΦ=Φt-Φ0=B·ΔS。 方法二:当磁感应强度 B 变化,而磁感线穿过的有效面积 S 不变时,则穿过回路的磁通量的变化量 ΔΦ=Φt-Φ0=ΔB·S。 方法三:若磁感应强度 B 和回路面积 S 同时变化,则穿过 回路的磁通量的变化量 ΔΦ=Φt-Φ0。 注意:此时,ΔΦ=Φt-Φ0≠ΔB·ΔS。
法拉第电磁感应实验(1)
法拉第电磁感应实验摘要法拉第电磁感应实验是用来研究电磁感应现象的一种常见实验方法。
本文将介绍法拉第电磁感应实验的原理、实验步骤和结果分析,以及实验中可能遇到的问题和注意事项。
引言法拉第电磁感应实验是指利用电磁感应现象来产生电流的实验。
电磁感应是指当一个磁场与导体相互作用时,导体中会产生电流。
这一现象是由英国物理学家迈克尔·法拉第于1831年首次发现并研究的。
法拉第电磁感应实验不仅是深入理解电磁感应现象的重要手段,也是许多电磁设备和工艺的基础。
实验原理法拉第电磁感应实验的基本原理是:当导体运动时穿过磁感线时,磁通量改变,从而在导体两端产生电势差,导致电流的产生。
根据法拉第定律,电动势的大小与磁感应强度的变化速率成正比。
实验材料•直流电源•导线•磁铁•电流表•自制电磁感应装置实验步骤1.准备实验装置:将导线紧密绕制在铁芯上,形成一个螺线管状的装置。
2.将电磁感应装置的两个端点连接到直流电源的正负极上。
3.在电磁感应装置的中心位置放置一个磁铁。
4.打开直流电源,调节电流的大小。
5.在电磁感应装置两端连接一个电流表,观察电流表的读数。
6.移动磁铁,改变它与电磁感应装置之间的位置关系,观察电流表的读数变化。
7.记录实验数据并进行分析。
实验结果与分析实验中观察到的现象是:当移动磁铁时,电流表的读数发生变化。
当磁铁与电磁感应装置靠近时,电流表的读数增大;当磁铁与电磁感应装置远离时,电流表的读数减小。
这说明磁感线的穿过导体时产生了电磁感应现象,导致了电流的产生。
通过实验数据的记录和分析,可以得出以下结论:1.磁感线的穿过导体时,导体中产生的电流大小与磁感线的变化速率成正比。
2.当磁铁靠近电磁感应装置时,磁感线从电磁感应装置内穿过的数量增加,导致了电流的增大。
3.当磁铁远离电磁感应装置时,磁感线从电磁感应装置内穿过的数量减少,导致了电流的减小。
实验问题与注意事项在进行法拉第电磁感应实验时,可能会遇到以下问题和需要注意的事项:1.实验装置的搭建需要仔细,确保导线与磁铁的位置关系稳定。
电磁感应现象(1)
电磁感应现象
授课人
纪庆生
学习目的:
⑴在物理知识方面
①理解什么是电磁感应现象;
②掌握产生感应电流的条件。
⑵在能力方面
①通过观察演示实验,归纳、概括出利用磁场产生电流的条件,培养学生的观察、概括能力。
重点难点
重点:使学生掌握只要闭合电路的磁通量发生变化,闭合电路中就会产生感应电流。
难点:闭合电路磁通量的变化。
让学生通过对实验的分析,上升到理论高度去概括、总结。
㈢产生感应电流的条件:只要穿过闭合电路的磁通量发生变化,闭合电路中就有感应电流产生.
这一重大发现,进一步揭示了电和磁的密切联系,为电能的广泛应用奠定了基础.
小结本节课
①什么是电磁感应现象;
②掌握产生感应电流的条件。
③获得感应电流的各种实验方法
课后作业
实验⒈闭合电路的一部分导体在磁场中运动:
闭合电路的一部分导体在磁场中做切割磁感线运动时,导线中就有感应电流产生.
实验⒉穿过闭合电路的磁通量变化:
穿过线圈的磁通量发生பைடு நூலகம்化时电路中就有电流产生.
实验⒊磁感应强度变化:
当穿过闭合电路的磁通量发生变化时,闭合电路中就会有电流产生,这种现象叫做电磁感应现象.电磁感应现象中产生的电流叫做感应电流.
方法
学生实验探究、推理与总结、归纳和应用
教具
①电源、变阻器、电键、马蹄形磁铁、导体棒、导线、导轨;
②条形磁铁、铁架台、能通电的线圈。
③原副线圈、灵敏电流计。
教学过程
复习引入
新授
(利用物理学史知识,激发学生的学习兴趣、探究热情)
㈠发现电磁感应现象的背景
1820年,丹麦物理学家奥斯特发现了电流能够产生磁场电流的磁效应,揭示了电和磁之间存在着联系,受到这一发现的启发,人们开始考虑这样一个问题:既然电流能够产生磁场,反过来,利用磁场是否能够产生电流呢?不少科学家进行了这方面的探索,英国科学家法拉第,坚信电与磁有密切的联系。经过10年坚持不懈的努力,于1831年终于取得了重大的突破,发现了利用磁场产生电流的条件。
电磁感应现象和法拉第定律
Ii
1 R
dΦ dt
t t2 t1 时间内,流过回路的电荷
q
t2 Idt 1
t1
R
Φ2 dΦ
Φ1
1 R
(Φ1
Φ2 )
5
楞次定律
闭合的导线回路中所 出现的感应电流,总是力 图阻止穿过导体回路的磁 通量的改变,亦即使它自 己所激发的磁场反抗任何 引发电磁感应的原因(反 抗相对运动、磁场变化或 线圈变形等).
o
iR
19
有效值
P 1 T I 2(t)Rdt P 1 T U 2 (t) / Rdt
T0
T0
P
I
2 有效
R
P
U
2 有效
/
R
20
发电机输出的瞬时功率为
P(t)
I
2
R
RI
2 m
sin
2
t
平均输出功率就是一个周期内输出的瞬时功率之平均值:
P 1 T
T 0
P(t)dt
1 2
I
2 m
R
P
I
2 有效
35
感生电场和静电场的对比
E静 和 Ek 均对电荷有力的作用.
静电场是保守场 L E静 dl 0
感生电场是非保守场
L
Ek
dl
dΦ dt
0
静电场由电荷产生;感生电场是由变化的磁 场产生 .
36
半径为 R 的圆柱形空间内充满与轴平行的磁场 B, B 随时间 t 变化 B = kt,圆柱形之外 B = 0,求圆 柱形空间外的电场分布。
13
例2 一导线矩形框的平面与磁感强度为 B 的均
匀磁场相垂直.在此矩形框上,有一质量为 m长为 l 的
【全优课堂】2014秋高中物理 第2章 第1节电磁感应现象的发现课件 粤教版选修1-1
感线运动,回路中磁通量也不一定发生变
化,如右图所示,闭合导体虽然切割磁感 线,但回路中磁通量始终未变,故无感应电 流产生,C错误. 答案 D
磁通量变化与否的分析 【例 2】 如图 2- 1-1所示,正方形导线框放在匀强磁场 区内,磁场垂直于线框平面,在下列情况下,能否产生感应电 流?请说明理由. (1)将线框由正方形拉成圆形的过程中.
现象?
产生电磁感应现象的条件,归根结底,是穿过闭合电路的 磁通量发生变化.关键在“变化”两字上,这是指穿过闭合电 路的磁通量从无变有、从有变无、从小变大、从大变小等 等.例如闭合线圈从与磁感线平行的位置转到与磁感线垂直的
位置;磁铁与闭合电路间的相对运动;产生磁通量的电路中的
电源开关的接通与断开、调节电流大小的滑动变阻器滑片的滑 动等.
(2)将线框水平向右拉出磁场区.
(3)线框绕cd边旋转. 图2-1-1
解析
(1) 将线框由正方形拉成圆形,面积增大,闭合回
路中磁通量增大,所以有感应电流产生. (2) 应分两个过程分析:当线框在磁区中运动时,磁通量 不变,无感应电流产生;在线框离开磁区的过程中,磁通量减 少,有感应电流产生. (3) 当线框以 cd 边轴旋转时,穿过线框的磁通量发生变
1.初、高中学习的产生感应电流的条件本质是否相同? 在初中学习的产生感应电流的条件是闭合回路的部分导体
做切割磁感线运动.由于闭合回路的部分导体做切割磁感线运
动引起了回路面积的变化,进而改变穿过回路的磁通量产生感 应电流,其本质与高中学习的产生感应电流的条件是相同的.
2. 穿过闭合回路的磁通量很大,是否一定发生电磁感应
第一节
电磁感应现象的发现
一、法拉第与电磁感应现象 磁通量 发生 1.电磁感应现象:只要穿过闭合回路的 __________
精品导学案:第1章 电磁感应1电磁感应的发现 感应电流产生的条件 Word版含答案
学案1电磁感应的发现感应电流产生的条件[学习目标定位] 1.能理解什么是电磁感应现象.2.能记住产生感应电流的条件.3.会使用线圈以及常见磁铁完成简单的实验.4.能说出磁通量变化的含义.5.会利用电磁感应产生的条件解决实际问题.1.磁通量的计算公式Φ=BS的适用条件是匀强磁场且磁感线与平面垂直.若在匀强磁场B 中,磁感线与平面不垂直,公式Φ=BS中的S应为平面在垂直于磁场方向上的投影面积.2.磁通量是标量,但有正、负之分.一般来说,如果磁感线从线圈的正面穿入,线圈的磁通量就为“+”,磁感线从线圈的反面穿入,线圈的磁通量就为“-”.3.由Φ=BS可知,磁通量的变化有三种情况:(1)磁感应强度B不变,有效面积S变化;(2)磁感应强度B变化,有效面积S不变;(3)磁感应强度B和有效面积S同时变化.一、奥斯特实验的启迪1820年,奥斯特从实验中发现了电流的磁效应,不少物理学家根据对称性的思考,提出既然电能产生磁,是否也存在逆效应,即磁产生电呢?二、电磁感应现象的发现1831年,英国物理学家法拉第发现了电磁感应现象.他将“磁生电”现象分为五类:(1)变化中的电流;(2)变化中的磁场;(3)运动中的恒定电流;(4)运动中的磁铁;(5)运动中的导线.三、电磁感应规律的发现及其对社会发展的意义1.电磁感应的发现,使人们发明了发电机,把机械能转化成电能;使人们发明了变压器,解决了电能远距离传输中能量大量损耗的问题;使人们制造出了结构简单的感应电动机,反过来把电能转化成机械能.2.法拉第在研究电磁感应等电磁现象中,从磁性存在的空间分布逐渐凝聚出“场”的科学创新思想.在此基础上,麦克斯韦建立了电磁场理论,并预言了电磁波的存在. 四、产生感应电流的条件 穿过闭合电路的磁通量发生变化时,这个闭合电路中就有感应电流产生.一、磁通量及其变化[问题设计]如图1所示,框架的面积为S ,匀强磁场的磁感应强度为B .试求:图1 (1)框架平面与磁感应强度B 垂直时,穿过框架平面的磁通量为多少?(2)若框架绕OO ′转过60°,则穿过框架平面的磁通量为多少?(3)若从图示位置转过90°,则穿过框架平面的磁通量的变化量为多少?(4)若从图示位置转过180°,则穿过框架平面的磁通量变化量为多少?答案 (1)BS (2)12BS (3)-BS (4)-2BS [要点提炼]1.磁通量的计算(1)公式:Φ=BS(2)适用条件:①匀强磁场,②磁场方向和平面垂直.(3)B 与S 不垂直时:Φ=BS ⊥,S ⊥为平面在垂直磁场方向上的投影面积,在应用时可将S 投影到与B 垂直的方向上,如图2所示Φ=BS sin_θ.图2(4)磁通量与线圈的匝数无关.2.磁通量的变化量ΔΦ(1)当B 不变,有效面积S 变化时,ΔΦ=B ·ΔS .(2)当B 变化,S 不变时,ΔΦ=ΔB ·S .(3)B和S同时变化,则ΔΦ=Φ2-Φ1,但此时ΔΦ≠ΔB·ΔS.特别提醒计算穿过某面的磁通量变化量时,要注意前、后磁通量的正、负值,如原磁通量Φ1=BS,当平面转过180°后,磁通量Φ2=-BS,磁通量的变化量ΔΦ=-2BS.二、感应电流产生的条件[问题设计]实验1(导体在磁场中做切割磁感线的运动):如图3所示,导体AB垂直磁感线运动时,线路中有电流产生,而导体AB沿着磁感线运动时,线路中无电流产生(填“有”或“无”).图3实验2(通过闭合电路的磁场发生变化):如图4所示,将小螺线管A插入大螺线管B中不动,当开关S接通或断开时,电流表中有电流通过;若开关S一直闭合,当改变滑动变阻器的阻值时,电流表中有电流通过;而开关一直闭合,滑动变阻器的滑动触头不动时,电流表中无电流产生.若将螺线管A放在螺线管B的正上方,并使两者的轴线互相垂直,则不管进行什么操作,电流表中均无电流产生(填“有”或“无”).图41.实验2中并没有导体在磁场中做切割磁感线的运动,但在接通或断开电源的瞬间及改变滑动变阻器的阻值时,B线圈却出现感应电流,这说明什么?答案说明导体在磁场中做切割磁感线运动不是产生感应电流的本质原因,通过闭合电路的磁场变化也可以产生感应电流.2.当实验2中开关闭合后,A线圈电流稳定时,B线圈中也存在磁场,但不出现感应电流,这说明什么?答案说明感应电流的产生,不在于闭合回路中是否有磁场.3.实验2中同样的磁场变化,螺线管B套在螺线管A外边时,能产生感应电流,而两个线圈相互垂直放置时不能产生感应电流,这又说明什么?试总结产生感应电流的条件.答案说明感应电流的产生,不在于磁场是否变化.总结实验1中,磁场是稳定的,但在导体切割磁感线运动时,通过回路的磁通量发生变化,回路中产生了感应电流;实验2通过改变电流从而改变磁场强弱,进而改变了磁通量,从而产生了感应电流,所以可以将产生感应电流的条件描述为“只要穿过闭合电路的磁通量发生变化,闭合电路中就会产生感应电流”.[要点提炼]1.产生感应电流的条件:穿过闭合电路的磁通量发生变化.2.特例:闭合电路的一部分导体在磁场内做切割磁感线运动.在利用“切割”来讨论和判断有无感应电流时,应该注意:(1)导体是否将磁感线“割断”,如果没有“割断”就不能说切割.如图5所示,甲、乙两图中,导线是真“切割”,而图丙中,导体没有切割磁感线.图5(2)是否仅是闭合电路的一部分导体在磁场内做切割磁感线运动,如图丁.如果由切割不容易判断,则要回归到磁通量是否变化上去.[延伸思考]电路不闭合时,磁通量发生变化是否能产生电磁感应现象?答案当电路不闭合时,没有感应电流,但有感应电动势,只产生感应电动势的现象也可以称为电磁感应现象.一、磁通量Φ及其变化量ΔΦ的理解与计算例1如图6所示的线框,面积为S,处于磁感应强度为B的匀强磁场中,B的方向与线框平面成θ角,当线框转过90°到如图6所示的虚线位置时,试求:图6(1)初、末位置穿过线框的磁通量的大小Φ1和Φ2;(2)磁通量的变化量ΔΦ.解析(1)解法一:在初始位置,把面积向垂直于磁场方向进行投影,可得垂直于磁场方向的面积为S⊥=S sin θ,所以Φ1=BS sin θ.在末位置,把面积向垂直于磁场方向进行投影,可得垂直于磁场方向的面积为S⊥′=S cos θ.由于磁感线从反面穿入,所以Φ2=-BS cos θ.解法二:如图所示,把磁感应强度B沿垂直于面积S和平行于面积S进行分解,得B上=B sin θ,B左=B cos θ所以Φ1=B上S=BS sin θ,Φ2=-B左S=-BS cos θ.(2)开始时B与线框平面成θ角,穿过线框的磁通量Φ1=BS sin θ;当线框平面按顺时针方向转动时,穿过线框的磁通量减少,当转动θ时,穿过线框的磁通量减少为零,继续转动至90°时,磁感线从另一面穿过,磁通量变为“负”值,Φ2=-BS cos θ.所以,此过程中磁通量的变化量为ΔΦ=Φ2-Φ1=-BS cos θ-BS sin θ=-BS(cos θ+sin θ).答案(1)BS sin θ-BS cos θ(2)-BS(cos θ+sin θ)二、产生感应电流的分析判断及实验探究例2如图7所示,在匀强磁场中有两条平行的金属导轨,磁场方向与导轨平面垂直.导轨上有两条可沿导轨自由移动的金属棒ab、cd,与导轨接触良好.这两条金属棒ab、cd的运动速度分别是v1、v2,且井字形回路中有感应电流通过,则可能()图7A.v1>v2B.v1<v2C.v1=v2D.无法确定解析只要金属棒ab、cd的运动速度不相等,穿过井字形回路的磁通量就发生变化,闭合回路中就会产生感应电流.故选项A、B正确.答案AB例3在研究电磁感应现象的实验中所用器材如图8所示.它们是①电流表、②直流电源、③带铁芯的线圈A、④线圈B、⑤开关、⑥滑动变阻器(用来控制电流以改变磁场强弱).试按实验的要求在实物图上连线(图中已连好一根导线).图8答案连接电路如图所示1.(对电磁感应现象的认识)下列现象中,属于电磁感应现象的是()A.小磁针在通电导线附近发生偏转B.通电线圈在磁场中转动C.因闭合线圈在磁场中运动而产生的电流D.磁铁吸引小磁针答案 C解析电磁感应是指“磁生电”的现象,而小磁针和通电线圈在磁场中转动以及磁铁吸引小磁针,反映了磁场力的性质,所以A、B、D不是电磁感应现象,C是电磁感应现象.2.(对磁通量Φ及其变化量ΔΦ的理解)如图9所示一矩形线框,从abcd位置移到a′b′c′d′位置的过程中,关于穿过线框的磁通量情况,下列叙述正确的是(线框平行于纸面移动) ()图9A.一直增加B.一直减少C.先增加后减少D.先增加,再减少直到零,然后再增加,然后再减少答案 D解析离导线越近,磁场越强,当线框从左向右靠近导线的过程中,穿过线框的磁通量增大,当线框跨在导线上向右运动时,磁通量减小,当导线在线框正中央时,磁通量为零,从该位置向右,磁通量又增大,当线框离开导线向右运动的过程中,磁通量又减小;故A、B、C 错误,D正确,故选D.3.(产生感应电流的分析判断)如图10所示,开始时矩形线框与匀强磁场的方向垂直,且一半在磁场内,一半在磁场外,若要使线框中产生感应电流,下列办法中可行的是()图10A.将线框向左拉出磁场B.以ab边为轴转动(小于90°)C.以ad边为轴转动(小于60°)D.以bc边为轴转动(小于60°)答案ABC解析将线框向左拉出磁场的过程中,线框的bc部分切割磁感线,或者说穿过线框的磁通量减少,所以线框中将产生感应电流.当线框以ab边为轴转动(小于90°)时,线框的cd边的右半段在做切割磁感线运动,或者说穿过线框的磁通量在发生变化,所以线框中将产生感应电流.当线框以ad边为轴转动(小于60°)时,穿过线框的磁通量在减小,所以在这个过程中线框内会产生感应电流.如果转过的角度超过60°(60°~300°),bc边将进入无磁场区,那么线框中将不产生感应电流.当线框以bc边为轴转动时,如果转动的角度小于60°,则穿过线框的磁通量始终保持不变(其值为磁感应强度与矩形线框面积的一半的乘积).4.(产生感应电流的分析判断)如图11所示,绕在铁芯上的线圈与电源、滑动变阻器和电键组成闭合回路,在铁芯的右端套有一个表面绝缘的铜环A,下列各种情况中铜环A中没有感应电流的是()图11A.线圈中通以恒定的电流B.通电时,使滑动变阻器的滑片P做匀速移动C.通电时,使滑动变阻器的滑片P做加速移动D.将电键突然断开的瞬间答案 A解析只要通电时滑动变阻器的滑片P移动,电路中的电流就会发生变化,变化的电流产生变化的磁场,铜环A中磁通量发生变化,有感应电流;同样,将电键断开瞬间,电路中电流从有到无,仍会在铜环A中产生感应电流.题组一对磁通量Φ及其变化量ΔΦ的理解与计算1.关于磁通量,下列叙述正确的是()A.在匀强磁场中,穿过一个面的磁通量等于磁感应强度与该面面积的乘积B.在匀强磁场中,a线圈的面积比b线圈的大,则穿过a线圈的磁通量一定比穿过b线圈的磁通量大C.把一个线圈放在M、N两处,若放在M处时穿过线圈的磁通量比放在N处时大,则M 处的磁感应强度一定比N处大D.同一线圈放在磁感应强度大处,穿过线圈的磁通量不一定大答案 D解析磁通量等于磁感应强度与垂直磁场方向上的投影面积的乘积,A错误;线圈面积大,但投影面积不一定大,B错误;磁通量大,磁感应强度不一定大,C错误、D正确.2.关于磁通量的概念,以下说法中正确的是()A.磁感应强度越大,穿过闭合回路的磁通量越大B.磁感应强度越大,线圈面积越大,则磁通量越大C.穿过线圈的磁通量为零,但磁感应强度不一定为零D.磁通量发生变化,一定是磁场发生变化引起的答案 C解析根据磁通量的定义,Φ=B·S·sin θ,因此A、B选项错误;穿过线圈的磁通量为零时,磁感应强度不一定为零;磁通量发生变化,可能是面积变化引起的,也可能是磁场变化引起的,D错.3.如图1所示,半径为R的圆形线圈共有n匝,其中心位置处半径为r的范围内有匀强磁场,磁场方向垂直线圈平面,若磁感应强度为B,则穿过线圈的磁通量为()图1A.πBR2B.πBr2C.nπBR2D.nπBr2答案 B解析由磁通量的定义式知Φ=BS=πBr2;故B正确.题组二产生感应电流的分析判断4.关于电磁感应现象,下列说法中正确的是()A.闭合线圈放在变化的磁场中,必然有感应电流产生B.闭合正方形线圈在匀强磁场中垂直磁感线运动,必然产生感应电流C.穿过闭合线圈的磁通量变化时,线圈中有感应电流D.只要穿过电路的磁通量发生变化,电路中就一定有感应电流产生答案 C解析产生感应电流的条件:(1)闭合电路;(2)磁通量Φ发生变化,两个条件缺一不可.5.下图中能产生感应电流的是()答案 B解析根据产生感应电流的条件:A中,电路没闭合,无感应电流;B中,面积增大,闭合电路的磁通量增大,有感应电流;C中,穿过线圈的磁感线相互抵消,Φ恒为零,无感应电流;D中,磁通量不发生变化,无感应电流.6.下列情况中都是线框在磁场中做切割磁感线运动,其中线框从开始进入到完全离开磁场的时间中有感应电流的是()答案BC解析A中虽然导体“切割”了磁感线,但穿过闭合线框的磁通量并没有发生变化,没有感应电流.B中线框的一部分导体“切割”了磁感线,穿过线框的磁感线条数越来越少,线框中有感应电流.C中虽然与A近似,但由于是非匀强磁场,运动过程中,穿过线框的磁感线条数增加,线框中有感应电流.D中线框尽管是部分切割,但磁感线条数不变,无感应电流,故选B、C.7.如图2所示,一有限范围的匀强磁场宽度为d ,若将一个边长为L 的正方形导线框以速度v 匀速地通过磁场区域,已知d >L ,则导线框从开始进入到完全离开磁场的过程中无感应电流的时间等于( )图2A.d vB.L vC.d -L vD.d -2L v答案 C解析 只有导线框完全在磁场里面运动时,导线框中才无感应电流.8.如图3所示的匀强磁场中有一个矩形闭合导线框,初始位置线框与磁感线平行,则在下列四种情况下,线框中会产生感应电流的是( )图3A .线框平面始终与磁感线平行,线框在磁场中左右运动B .线框平面始终与磁感线平行,线框在磁场中上下运动C .线框绕位于线框平面内且与磁感线垂直的轴线AB 转动D .线框绕位于线框平面内且与磁感线平行的轴线CD 转动答案 C解析 四种情况中初始位置线框均与磁感线平行,磁通量为零,按A 、B 、D 三种情况线框运动后,线框仍与磁感线平行,磁通量保持为零不变,线框中不产生感应电流.C 中线框转动后,穿过线框的磁通量不断发生变化,所以产生感应电流,C 项正确.9.为观察电磁感应现象,某学生将电流表、螺线管A 和B 、蓄电池、开关用导线连接成如图4所示的实验电路.当接通和断开开关时,电流表的指针都没有偏转,其原因是( )图4A.开关位置接错B.电流表的正、负极接反C.线圈B的3、4接头接反D.蓄电池的正、负极接反答案 A解析本题考查了感应电流产生的条件.因感应电流产生的条件是闭合电路中的磁通量发生变化,由电路图可知,把开关接在B与电流表之间,因与1、2接头相连的电路在接通和断开开关时,电流不改变,所以不可能有感应电流,电流表也不可能偏转,开关应接在A与电源之间.10.如图5所示,导线ab和cd互相平行,则下列四种情况中,导线cd中有电流的是()图5A.开关S闭合或断开的瞬间B.开关S是闭合的,滑动触头向左滑C.开关S是闭合的,滑动触头向右滑D.开关S始终闭合,滑动触头不动答案ABC解析开关S闭合或断开的瞬间;开关S闭合,滑动触头向左滑或向右滑的过程都会使通过导线ab段的电流发生变化,使穿过cd回路的磁通量发生变化,从而在cd导线中产生感应电流.因此本题的正确选项应为A、B、C.11.如图6所示,线圈Ⅰ与电源、开关、滑动变阻器相连,线圈Ⅱ与电流计相连,线圈Ⅰ与线圈Ⅱ绕在同一个铁芯上,在下列情况下,电流计中是否有示数?图6(1)开关闭合瞬间;(2)开关闭合稳定后;(3)开关闭合稳定后,来回移动滑动变阻器的滑片;(4)开关断开瞬间.答案(1)有(2)无(3)有(4)有解析本题主要考查闭合电路中,电流变化导致磁场变化从而产生感应电流的情况.(1)开关闭合时线圈Ⅰ中电流从无到有,电流的磁场也从无到有,穿过线圈Ⅱ的磁通量也从无到有,线圈Ⅱ中产生感应电流,电流计有示数.(2)开关闭合稳定后,线圈Ⅰ中电流稳定不变,电流的磁场不变,此时线圈Ⅱ中虽有磁通量但磁通量稳定不变,线圈Ⅱ中无感应电流产生,电流计无示数.(3)开关闭合稳定后,来回移动滑动变阻器的滑片,电阻变化,线圈Ⅰ中的电流变化,电流形成的磁场也发生变化,穿过线圈Ⅱ的磁通量也发生变化,线圈Ⅱ中有感应电流产生,电流计有示数.(4)开关断开瞬间,线圈Ⅰ中电流从有到无,电流的磁场也从有到无,穿过线圈Ⅱ的磁通量也从有到无,线圈Ⅱ中有感应电流产生,电流计有示数.12.如图7所示,固定于水平面上的金属架MDEN处在竖直向下的匀强磁场中,金属棒MN 沿框架以速度v向右做匀速运动.t=0时,磁感应强度为B0,此时MN到达的位置使MDEN 构成一个边长为l的正方形.为使MN棒中不产生感应电流,从t=0开始,磁感应强度B 应怎样随时间t变化?请推导出这种情况下B与t的关系式.图7答案B=B0ll+v t解析要使MN棒中不产生感应电流,应使穿过线圈平面的磁通量不发生变化在t=0时刻,穿过线圈平面的磁通量Φ1=B0S=B0l2设t时刻的磁感应强度为B,此时磁通量为Φ2=Bl(l+v t)由Φ1=Φ2得B=B0ll+v t.教学反思在新课改的形式下,如何激发教师的教研热情,提升教师的教研能力和学校整体的教研实效,是摆在每一个学校面前的一项重要的“校本工程”。
电磁感应定律_1
d d i NBS cos w t dt dt NBS w sin w t
εi=εmsinωt
令εm=NBω,则
εi 为时间的正弦函数,称正弦交流电,简称交流电。
四、楞次定律(Lenz law)
楞次(Lenz,Heinrich Friedrich Emil)
否则只需一点力开始使 导线移动,若洛仑兹力 不去阻挠它的运动,将 有无限大的电能出现, 显然,这是不符合能量 守恒定律的。
V FL B S I
FL
I
F外
B
五、涡电流
1、涡电流
大块导体处在变化磁场中,或者相对于磁场运动 时,在导体内部也会产生感应电流。这些感应电流在大
块导体内的电流流线呈闭合的涡旋状,被称为涡电流或
涡流。
2、涡流的热效应
电阻小,电流大,能够产生大量的热量。
3、应用
高频感应炉
真空无接触加热 电磁率工作频率:20-30kH 热效率:80%
加热
4、涡流的阻尼作用
当铝片摆动时,穿过运动铝片
的磁通量是变化的,铝片内将产生涡流。 根据楞次定律感应电流的效果总是反抗 引起感应电流的原因。因此铝片的摆动 会受到阻滞而停止,这就是电磁阻尼。
法拉第(Michael Faraday 1791—1867)
伟大的英国物理学家和化学家。法拉第 主要从事电学、磁学、磁光学、电化学 方面的研究,并在这些领域取得了一系 列重大发现。他创造性地提出场的思想。 他是电磁理论的创始人之一,于1831年 发现电磁感应现象,后又相继发现电解 定律,物质的抗磁性和顺磁性,以及光 的偏振面在磁场中的旋转。电动机、发 电机都是他发明的,他为人类进入电气 化时代奠定了基础.
物理学(马文蔚)8-1
第八章 电磁感应 电磁场
§8-1
问题的提出
电磁感应定律
1831年法拉第
实验
电 流
产 生
磁 场
?
电磁感应
闭合回路
m 变化
产生
感应电流
1. 电磁感应现象
法拉第(Michael Faraday, 1791-1867) 英国物理学家和化学家, 电磁理论的创始人之一. 他创造性地提出场的思想, 最早引入磁场这一名称. 1831年发现电磁感应现象, 后又相继发现电解定律, 物质的抗磁性和顺磁性, 及光的偏振面在磁场中的 旋转.
d o R B l
Blx Φ BS
回路的感应电动势为:
a
i d Φ Bl d x Bl dt dt
b
矩形线圈,分别作如图所示的运动。 判断回路中是否有感应电流。
思 考
I
(a ) 0
(b) 0
(c )
0
(d ) 0
2 楞次定律(判断感应电流方向)
闭合回路中感应电流具有确定的方向, 它总是使感应电流所产生的穿过回路的磁 通量,去补偿或者反抗引起感应电流的磁 通量的变化。
0 I B 2r
I
dr
l
b
0 lI 0 sint b ln 2 a 0 lI 0 cost b dΦ i ln dt 2 a
a
r
法拉第电磁感应定律:
dΦ i dt
i 是回路中的 感应电动势
电动势i是非静电力作功!
Φ 的变化方式:
导体回路运动,B不变~~动生电动势 导体回路不动,B变化~~感生电动势
电磁感应现象(第1课时)讲课稿
试验过程及现象如下:
磁铁动作
表针 是否偏转
磁铁动作
表针 是否偏转
N极插入线圈
S极插入线圈
N极停在线圈 中
S极停在线圈中
N极从线圈抽 出
S极从线圈抽出
归纳:在这个实验中,什么情况下能够产生感应电流?
现象:当磁铁相对线圈运动时,有感应电流产生
线圈闭合电路所在位置的磁场发生变化时, 有感应电流产生
“磁场”和“部分导体”不 发生相对运动时
法拉第实验再现
探究电磁感应的产生条件
操作 开关闭合瞬间
现象 有电流产生
开关断开瞬间
有电流产生
开关总是闭合,滑 动变阻器不动
开关总是闭合,迅 速移动变阻器的滑 片
无电流产生 有电流产生
实验结论:只有当线圈A中电流发生变化,线
圈B中才有感应电流
只有当线圈A中电流发生变化,线圈B 中才有感应电流
线圈B中的磁场发生了变化,所以 B产生了感应电流
电能生磁,磁能生电吗?
法拉第是英国物理学家。
1820年奥斯特发现电流的磁效应 之后,法拉第于1821年提出
“由磁产生电”的大胆设想,
并开始了十年艰苦的探索。 在这 十年中,他失败了,再探索,再 失败,再探索... ...终于 于1831年8月29日发现了电磁感 应现象,开辟了人类的电气化时 代。----勇于探索,不畏艰难。
大家谈 遗憾出自哪里?
1.导体在磁场中产生电流的条件:闭合电路
的部分导体在磁场中做切割磁感线运动。
(1)当前后移动导 线AB时,产生感应 电流。 (2)当上下移动导 线AB时,不产生感 应电流
2、线圈在磁场中产生电流的条件
磁生电是一种在变化过程中才出现的现象
【教科版】2019年高中物理选修3-2学案 第一章 电磁感应1电磁感应的发现 感应电流产生的条件 含答案
学案1电磁感应的发现感应电流产生的条件[学习目标定位] 1.能理解什么是电磁感应现象.2.能记住产生感应电流的条件.3.会使用线圈以及常见磁铁完成简单的实验.4.能说出磁通量变化的含义.5.会利用电磁感应产生的条件解决实际问题.1.磁通量的计算公式Φ=BS的适用条件是匀强磁场且磁感线与平面垂直.若在匀强磁场B 中,磁感线与平面不垂直,公式Φ=BS中的S应为平面在垂直于磁场方向上的投影面积.2.磁通量是标量,但有正、负之分.一般来说,如果磁感线从线圈的正面穿入,线圈的磁通量就为“+”,磁感线从线圈的反面穿入,线圈的磁通量就为“-”.3.由Φ=BS可知,磁通量的变化有三种情况:(1)磁感应强度B不变,有效面积S变化;(2)磁感应强度B变化,有效面积S不变;(3)磁感应强度B和有效面积S同时变化.一、奥斯特实验的启迪1820年,奥斯特从实验中发现了电流的磁效应,不少物理学家根据对称性的思考,提出既然电能产生磁,是否也存在逆效应,即磁产生电呢?二、电磁感应现象的发现1831年,英国物理学家法拉第发现了电磁感应现象.他将“磁生电”现象分为五类:(1)变化中的电流;(2)变化中的磁场;(3)运动中的恒定电流;(4)运动中的磁铁;(5)运动中的导线.三、电磁感应规律的发现及其对社会发展的意义1.电磁感应的发现,使人们发明了发电机,把机械能转化成电能;使人们发明了变压器,解决了电能远距离传输中能量大量损耗的问题;使人们制造出了结构简单的感应电动机,反过来把电能转化成机械能.2.法拉第在研究电磁感应等电磁现象中,从磁性存在的空间分布逐渐凝聚出“场”的科学创新思想.在此基础上,麦克斯韦建立了电磁场理论,并预言了电磁波的存在.四、产生感应电流的条件穿过闭合电路的磁通量发生变化时,这个闭合电路中就有感应电流产生.一、磁通量及其变化[问题设计]如图1所示,框架的面积为S ,匀强磁场的磁感应强度为B .试求:图1(1)框架平面与磁感应强度B 垂直时,穿过框架平面的磁通量为多少?(2)若框架绕OO ′转过60°,则穿过框架平面的磁通量为多少?(3)若从图示位置转过90°,则穿过框架平面的磁通量的变化量为多少?(4)若从图示位置转过180°,则穿过框架平面的磁通量变化量为多少?答案 (1)BS (2)12BS (3)-BS (4)-2BS [要点提炼]1.磁通量的计算(1)公式:Φ=BS(2)适用条件:①匀强磁场,②磁场方向和平面垂直.(3)B 与S 不垂直时:Φ=BS ⊥,S ⊥为平面在垂直磁场方向上的投影面积,在应用时可将S 投影到与B 垂直的方向上,如图2所示Φ=BS sin_θ.图2(4)磁通量与线圈的匝数无关. 2.磁通量的变化量ΔΦ(1)当B 不变,有效面积S 变化时,ΔΦ=B ·ΔS .(2)当B 变化,S 不变时,ΔΦ=ΔB ·S .(3)B和S同时变化,则ΔΦ=Φ2-Φ1,但此时ΔΦ≠ΔB·ΔS.特别提醒计算穿过某面的磁通量变化量时,要注意前、后磁通量的正、负值,如原磁通量Φ1=BS,当平面转过180°后,磁通量Φ2=-BS,磁通量的变化量ΔΦ=-2BS.二、感应电流产生的条件[问题设计]实验1(导体在磁场中做切割磁感线的运动):如图3所示,导体AB垂直磁感线运动时,线路中有电流产生,而导体AB沿着磁感线运动时,线路中无电流产生(填“有”或“无”).图3实验2(通过闭合电路的磁场发生变化):如图4所示,将小螺线管A插入大螺线管B中不动,当开关S接通或断开时,电流表中有电流通过;若开关S一直闭合,当改变滑动变阻器的阻值时,电流表中有电流通过;而开关一直闭合,滑动变阻器的滑动触头不动时,电流表中无电流产生.若将螺线管A放在螺线管B的正上方,并使两者的轴线互相垂直,则不管进行什么操作,电流表中均无电流产生(填“有”或“无”).图41.实验2中并没有导体在磁场中做切割磁感线的运动,但在接通或断开电源的瞬间及改变滑动变阻器的阻值时,B线圈却出现感应电流,这说明什么?答案说明导体在磁场中做切割磁感线运动不是产生感应电流的本质原因,通过闭合电路的磁场变化也可以产生感应电流.2.当实验2中开关闭合后,A线圈电流稳定时,B线圈中也存在磁场,但不出现感应电流,这说明什么?答案说明感应电流的产生,不在于闭合回路中是否有磁场.3.实验2中同样的磁场变化,螺线管B套在螺线管A外边时,能产生感应电流,而两个线圈相互垂直放置时不能产生感应电流,这又说明什么?试总结产生感应电流的条件.答案说明感应电流的产生,不在于磁场是否变化.总结实验1中,磁场是稳定的,但在导体切割磁感线运动时,通过回路的磁通量发生变化,回路中产生了感应电流;实验2通过改变电流从而改变磁场强弱,进而改变了磁通量,从而产生了感应电流,所以可以将产生感应电流的条件描述为“只要穿过闭合电路的磁通量发生变化,闭合电路中就会产生感应电流”.[要点提炼]1.产生感应电流的条件:穿过闭合电路的磁通量发生变化.2.特例:闭合电路的一部分导体在磁场内做切割磁感线运动.在利用“切割”来讨论和判断有无感应电流时,应该注意:(1)导体是否将磁感线“割断”,如果没有“割断”就不能说切割.如图5所示,甲、乙两图中,导线是真“切割”,而图丙中,导体没有切割磁感线.图5(2)是否仅是闭合电路的一部分导体在磁场内做切割磁感线运动,如图丁.如果由切割不容易判断,则要回归到磁通量是否变化上去.[延伸思考]电路不闭合时,磁通量发生变化是否能产生电磁感应现象?答案当电路不闭合时,没有感应电流,但有感应电动势,只产生感应电动势的现象也可以称为电磁感应现象.一、磁通量Φ及其变化量ΔΦ的理解与计算例1如图6所示的线框,面积为S,处于磁感应强度为B的匀强磁场中,B的方向与线框平面成θ角,当线框转过90°到如图6所示的虚线位置时,试求:图6(1)初、末位置穿过线框的磁通量的大小Φ1和Φ2;(2)磁通量的变化量ΔΦ.解析(1)解法一:在初始位置,把面积向垂直于磁场方向进行投影,可得垂直于磁场方向的面积为S⊥=S sin θ,所以Φ1=BS sin θ.在末位置,把面积向垂直于磁场方向进行投影,可得垂直于磁场方向的面积为S⊥′=S cos θ.由于磁感线从反面穿入,所以Φ2=-BS cos θ. 解法二:如图所示,把磁感应强度B沿垂直于面积S和平行于面积S进行分解,得B上=B sin θ,B左=B cos θ所以Φ1=B上S=BS sin θ,Φ2=-B左S=-BS cos θ.(2)开始时B与线框平面成θ角,穿过线框的磁通量Φ1=BS sin θ;当线框平面按顺时针方向转动时,穿过线框的磁通量减少,当转动θ时,穿过线框的磁通量减少为零,继续转动至90°时,磁感线从另一面穿过,磁通量变为“负”值,Φ2=-BS cos θ.所以,此过程中磁通量的变化量为ΔΦ=Φ2-Φ1=-BS cos θ-BS sin θ=-BS(cos θ+sin θ).答案(1)BS sin θ-BS cos θ(2)-BS(cos θ+sin θ)二、产生感应电流的分析判断及实验探究例2如图7所示,在匀强磁场中有两条平行的金属导轨,磁场方向与导轨平面垂直.导轨上有两条可沿导轨自由移动的金属棒ab、cd,与导轨接触良好.这两条金属棒ab、cd的运动速度分别是v1、v2,且井字形回路中有感应电流通过,则可能()图7A.v1>v2B.v1<v2C.v1=v2D.无法确定解析只要金属棒ab、cd的运动速度不相等,穿过井字形回路的磁通量就发生变化,闭合回路中就会产生感应电流.故选项A、B正确.答案AB例3在研究电磁感应现象的实验中所用器材如图8所示.它们是①电流表、②直流电源、③带铁芯的线圈A、④线圈B、⑤开关、⑥滑动变阻器(用来控制电流以改变磁场强弱).试按实验的要求在实物图上连线(图中已连好一根导线).图8答案连接电路如图所示1.(对电磁感应现象的认识)下列现象中,属于电磁感应现象的是()A.小磁针在通电导线附近发生偏转B.通电线圈在磁场中转动C.因闭合线圈在磁场中运动而产生的电流D.磁铁吸引小磁针答案 C解析电磁感应是指“磁生电”的现象,而小磁针和通电线圈在磁场中转动以及磁铁吸引小磁针,反映了磁场力的性质,所以A、B、D不是电磁感应现象,C是电磁感应现象.2.(对磁通量Φ及其变化量ΔΦ的理解)如图9所示一矩形线框,从abcd位置移到a′b′c′d′位置的过程中,关于穿过线框的磁通量情况,下列叙述正确的是(线框平行于纸面移动) ()图9A.一直增加B.一直减少C.先增加后减少D.先增加,再减少直到零,然后再增加,然后再减少答案 D解析离导线越近,磁场越强,当线框从左向右靠近导线的过程中,穿过线框的磁通量增大,当线框跨在导线上向右运动时,磁通量减小,当导线在线框正中央时,磁通量为零,从该位置向右,磁通量又增大,当线框离开导线向右运动的过程中,磁通量又减小;故A、B、C 错误,D正确,故选D.3.(产生感应电流的分析判断)如图10所示,开始时矩形线框与匀强磁场的方向垂直,且一半在磁场内,一半在磁场外,若要使线框中产生感应电流,下列办法中可行的是()图10A.将线框向左拉出磁场B.以ab边为轴转动(小于90°)C.以ad边为轴转动(小于60°)D.以bc边为轴转动(小于60°)答案ABC解析将线框向左拉出磁场的过程中,线框的bc部分切割磁感线,或者说穿过线框的磁通量减少,所以线框中将产生感应电流.当线框以ab边为轴转动(小于90°)时,线框的cd边的右半段在做切割磁感线运动,或者说穿过线框的磁通量在发生变化,所以线框中将产生感应电流.当线框以ad边为轴转动(小于60°)时,穿过线框的磁通量在减小,所以在这个过程中线框内会产生感应电流.如果转过的角度超过60°(60°~300°),bc边将进入无磁场区,那么线框中将不产生感应电流.当线框以bc边为轴转动时,如果转动的角度小于60°,则穿过线框的磁通量始终保持不变(其值为磁感应强度与矩形线框面积的一半的乘积).4.(产生感应电流的分析判断)如图11所示,绕在铁芯上的线圈与电源、滑动变阻器和电键组成闭合回路,在铁芯的右端套有一个表面绝缘的铜环A,下列各种情况中铜环A中没有感应电流的是()图11A.线圈中通以恒定的电流B.通电时,使滑动变阻器的滑片P做匀速移动C.通电时,使滑动变阻器的滑片P做加速移动D.将电键突然断开的瞬间答案 A解析只要通电时滑动变阻器的滑片P移动,电路中的电流就会发生变化,变化的电流产生变化的磁场,铜环A中磁通量发生变化,有感应电流;同样,将电键断开瞬间,电路中电流从有到无,仍会在铜环A中产生感应电流.题组一对磁通量Φ及其变化量ΔΦ的理解与计算1.关于磁通量,下列叙述正确的是()A.在匀强磁场中,穿过一个面的磁通量等于磁感应强度与该面面积的乘积B.在匀强磁场中,a线圈的面积比b线圈的大,则穿过a线圈的磁通量一定比穿过b线圈的磁通量大C.把一个线圈放在M、N两处,若放在M处时穿过线圈的磁通量比放在N处时大,则M 处的磁感应强度一定比N处大D.同一线圈放在磁感应强度大处,穿过线圈的磁通量不一定大答案 D解析磁通量等于磁感应强度与垂直磁场方向上的投影面积的乘积,A错误;线圈面积大,但投影面积不一定大,B错误;磁通量大,磁感应强度不一定大,C错误、D正确.2.关于磁通量的概念,以下说法中正确的是()A.磁感应强度越大,穿过闭合回路的磁通量越大B.磁感应强度越大,线圈面积越大,则磁通量越大C.穿过线圈的磁通量为零,但磁感应强度不一定为零D.磁通量发生变化,一定是磁场发生变化引起的答案 C解析根据磁通量的定义,Φ=B·S·sin θ,因此A、B选项错误;穿过线圈的磁通量为零时,磁感应强度不一定为零;磁通量发生变化,可能是面积变化引起的,也可能是磁场变化引起的,D错.3.如图1所示,半径为R的圆形线圈共有n匝,其中心位置处半径为r的范围内有匀强磁场,磁场方向垂直线圈平面,若磁感应强度为B,则穿过线圈的磁通量为()图1A.πBR2B.πBr2C.nπBR2D.nπBr2答案 B解析由磁通量的定义式知Φ=BS=πBr2;故B正确.题组二产生感应电流的分析判断4.关于电磁感应现象,下列说法中正确的是()A.闭合线圈放在变化的磁场中,必然有感应电流产生B.闭合正方形线圈在匀强磁场中垂直磁感线运动,必然产生感应电流C.穿过闭合线圈的磁通量变化时,线圈中有感应电流D.只要穿过电路的磁通量发生变化,电路中就一定有感应电流产生答案 C解析产生感应电流的条件:(1)闭合电路;(2)磁通量Φ发生变化,两个条件缺一不可.5.下图中能产生感应电流的是()答案 B解析根据产生感应电流的条件:A中,电路没闭合,无感应电流;B中,面积增大,闭合电路的磁通量增大,有感应电流;C中,穿过线圈的磁感线相互抵消,Φ恒为零,无感应电流;D中,磁通量不发生变化,无感应电流.6.下列情况中都是线框在磁场中做切割磁感线运动,其中线框从开始进入到完全离开磁场的时间中有感应电流的是()答案BC解析A中虽然导体“切割”了磁感线,但穿过闭合线框的磁通量并没有发生变化,没有感应电流.B中线框的一部分导体“切割”了磁感线,穿过线框的磁感线条数越来越少,线框中有感应电流.C 中虽然与A 近似,但由于是非匀强磁场,运动过程中,穿过线框的磁感线条数增加,线框中有感应电流.D 中线框尽管是部分切割,但磁感线条数不变,无感应电流,故选B 、C.7.如图2所示,一有限范围的匀强磁场宽度为d ,若将一个边长为L 的正方形导线框以速度v 匀速地通过磁场区域,已知d >L ,则导线框从开始进入到完全离开磁场的过程中无感应电流的时间等于( )图2A.d vB.L vC.d -L vD.d -2L v答案 C解析 只有导线框完全在磁场里面运动时,导线框中才无感应电流.8.如图3所示的匀强磁场中有一个矩形闭合导线框,初始位置线框与磁感线平行,则在下列四种情况下,线框中会产生感应电流的是( )图3A .线框平面始终与磁感线平行,线框在磁场中左右运动B .线框平面始终与磁感线平行,线框在磁场中上下运动C .线框绕位于线框平面内且与磁感线垂直的轴线AB 转动D .线框绕位于线框平面内且与磁感线平行的轴线CD 转动答案 C解析 四种情况中初始位置线框均与磁感线平行,磁通量为零,按A 、B 、D 三种情况线框运动后,线框仍与磁感线平行,磁通量保持为零不变,线框中不产生感应电流.C 中线框转动后,穿过线框的磁通量不断发生变化,所以产生感应电流,C 项正确.9.为观察电磁感应现象,某学生将电流表、螺线管A 和B 、蓄电池、开关用导线连接成如图4所示的实验电路.当接通和断开开关时,电流表的指针都没有偏转,其原因是( )图4A.开关位置接错B.电流表的正、负极接反C.线圈B的3、4接头接反D.蓄电池的正、负极接反答案 A解析本题考查了感应电流产生的条件.因感应电流产生的条件是闭合电路中的磁通量发生变化,由电路图可知,把开关接在B与电流表之间,因与1、2接头相连的电路在接通和断开开关时,电流不改变,所以不可能有感应电流,电流表也不可能偏转,开关应接在A与电源之间.10.如图5所示,导线ab和cd互相平行,则下列四种情况中,导线cd中有电流的是()图5A.开关S闭合或断开的瞬间B.开关S是闭合的,滑动触头向左滑C.开关S是闭合的,滑动触头向右滑D.开关S始终闭合,滑动触头不动答案ABC解析开关S闭合或断开的瞬间;开关S闭合,滑动触头向左滑或向右滑的过程都会使通过导线ab段的电流发生变化,使穿过cd回路的磁通量发生变化,从而在cd导线中产生感应电流.因此本题的正确选项应为A、B、C.11.如图6所示,线圈Ⅰ与电源、开关、滑动变阻器相连,线圈Ⅱ与电流计相连,线圈Ⅰ与线圈Ⅱ绕在同一个铁芯上,在下列情况下,电流计中是否有示数?图6(1)开关闭合瞬间;(2)开关闭合稳定后;(3)开关闭合稳定后,来回移动滑动变阻器的滑片;(4)开关断开瞬间.答案 (1)有 (2)无 (3)有 (4)有解析 本题主要考查闭合电路中,电流变化导致磁场变化从而产生感应电流的情况.(1)开关闭合时线圈Ⅰ中电流从无到有,电流的磁场也从无到有,穿过线圈Ⅱ的磁通量也从无到有,线圈Ⅱ中产生感应电流,电流计有示数.(2)开关闭合稳定后,线圈Ⅰ中电流稳定不变,电流的磁场不变,此时线圈Ⅱ中虽有磁通量但磁通量稳定不变,线圈Ⅱ中无感应电流产生,电流计无示数. (3)开关闭合稳定后,来回移动滑动变阻器的滑片,电阻变化,线圈Ⅰ中的电流变化,电流形成的磁场也发生变化,穿过线圈Ⅱ的磁通量也发生变化,线圈Ⅱ中有感应电流产生,电流计有示数.(4)开关断开瞬间,线圈Ⅰ中电流从有到无,电流的磁场也从有到无,穿过线圈Ⅱ的磁通量也从有到无,线圈Ⅱ中有感应电流产生,电流计有示数. 12.如图7所示,固定于水平面上的金属架MDEN 处在竖直向下的匀强磁场中,金属棒MN 沿框架以速度v 向右做匀速运动.t =0时,磁感应强度为B 0,此时MN 到达的位置使MDEN 构成一个边长为l 的正方形.为使MN 棒中不产生感应电流,从t =0开始,磁感应强度B 应怎样随时间t 变化?请推导出这种情况下B 与t 的关系式.图7答案 B =B 0l l +v t解析 要使MN 棒中不产生感应电流,应使穿过线圈平面的磁通量不发生变化 在t =0时刻,穿过线圈平面的磁通量Φ1=B 0S =B 0l 2设t 时刻的磁感应强度为B ,此时磁通量为Φ2=Bl (l +v t )由Φ1=Φ2得B =B 0l l +v t.。
电磁感应是谁发现的
电磁感应是谁发现的
电磁感应现象是英国物理学家迈克尔?法拉第发现的。
电磁感应定律也叫法拉第电磁
感应定律,电磁感应现象是指因磁通量变化产生感应电动势的现象。
电磁感应现象的发现,是电磁学领域中最伟大的成就之一。
1820年,丹麦著名物理学家奥斯特发现了电流的磁效应,揭开了研究电磁本质联系的序幕,他的这个重大发现很快便传遍了欧洲,并被许多物理学家所证实。
因此,人们确信
电流能够产生磁场。
在法拉第之前的一些物理学家已经开始探索磁产生电的途径。
安培于1821年到1822
年间做了探求感应电流的实验,但他未能发现电磁感应现象。
从1821年到1831年,法拉第整整耗费了10年时间,从设想到实验,漫长的岁月,
失败的痛苦,生活的艰辛,法拉第饱尝了各种辛酸,经过无数次反复的研究实验,终于发
现了电磁感应现象,于1831年确定了电磁感应的基本定律,取得了磁感应生电的重大突破。
闭合电路的一部分导体在磁场中做切割磁感线的运动时,导体中就会产生电流,这种
现象叫电磁感应现象。
迈克尔?法拉第(MichaelFaraday,1791—1867),世界著名的自学成才的科学家,
英国物理学家、化学家,发明家即发电机和电动机的发明者。
1831法拉第发现第一块磁铁穿过一个闭合线路时,线路内就会有电流产生,这个效应叫电磁感应。
一般认为法拉第的
电磁感应定律是他的一项最伟大的贡献。
感谢您的阅读,祝您生活愉快。
1电磁感应的发现及探究
第一节 电磁感应现象
发现磁生电
电与磁的统一过程
分子电流 假说
法拉第
麦克斯韦 方程组
毕奥
安培 萨伐尔
电流产生磁场 的定量关系 发现电生 磁
奥斯特
可媲美牛 顿三大定 律的物理 大发现。
法拉第对电磁感 应现象的研究:
变化中 的电流 变化中 的磁场
运动中 的导线
磁生 电
运动中 的磁铁
,矩形线圈与磁场垂直, 且一半在匀强磁场内, 一半在匀强磁场外。分 析各种情况下线框磁通 量变化。
圆环套在条形磁铁中部, 分析环面积变大变小 时,环内磁通量变化。通有恒定电流的导线 MN与闭合金属框共面, 第一次将金属框由I平移 到Ⅱ,第二次将金属框 绕cd边翻转到Ⅱ,分析 两过程磁通量变化。
产生感应电流的条件:
只要穿过闭合电路的磁通量发生变化,闭
合电路中就会产生感应电流.
磁通量变化和电路闭合是根本.
电磁感应现象在生活中的应用:
小专题:磁通量回顾 Φ=BS,适用条件是B与 S平面垂直。如图,当S 与B的垂面存在夹角θ时, Φ=B·S·cosθ。 注意:磁通量有方向。
磁通量变化的典型情况 匀强磁场区域宽度为l, 现有一边长为d(d>l)的 矩形金属框以恒定速度 v向右通过磁场区域。 有一根通电的长直导线 MN中通有恒定的电流I, 一闭合线圈从直导线的 左侧平移到右侧的过程 中,穿过线圈磁通量的 变化情况。
运动中 的恒定 电流
实验探究:
利用提供的器材,再现磁生电的各种情 况,并研究其规律。
变化中 的电流 运动中 的导线 变化中 的磁场 运动中 的恒定 电流
磁生 电
运动中 的磁铁
电磁感应现象: 1.导线切割磁感线; 2. 或闭合线圈中有磁 通量变化的时候; 回路中产生电流的现 象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.1 电磁感应现象的发现
[要点导学]
1、不同自然现象之间是有相互联系的,而这种联系可以通过我们的观察与思考来发现。
例如摩擦生热则表明了机械运动与热运动是互相联系的,奥斯特之所以能够发现电流产生磁场,就是因为他相信不同自然现象之间是互相联系和互相转化的。
2、机遇总是青睐那些有准备的头脑,奥斯特的发现是必然中的偶然。
发现中子的历史过程(在选修3-5中学习)也说明了这一点。
小居里夫妇首先发现这种不带电的未知射线,他们误认为这是能量很高的射线,一项划时代的伟大发现就与小居里夫妇擦肩而过了。
当查德威克遇到这种未知射线时,查德威克很快就想到这种不带电的射线可能是高速运动的中子流,因为查德威克的老师卢瑟神福早已预言中子的存在,所以查德威克的头脑是一个有准备的头脑,查德威克就首先发现了中子,并因此获得诺贝尔物理学奖。
所以学会用联系的眼光看待世界,比记住奥斯特实验重要得多。
3、法拉第就是用联系的眼光看待世界的人,他坚信既然电流能够产生磁场,那么利用磁场应该可以产生电流。
信念是一种力量,但信念不能代替事实。
探索“磁生电”的道路非常艰苦,法拉第为此寻找了10年之久,我们要学习的就是这种百折不挠的探索精神。
4、法拉第为什么走了10年弯路,这个问题值得我们研究。
原来自然界的联系不是简单的联系,自然界的对称不是简单的对称,“磁生电”不象“电生磁”那样简单,“磁生电”必须在变化、运动的过程中才能出现。
法拉第的弯路应该使我们对自然界的联系和对称的认识更加深刻、更加全面。
[范例精析]
例1奥斯特的实验证实了电流的周围存在磁场,法拉第经过10年的努力终于发现了利用磁场产生电流的途径,法拉第认识到必须在变化、运动的过程中才能利用磁场产生电流。
法拉第当时归纳出五种情形,请说出这五种情形各是什么。
解析法拉第把能引起感应电流的实验现象归纳为五类:变化的电流、变化的磁场、运动的恒定电流、运动的磁铁、在磁场中运动的导体。
它们都与变化和运动有关。
拓展法国物理学家安培也曾将恒定电流或磁铁放在导体线圈的附近,希望在线圈中看到被“感应”出来的电流,可是这种努力均无收获。
因为“磁生电”是在变化或运动中产生的物理现象。
例2 自然界的确存在对称美,质点间的万有引力F=Gm1m2/r2和电荷间的库仑力F=kq1q2/r2就是一个对称美的例子。
电荷间的相互作用是通过电场传递的,质点间的相互作用则是通过引力场传递的。
点电荷q的在相距为r处的电场强度是E=kq/r2,那么质点m在相距为r 处的引力场强度是多少呢?如果两质点间距离变小,引力一定做正功,两质点的引力势能一定减少。
如果两电荷间距离变小,库仑力一定做正功吗?两电荷的电势能一定减少吗?请简述理由。
解析可以应用点电荷电场的定义方法定义质点的引力场强度,E G=F G/m1=Gm/r2如果两电荷间距离变小,库仑力不一定做正功,因为库仑力可能是吸引力,也可能是排斥力。
如果库仑力是吸引力,两电荷间距离变小则电势能减少;如果库仑力是排斥力,则两电荷间距离变小电势能增大。
拓展由以上分析可见,万有引力和库仑力虽然有对称性,但是因为电荷有正负两种,而质点只有一种,所以库仑力做功的情况就要比万有引力做功复杂一些。
[能力训练]
1.史料记载“1831年8月29日这一天,法拉第在接通电池的一刹那,偶然看到检流计指针动了一下,接着便回到了原位,然后就一直停住不动。
……”法拉第因此发现了电磁感应现象,图4-1-1是这个实验的示意图。
又有史料记载“瑞士物理学家科拉顿设计了一个利用磁铁在闭合线圈中获取电流的实验:将一块磁铁在螺线管中移动,使导线中产生感应电流。
为了排除磁铁移动对检流计指针偏转的影响,他把检流计放到隔壁房间中去,用长导线把检流计和螺线管连接起来。
实验开始了,科拉顿把磁铁插到线圈中去以后,就跑到隔壁房间中去,但他十分痛心地看到检流计的小磁针静止在原位。
”科拉顿没能发现电磁感应现象,他的实验示意图见图4-1-2。
请你分析一下,科拉顿没能看到电磁感应现象的原因是什么?
科拉顿没能看到电磁感应现象的原因是因为电磁感应现象是在变化或运动的过程中
出现的,当科拉顿赶到隔壁房间去时,检流小磁针已经动过了,所以他没能看到电磁感应现象。
2.科学家对自然现象和自然规律的某些信念在科学发现中起着重要的作用。
结合具体例子说说这种作用。
牛顿相信使苹果下落的力和“使月亮下落的力”是同一种力,导致万有引力定律的发现(牛顿认为如果月亮不下落,应该是沿轨道圆的切线运动,现在月亮沿圆周运动,所以月亮实际上是下落了);奥斯特、法拉第相信电与磁是相互联系的,导致他们分别发现了电流的磁效应和电磁感应现象。
3.设有两个物体,一个是热的,另一个是冷的,或更确切他说:一个物体的温度比另一个高些。
我们使它们进行接触,并使它们不受到任何外界影响,我们知道,最后它们会达到同样的温度。
但是这个情况是怎样发生的呢?从它们开始接触起到它们达到同样温度的时间里,究竟发生了什么呢?有人的脑海中想象这么一个图景:热从一个物体流向另一个物体,正如水由较高的水位流向较低的水位一样。
于是这些人因此提出这样的类比:“水——热水”,“较高的水位——较高的温度”,“较低的水位——较低的温度”,水的流动一直要继续到两个水位相同,热的流动也要到温度相等时才停止。
这些人的观点是:“热是一种物质,就像物体的质量一样。
它的量可以改变,也可以不改变,正如钱一样,可以储存在保险柜里,也可以花掉。
只要保险柜始终锁着,柜里面钱的总数就始终保持不变,和这一样,一个被隔离的物体中的质量的总数和热的总数也是不变的。
”
请你对上述观点作些点评,如果同意就说说论据,如果反对就说说理由。
这种类比的思想方法不能否定,但得出的结论不能苟同。
例如我们用一砂轮打摩一铁块,铁块和铁屑的总质量是不改变的,但是只要打摩不停,热就可以源源不断地增加。
可见热是一种能量,它可以从其它形式的能量转化而来。
这一例子也告诉我们,对自然现象的联系与对称要深刻研究,全面理解。
4.请你说说教科书把科学发现中经历的失败和挫折表达出来有什么意义?
失败和挫折能够起到警示作用,使我们更加聪明,少走弯路。