3-晶体结构及其与材料性能关系(4)
材料科学与工程方法论—4. 材料结构、性能与表征的因果关系
![材料科学与工程方法论—4. 材料结构、性能与表征的因果关系](https://img.taocdn.com/s3/m/2e541eccd15abe23482f4dec.png)
E tg (MPa)
3、材料的性能
陶瓷强度的测定: a. 弯曲强度:三点弯曲或四点弯曲方法; b. 抗拉强度:测定时技术上有一定难度,常用弯曲 强度代替,弯曲强度比抗拉强度高 20~40%; c. 抗压强度:远大于抗拉强度,相差10倍左右,特 别适合于制造承受压缩载荷作用的 零部件。
2、材料的结构
b. 实际的晶体结构
◆点缺陷:是一种在三维空间各个方向上尺寸都很小,尺寸范围
约为一个或几个原子间距的缺陷。如空位 ( 正常晶格结点上,未 被原子占有而空着的位臵 )、间隙(不占有正常的晶格位臵,而处 在晶格间隙中的多余原子 )、臵换原子(臵换晶格结点上的原子, 占据正常结点)。
空位
臵换原子
用化学式表示。Mg2Si
电子化合物:不遵守原子价规律,服从电子浓度规律; 间隙化合物:过渡族金属元素与C、N、H、B等原子半径较
小的非金属元素形成的化合物。
显微组织:材料中各相及更微观组元 (化学或几何学的)的形
貌及含量所构成的图象。(显微镜下所观察到的金属中的各种晶 粒的大小、形态和分布)
2、材料的结构
2、材料的结构
(2) 非金属的晶体结构
a. 陶瓷的组织结构: 陶瓷: 是由金属和非金属的无机化合物所构成的多晶固体物
质,实际上是各种无机非金属材料的总称。
晶体结构:以离子键为主的离子晶体(呈晶态) 以共价键为主的共价晶体(呈非晶态) 组织:晶相:是主要组成相。
(主晶相、次晶相、第三晶相) 材料的性能取决于主晶相。
高分子材料:以高分子化合物为主要组分的材料。高分子化合物是分子中 含原子数很多,分子量很大的物质。高分子亦称大分子,高 分子化合物又称高聚物或聚合物。 结构: 大分子链的组成:非金属或非金属元素组成。 大分子链的构型:即高聚物结构单元的排列顺序和连接方式。 大分子链的形态: 线型结构:整个分子呈细长线条状
5.1_晶体材料的结构与物理性能
![5.1_晶体材料的结构与物理性能](https://img.taocdn.com/s3/m/abfe92dd28ea81c758f57887.png)
晶体缺陷
一方面对材料的某些性能产生不良影响 一方面也使材料的性能产生各种变化,达到材料
的改性,甚至赋于材料新的或特殊的性能。 改变晶体中缺陷的种类或缺陷的浓度,可制得所需性能 的晶体材料,是材料改性和制备新型或特殊性能材料的有效 方法之一,非整比化合物构成的材料即是其中的一类。
实例1:在钠蒸汽中加热NaCl晶体 氯化钠晶体中有少量钠原子掺入,此时,若晶体受到辐 射时,钠原子将电离为钠离子和自由电子,钠离子占据正常 正离子位置、电子占据负离子格点,形成Na1+δCl,此时电 子处于空缺位置,他们能够吸收可见光而使晶体材料带有颜 色,为绿色化合物 。
晶体的稳定性: 组成晶体的微粒是对称排列的,形成很规则的几何空 间点阵,组成点阵的各个原子之间,都相互作用着, 它们的作用主要是静电引力。对每一个原子来说,其 他原子对它作用的总效果,使它们都处在势能最低的 状态,因此很稳定,宏观上就表现为形状固定,且不 易改变。
晶体的范性:
晶体内部原子有规则的排列,引起了晶体各向不同的 物理性质。例如原子的规则排列可以使晶体内部出现 若干个晶面,立方体的食盐就有三组与其边平行的平 面。如果外力沿平行晶面的方向作用,则晶体就很容 易滑动(变形),这种变形还不易恢复,称为晶体的 范性。同样也可以看出沿晶面的方向,其弹性限度 小,只要稍加力,就超出了其弹性限度,使其不能复 原;
衍射效应 由于组成材料的周期性排列的晶体相当于三维光 栅,能使波长相当的x射线、电子流或中于流产生衍射 效应,这成为了解晶体材料内部结构的重要实验方法。 测定晶体立体结构的衍射方法,有X射线衍射、电 子衍射和中子衍射等方法。其中以X射线衍射法的应用 所积累的精密分子立体结构信息最多。 例:XRD谱图示例
(2)不同晶体材料的特殊性 不同的晶体材料具有不同的微观结构,使之区 别于其他的晶体,因而又使不同晶体材料之间各 有特点。 例:晶体缺陷形成非整比化合物构成的材料。
结晶与相图铁碳合金工程材料基础知识
![结晶与相图铁碳合金工程材料基础知识](https://img.taocdn.com/s3/m/0cab304954270722192e453610661ed9ac51555c.png)
20钢
F+P基体+G球
(1)增加过冷度 随着过冷度的增加,形核率和长大速度都会增加,但形核率增加比长大速度增加要快,所以产生的晶核数目增加。因此,通过加快冷却速度,即增加过冷度,可使晶粒细化。 (2)变质处理 在金属液中加入变质剂(高熔点的固体微粒),以增加结晶核心的数目,从而细化晶粒,这种方法称变质处理,变质处理在生产中应用广泛,特别对体积大的金属很难获得大的过冷度时,采用变质处理可有效地细化晶粒。 (3)附加振动等 在金属结晶时、施以机械振动、电磁振动、超声波振动等方法,可使金属在结晶初期形成的晶粒破碎,以增加晶核数目,起到细化晶粒的目的。
三、金属铸锭的组织
[合金]:由两种或两种以上的金属元素或金属与非金属元素组成的、具有金属特征的物质称为合金。 [组元]:组成合金最基本的、独立的单元称为组元。根据组元数目的多少,可将合金分为二元合金、三元合金等。 [相]:合金中的相是指有相同的结构,相同的物理、化学性能,并与该系统中其余部分有明显界面分开的均匀部分。固态下只有一个相的合金称为单相合金;由两个或两个以上相组成的合金称为多相合金。合金的的相结构主要有固溶体和金属化合物。 [显微组织]:在显微镜下观察到的组成相的种类、大小、形态和分布称为显微组织,简称组织,因此相是组成组织的基本物质。
(2)金属化合物 [金属化合物]:是合金中各组元间发生相互作用而形成的具有金属特性的一种新相,其晶体结构一般比较复杂,而且不同于任一组成元素的晶体类型。它的组成一般可用分子式来表示,如铁碳合金中的Fe3C(渗碳体)。 [金属化合物性能]:一般熔点高,性能硬而脆。当它呈细小颗粒均匀分布于固溶体基体上时,能使合金的强度、硬度、耐磨性等提高,这一现象称为弥散强化,因此,合金中的金属化合物是不可缺少的强化相;但由于金属化合物的塑性、韧性差,当合金中的金属化合物数量多或呈粗大、不均匀分布时,会降低合金的力学性能。 合金的组织可以是单相固溶体,但由于其强度不够高,其应用具有局限性;绝大多数合金的组织是固溶体与少量金属化合物组成的混合物。
材料成型原理第四章答案
![材料成型原理第四章答案](https://img.taocdn.com/s3/m/73378566eefdc8d376ee3263.png)
第四章1. 何谓结晶过程中的溶质再分配?它是否仅由平衡分配系数K 0所决定?当相图上的液相线和固相线皆为直线时,试证明K 0为一常数。
答:结晶过程中的溶质再分配:是指在结晶过程中溶质在液、固两相重新分布的现象。
溶质再分配不仅由平衡分配系数K 0决定 ,还受自身扩散性质的制约,液相中的对流强弱等因素也将影响溶质再分配。
当相图上的液相线和固相线皆为直线时K为一常数,证明如下:如右图所示:液相线及固相线为直线,假设其斜率分别为m L 及m S ,虽然C *S 、C *L 随温度变化有不同值,但L m S m L S m T T m T T C C K /)(/)(0****--===S L m m =常数, 此时,K 0与温度及浓度无关,所以,当液相线和固相线为直线时,不同温度和浓度下K 0为定值。
2. 某二元合金相图如右所示。
合金液成分为C B =40%,置于长瓷舟中并从左端开始凝固。
温度梯度大到足以使固-液界面保持平面生长。
假设固相无扩散,液相均匀混合。
试求:①α相与液相之间的平衡分配系数K 0;②凝固后共晶体的数量占试棒长度的百分之几?③凝固后的试棒中溶质B 的浓度沿试棒长度的分布曲线。
解:(1)平衡分配系数K 0 的求解:由于液相线及固相线均为直线不同温度和浓度下K 0为定值,所以:如右图,当T=500℃时, K 0 =**L C C α=%60%30=0.5 K 0即为所求 α相与液相之间的平衡分配系数.(2)凝固后共晶体的数量占试棒长度的百分数的计算:由固相无扩散液相均匀混合下溶质再分配的正常偏析方程)1(00-*=K L L f C C代入已知的*L C = 60% , K 0 = 0.5, C 0= C B =40%可求出此时的L f = 44.4%由于T=500℃为共晶转变温度,所以此时残留的液相最终都将转变为共晶组织,所以凝固后共晶体的数量占试棒长度的百分数也即为44.4%.(3)凝固后的试棒中溶质B 的浓度沿试棒长度的分布曲线 (并注明各特征成分及其位置)如下:图 4-43 二元合金相图3. 在固相无扩散而液相仅有扩散凝固条件下,分析凝固速变大(R 1→R 2,且R 2>R 1)时,固相成分的变化情况,以及溶质富集层的变化情况。
同济大学材料科学与工程学院考研专业课821材料科学基础大纲详解
![同济大学材料科学与工程学院考研专业课821材料科学基础大纲详解](https://img.taocdn.com/s3/m/027cc8dc4a7302768f993959.png)
821材料科学基础大纲详解本课程主要考察考生对材料科学的基础理论和专业知识的掌握程度,以及运用这些理论和知识解决实际问题的能力。
同时还将考察考生对常规材料表征技术的掌握程度和应用能力。
考查的知识要点包括以下内容:(1)材料及材料科学的含义:材料及材料的基本要素和相互之间的关系、材料的结构层次及材料结构与性能的关系、材料选择的基本原理;(2)材料的原子结构与分子结构:原子结构、原子间的键合、材料的化学组成和结构对性能的影响、高分子链的近程结构与远程结构:(3)固体材料结构基础:晶体的基本特性、晶体的结构特征(空间点阵和晶胞、晶向指数和晶面指数)、配位数和配位多面体、金属的晶体结构、离子晶体结构、共价晶体结构、高分子凝聚态结构(晶态结构、非晶态结构、取向结构)、非晶态的形成及结构特征、固体材料能带结构的基础知识(导体、半导体、绝缘体)及与性能之间的关系;(4)晶体的结构缺陷:缺陷分类、点缺陷的形成、位错的基本类型和特征、晶体结构缺陷对材料性能的影响;(5)材料的相结构与相变:相的定义、相结构、固溶体的概念及特点、相变的定义、相变的分类(按结构分类、按热力学分类、按相变方式分类、按原子迁移特征分类)、结晶的基本规律与条件:热力学条件、动力学条件(成核-长大机理);(6)高分子材料中的分子链运动:高分子链的内旋转及柔顺性的本质和影响因素,高分子材料的三种力学状态(玻璃态、高弹态及粘流态)、玻璃化转变温度;(7)金属材料、无机非金属材料、高分子材料及复合材料的结构特征、性能特点及其应用分析;(8)常规材料表征技术及应用:XRD、TEM、SEM、IR、DSC的工作原理、影响这些表征技术的主要因素及在材料研究中的应用。
考试题型: 专业术语或基本概念的解释、简答题、论述或辨析题、综合分析题等。
3-常见晶体结构
![3-常见晶体结构](https://img.taocdn.com/s3/m/a8d4632ca6c30c2259019ef0.png)
小结和作业
1 典型金属的晶体结构(面、体、密)
2 常见无机化合物晶体结构
以立方晶系为主 离子取代原子
重点:各典型金属的晶体结构的晶体学参数
3 固溶体的晶体结构(置换、间隙) 4 固溶体的性能(固溶强化)
作业:1、试从晶体结构的角度说明间隙固溶体、间隙相以及间隙化合物 之间的区别; 2、有一正交点阵,点阵常数a=b、c=a/2,某晶面在3个晶 轴上的截距分别为2个,3个和6个原子间距,求该晶面的密勒指数。 3、解释概念:配位数 、致密度、固溶强化
V K= V 0
V
V0
一个晶胞中原子所占的体积
一个晶胞的体积
在元素周期表一共约有110种元素,其中80
多种是金属,占2/3。而这80多种金属的晶体 结构大多属于三种典型的晶体结构。它们分 别是: 体心立方、面心立方、密排六方
二 典型金属的晶体结构
结构特点:以金属键结合,靠失去外层电子的金属离子 与自由电子的吸引力。无方向性,对称性较高的密 堆结构。 常见结构:
图2-45 面心立方结构
面心立方结构ABCABC排列
沿着面心立方的体对角线观察,就可以看到(111)面的这种堆 垛方式
密排六方结构:属于六方紧密堆积,以ABAB ...的堆积方式堆 积,具有这种结构的金属有:Mg、Zn、α-Ti等
图2-46 密排六方结构
体心立方结构:属于体心立方紧密堆积,原子是以体 心立方空间点阵的形式排列,具有这种结构的金属 有: α-Fe 、Cr、 V、Mo、W等
有序化
EAB结合能与EAA+EBB/2
原子间结合能是指原子结合时克服原子 间相互作用力外力所作的功。结合能越 大,原子越不容易结合。
材料成型原理第四章答案
![材料成型原理第四章答案](https://img.taocdn.com/s3/m/98e40e77c850ad02de804187.png)
第四章1. 何谓结晶过程中的溶质再分配它是否仅由平衡分配系数K 0所决定当相图上的液相线和固相线皆为直线时,试证明K 0为一常数。
答:结晶过程中的溶质再分配:是指在结晶过程中溶质在液、固两相重新分布的现象。
溶质再分配不仅由平衡分配系数K 0决定 ,还受自身扩散性质的制约,液相中的对流强弱等因素也将影响溶质再分配。
当相图上的液相线和固相线皆为直线时K 0为一常数,证明如下:如右图所示:液相线及固相线为直线,假设其斜率分别为m L 及m S ,虽然C *S 、C *L 随温度变化有不同值,但L m S m L S m T T m T T C C K /)(/)(0****--===SL m m =常数, 此时,K 0与温度及浓度无关,所以,当液相线和固相线为直线时,不同温度和浓度下K 0为定值。
2.B 开始凝固。
温度梯度大到足以使固-液界面保持平面生长。
假设固相无扩散,液相均匀混合。
试求:①α相与液相之间的平衡分配系数K 0;②凝固后共晶体的数量占试棒长度的百分之几③凝固后的试棒中溶质B 的浓度沿试棒长度的分布曲线。
解:(1)平衡分配系数K 0 的求解:由于液相线及固相线均为直线不同温度和浓度下K 0为定值,所以:如右图,当T=500℃时,K 0 =**L C C α=%60%30=0.5 K 0即为所求 α相与液相之间的 平衡分配系数.(2)凝固后共晶体的数量占试棒长度的百分数的计算:由固相无扩散液相均匀混合下溶质再分配的正常偏析方程代入已知的*L C = 60% , K 0 = 0.5, C 0= C B =40%可求出此时的L f = 44.4%由于T=500℃为共晶转变温度,所以此时残留的液相最终都将转变为共晶组织,所以凝固后共晶体的数量占试棒长度的百分数也即为44.4%.(3)凝固后的试棒中溶质B 的浓度沿试棒长度的分布曲线 (并注明各特征成分及其位置)如下:3. 在固相无扩散而液相仅有扩散凝固条件下,分析凝固速变大(R 1→R 2,且R 2>R 1)时,固相成分的变化情况,以及溶质富集层的变化情况。
材料科学基础第三章典型晶体结构(共71张PPT)
![材料科学基础第三章典型晶体结构(共71张PPT)](https://img.taocdn.com/s3/m/511e5af6988fcc22bcd126fff705cc1755275f09.png)
表示方法:球体堆积法;坐标法;投影图;配位多面体连 接方式
与金刚石晶胞的比照 ,有什么不同?
同型结构的晶体β-SiC,GaAs,AlP 等
5、 -ZnS〔纤锌矿〕型结构 〔AB type〕
六方晶系,简单六方格子
配位数:
晶胞中正负离子个数
堆积及空隙情况
同型结构的晶体:BeO, ZnO, AlN等
笼外俘获其它原子或基团,形成类C60的衍生物,例如
C60F60。再如,把K、Cs、Ti等金属原子掺进C60分子 的笼内,就能使其具有超导性能。再有C60H60这些相 对分子质量很大地碳氢化合物热值极高,可做火箭的 燃料等等。
2〕碳纳米管
碳纳米管又称纳米碳管〔 Carbon nanotube,CNT〕,是 单质碳的一维结构形式。碳纳米 管按照石墨烯片的层数分类可分 为:单壁碳纳米管〔Singlewalled nanotubes, SWNTs〕和多 壁碳纳米管〔Multi-walled nanotubes, MWNTs〕。
4. -ZnS〔闪锌矿〕型结构 〔AB type〕 点群:
空间群:
配位数:
晶胞中正负离子个数Z:
堆积及间隙情况:
• 以体积较大的S2-作立方紧密堆积 • Zn2+如何填充? • 空隙如何分布?
等同点分布:
共有2套等同点。这种结构 可以看作是Zn离子处在由S离 子组成的面心立方点阵的4个
四面体间隙中,即有一半四面 体间隙被占据,上层和下层的
晶体结构的描述通常有三种方法:
1〕坐标法:给出单位晶胞中各质点的空间坐标,这种采用
数值化方式描述晶体结构是最标准化的。为了方便表示晶胞, 化学式可写为MO,其中M2+是二价金属离子,结构中M2+和O2-分别占据了NaCl中钠离子和氯离子的位置。 以由体正积 负还较离大子可的半径S以2比-作rN采立a方+/r用紧cl-密≈堆投0.积 影图,即所有的质点在某个晶面〔001〕上的投
晶体结构
![晶体结构](https://img.taocdn.com/s3/m/16aed31c580216fc700afd53.png)
萤石(CaF2) 0.732 型
金 红 石 0.414~0.732 (TiO2)型
TeO2 0.67 CoF2 0.62 SnO2 0.56 OsO2 0.51 VO2 0.46 MnO2 0.39
MnF2 0.66 PbO2 0.64 ZnF2 0.62 NiF2 0.59 NbO2 0.52 MoO2 0.52 IrO2 0.50 RuO2 0.49 GeO2 0.36
常见CdI2型结构的层状晶体是Mg(OH)2,
Ca(OH)2等晶体。
图1-21 碘化镉型结构
三、A2X3型结构
A2X3型化合物晶体结构比较复杂,其中有代表 性的结构有刚玉(corundum)型结构,稀土A、B、 C型结构等。由于这些结构中多数为离子键性强的化 合物,因此,其结构的类型也有随离子半径比变化的 趋势,如图1-22所示。
相当程度的共价键性质。常见闪锌矿型结构有Be,Cd,Hg等的硫
化物,硒化物和碲化物以及CuCl及-SiC等。
(a)晶胞结构
(b)(001)面上的投影 (c)[ZnS4]分布及连接
图1-17 闪锌矿结构
4.六方ZnS(纤锌矿,wurtzite )型结构及热释电性
(1)结构解析
纤锌矿属于六方晶系,点群 6mm,空间群 P63mc,晶胞结构如图
方镁石),其熔点高达 2800℃左右,是碱性耐火材料镁砖
中的主要晶相。
2.CsCl型结构
CsCl属于立方晶系,点群m3m,空间群Pm3m,如 图1-16所示。结构中正负离子作简单立方堆积,配位数 均为8,晶胞分子数为1,键性为离子键。CsCl晶体结 构也可以看作正负离子各一套简单立方格子沿晶胞的体 对角线位移1/2体对角线长度穿插而成。
1-18所示。 结构中S2-作六方最紧密堆积,Zn2+占据四面体空隙的1/2,Zn2+和
晶体结构及其与材料性能的关系
![晶体结构及其与材料性能的关系](https://img.taocdn.com/s3/m/c36bca4e8762caaedc33d4a9.png)
在CaTiO3结构中,Ca2+、Ti4+、O2-配位数分别 为12、6、6。O2-配位多面体是[OCa4Ti2],则O2-的 电荷数,与O2-的电价相等,故晶体结构稳定。
判断共用一个顶点的多面体的数目。
硅酸盐晶体中,一个[SiO4] 顶点的O2-还可以 和另一个[SiO4] 相连接(2个配位多面体共用一 个顶点),或者和另外3个[MgO6] 相连接(4个配 位多面体共用一个顶点),即可使O2-电价饱和。
硬度仅次于金刚石,但热稳定性远高于 金刚石,对铁系金属元素有较大的化学稳 定性。用以制造的磨具,适于加工既硬又 韧的材料,如高速钢、工具钢、模具钢、 轴承钢、镍和钴基合金、冷硬铸铁等。
2.石墨结构
IV族元素,六方晶系, P63/mmc空间群, a=0.146nm,h=0.670nm。 层状结构: 层内六节环,C-C原子间距0.142nm,共价键相
连; 层间C -C原子间距0.335nm,范德华键相连。 C原子四个外层电子在层内形成三个共价键,配
位数为3,多余一个电子可在层内移动。 同类结构物质: h-BN
图3-2 石墨晶体结构(虚线范围为单位晶胞)
结构与性能的关系
石墨: 润滑性 (中低温固体润滑剂 ) 良好的导电性 (高温发热体 ) 硬度低,易加工 在惰性气氛中熔点很高(高温坩埚 )
鲍林第三规则──多面体共顶、共棱、共面规 则
“在一个配位结构中,共用棱,特别是共用 面的存在会降低这个结构的稳定性。其中高电 价,低配位的正离子的这种效应更为明显”。
两个配位多面体连接时,随共用顶点数目 增加,中心阳离子间距缩短,库仑斥力增大, 结构稳定性降低。则结构中[SiO4]只能共顶连 接,而[AlO6]却可以共棱连接,在有些结构, 如刚玉型结构中,[AlO6]还可以共面连接。
晶体的结构及性质
![晶体的结构及性质](https://img.taocdn.com/s3/m/935bbd0e79563c1ec5da71e1.png)
晶体的结构及性质基础知识一.晶体和非晶体1.定义:内部粒子(原子、分子或离子)在空间按一定规律做周期性重复排列的固体物质称为晶体。
例如:高锰酸钾、金刚石、干冰、金属铜、石墨等。
绝大多数常见固体都是晶体。
非晶体:内部原子或分子的排列呈现杂乱无章的分布状态的固体称为非晶体。
例如:玻璃、沥青、石蜡等。
非晶体又称为无定形体。
2.晶体的重要特征(1)具有规则的几何外形(2)具有各向异性(3)有固定的熔点(4)X—射线衍射实验二.几类晶体的概念1.分子晶体:分子间以分子间作用力形成的晶体。
2.原子晶体:相邻原子间以共价键相结合形成的空间网结构的晶体叫原子晶体。
原子晶体又叫共价晶体。
3.离子晶体:由阴阳离子通过离子键结合而成的晶体叫做离子晶体。
4.金属晶体:金属原子通过金属键形成的晶体称为金属晶体。
金属晶体的成键粒子是金属阳离子和自由电子。
三.离子晶体、原子晶体、分子晶体和金属晶体比较晶体类型离子晶体原子晶体分子晶体组成晶体的粒子阳离子和阴离子原子分子组成晶体粒子间的相互作用离子键共价键范德华力(有的还有氢键)典型实例NaCl 金刚石、晶体硅、SiO2、SiC冰(H2O)、干冰(CO2)晶体的物理特性熔点、沸点熔点较高、沸点高熔、沸点高熔、沸点低导热性不良不良不良导电性固态不导电,熔化或溶于水能导电差差机械加工性能不良不良不良硬度略硬而脆高硬度硬度较小四.几种常见的晶体结构1.氯化钠晶体(离子晶体)在氯化钠晶体中:(1)与每个Na等距紧邻的Cl-有6个(2)与每个+Na等距紧邻的+Na有12个(3)每个氯化钠晶胞中含有4个NaCl。
(4)+Na周围与每个+Na等距紧邻的6个Cl-围成的空间构型为正八面体。
2.氯化铯晶体(离子晶体)在氯化铯晶体中:(1)与每个Cs+等距紧邻的Cl-有8个(2)与每个Cs+等距紧邻的Cs+有6个(3)每个氯化钠晶胞中含有1个CsCl。
3.干冰(分子晶体)在干冰的晶体中:(1)与每个CO2分子等距紧邻的CO2分子有12个。
武汉理工大学考研材料科学基础重点 第2章-晶体结构
![武汉理工大学考研材料科学基础重点 第2章-晶体结构](https://img.taocdn.com/s3/m/ea4dec1d90c69ec3d4bb750d.png)
晶体结构中质点周围的环境不一定都是相同的。
二、晶体结构的定量描述 —晶面指数、晶向指数 1.晶面、晶向及其表征 2.六方晶系的晶面指数和晶向指数 3.晶向与晶面的关系 1.晶面、晶向及其表征 晶面:晶体点阵在任何方向上可分解为相互平行的结点平面,这样的结点平面称为晶面。 a.晶面上的结点,在空间构成一个二维点阵。 b.同一取向上的晶面,不仅相互平行、间距相等,而且结点的分布也相同。不同取向的结点平 面其特征各异。 c.任何一个取向的一系列平行晶面,都可以包含晶体中所有的质点。 晶面指数:结晶学中经常用(hkl)来表示一组平行晶面,称为晶面指数。数字hkl是晶面在三 个坐标轴(晶轴)上截距的倒数的互质整数比。每一个晶面指数代表一组平行晶面。 晶面族:晶体结构中原子排列状况相同但不平行的两组以上的晶面,构成一个晶面族。同一晶 面族中,不同晶面的指数的数字相同, 只是数序和正负号不同。 晶面族指数(符号):通常用晶面族中某个最简便的晶面指数填在大括号{ }内,称为晶面族 指数,用符号{hkl}表示。 将{hkl}中的±h、±k、±l,改变符号和顺序,进行任意排列组合,就可构成这个晶面族所包 括的所有晶面的指数。
同方向的直线组,其质点分布不尽相同。
任一方向上所有平行晶向可包含晶体中所有结点,任一结点也可以处于所有晶向上。
晶向指数:用[uvw]来表示。其中u、v、w三个数字是晶向矢量在参考坐标系X、Y、Z轴上的矢量
分量经等比例化简而得出。
晶向族:晶体中原子排列周期相同的所有晶向为一个晶向族,用〈uvw〉表示。同一晶向族中不
之间的作用力,伦敦力──非极性分子中的瞬时偶极矩产生的力。当分子力不是唯一的作用力
时,它们可以忽略不计。
分子晶体分极性和非极性两大类。
氢键的特点:
3-4常见晶体结构(新)
![3-4常见晶体结构(新)](https://img.taocdn.com/s3/m/a38a592e7375a417866f8fc5.png)
图2-46 密排六方结构
体心立方结构:属于体立方紧密堆积,原子是以体 心立方空间点阵的形式排列,具有这种结构的金属 有: α-Fe 、Cr、 V、Mo、W等
图2-47 体心立方结构
补充概念: 密排面:该晶面上原子排列最为紧密 密排方向:该晶向上原子排列最为紧密
密排面:﹛111﹜
面心立方
密排方向:〈110〉 密排面: ﹛0001﹜
密排六方
密排方向:〈1120〉
密排面: ﹛110﹜
体心立方
密排方向: 〈111〉
﹛110﹜ 〈111〉
﹛111﹜ 〈110〉
﹛0001﹜ 〈1120〉
2 原子的配位数与间隙
(1)配位数
面心立方=密排六方:12
体心立方:8
(2)间隙
八面体间隙: 将原子假定为刚性 球,他们在堆垛排列时 必然存在间隙。在面心 立方晶格中存在的间隙 主要有两种形式: 位置:体心和棱的中点 间歇数量:12/4+1=4 半径为0.414r 四面体间隙: 位置:四个最近邻原子的中心
4电子浓度因素 电子浓度是指合金相中各组成元素价电子总数e与原子总数a之 比 即:e/a ={A(100-x)+Bx}/100 式中 A和 B——溶剂和溶质的原子价(原子能直接或间接与 氢原子结合或替代氢原子的数目 ) x——溶质原子在合金中的原子百分数
极限值为1.4 超过此极限,溶质元素不能再溶解了 将会形成另一种具有更高电子浓度的新相。 当原子尺寸因素较为有利时,在某些以一价金属为 基体的固溶体中,溶质元素的原子价越高,同样数 量的溶质原子溶解时,其电子浓度增加越快,故其 固熔度(摩尔分数)就愈小。
一 晶体化学基本原理
2 球体紧密堆积原理
3-4晶体结构与缺陷
![3-4晶体结构与缺陷](https://img.taocdn.com/s3/m/0518dd1aa76e58fafab003e1.png)
稳定晶格作用
形成固溶体能阻止某系晶型转变的发生,起到稳 定晶格的作用,例:
水泥熟料中β-C2S(水化活性)→γ -C2S(无活性) → β-C2S+P2O5/Cr2O3形成固溶体,阻止转变 ZrO2 : 高 温 立 方 结 构 ( 萤 石 结 构 ) 中 存 在 大 量 “ 空 洞”,为离子扩散提供扩散通道。 但是:立方 ↔ 四方 ↔ 单斜,常温失去立方结构 → ZrO2+CaO/Y2O3,稳定成立方相,快离子导体
rSi 4+ = 0.026nm, rAl 3+ = 0.039nm
组分缺陷
组分缺陷:当发生不等价的置换时,必然产生组 分缺陷,即产生空位或进入空隙 影响缺陷浓度因素:取决于掺杂量(溶质数量)和 固溶度。其固溶度仅百分之几。
例如: (1) 产生阳离子空位
MgAl2O4 • '' Al2 O3 ⎯⎯⎯⎯ 2 AlMg + VMg + 3Oo →
离子类型相同,容易形成连续固溶体
化学键
化学键性质相近,容易形成连续固溶体
(4)离子的电价影响
离子价相同或离子价总和相等时才能生成 连续置换型固溶体
钠长石Na[AlSi3O8]→钙长石Ca[Al2Si2O8], 离子 电价总和为+5价 Na + + Si 4+ ↔ Ca 2+ + Al 3+ 复合钙钛矿型压电陶瓷材料(ABO3型)中 B位取代 A位取代
固溶体与类质同晶
类质同晶:物质结晶时,其晶体结构中本应由某 种离子或原子占有的配位位置,一部分被介质中 性质相似的它种离子或原子占有,共同结晶成均 匀的呈单一相的混合晶体,但不引起键性或晶体 结构型式发生质变的现象称为类质同晶。 矿物学中,固溶体=类质同晶 严格地说:类质同晶=置换型固溶体
整理工程材料与成形技术基础习题(含答案)
![整理工程材料与成形技术基础习题(含答案)](https://img.taocdn.com/s3/m/c25baf0a0c22590103029d21.png)
20 年 月 日A4打印 / 可编辑x2040251工程材料及成型技术基础课程教学大纲x2040251工程材料及成型技术基础课程教学大纲课程名称:工程材料及成型技术基础英文名称:Engineering Materials and Moulding Technology Foundation课程编码:x2040251学时数:48其中实践学时数:4 课外学时数:学分数:3.0适用专业:机械设计制造及其自动化机械电子工程机械工程过程装备与控制工程一、课程简介《工程材料及成型技术基础》是机械类专业学生的一门重要专业基础课,与先修课程《工程训练》、后续课程《机械制造技术基础》共同探讨机械制造全过程——即从选择材料、制造毛坯、直到加工出零件所涉及的各个方面内容。
要求学生了解机械工程材料的一般知识,掌握常用材料的成分、组织、性能与加工工艺之间的关系及其用途,使学生具有合理选用材料、正确确定加工方法的能力,并初步掌握零件的结构工艺性,为学生今后的学习、设计、工作打下必备的基础。
二、课程目标与毕业要求关系表三、课程教学内容、基本要求、重点和难点(一)工程材料的结构与性能1. 教学内容晶体材料的原子排列;合金的晶体结构;工程材料的性能2. 基本要求(1)了解部分:晶体结构及缺陷的形式;单晶体和多晶体;相与组织之间的关系;固溶体和化合物性能;机械性能的概念;材料物理化学性能的概念;陶瓷和高聚物的结构(2)理解部分:刚度、强度、塑性、韧性与材料之间的关系应用;材料工艺性能的含义(3)掌握部分:晶体结构缺陷与材料性能之间的关系;合金的相的种类及对性能的影响;硬度的测量、表示方法及应用(4)熟练掌握:材料强化方式3. 重点和难点(1)重点:金属的三种典型晶体结构;实际金属中的三类晶体缺陷;合金的相结构;材料的力学性能指标σS、σb、δ、αk、HB、HRC及与材料之间的关系(2)难点:材料强化方式(二)金属材料的凝固与固态相变1. 教学内容金属结晶过程的基本规律;二元合金相图的分析;铁碳相图的分析;钢在加热和冷却时的转变2. 基本要求(1)了解部分:金属结晶过程的基本规律及影响因素;铁的同素异构转变;二元相图的意义和基本类型;钢在加热时的转变(2)理解部分:细化晶粒的方法;二元相图的基本类型和结晶过程特点;相图与材料使用性能和工艺性能之间关系;连续冷却转变曲线;钢在冷却时的转变产物及性能特点(3)掌握部分:杠杆定律;匀晶相图;共晶转变;包晶转变;共析转变(4)熟练掌握:铁碳相图的规律及应用3. 重点和难点(1)重点:铁碳合金的基本相;碳钢室温下的平衡组织组成;含碳量对铁碳合金的组织及性能的影响;铁碳相图的应用(2)难点:铁碳相图(三)金属材料的塑性变形1. 教学内容金属的塑性变形;塑性变形对金属组织和性能的影响;回复与再结晶;冷、热变形;金属的可锻性2. 基本要求(1)了解部分:单晶体与多晶体金属的塑性变形特点;加工硬化现象;残余应力的危害及消除(2)理解部分:塑性变形金属在加热时组织与性能的变化;金属可锻性的概念及影响因素(3)掌握部分:加工硬化现象的应用;回复与再结晶的特点;冷、热变形的对比;纤维组织对性能的影响及应用(4)熟练掌握:无3. 重点和难点(1)重点:加工硬化现象的应用;回复与再结晶的应用;冷、热变形的选择;纤维组织对性能的应用(2)难点:无(四)金属材料热处理1. 教学内容钢的热处理工艺(退火、正火、淬火、回火、渗碳、感应加热表面淬火)2. 基本要求(1)了解部分:热处理的分类及工序安排;固溶处理和时效强化;热处理零件结构工艺性;先进热处理工艺;渗氮的特点和应用(2)理解部分:退火、正火、淬火、回火的工艺;感应加热表面淬火的参数选择;渗碳过程(3)掌握部分:退火、正火、淬火、回火、渗碳、感应加热表面淬火的目的、组织及应用(4)熟练掌握:退火、正火、淬火、回火、渗碳、感应加热表面淬火的目的、组织及应用3. 重点和难点(1)重点:退火、正火、淬火、回火、渗碳、感应加热表面淬火的目的,组织和应用(2)难点:无(五)金属表面改性处理1. 教学内容金属表面改性处理的目的、意义、特点和方法2. 基本要求(1)了解部分:金属表面改性处理的意义(2)理解部分:转化膜、电镀、离子沉积、热喷涂、涂装、表面着色等工艺的特点和应用场合(3)掌握部分:无(4)熟练掌握:无3. 重点和难点(1)重点:无(2)难点:无(六)金属材料1. 教学内容合金钢的概述;合金元素的作用;结构钢;工具钢;特殊性能钢;铸铁2. 基本要求(1)了解部分:合金钢的分类、编号方法、化学成分和主要用途;特殊性能钢(主要是不锈钢)的性能特点、热处理工艺及主要用途;有色金属和新型金属材料(2)理解部分:合金元素对钢的组织和性能影响规律(3)掌握部分:工具钢、灰铸铁的性能特点及应用;弹簧钢、轴承钢、易切削钢成分、性能特点及主要用途(4)熟练掌握:普通碳素结构钢和普通低合金结构钢、调质钢、渗碳钢成分、性能特点、热处理工艺、典型牌号及应用3. 重点和难点(1)重点:普通碳素结构钢和普通低合金结构钢、调质钢、渗碳钢成分、性能特点、热处理工艺、典型牌号及应用(2)难点:无(七)铸造1. 教学内容合金铸造性能;砂型铸造工艺;特种铸造;铸件结构设计;常用合金铸造生产2. 基本要求(1)了解部分:特种铸造的特点和应用;铸造技术新进展(2)理解部分:砂型铸造工艺选择(3)掌握部分:砂型铸造工艺和常用合金的铸造生产(4)熟练掌握:合金的铸造性能;灰铸铁的铸造性能;铸件结构设计3. 重点和难点(1)重点:合金的铸造性能;灰铸铁的铸造生产;铸件结构设计(2)难点:无(八)压力加工1. 教学内容自由锻;模锻;板料冲压;压力加工件结构设计2. 基本要求(1)了解部分:自由锻的工序;模锻的工序;挤压、轧制、拉拔方法;塑性加工新进展(2)理解部分:自由锻、模锻的特点及应用;板料冲压的工序、特点及应用(3)掌握部分:自由锻工艺规程制订;模锻工艺规程制订(4)熟练掌握:压力加工件结构设计3. 重点和难点(1)重点:压力加工件结构设计(2)难点:无(九)焊接1. 教学内容电弧焊;电阻焊;摩擦焊;焊接件结构工艺性;常用金属材料的焊接2. 基本要求(1)了解部分:电阻焊、摩擦焊、压力焊的特点;焊接技术新进展(2)理解部分:电弧焊接基本原理;焊接接头形式;铸铁的焊接;铜、铝合金的焊接(3)掌握部分:电弧焊方法及应用;碳钢和合金钢的焊接性(4)熟练掌握:焊接结构设计3. 重点和难点(1)重点:电弧焊方法及应用;碳钢和合金钢的焊接性;焊接结构设计(2)难点:无(十)机械零件材料及成型工艺的选用1. 教学内容工程材料及成型工艺选用的基本原则;具体成型方法及改性工艺的选用;典型零件的材料及成型工艺选择2. 基本要求(1)了解部分:无(2)理解部分:无(3)掌握部分:工程材料及成型工艺选用的基本原则;具体成型方法及改性工艺的选用(4)熟练掌握:典型零件的材料及成型工艺选择3. 重点和难点(1)重点:典型零件的材料及成型工艺选择(2)难点:无四、教学方式及学时分配五、课程其他教学环节要求(一)实验教学课:实验一铁碳合金平衡组织的显微分析要求:观察和识别铁碳合金在平衡状态下的显微组织,掌握铁碳合金的成分、组织和性能之间的对应关系实验二碳钢热处理的性能与组织分析要求:掌握钢的退火、正火、淬火、回火工艺;掌握含碳量、加热温度、冷却速度、回火温度对碳钢性能的影响;了解碳钢热处理的基本组织。
第二章 晶体结构(3)-无机单质及化合物晶体结构
![第二章 晶体结构(3)-无机单质及化合物晶体结构](https://img.taocdn.com/s3/m/b498b5097cd184254b353592.png)
CaF2——激光基质材料,在玻璃工业中常作为助熔剂
和晶核剂,在水泥工业中常用作矿化剂;
TiO2——集成光学棱镜材料;
SiO2——光学材料和压电材料。
此外还有层状CdI2和CdCl2型结构,可作固体润滑剂。
AX2型晶体也具有按r+/r-选取结构类型的倾向。 第二章 晶体结构——2.3~4无机单质及化合物晶体结构
第二章 晶体结构——2.3~4无机单质及化合物晶体结构
纤锌矿结构中六方柱晶胞
纤锌矿结构中平行六面体晶胞
资源加工与生物工程学院
(2)纤锌矿结构与热释电性及声电效应
某些纤锌矿型结构,其结构中无对称中心存在,使得晶体具 有热释电性,可产生声电效应。
热释电性是指加热使晶体温度变化时,在与该晶体c轴平行
一、AX型结构, 二、AX2型结构, 三、A2X3型结构, 四、 ABO3型结构, 五、 AB2O4型(尖晶石)结构, 六、无机化合物结构与鲍林规则(Pauling’s rule)
第二章 晶体结构——2.3~4无机单质及化合物晶体结构
资源加工与生物工程学院
一、AX型结构
有CsCl,NaCl,ZnS,NiAs等类型结构,其中:
第二章 晶体结构——2.3~4无机单质及化合物晶体结构
资源加工与生物工程学院
r AX型化合物的结构类型与 的关系 r
结构类型 CsCl型 NaCl型
r r
1.000~0.732 0.732~0.414
实 例(右边数据为
r r 比值)
CsCl 0.91 CsBr 0.84 CsI 0.75 KF 1.00 SrO 0.96 BaO 0.96 RbF 0.89 RbCl 0.82 BaS 0.82 CaO 0.80 CsF 0.80 PbBr 0.76 BaSe 0.75 NaF 0.74 KCl 0.73 SrS 0.73 RbI 0.68 KBr 0.68 BaTe 0.68 SrSe 0.66 CaS 0.62 KI 0.61 SrTe 0.60 MgO 0.59 LiF 0.59 CaSe 0.56 NaCl 0.54 NaBr 0.50 CaTe 0.50 MgS 0.49 NaI 0.44 LiCl 0.43 MgSe 0.41 LiBr 0.40 LiF 0.35 MgTe 0.37 BeO 0.26 BeS 0.20 BeSe 0.18 BeTe 0.17
晶体学基础与材料结构
![晶体学基础与材料结构](https://img.taocdn.com/s3/m/03c88a59c950ad02de80d4d8d15abe23482f032d.png)
晶体学基础与材料结构第⼀章晶体学基础及材料结构⽆论是⾦属材料还是⾮⾦属材料,通常都是晶体。
因此,作为材料科学⼯作者,⾸先要熟悉晶体的特征及其描述⽅法。
本章将扼要的介绍晶体学的基础知识,并了解材料结构。
1-1 晶体⼀、晶体与⾮晶体固态物质按其原⼦(或分⼦)的聚集状态⽽分为两⼤类:晶体与⾮晶体。
虽然我们看到⾃然界的许多晶体具有规则的外形(例如:天然⾦刚⽯、结晶盐、⽔晶等等),但是,晶体的外形不⼀定都是规则的,这与晶体的形成条件有关,如果条件不具备,其外形也就变得不规则。
所以,区分晶体还是⾮晶体,不能根据它们的外观,⽽应从其内部的原⼦排列情况来确定。
在晶体中,原⼦(或分⼦)在三维空间作有规则的周期性重复排列,⽽⾮晶体就不具有这⼀特点,这是两者的根本区别。
应⽤X射线衍射、电⼦衍射等实验⽅法不仅可以证实这个区别,还能确定各种晶体中原⼦排列的具体⽅式(即晶体结构的类型)、原⼦间距以及关于晶体的其他许多重要情况。
显然,⽓体和液体都是⾮晶体。
在液体中,原⼦亦处于紧密聚集的状态,但不存长程的周期性排列。
固态的⾮晶体实际上是⼀种过冷状态的液体,只是其物理性质不同于通常的液体⽽已。
玻璃就是⼀个典型的例⼦,故往往将⾮晶态的固体称为玻璃体。
从液态到⾮晶态固体的转变是逐渐过渡的,没有明显的凝固点(反之亦然,⽆明显的熔点)。
⽽液体转变为晶体则是突变的,有⼀定的凝固点和熔点。
⾮晶体的另⼀特点是沿任何⽅向测定其性能,所得结果都是⼀致的,不因⽅向⽽异,称为各向同性或等向性;晶体就不是这样,沿着⼀个晶体的不同⽅向所测得的性能并不相同(如导电性、导热性、热膨胀性、弹性、强度、光学数据以及外表⾯的化学性质等等),表现出或⼤或⼩的差异,称为各向异性或异向性。
晶体的异向性是因其原⼦的规则排列⽽造成的。
⾮晶体在⼀定条件下可转化为晶体。
例如:玻璃经⾼温长时间加热后能形成晶态玻璃;⽽通常呈晶体的物质,如果将它从液态快速冷却下来也可能得到⾮晶体。
⾦属因其晶体结构⽐较简单,很难阻⽌其结晶过程,故通常得不到⾮晶态固体,但近些年来采⽤了特殊的制备⽅法,已能获得⾮晶态的⾦属和合⾦。
晶体结构
![晶体结构](https://img.taocdn.com/s3/m/ecb03718c281e53a5802ffe2.png)
8. 晶面间距: 相邻两个平行晶面之间的距离。
9. 体心立方晶胞: 晶胞形状为立方体。每个顶点有1个原子,体心有1个原子。具有这种晶体结构的有Cr、V、Mo、W和α-Fe等30多种。
10. 面心立方晶胞: 在其晶胞中,原子分布在立方晶胞的8个顶点及6个侧面的中心。具有这种晶体结构的有Al、Cu、Ni和γ-Fe等约20种。
7. 什么是多晶型性和多晶型转变?写出铁的多晶型转变。
8. 若已知912℃时α-Fe和γ-Fe的晶格常数分别为0.2892nm和0.3633nm,试问γ-Fe在912℃转变为α-Fe时的体积是膨胀还是收缩?其体积变化率是多少?
27. 位错: 晶体中的一种线缺陷。其特点是原子发生错排的范围在二维尺度上很小,而在第三维尺度上很大。这是晶体中极为重要的一类缺陷,它对晶体的塑性变形、强度和断裂起着决定性的作用。位错包括两种基本类型: 刃型位错和螺型位错。
28. 非晶态金属: 亦称为“无定形金属”或“金属玻璃”,是一种原子在三维空间不具有周期性排列的固态金属或合金。金属液在通常冷却条件下会发生形核与长大的结晶过程,得到晶态金属;而在急冷条件下,虽然形核与长大的结晶过程受到抑制,但也发生了连续的整体的凝固,得到了保留液态短程有序结构的非晶态金属。非晶态金属具有较高的强度、良好的磁学性能和抗腐蚀性能。
晶面是晶体中一系列原子所组成的平面,其位向用晶面指数来确定。立方晶系的晶面指数通常采用密勒指数法确定,即晶面指数是根据晶面与3个坐标轴的截距来决定的。在立方晶系中,由于对称性很高,存在许多空间位向不同但原子排列相同的晶面,它们在晶体学上等同,可归并为一个晶面族,用{hkl}表示。在立方晶系中,同一晶面族的各晶面指数也可通过改变指数顺序和正负号的排列组合方法求出。六方晶系的晶面指数通常也采用四指数标定方法。
材料的结构与性能(共64张PPT)
![材料的结构与性能(共64张PPT)](https://img.taocdn.com/s3/m/828ac819df80d4d8d15abe23482fb4daa58d1da4.png)
是金属,也可是金属与非金
属。
组成合金的元素相互作用可 形成不同的相。
Al-Cu两相合金
单相
合金
两相 合金
⑴ 固溶体
固溶体。习惯以、、表示。
溶剂
溶质
固溶体是合金的重要组成相,实际合 金多是单相固溶体合金或以固溶体 为基的合金。
按溶质原子所处位置分为置换固溶体 和间隙固溶体。
Cu-Ni置换固溶体 Fe-C间隙固溶体
2)确定晶面指数的步骤如下:
由结点形成的空间点的阵列称空间点阵
〔1〕设晶格中某一原子为原点,通过该点平行于晶 但与化合物相比,其硬度要低得多,而塑性和韧性那么要高得多。
分为刃型位错和螺型位错。
胞的三棱边作OX、OY、OZ三个坐标轴,以晶格常 溶质原子在固溶体中的极限浓度。
⑸ 原子半径:晶胞中原子密度最大方向上相邻原子间距的一半。
② 线缺陷—晶体中的位错
位错:晶格中一局部晶体相对于 另一局部晶体发生局部滑移,滑 移面上滑移区与未
位错。分为刃型位错和螺型位错。
刃型位错
螺型位错
刃型位错和螺型位错
刃位错的形成
刃型位错:当一个完整晶体某晶面以上的某处多出半个 原子面,该晶面象刀刃一样切入晶体,这个多余原子面 的边缘就是刃型位错。
空位
间隙原子 置换原子
a. 空位: b. 间隙原子:
可以是基 体金属原子,也可以是 外来原子。
体心立方的四面体和八面体间隙
c. 置换原子:
点缺陷破坏了原子的平衡状态,
使晶格发生扭曲,称晶 格畸变。从而使强度、硬度提高,塑性、韧性下降。
空位
间隙原子
大置换原子
小置换原子
空位和间隙原子引起的晶格畸变
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
鲍林第二规则──电价规则
“在一个稳定的离子晶体结构中,每一个负 离子电荷数等于或近似等于相邻正离子分配 给这个负离子的静电键强度的总和,其偏差 ≤1/4价”。
静电键强度S定义为:正离子电价数W+与其 配位数n+之比。即S=W+/n+
图3-2 石墨晶体结构(虚线范围为单位晶胞)
结构与性能的关系
石墨: 润滑性 (中低温固体润滑剂 ) 良好的导电性 (高温发热体 ) 硬度低,易加工 在惰性气氛中熔点很高(高温坩埚 )
六方氮化硼 (h-BN):
h-BN与石墨是等电子体,有白色石墨之称。 有良好的润滑性,电绝缘性导热性和耐化学腐蚀 性,具有中子吸收能力。化学性质稳定,对所有 熔融金属化学呈惰性,成型制品便于机械加工, 有很高的耐湿性。
两个配位多面体连接时,随共用顶点数目 增加,中心阳离子间距缩短,库仑斥力增大, 结构稳定性降低。则结构中[SiO4]只能共顶连 接,而[AlO6]却可以共棱连接,在有些结构, 如刚玉型结构中,[AlO6]还可以共面连接。
鲍林第四规则──不同配位多面体连接规 则
“若晶体结构中含有一种以上的正离 子,则高电价、低配位的多面体之间有尽 可能彼此互不连接的趋势”。
1912年以后,由于X射线晶体衍射实验的成功, 不仅使晶体微观结构的测定成为现实,而且在晶 体结构与晶体性质之间相互关系的研究领域中, 取得了巨大的进展。
许多科学家 ,如 鲍 林(Pauling )、哥希密特( Goldschmidt)、查哈里阿生(Zachariason)等在 这一领域作出了巨大的贡献,本章所述内容很多 是他们研究的结晶。
该规则的结晶学基础是晶体结构的周期性和 对称性,如果组成不同的结构基元较多,每一 种基元要形成各自的周期性、规则性,则它们 之间会相互干扰,不利于形成晶体结构。
哥希密特结晶化学定律
结晶化学定律 :“晶体的构型,取决于其结 构基元(原子、离子或原子团)的数量关系、离 子的大小关系和极化作用的性质。”这一概括 一般称为哥希密特结晶化学定律
此定律不仅适用于离子晶体,也适用于其他晶 体。
3.2 无机材料典型的晶体结构
要求了解: • 无机材料典型的晶体结构类型 • 晶胞分析和描述——晶系、基本格子、等
同点分析、正负离子配位数(CN)、晶胞分 子数z、质点坐标、四面体和八面体空隙数量、
位置及被占据情况 • 同晶型典型物质及特性 • 结构与性能的关系
3.1鲍林规则
1928年,鲍林根据当时已测定的晶体结 构数据和晶格能公式所反映的关系,提 出了判断离子化合物结构稳定性的规则 ──鲍林规则。
鲍林规则共包括五条规则。
鲍林第一规则──配位多面体规则: “在离子晶体中,在正离子周围形成一个 负离子多面体,正负离子之间的距离取决 于离子半径之和,正离子的配位数取决于 离子半径比”。
75 50
C
0,100
图3-1 金刚石的晶胞图和投影图
结构与性能的关系
性能:最高硬度
极好导热性
半导体性
应用:高硬度切割材料
磨料及钻井用钻头
集成பைடு நூலகம்路中散热片
高温半导体材料
同类型结构的物质有: • 硅、锗、灰锡(-Sn) • 立方氮化硼(c-BN):
硬度仅次于金刚石,但热稳定性远高于 金刚石,对铁系金属元素有较大的化学稳 定性。用以制造的磨具,适于加工既硬又 韧的材料,如高速钢、工具钢、模具钢、 轴承钢、镍和钴基合金、冷硬铸铁等。
1.金刚石结构
IV族元素,立方晶系, Fd3m空间群,a=0.356nm; 面心立方结构:C原子分布于八个角顶和六
个面心,四个C原子交叉地位于4条体对角 线的1/4、3/4处。每个C原子周围都有四个 碳,共价键连接,配位数为4。
0,100
50
0,100
A
75 50
25
B
0,100 50
25 0,100
硅酸盐晶体中,一个[SiO4] 顶点的O2-还可以 和另一个[SiO4] 相连接(2个配位多面体共用一 个顶点),或者和另外3个[MgO6] 相连接(4个配 位多面体共用一个顶点),即可使O2-电价饱和。
鲍林第三规则──多面体共顶、共棱、共面规 则
“在一个配位结构中,共用棱,特别是共用 面的存在会降低这个结构的稳定性。其中高电 价,低配位的正离子的这种效应更为明显”。
[配例M位g如O数,6]低在两,镁种所橄配以位榄[S多石iO面结4]体构之,中间但,彼S有此i4+[无电Si连价O4接高] 和,、 它们之间由[MgO6] 所隔开。
鲍林第五规则──节约规则
“在同一晶体中,组成不同的结构基元的数 目趋向于最少”。
在硅酸盐晶体中,不会同时出现[SiO4]四面 体和[Si2O7]双四面体结构基元,尽管它们之间 符合鲍林其它规则。
第三章无机非金属材料的晶体结构
3.1 鲍林规则 3.2 无机材料典型的晶体结构 3.3 硅酸盐晶体结构
大多数无机材料为晶态材料,其质点的排列具有 周期性和规则性。不同的晶体,其质点间结合力 的本质不同,质点在三维空间的排列方式不同, 使得晶体的微观结构各异,反映在宏观性质上, 不同晶体具有截然不同的性质。
于是,按第二规则,负离子的电价数为 :
W
i
Si
i
W
( n
)
i
电价规则的作用
判断晶体是否稳定
在CaTiO3结构中,Ca2+、Ti4+、O2-配位数分别 为12、6、6。O2-配位多面体是[OCa4Ti2],则O2-的 电荷数,与O2-的电价相等,故晶体结构稳定。
判断共用一个顶点的多面体的数目。
2.石墨结构
IV族元素,六方晶系, P63/mmc空间群, a=0.146nm,h=0.670nm。 层状结构: 层内六节环,C-C原子间距0.142nm,共价键相
连; 层间C -C原子间距0.335nm,范德华键相连。 C原子四个外层电子在层内形成三个共价键,配
位数为3,多余一个电子可在层内移动。 同类结构物质: h-BN
高温环境下的固体润滑剂 航天航空中的热屏蔽材料 原子反应堆的结构材料
同质多晶现象
• 化学组成相同的物质,在不同的热力学条件下 生成不同的晶体结构的现象,称为同质多晶现 象。 • 当外界条件改变时,各变体之间就要发生结构 转变,称为同质多晶转变