单位阶跃响应临界阻尼=1
机械工程控制基础(复习要点)
![机械工程控制基础(复习要点)](https://img.taocdn.com/s3/m/3d518293dd88d0d233d46ac7.png)
1
1
2)峰值时间:响应曲线达到第一个峰值所需 的时间。
tp d 1 2 n
3)最大超调量 M p :常用百分比值表示为:
Mp x0 (t p ) x0 () x0 ( )
( / 1 2 )
第四章 频率特性分析
1、频率响应与频率特性
频率响应:线性定常系统对谐波输入的稳态响应。 幅频特性:线性定常系统在简谐信号激励下,其稳 态输出信号和输入信号的幅值比,记为A(ω); 相频特性:线性定常系统在简谐信号激励下,其稳 态输出信号和输入信号的相位差,记为φ(ω); 频率特性:幅频特性与相频特性的统称。即:线性 定常系统在简谐信号激励下,其稳态输出信号 和输入信号的幅值比、相位差随激励信号频率 ω变化特性。记为
G B s 1 Gk s G q s
第三章 时间响应分析
1、时间响应及其组成 时间响应:系统在激励作用下,系统输出随 时间变化关系。 时间响应可分为零状态响应和零输入响应或 分为自由响应和强迫响应。 零状态响应:“无输入时的系统初态”为零 而仅由输入引起的响应。 零输入响应:“无输入时的系统初态”引起 的自由响应。 控制工程所研究的响应往往是零状态响应。
K 增益 T 1Fra bibliotekn 时间常数 n 固有频率
阻尼比
6)一阶微分环节: G s s 1 7)二阶微分环节: G s s 2 s 1
2 2
8)延时环节: G s e s
7、系统各环节之间的三种连接方式:
串联:
G s Gi s
G ( j ) A e
j
频率特性又称频率响应函数,是激励频率ω的函数。 频率特性:在零初始条件下,系统输出y(t)的傅里叶 变换Y(ω)与输入x(t)的傅里叶变换X(ω)之比,即 Y j G ( j ) A e X
3.3.1 二阶系统的单位阶跃响应
![3.3.1 二阶系统的单位阶跃响应](https://img.taocdn.com/s3/m/ed4a361803d8ce2f006623d8.png)
1
是输出响应的单调和振荡过程的分界,通常称为临界
o
t
临界阻尼响应
(四)无阻尼( 0 )的情况
系统有一对共轭纯虚数极点 p1, 2 j n ,它们在S平面上的位置如 将 0 代入 图所示。
C (t ) 1 e nt (cos d t
C (t ) 1 cos n t
0
2
P 1 n n
1
系统具有实部为正的极点,
P2 n n 2 1
输出响应是发散的,此时系统已无法正常工作。
根据上面的分析可知,在不同的阻尼比时,二阶系统的响应具有不同的特
点。因此阻尼比
是二阶系统的重要特征参数。
若选取
n t为横坐标,可作出不同阻尼比时二阶系统单位阶跃响应曲线。
j
1
2
sin d t )
系统的输出响应是无阻尼的等幅振荡过程,其振荡频率为 [s] C(t) 1 o
n
n
P 1
o
P2
(a)
0
(b)
t
无阻尼时的极点分布和响应
综上所述,不难看出频率
n 和
的物理意义。 d
——无阻尼自然振荡频率,此时系统输出为等幅振荡 n 阻尼振荡频率。系统输出为衰减正弦振荡过程。 —— d 分析
如图所示,此时曲线只和阻尼比
有关。
C (t )
0.1
0.3 0.5 0.7
越小,响应特性振荡得越厉害, 随着 增大到一定程度,响应特
性变成单调上升的。
系统无振荡时,以临界阻尼时过 渡过程的时间最短,此时,系统 具有最快的响应速度。
机械工程控制基础-----填空简答题知识点
![机械工程控制基础-----填空简答题知识点](https://img.taocdn.com/s3/m/c414ca01f90f76c660371ab6.png)
1、反馈:输出信号被测量环节引回到输入端参与控制的作用。
2、开环控制系统与闭环控制系统的根本区别:有无反馈。
3、线性及非线性系统的定义及根本区别:当系统的数学模型能用线性微分方程描述时,该系统的称为线性系统。
非线性系统:一个系统,如果其输出不与其输入成正比,则它是非线性的。
根本区别:线性系统遵从叠加原理,而非线性系统不然。
4、传递函数的定义及特点:零初始条件下,系统输出量的拉斯变换与输入量的拉斯变换的比值。
用G〔s〕表示。
特点:1〕、传递函数是否有量纲取决于输入与输出的性质,同性质无量纲。
2〕、传递函数分母中S的阶数必n不小于分子中的S的阶数m,既n=>m ,因为系统具有惯性。
3〕、假设输入已给定,则系统的输出完全取决于其传递函数。
4〕、物理量性质不同的系统,环节和元件可以具有相同类型的传递函数。
5〕、传递函数的分母与分子分别反映系统本身与外界无关的固有特性和系统同外界的关系。
5、开环函数的定义:前向通道传递函数G〔s〕与反馈回路传递函数H(s)之积。
6、时间响应的定义和组成:系统在激励信号作用下,输出随时间的变化关系。
按振动来源分为:零状态响应和零输入响应。
按振动性质:自由响应和强迫响应。
7、瞬态性能指标以及反映系统什么特性:性能指标:上升时间tr、峰值时间tp、最大超调量Mp、调整时间ts、振荡次数N。
这些性能指标主要反映系统对输入的响应的快速性。
8、稳态误差的定义及计算公式:系统进入稳态后的误差。
稳态误差反映稳态响应偏离系统希望值的程度。
衡量控制精度的程度。
稳态误差不仅取决于系统自身结构参数,而且与输入信号有关。
系统误差:输入信号与反馈信号之差。
9、减少输入引起稳态误差的措施:增大干扰作用点之前的回路的放大倍数K1,以及增加这一段回路中积分环节的数目。
10、频率响应的概念:线性定常系统对谐波输入的稳态响应称为频率响应。
11、频率特性的组成:幅频特性和相频特性。
12、稳定性的概念:系统在扰动作用下,输出偏离原平衡状态,待扰动消除后,系统能回到原平衡状态〔无静差系统〕或到达新的平衡状态〔有静差系统〕。
2. 实验二 二阶系统阶跃响应
![2. 实验二 二阶系统阶跃响应](https://img.taocdn.com/s3/m/4b1e3c5b14791711cc79175c.png)
实验二二阶系统阶跃响应一、实验目的1. 研究二阶系统的特征参数,阻尼比ζ和无阻尼自然频率ωn对系统动态性能的影响,定量分析ζ和ωn与最大超调量σp和调节时间ts之间的关系。
2. 进一步学习实验系统的使用。
3. 学会根据系统的阶跃响应曲线确定传递函数。
4. 学习用MATLAB仿真软件对实验内容中的电路进行仿真。
二、实验原理典型二阶闭环系统的单位阶跃响应分为四种情况:1)欠阻尼二阶系统如图1所示,由稳态和瞬态两部分组成:稳态部分等于1,瞬态部分是振荡衰减的过程,振荡角频率为阻尼振荡角频率,其值由阻尼比ζ和自然振荡角频率ωn决定。
(1)性能指标:: 单位阶跃响应C(t)进人±5%(有时也取±2%)误差带,并且不再超出该误差带的调节时间tS最小时间。
超调量σ% ;单位阶跃响应中最大超出量与稳态值之比。
单位阶跃响应C(t)超过稳态值达到第一个峰值所需要的时间。
峰值时间tP :结构参数ξ:直接影响单位阶跃响应性能。
(2)平稳性:阻尼比ξ越小,平稳性越差长,ξ过大时,系统响应迟钝,(3)快速性:ξ过小时因振荡强烈,衰减缓慢,调节时间tS调节时间t也长,快速性差。
ξ=0.7调节时间最短,快速性最好。
ξ=0.7时超调量σ%<5%, S平稳性也好,故称ξ=0.7为最佳阻尼比。
2)临界阻尼二阶系统(即ξ=1)系统有两个相同的负实根,临界阻尼二阶系统单位阶跃响应是无超调的,无振荡单调上升的,不存在稳态误差。
3)无阻尼二阶系统(ξ=0时) 此时系统有两个纯虚根。
4)过阻尼二阶系统(ξ>1)时此时系统有两个不相等的负实根,过阻尼二阶系统的单位阶跃响应无振荡无超调无稳态误差,上升速度由小加大有一拐点。
三、 实验内容1. 搭建模拟电路典型二阶系统的闭环传递函数为:其中,ζ 和ωn 对系统的动态品质有决定的影响。
搭建典型二阶系统的模拟电路,并测量其阶跃响应:二阶系统模拟电路图其结构图为:系统闭环传递函数为:式中, T=RC ,K=R2/R1。
控制工程基础实验指导书(答案) 2讲解
![控制工程基础实验指导书(答案) 2讲解](https://img.taocdn.com/s3/m/34edf9e008a1284ac8504364.png)
实验二二阶系统的瞬态响应分析一、实验目的1、熟悉二阶模拟系统的组成。
2、研究二阶系统分别工作在ξ=1,0<ξ<1,和ξ> 1三种状态下的单位阶跃响应。
3、分析增益K对二阶系统单位阶跃响应的超调量σP、峰值时间tp和调整时间ts。
4、研究系统在不同K值时对斜坡输入的稳态跟踪误差。
5、学会使用Matlab软件来仿真二阶系统,并观察结果。
二、实验仪器1、控制理论电子模拟实验箱一台;2、超低频慢扫描数字存储示波器一台;3、数字万用表一只;4、各种长度联接导线。
三、实验原理图2-1为二阶系统的原理方框图,图2-2为其模拟电路图,它是由惯性环节、积分环节和反号器组成,图中K=R2/R1,T1=R2C1,T2=R3C2。
图2-1 二阶系统原理框图图2-1 二阶系统的模拟电路由图2-2求得二阶系统的闭环传递函1222122112/() (1)()/O i K TT U S K U S TT S T S K S T S K TT ==++++ :而二阶系统标准传递函数为(1)(2), 对比式和式得n ωξ==12 T 0.2 , T 0.5 , n S S ωξ====若令则。
调节开环增益K 值,不仅能改变系统无阻尼自然振荡频率ωn 和ξ的值,可以得到过阻尼(ξ>1)、临界阻尼(ξ=1)和欠阻尼(ξ<1)三种情况下的阶跃响应曲线。
(1)当K >0.625, 0 < ξ < 1,系统处在欠阻尼状态,它的单位阶跃响应表达式为:图2-3 0 < ξ < 1时的阶跃响应曲线(2)当K =0.625时,ξ=1,系统处在临界阻尼状态,它的单位阶跃响应表达式为:如图2-4为二阶系统工作临界阻尼时的单位响应曲线。
(2) +2+=222nn nS S )S (G ωξωω1()1sin( 2-3n to d d u t t tgξωωωω--=+=式中图为二阶系统在欠阻尼状态下的单位阶跃响应曲线etn o n t t u ωω-+-=)1(1)(图2-4 ξ=1时的阶跃响应曲线(3)当K < 0.625时,ξ> 1,系统工作在过阻尼状态,它的单位阶跃响应曲线和临界阻尼时的单位阶跃响应一样为单调的指数上升曲线,但后者的上升速度比前者缓慢。
控制工程基础实验指导书[答案解析]
![控制工程基础实验指导书[答案解析]](https://img.taocdn.com/s3/m/bfe832f80508763231121290.png)
控制工程基础实验指导书自控原理实验室编印(内部教材)实验项目名称:(所属课程:)院系:专业班级:姓名:学号:实验日期:实验地点:合作者:指导教师:本实验项目成绩:教师签字:日期:(以下为实验报告正文)一、实验目的简述本实验要达到的目的。
目的要明确,要注明属哪一类实验(验证型、设计型、综合型、创新型)。
二、实验仪器设备列出本实验要用到的主要仪器、仪表、实验材料等。
三、实验内容简述要本实验主要内容,包括实验的方案、依据的原理、采用的方法等。
四、实验步骤简述实验操作的步骤以及操作中特别注意事项。
五、实验结果给出实验过程中得到的原始实验数据或结果,并根据需要对原始实验数据或结果进行必要的分析、整理或计算,从而得出本实验最后的结论。
六、讨论分析实验中出现误差、偏差、异常现象甚至实验失败的原因,实验中自己发现了什么问题,产生了哪些疑问或想法,有什么心得或建议等等。
七、参考文献列举自己在本次准备实验、进行实验和撰写实验报告过程中用到的参考文献资料。
格式如下:作者,书名(篇名),出版社(期刊名),出版日期(刊期),页码实验一 控制系统典型环节的模拟一、实验目的1、掌握比例、积分、实际微分及惯性环节的模拟方法;2、通过实验熟悉各种典型环节的传递函数和动态特性;3、了解典型环节中参数的变化对输出动态特性的影响。
二、实验仪器1、控制理论电子模拟实验箱一台;2、超低频慢扫描数字存储示波器一台;3、数字万用表一只;4、各种长度联接导线。
三、实验原理以运算放大器为核心元件,由其不同的R-C 输入网络和反馈网络组成的各种典型环节,如图1-1所示。
图中Z1和Z2为复数阻抗,它们都是R 、C 构成。
图1-1 运放反馈连接基于图中A 点为电位虚地,略去流入运放的电流,则由图1-1得:21()o i u ZG s u Z ==-(1-1) 由上式可以求得下列模拟电路组成的典型环节的传递函数及其单位阶跃响应。
1、比例环节实验模拟电路见图1-2所示图1-2 比例环节传递函数:21()R G s K R =-=- 阶跃输入信号:-2V 实验参数:(1) R 1=100K R 2=100K (2) R 1=100K R 2=200K 2、 惯性环节实验模拟电路见图1-3所示图1-3 惯性环节传递函数:2212211211()11R CS R Z R K CS G s Z R R R CS TS +=-=-=-=-++阶跃输入:-2V 实验参数:(1) R 1=100K R 2=100K C=1µ f23、积分环节实验模拟电路见图1-4所示图1-4 积分环节传递函数:21111()Z CS G s Z R RCS TS=-=-=-= 阶跃输入信号:-2V 实验参数:(1) R=100K C=1µ f (2) R=100K C=2µ f 4、比例微分环节实验模拟电路见图1-5所示图1-5 比例微分环节传递函数:22211111()(1)(1)1D Z R R G S R CS K T S R Z R CS R CS =-=-=-+=-++ 其中 T D =R 1C K=12R R 阶跃输入信号:-2V 实验参数:12(2)R1=100K R2=200K C=1µ f四、实验内容与步骤1、分别画出比例、惯性、积分、比例微分环节的电子电路;2、熟悉实验设备并在实验设备上分别联接各种典型环节;3、按照给定的实验参数,利用实验设备完成各种典型环节的阶跃特性测试,观察并记录其单位阶跃响应波形。
控制工程基础实验指导书(答案)-2
![控制工程基础实验指导书(答案)-2](https://img.taocdn.com/s3/m/6482cae2a2161479161128a9.png)
实验二二阶系统的瞬态响应分析一、实验目的1、熟悉二阶模拟系统的组成。
2、研究二阶系统分别工作在ξ=1,0<ξ<1,和ξ> 1三种状态下的单位阶跃响应。
3、分析增益K对二阶系统单位阶跃响应的超调量σP、峰值时间tp和调整时间ts。
4、研究系统在不同K值时对斜坡输入的稳态跟踪误差。
5、学会使用Matlab软件来仿真二阶系统,并观察结果。
二、实验仪器1、控制理论电子模拟实验箱一台;2、超低频慢扫描数字存储示波器一台;3、数字万用表一只;4、各种长度联接导线。
三、实验原理图2-1为二阶系统的原理方框图,图2-2为其模拟电路图,它是由惯性环节、积分环节和反号器组成,图中K=R2/R1,T1=R2C1,T2=R3C2。
图2-1 二阶系统原理框图图2-1 二阶系统的模拟电路由图2-2求得二阶系统的闭环传递函1222122112/() (1)()/O i K TT U S K U S TT S T S K S T S K TT ==++++ :而二阶系统标准传递函数为(1)(2), 对比式和式得12214n K TT T T K ωξ==12 T 0.2 , T 0.5 , 100.625n S S K K ωξ==若令则。
调节开环增益K 值,不仅能改变系统无阻尼自然振荡频率ωn 和ξ的值,可以得到过阻尼(ξ>1)、临界阻尼(ξ=1)和欠阻尼(ξ<1)三种情况下的阶跃响应曲线。
(1)当K >0.625, 0 < ξ < 1,系统处在欠阻尼状态,它的单位阶跃响应表达式为:图2-3 0 < ξ < 1时的阶跃响应曲线(2)当K =0.625时,ξ=1,系统处在临界阻尼状态,它的单位阶跃响应表达式为:如图2-4为二阶系统工作临界阻尼时的单位响应曲线。
(2) +2+=222nn n S S )S (G ωξωω2221 ()1sin(1 1 . 2-3n to d d u t t tgξωξωξωωξ---=-+-=-式中图为二阶系统在欠阻尼状态下的单位阶跃响应曲线etn o n t t u ωω-+-=)1(1)(图2-4 ξ=1时的阶跃响应曲线(3)当K < 0.625时,ξ> 1,系统工作在过阻尼状态,它的单位阶跃响应曲线和临界阻尼时的单位阶跃响应一样为单调的指数上升曲线,但后者的上升速度比前者缓慢。
自动控制原理第3章
![自动控制原理第3章](https://img.taocdn.com/s3/m/25013839011ca300a6c39081.png)
arctan 9 3
1.25rad
则响应为 y(t) 1 2 e 3t 0.95e j1.25e (1 j)t 0.95e j1.25e (1 j)t 5
1 2 e 3t 0.95e t e j(t1.25) e j(t1.25) 5 1 2 e 3t 1.9e t cos(t 1.25)
平衡位置:力学系统中,当系统外的作 D
用力为零时,位移保持不变的位置。
此时位移对时间的各阶导数为零。 A点和D点是平衡位置, B点和C点不是平衡位置。
O
B
C
A
稳定的平衡位置:若在外力作用下,系统偏离了平衡位置,但 当外力去掉后,系统仍能回到原来的平衡位置,则称这一个平 衡位置是稳定的平衡位置。
所以A点是稳定的平衡位置,而D点不是稳定的平衡位置。
注意:输入信号为非单位阶跃信号时,依齐次性,响应 只是沿纵轴拉伸或压缩,基本形状不变。所以ts 、 tr、 tp 、 σ并不发生变化。
当t < ts时,称系统处于动态;当t > ts时,称系统处于稳态。
3.2 一阶系统的单位阶跃响应
一阶系统(惯性环节)
G(s) 1 Ts 1
单位阶跃响应为
t
y(t) 1 e T
设零初始状态,y(0)=0 r (t)=1(t)时,y(t)的响应曲线为
y(t)
1.05 y(∞)
ym
y(∞)
0.95 y(∞)
tr tp
ts
ym:单位阶跃响应的最大偏离量。 y(∞):单位阶跃响应的稳态值。并非期望值。 ts:调节时间。y(t)进入0.5*y(∞)或0.2* y(∞)构成的误差带 后不再超出的时间。 tr:上升时间。 y(t) 第一次达到 y(∞)的时间。
《机械工程控制基础》题库解析
![《机械工程控制基础》题库解析](https://img.taocdn.com/s3/m/fab9d2b658fb770bf68a558c.png)
机械工程控制基础复习题第一章 绪论1、以同等精度元件组成的开环系统和闭环系统,其精度比较( )。
A .开环高 B.闭环高 C.相差不多 D. 一样高 1、系统的输出信号对控制作用的影响( )。
A .开环有 B.闭环有 C.都没有 D.都有 1、对于系统抗干扰能力( )。
A .开环强 B.闭环强 C.都强 D.都不强1、下列不属于按输入量的变化规律分类的是( )。
A .恒值控制系统 B.计算机控制系统 C. 随动控制系统 D. 程序控制系统1、按照系统传输信号的类型可分成( )。
A .定常系统和时变系统 B. 离散控制系统和连续控制系统 C. 线性系统和非线性系统 D. 恒值系统和程序控制系统 1.按照控制系统是否设有反馈作用来进行分类,可分为___ ___和___ ___。
答案:开环控制系统 闭环控制系统1.对一个自动控制系统的最基本要求是 ,也即 是系统工作的首要条件。
答案:稳定 稳定性1.对控制系统性能的基本要求一般可归结为稳定性、___________和___________。
答案:快速性 准确性1、控制论的中心思想是,通过 , 和反馈来进行控制。
答案:信息的传递 加工处理1.什么是反馈(包括正反馈和负反馈)?根据反馈的有无,可将控制系统如何分类?答案:(1)反馈是指输出量通过适当的检测装置将信号全部或一部分返回输入端,使之与输入量进行比较。
如果反馈信号与系统的输入信号的方向相反,则称为负反馈;如果反馈信号与系统的输入信号的方向相同,则称为正反馈。
(2)根据反馈的有无,可将控制系统分为开环控制系统和闭环控制系统。
1.何为闭环控制系统?其最主要的优点是什么?答案:闭环控制系统就是反馈控制系统,即输出量对控制作用有影响的系统。
其最主要的优点是能实现自我调节,不断修正偏差,抗干扰能力强。
1.简述“自动控制”和“系统”的基本概念。
答案:(1)所谓“自动控制”就是在没有人直接参与的情况下,采用控制装置使被控对象的某些物理量在一定精度范围内按照给定的规律变化。
机电工程基础形成性考核册作业标准答案
![机电工程基础形成性考核册作业标准答案](https://img.taocdn.com/s3/m/7b623cd580eb6294dd886c73.png)
机电工程基础作业答案第一章一、简答1.什么是自动控制?就是在没有人直接参与的情况下,利用控制装置使生产过程或被控对象的某一物理量(输出量)准确地按照给定的规律(输入量)运行或变化。
2.控制系统的基本要求有哪些?控制系统的基本要求可归结为稳定性;准确性和快速性。
3.什么是自动控制系统?指能够对被控制对象的工作状态进行自动控制的系统。
它一般由控制装置和被控制对象组成4.反馈控制系统是指什么反馈?反馈控制系统是指负反馈。
5.什么是反馈?什么是正反馈?什么是负反馈?反馈信号(或称反馈):从系统(或元件)输出端取出信号,经过变换后加到系统(或元件)输入端,这就是反馈信号。
当它与输入信号符号相同,即反馈结果有利于加强输入信号的作用时叫正反馈。
反之,符号相反抵消输入信号作用时叫负反馈。
6.什么叫做反馈控制系统系统输出全部或部分地返回到输入端,此类系统称为反馈控制系统(或闭环控制系统)。
7.控制系统按其结构可分为哪3类?控制系统按其结构可分为开环控制系统、闭环控制系统和复合控制系统。
8.举例说明什么是随动系统。
这种系统的控制作用是时间的未知函数,即给定量的变化规律是事先不能确定的,而输出量能够准确、迅速的复现给定量(即输入量)的变化,这样的系统称之为随动系统。
随动系统应用极广,如雷达自动跟踪系统,火炮自动瞄准系统,各种电信号笔记录仪等等。
9.自动控制技术具有什么优点?⑴极大地提高了劳动生产率;⑵提高了产品的质量;⑶减轻了人们的劳动强度,使人们从繁重的劳动中解放出来,去从事更有效的劳动;⑷由于近代科学技术的发展,许多生产过程依靠人们的脑力和体力直接操作是难以实现的,还有许多生产过程则因人的生理所限而不能由人工操作,如原子能生产,深水作业以及火箭或导弹的制导等等。
在这种情况下,自动控制更加显示出其巨大的作用10.对于一般的控制系统,当给定量或扰动量突然增加某一给定值时,输出量的暂态过程可能有几种情况?单调过程衰减振荡过程持续振荡过程发散振荡过程二、判断1.自动控制中的基本的控制方式有开环控制、闭环控制和复合控制。
MATLAB在求二阶系统中阶跃响应的分析及应用
![MATLAB在求二阶系统中阶跃响应的分析及应用](https://img.taocdn.com/s3/m/5669a97602768e9951e7386f.png)
摘要二阶系统控制系统按数学模型分类时的一种形式,是用数学模型可表示为二阶线性常微分方程的系统。
二阶系统的解的形式,可由对应传递函数W(s)的分母多项式P(s)来判别和划分,P(s)的一般形式为变换算子s的二次三项代数式。
代数方程P(s)=0的根,可能出现四种情况。
1.两个实根的情况,对应于两个串联的一阶系统。
如果两个根都是负值,就为非周期性收敛的稳定情况。
2.当a1=0,a2>0,即一对共轭虚根的情况,将引起频率固定的等幅振荡,是系统不稳定的一种表现。
3.当a1<0,a1-4a2<0,即共轭复根有正实部的情况,对应于系统中发生发散型的振荡,也是不稳定的一种表现。
4.当a1>0,a1-4a2<0,即共轭复根有负实部的情况,对应于收敛型振荡,且实部和虚部的数值比例对输出过程有很大的影响。
一般以阻尼系数ζ来表征,取在0.4~0.8之间为宜。
当ζ>0.8后,振荡的作用就不显著,输出的速度也比较慢。
而ζ<0.4时,输出量就带有明显的振荡和较大的超调量,衰减也较慢,这也是控制系统中所不希望的。
当激励为单位阶跃函数时,电路的零状态响应称为单位阶跃响应,简称阶跃响应。
阶跃响应g(t)定义为:系统在单位阶跃信号u(t)的激励下产生的零状态响应。
关键词:二阶系统阶跃响应 MATLAB/SimulinkMATLAB 在求二阶系统中阶跃响应的分析及应用1 训练目的和要求通过对MATLAB 仿真软件的语言的学习,学会在MATLAB 中解决《电路原理》、《模拟电子技术基础》、《数字电子技术基础》等所学课本上的问题,进一步熟悉并掌握MATLAB 在电路、信号与系统、自动控制原理、数字信号处理等中的应用。
通过对软件的应用,巩固已学知识。
以求达到通过训练能熟练掌握MATLAB 的应用,能够深入到实际问题中。
要求通过理论分析所要求题目并通过MATLAB 仿真比较实验结果。
2 理论分析计算已知系统的传递函数为2121s s ζ++,求其阶跃响应。
单位阶跃响应与单位脉冲响应
![单位阶跃响应与单位脉冲响应](https://img.taocdn.com/s3/m/8274b030cf84b9d528ea7ae2.png)
➢ 一阶系统的形式
C(s) 1 R(s) Ts 1
闭环极点(特征根):-1/T
CHANG’AN UNIVERSITY
长安大学信息工程学院
自动控制理论
➢一阶系统的单位阶跃响应
R(s) 1 s
C(s) 1 1 1 T Ts 1 s s Ts 1
第三章
1t
c(t) 1 e T
R(s)
1 s2
C(s)
1 Ts 1
1 s2
1T T s2 s s 1
T
1t
c(t) t T Te T
t0
第三章
CHANG’AN UNIVERSITY
长安大学信息工程学院
自动控制理论
CHANG’AN UNIVERSITY
第三章
性质: 1)经过足够长的时间 (≥4T),输出增长速率近 似与输入相同; 2)输出相对于输入滞后 时间T; 3)稳态误差=T。
o
t
R(s)
2A S3
当A=1/2时称为单位抛物线函数,其数学表达式为
r (t )
0 1 2
t
t0 t0
R(s)
1 S3
CHANG’AN UNIVERSITY
长安大学信息工程学院
自动控制理论
四.脉冲函数
r(t)
A
第三章
0
r (t )
A
t 0及t 0t
稳定边界
CHANG’AN UNIVERSITY
n :无阻尼自然频率
长安大学信息工程学院
自动控制理论
临界阻尼:=1
C(s) R(s)
控制工程基础实验指导书(答案)
![控制工程基础实验指导书(答案)](https://img.taocdn.com/s3/m/11e9b633ad02de80d5d84003.png)
控制工程基础实验指导书自控原理实验室编印(内部教材)实验项目名称:(所属课程:)院系:专业班级:姓名:学号:实验日期:实验地点:合作者:指导教师:本实验项目成绩:教师签字:日期:(以下为实验报告正文)一、实验目的简述本实验要达到的目的。
目的要明确,要注明属哪一类实验(验证型、设计型、综合型、创新型)。
二、实验仪器设备列出本实验要用到的主要仪器、仪表、实验材料等。
三、实验内容简述要本实验主要内容,包括实验的方案、依据的原理、采用的方法等。
四、实验步骤简述实验操作的步骤以及操作中特别注意事项。
五、实验结果给出实验过程中得到的原始实验数据或结果,并根据需要对原始实验数据或结果进行必要的分析、整理或计算,从而得出本实验最后的结论。
六、讨论分析实验中出现误差、偏差、异常现象甚至实验失败的原因,实验中自己发现了什么问题,产生了哪些疑问或想法,有什么心得或建议等等。
七、参考文献列举自己在本次准备实验、进行实验和撰写实验报告过程中用到的参考文献资料。
格式如下:作者,书名(篇名),出版社(期刊名),出版日期(刊期),页码实验一 控制系统典型环节的模拟一、实验目的1、掌握比例、积分、实际微分及惯性环节的模拟方法;2、通过实验熟悉各种典型环节的传递函数和动态特性;3、了解典型环节中参数的变化对输出动态特性的影响。
二、实验仪器1、控制理论电子模拟实验箱一台;2、超低频慢扫描数字存储示波器一台;3、数字万用表一只;4、各种长度联接导线。
三、实验原理以运算放大器为核心元件,由其不同的R-C 输入网络和反馈网络组成的各种典型环节,如图1-1所示。
图中Z1和Z2为复数阻抗,它们都是R 、C 构成。
图1-1 运放反馈连接基于图中A 点为电位虚地,略去流入运放的电流,则由图1-1得:21()o i u ZG s u Z ==-(1-1) 由上式可以求得下列模拟电路组成的典型环节的传递函数及其单位阶跃响应。
1、比例环节实验模拟电路见图1-2所示图1-2 比例环节传递函数:21()R G s K R =-=- 阶跃输入信号:-2V 实验参数:(1) R 1=100K R 2=100K (2) R 1=100K R 2=200K 2、 惯性环节实验模拟电路见图1-3所示图1-3 惯性环节传递函数:2212211211()11R CS R Z R K CS G s Z R R R CS TS +=-=-=-=-++阶跃输入:-2V实验参数:(1) R 1=100K R 2=100K C=1µf(2) R=100K R 2=100K C=2µf 3、积分环节实验模拟电路见图1-4所示图1-4 积分环节传递函数:21111()Z CS G s Z R RCS TS=-=-=-= 阶跃输入信号:-2V 实验参数:(1) R=100K C=1µf (2) R=100K C=2µf 4、比例微分环节实验模拟电路见图1-5所示图1-5 比例微分环节传递函数:22211111()(1)(1)1D Z R R G S R CS K T S R Z R CS R CS =-=-=-+=-++ 其中 T D =R 1C K=12R R 阶跃输入信号:-2V实验参数:(1)R1=100K R2=100K C=1µf(2)R1=100K R2=200K C=1µf四、实验内容与步骤1、分别画出比例、惯性、积分、比例微分环节的电子电路;2、熟悉实验设备并在实验设备上分别联接各种典型环节;3、按照给定的实验参数,利用实验设备完成各种典型环节的阶跃特性测试,观察并记录其单位阶跃响应波形。
机电控制工程基础-形考册答案3
![机电控制工程基础-形考册答案3](https://img.taocdn.com/s3/m/d4575f343968011ca3009169.png)
《机电控制工程基础》第三章形成性考核册作业习题答案一、简答 1. 单位阶跃函数的拉普拉斯变换结果是什么? 单位斜坡函数的拉氏变换结果是什么?单位阶跃函数的拉普拉斯变换结果是1 。
单位斜坡函数的拉氏变换结果是 1 。
s s 22.什么是极点和零点? 传递函数分母多项式的根被称为系统的极点,分子多项式的根被称为系统的零点3. 某二阶系统的特征根为两个互不相等的实数,则该系统的单位阶跃响应曲线有什么特 点?单调上升4.什么叫做二阶系统的临界阻尼?画图说明临界阻尼条件下二阶系统的输出曲线。
临界阻尼(ζ=1),c(t)为一无超调的单调上升曲线,如图所示。
5.动态性能指标通常有哪几项?如何理解这些指标?延迟时间t d 阶跃响应第一次达到终值h (∞) 的 50%所需的时间。
上升时间t r 阶跃响应从终值的 10%上升到终值的 90%所需的时间;对有振荡的系统,也可定义为从 0 到第一次达到终值所需的时间。
峰值时间t p 阶跃响应越过稳态值h (∞) 达到第一个峰值所需的时间。
调节时间t s 阶跃响到达并保持在终值h (∞) ± 5 %误差带内所需的最短时间;有时也 用终值的± 2 %误差带来定义调节时间。
超调量σ % 峰值h (t p ) 超出终值h (∞) 的百分比,即σ %=h (t p )- h (∞)⨯100%h (∞)6.劳斯稳定判据能判断什么系统的稳定性? 劳斯稳定判据能判断线性定常系统的稳定性。
7.一阶系统的阶跃响应有什么特点?当时间 t 满足什么条件时响应值与稳态值之间的误差 将小于 5~2%。
?由于一阶系统的阶跃响应没有超调量,所有其性能指标主要是调节时间,它表征系统过渡过程的快慢。
当 t =3T 或 4T 时,响应值与稳态值之间的误差将小于 5~2%。
显然系统的时间常数T越小,调节时间越小,响应曲线很快就能接近稳态值。
8.在欠阻尼的情况下,二阶系统的单位阶跃响应有什么特点?在欠阻尼的情况下,二阶系统的单位阶跃响应为一振幅按指数规律衰减的简谐振荡时间函数。
控制工程基础实验指导书(答案)
![控制工程基础实验指导书(答案)](https://img.taocdn.com/s3/m/957826adf61fb7360a4c6512.png)
控制工程基础实验指导书自控原理实验室编印(部教材)实验项目名称:(所属课程:)院系:专业班级:姓名:学号:实验日期:实验地点:合作者:指导教师:本实验项目成绩:教师签字:日期:(以下为实验报告正文)一、实验目的简述本实验要达到的目的。
目的要明确,要注明属哪一类实验(验证型、设计型、综合型、创新型)。
二、实验仪器设备列出本实验要用到的主要仪器、仪表、实验材料等。
三、实验容简述要本实验主要容,包括实验的案、依据的原理、采用的法等。
四、实验步骤简述实验操作的步骤以及操作中特别注意事项。
五、实验结果给出实验过程中得到的原始实验数据或结果,并根据需要对原始实验数据或结果进行必要的分析、整理或计算,从而得出本实验最后的结论。
六、讨论分析实验中出现误差、偏差、异常现象甚至实验失败的原因,实验中自己发现了什么问题,产生了哪些疑问或想法,有什么心得或建议等等。
七、参考文献列举自己在本次准备实验、进行实验和撰写实验报告过程中用到的参考文献资料。
格式如下:作者,书名(篇名),出版社(期刊名),出版日期(刊期),页码实验一控制系统典型环节的模拟一、实验目的1、掌握比例、积分、实际微分及惯性环节的模拟法;2、通过实验熟悉各种典型环节的传递函数和动态特性;3、了解典型环节中参数的变化对输出动态特性的影响。
二、实验仪器1、控制理论电子模拟实验箱一台;2、超低频慢扫描数字存储示波器一台;3、数字万用表一只;4、各种长度联接导线。
三、实验原理以运算放大器为核心元件,由其不同的R-C输入网络和反馈网络组成的各种典型环节,如图1-1所示。
图中Z1和Z2为复数阻抗,它们都是R、C构成。
图1-1 运放反馈连接基于图中A 点为电位虚地,略去流入运放的电流,则由图1-1得:21()o i u ZG s u Z ==-(1-1) 由上式可以求得下列模拟电路组成的典型环节的传递函数及其单位阶跃响应。
1、比例环节实验模拟电路见图1-2所示图1-2 比例环节传递函数:21()R G s K R =-=- 阶跃输入信号:-2V 实验参数:(1) R 1=100K R 2=100K (2) R 1=100K R 2=200K2、惯性环节实验模拟电路见图1-3所示图1-3 惯性环节传递函数:2212211211()11RCSRZ R KCSG sZ R R R CS TS+=-=-=-=-++阶跃输入:-2V 实验参数:(1)R1=100K R2=100K C=1µf(2)R=100K R2=100K C=2µf3、积分环节实验模拟电路见图1-4所示图1-4 积分环节传递函数:21111()Z CS G s Z R RCS TS=-=-=-= 阶跃输入信号:-2V 实验参数:(1) R=100K C=1µf (2) R=100K C=2µf 4、比例微分环节实验模拟电路见图1-5所示图1-5 比例微分环节传递函数:22211111()(1)(1)1D Z R R G S R CS K T S R Z R CS R CS =-=-=-+=-++ 其中 T D =R 1C K=12R R 阶跃输入信号:-2V 实验参数:(1) R 1=100K R 2=100K C=1µf (2)R 1=100K R 2=200K C=1µf 四、实验容与步骤1、分别画出比例、惯性、积分、比例微分环节的电子电路;2、熟悉实验设备并在实验设备上分别联接各种典型环节;3、按照给定的实验参数,利用实验设备完成各种典型环节的阶跃特性测试,观察并记录其单位阶跃响应波形。
自动控制原理(3-2)
![自动控制原理(3-2)](https://img.taocdn.com/s3/m/9b785ff4700abb68a982fb86.png)
arccos 1.09(rad )
1 0.7
d n 1 2 3.14(rad / s)
0.65( s ) d
td
n
3.5
0.37( s )
tr
ts
n
4.4
2.15( s ) 0.05
ts
n
2.70( s)
对上式取拉氏反变换,求得单位阶跃响应为:
h(t ) 1 e sin d t cos d t 2 1 1 1 e nt 1 2 cos d t sin d t 1 2
n t
1
1 1 2
e nt sin( d t ) , t 0
式中, arctan( 1 2 ) ,或者
arccos
欠阻尼二阶系统的单位阶跃响应有两部分组成:
稳态分量为1,系统在单位阶跃函数作用下不存在
稳态位臵误差;
瞬态分量为阻尼正弦振荡项,其振荡频率为ωd,
故称为阻尼振荡频率。
t 0
系统的误差为:
e(t ) r (t ) c(t ) 2
n
2
n
1 2 e nt sin 1 2 n t 2arctg 1 2 1
1 2
e t T1 e t T2 h(t ) 1 , t0 T2 T1 1 T1 T2 1
4.无阻尼(ζ=0)二阶系统的单位阶跃响应
h(t ) 1 cos nt , t 0
可见,这是一条平均值为1的正、余弦形式的等幅振 荡,其振荡频率为ωn,故可称为无阻尼振动频率。 实际的控制系统通常都有一定的阻尼比,因此不可能 通过实验方法测得ωn,而只能测得ωd,且小于ωn。
自动控制原理试题答案
![自动控制原理试题答案](https://img.taocdn.com/s3/m/98aa2d2a5727a5e9856a61fe.png)
∑∆∆=i i i s s Q s H )()(1)(zidpngkongzhi1 闭环系统(或反馈系统)的特征:采用负反馈,系统的被控变量对控制作用有直接影响,即被控变量对自己有控制作用 。
2 典型闭环系统的功能框图。
自动控制 在没有人直接参与的情况下,通过控制器使被控对象或过程按照预定的规律运行。
自动控制系统 由控制器和被控对象组成,能够实现自动控制任务的系统。
被控制量 在控制系统中.按规定的任务需要加以控制的物理量。
控制量 作为被控制量的控制指令而加给系统的输入星.也称控制输入。
扰动量 干扰或破坏系统按预定规律运行的输入量,也称扰动输入或干扰掐入。
反馈 通过测量变换装置将系统或元件的输出量反送到输入端,与输入信号相比较。
反送到输入端的信号称为反馈信号。
负反馈 反馈信号与输人信号相减,其差为偏差信号。
负反馈控制原理 检测偏差用以消除偏差。
将系统的输出信号引回插入端,与输入信号相减,形成偏差信号。
然后根据偏差信号产生相应的控制作用,力图消除或减少偏差的过程。
开环控制系统 系统的输入和输出之间不存在反馈回路,输出量对系统的控制作用没有影响,这样的系统称为开环控制系统。
开环控制又分为无扰动补偿和有扰动补偿两种。
闭环控制系统 凡是系统输出端与输入端存在反馈回路,即输出量对控制作用有直接影响的系统,叫作闭环控制系统。
自动控制原理课程中所讨论的主要是闭环负反馈控制系统。
复合控制系统 复合控制系统是一种将开环控制和闭环控制结合在一起的控制系统。
它在闭环控制的基础上,用开环方式提供一个控制输入信号或扰动输入信号的顺馈通道,用以提高系统的精度。
自动控制系统组成 闭环负反馈控制系统的典型结构如图1.2所示。
组成一个自动控制系统通常包括以下基本元件 .给定元件 给出与被控制量希望位相对应的控制输入信号(给定信号),这个控制输入信号的量纲要与主反馈信号的量纲相同。
给定元件通常不在闭环回路中。
2.测量元件 测量元件也叫传感器,用于测量被控制量,产生与被控制量有一定函数关系的信号。
单位脉冲响应单位阶跃响应
![单位脉冲响应单位阶跃响应](https://img.taocdn.com/s3/m/2bd0b468cc7931b764ce1527.png)
1.05 y( )
ess
0.95 y( )
超调量:
σp(%)
y(t
p
)
y()
100%
y()
t
ts
17
3.3.2 一阶系统的暂态响应特性
数学模型为 T dy( t ) y( t ) Kr( t ) dt
r(t)
y(t)
系统
Y( s ) K G( s ) R( s ) Ts 1
s2 2
9
4 种典型输入信号之间的关系
微 对抛物线信号微分 = 斜坡信号
分 关
对斜坡信号微分 = 阶跃信号
系 对阶跃信号微分 = 脉冲信号
积 对脉冲信号积分 = 阶跃信号
分 关
对阶跃信号积分 = 斜坡信号
系 对斜坡信号积分 = 抛物线信号
10
典型初始条件与典型响应
典型初始条件:零初始状态,即 在t=0时 系统 的输入及输出以及各阶导数均为零。即在外作 用施加之前系统是静止的。
典型响应:系统在零初始状态下,在典型输入 信号作用下的响应。如:单位脉冲响应、单位 阶跃响应、单位斜坡响应、单位抛物线响应。
r(t)
y(t)
系统
11
r(t) 系统 y(t) R(s) G(s) Y(s)
4种典型响应之间的关系
R(s)
Y(s)
( t )
1
Y1 ( s )
r(t)
其中
K1
2K 2 1 2K
,T
2 1 2K
∴ K↑ u↑
u图
K与稳态误差 ess 的关系:
e图
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2
100%
20 10 0 0.2 0.4 0.6 0.8 1.0
§3-3 二阶系统的时域分析
一、数学模型 微分方程
d 2c (t ) dt 2
C (s)
+ 2z w n
dc (t ) dt
+ w n 2c (t ) = w n 2 r (t )
1 Kw n2 = 2 2 = F (s) = 2 传递函数 2 T s + 2z Ts + 1 R (s) s + 2z w n s + w n
1 s 2 1 s 2 s ( s jd )( s jd ) s ( s )2 d 2
d 1 s 2 2 2 2 s ( s ) d ( s ) d d
h( t ) 1 e (cos d t sin d t ) d t h( t ) 1 e (cos d t sin d t ) 2 1 - zw t
j
w d = w n 1- z 2 ——阻尼振荡角频
率 h(t ) = 1- e- z w t (cos wd t +
n
z 1- z
2
sin wd t )
×
s1
w d = w n 1- z 2
n
= 1= 1-
e-
z wnt
1- z 2 e- z w n t
1- z
2
( 1- z 2 cos w d t + z sin w d t )
j
0<<1
0
jjຫໍສະໝຸດ 欠阻尼=10临界阻尼
>1
0
过阻尼
s1,2 n jn 1 2
s1,2 = - w n
s1,2 n n 2 1
3
三、二阶系统的单位阶跃响应 欠阻尼(0< < 1)
s1,2 n jn 1 2 jd
0 1 2 3 4 5 6 7 8 9 10
二阶系统单位阶跃响应曲线
nt
过阻尼(>1)
e- t / T1 e- t / T2 h(t ) = 1+ + T2 / T1 - 1 T1 / T2 - 1
9
四、欠阻尼性能分析(0<<1)
h( t ) = 1延迟时间 td
h( t d ) = 1e-
t
n
= 1-
e
n
1- z 2
( 1- z 2 cos w d t + z sin w d t )
5
h( t ) = 1-
e-
z wnt 2
1- z
sin(w d t + b )
——有超调,衰减振荡
稳态分量 无阻尼(=0)
暂态分量
s1,2 jn
h(t ) = 1- cos w n t
sin(w d t r + b ) = 1
p- b tr » wd
10
峰值时间 tp
d h( t ) = 0 dt t= t p
%
100 90
p tp = wd
超调量 %
%
h( t p ) h( ) h( )
100%
80 70
60
50 40 30
% e
1
2
——有超调,等幅振荡
1
0
t
6
临界阻尼(=1)
s1,2 = - w n
——单调增,无超调
h(t ) = 1- e- wnt (1+ wnt )
过阻尼(>1)
T1 = 1 w n (z z 2 - 1)
s1,2 n n 2 1
T2 =
1 w n (z + z 2 - 1)
s1,2 jn
2
2 s 1 特征根: 1,2 n n
欠阻尼(0< < 1) : Re [s1,2]<0
s1=s2,Re [s1,2]<0,Im [s1,2]=0。 临界阻尼( =1): 过阻尼( > 1) : Re [s1,2]<0,Im [s1,2]=0。
h(t) 1.8 1.6 1.4 1.2 0.8 1.0 0.8 0.6 0.4 0.2
z= 0
0.1 0.2 0.4 1.0 2.0
h(t ) = 1- cos w n t
欠阻尼(0<<1)
h( t ) = 1ez wnt 2
1- z
sin(w d t + b )
临界阻尼(=1)
h(t ) = 1- e- wnt (1+ wd t )
——阻尼比;
n>0 ——自然振荡角频率(无阻尼振荡角频率);
T>0 ——自然周期(=1/n)。
动态结构图
R(s)
2 wn s( s + 2z w n )
C(s)
1
二、二阶系统的特征根在复平面的分布 w n2 F (s) = 2 传递函数: s + 2z w n s + w n 2 特征方程: 特征根:
sinβ
cosβ
- s = - z wn 0
sin(w d t + b )
b = arctan( 1- z 2 / z ) = arccos z ——阻尼角
4
s 2n 1 n 2 1 2 H ( s ) R( s )( s) 2 2 s s 2n s n 2 s s 2n s n
——过阻尼的
时间常数, 且T1>T2
e- t / T1 e- t / T2 h(t ) = 1+ + ——单调增,无超调 T2 / T1 - 1 T1 / T2 - 1
7
两种单调递增的曲线与一阶系统的不同,起始斜率为0。
c(t)
1
一阶系统
二阶临界阻尼系统 二阶过阻尼系统 t
0
8
无阻尼(=0)
s2 + 2zwn s + wn2 = 0
s1,2 n n 2 1
无阻尼(=0):Re [s1,2]=0
j
Re [s1,2]>0 不稳定(<0):
j
不稳定1
0
1<<0
不稳定2
0
<1
j
无阻尼
0
=0
s1,2 n j n 1 2
s1,2 n n 2 1
e
- z wnt 2
1- z
z w n td 2
sin(w d t + b )
×
n
s1
j
w d = w n 1- z 2
1- z
sin(w d t d + b ) = 0.5
- s = - z wn
0
td »
1+ 0.7z wn
ez w n tr 2
上升时间 tr
h( t r ) = 1-
1- z